linux/drivers/dma/edma.c
<<
>>
Prefs
   1/*
   2 * TI EDMA DMA engine driver
   3 *
   4 * Copyright 2012 Texas Instruments
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation version 2.
   9 *
  10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  11 * kind, whether express or implied; without even the implied warranty
  12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/dmaengine.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/edma.h>
  19#include <linux/err.h>
  20#include <linux/init.h>
  21#include <linux/interrupt.h>
  22#include <linux/list.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/of.h>
  28#include <linux/of_dma.h>
  29#include <linux/of_irq.h>
  30#include <linux/of_address.h>
  31#include <linux/of_device.h>
  32#include <linux/pm_runtime.h>
  33
  34#include <linux/platform_data/edma.h>
  35
  36#include "dmaengine.h"
  37#include "virt-dma.h"
  38
  39/* Offsets matching "struct edmacc_param" */
  40#define PARM_OPT                0x00
  41#define PARM_SRC                0x04
  42#define PARM_A_B_CNT            0x08
  43#define PARM_DST                0x0c
  44#define PARM_SRC_DST_BIDX       0x10
  45#define PARM_LINK_BCNTRLD       0x14
  46#define PARM_SRC_DST_CIDX       0x18
  47#define PARM_CCNT               0x1c
  48
  49#define PARM_SIZE               0x20
  50
  51/* Offsets for EDMA CC global channel registers and their shadows */
  52#define SH_ER                   0x00    /* 64 bits */
  53#define SH_ECR                  0x08    /* 64 bits */
  54#define SH_ESR                  0x10    /* 64 bits */
  55#define SH_CER                  0x18    /* 64 bits */
  56#define SH_EER                  0x20    /* 64 bits */
  57#define SH_EECR                 0x28    /* 64 bits */
  58#define SH_EESR                 0x30    /* 64 bits */
  59#define SH_SER                  0x38    /* 64 bits */
  60#define SH_SECR                 0x40    /* 64 bits */
  61#define SH_IER                  0x50    /* 64 bits */
  62#define SH_IECR                 0x58    /* 64 bits */
  63#define SH_IESR                 0x60    /* 64 bits */
  64#define SH_IPR                  0x68    /* 64 bits */
  65#define SH_ICR                  0x70    /* 64 bits */
  66#define SH_IEVAL                0x78
  67#define SH_QER                  0x80
  68#define SH_QEER                 0x84
  69#define SH_QEECR                0x88
  70#define SH_QEESR                0x8c
  71#define SH_QSER                 0x90
  72#define SH_QSECR                0x94
  73#define SH_SIZE                 0x200
  74
  75/* Offsets for EDMA CC global registers */
  76#define EDMA_REV                0x0000
  77#define EDMA_CCCFG              0x0004
  78#define EDMA_QCHMAP             0x0200  /* 8 registers */
  79#define EDMA_DMAQNUM            0x0240  /* 8 registers (4 on OMAP-L1xx) */
  80#define EDMA_QDMAQNUM           0x0260
  81#define EDMA_QUETCMAP           0x0280
  82#define EDMA_QUEPRI             0x0284
  83#define EDMA_EMR                0x0300  /* 64 bits */
  84#define EDMA_EMCR               0x0308  /* 64 bits */
  85#define EDMA_QEMR               0x0310
  86#define EDMA_QEMCR              0x0314
  87#define EDMA_CCERR              0x0318
  88#define EDMA_CCERRCLR           0x031c
  89#define EDMA_EEVAL              0x0320
  90#define EDMA_DRAE               0x0340  /* 4 x 64 bits*/
  91#define EDMA_QRAE               0x0380  /* 4 registers */
  92#define EDMA_QUEEVTENTRY        0x0400  /* 2 x 16 registers */
  93#define EDMA_QSTAT              0x0600  /* 2 registers */
  94#define EDMA_QWMTHRA            0x0620
  95#define EDMA_QWMTHRB            0x0624
  96#define EDMA_CCSTAT             0x0640
  97
  98#define EDMA_M                  0x1000  /* global channel registers */
  99#define EDMA_ECR                0x1008
 100#define EDMA_ECRH               0x100C
 101#define EDMA_SHADOW0            0x2000  /* 4 shadow regions */
 102#define EDMA_PARM               0x4000  /* PaRAM entries */
 103
 104#define PARM_OFFSET(param_no)   (EDMA_PARM + ((param_no) << 5))
 105
 106#define EDMA_DCHMAP             0x0100  /* 64 registers */
 107
 108/* CCCFG register */
 109#define GET_NUM_DMACH(x)        (x & 0x7) /* bits 0-2 */
 110#define GET_NUM_QDMACH(x)       ((x & 0x70) >> 4) /* bits 4-6 */
 111#define GET_NUM_PAENTRY(x)      ((x & 0x7000) >> 12) /* bits 12-14 */
 112#define GET_NUM_EVQUE(x)        ((x & 0x70000) >> 16) /* bits 16-18 */
 113#define GET_NUM_REGN(x)         ((x & 0x300000) >> 20) /* bits 20-21 */
 114#define CHMAP_EXIST             BIT(24)
 115
 116/* CCSTAT register */
 117#define EDMA_CCSTAT_ACTV        BIT(4)
 118
 119/*
 120 * Max of 20 segments per channel to conserve PaRAM slots
 121 * Also note that MAX_NR_SG should be atleast the no.of periods
 122 * that are required for ASoC, otherwise DMA prep calls will
 123 * fail. Today davinci-pcm is the only user of this driver and
 124 * requires atleast 17 slots, so we setup the default to 20.
 125 */
 126#define MAX_NR_SG               20
 127#define EDMA_MAX_SLOTS          MAX_NR_SG
 128#define EDMA_DESCRIPTORS        16
 129
 130#define EDMA_CHANNEL_ANY                -1      /* for edma_alloc_channel() */
 131#define EDMA_SLOT_ANY                   -1      /* for edma_alloc_slot() */
 132#define EDMA_CONT_PARAMS_ANY             1001
 133#define EDMA_CONT_PARAMS_FIXED_EXACT     1002
 134#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
 135
 136/* PaRAM slots are laid out like this */
 137struct edmacc_param {
 138        u32 opt;
 139        u32 src;
 140        u32 a_b_cnt;
 141        u32 dst;
 142        u32 src_dst_bidx;
 143        u32 link_bcntrld;
 144        u32 src_dst_cidx;
 145        u32 ccnt;
 146} __packed;
 147
 148/* fields in edmacc_param.opt */
 149#define SAM             BIT(0)
 150#define DAM             BIT(1)
 151#define SYNCDIM         BIT(2)
 152#define STATIC          BIT(3)
 153#define EDMA_FWID       (0x07 << 8)
 154#define TCCMODE         BIT(11)
 155#define EDMA_TCC(t)     ((t) << 12)
 156#define TCINTEN         BIT(20)
 157#define ITCINTEN        BIT(21)
 158#define TCCHEN          BIT(22)
 159#define ITCCHEN         BIT(23)
 160
 161struct edma_pset {
 162        u32                             len;
 163        dma_addr_t                      addr;
 164        struct edmacc_param             param;
 165};
 166
 167struct edma_desc {
 168        struct virt_dma_desc            vdesc;
 169        struct list_head                node;
 170        enum dma_transfer_direction     direction;
 171        int                             cyclic;
 172        int                             absync;
 173        int                             pset_nr;
 174        struct edma_chan                *echan;
 175        int                             processed;
 176
 177        /*
 178         * The following 4 elements are used for residue accounting.
 179         *
 180         * - processed_stat: the number of SG elements we have traversed
 181         * so far to cover accounting. This is updated directly to processed
 182         * during edma_callback and is always <= processed, because processed
 183         * refers to the number of pending transfer (programmed to EDMA
 184         * controller), where as processed_stat tracks number of transfers
 185         * accounted for so far.
 186         *
 187         * - residue: The amount of bytes we have left to transfer for this desc
 188         *
 189         * - residue_stat: The residue in bytes of data we have covered
 190         * so far for accounting. This is updated directly to residue
 191         * during callbacks to keep it current.
 192         *
 193         * - sg_len: Tracks the length of the current intermediate transfer,
 194         * this is required to update the residue during intermediate transfer
 195         * completion callback.
 196         */
 197        int                             processed_stat;
 198        u32                             sg_len;
 199        u32                             residue;
 200        u32                             residue_stat;
 201
 202        struct edma_pset                pset[0];
 203};
 204
 205struct edma_cc;
 206
 207struct edma_tc {
 208        struct device_node              *node;
 209        u16                             id;
 210};
 211
 212struct edma_chan {
 213        struct virt_dma_chan            vchan;
 214        struct list_head                node;
 215        struct edma_desc                *edesc;
 216        struct edma_cc                  *ecc;
 217        struct edma_tc                  *tc;
 218        int                             ch_num;
 219        bool                            alloced;
 220        bool                            hw_triggered;
 221        int                             slot[EDMA_MAX_SLOTS];
 222        int                             missed;
 223        struct dma_slave_config         cfg;
 224};
 225
 226struct edma_cc {
 227        struct device                   *dev;
 228        struct edma_soc_info            *info;
 229        void __iomem                    *base;
 230        int                             id;
 231        bool                            legacy_mode;
 232
 233        /* eDMA3 resource information */
 234        unsigned                        num_channels;
 235        unsigned                        num_qchannels;
 236        unsigned                        num_region;
 237        unsigned                        num_slots;
 238        unsigned                        num_tc;
 239        bool                            chmap_exist;
 240        enum dma_event_q                default_queue;
 241
 242        unsigned int                    ccint;
 243        unsigned int                    ccerrint;
 244
 245        /*
 246         * The slot_inuse bit for each PaRAM slot is clear unless the slot is
 247         * in use by Linux or if it is allocated to be used by DSP.
 248         */
 249        unsigned long *slot_inuse;
 250
 251        struct dma_device               dma_slave;
 252        struct dma_device               *dma_memcpy;
 253        struct edma_chan                *slave_chans;
 254        struct edma_tc                  *tc_list;
 255        int                             dummy_slot;
 256};
 257
 258/* dummy param set used to (re)initialize parameter RAM slots */
 259static const struct edmacc_param dummy_paramset = {
 260        .link_bcntrld = 0xffff,
 261        .ccnt = 1,
 262};
 263
 264#define EDMA_BINDING_LEGACY     0
 265#define EDMA_BINDING_TPCC       1
 266static const u32 edma_binding_type[] = {
 267        [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
 268        [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
 269};
 270
 271static const struct of_device_id edma_of_ids[] = {
 272        {
 273                .compatible = "ti,edma3",
 274                .data = &edma_binding_type[EDMA_BINDING_LEGACY],
 275        },
 276        {
 277                .compatible = "ti,edma3-tpcc",
 278                .data = &edma_binding_type[EDMA_BINDING_TPCC],
 279        },
 280        {}
 281};
 282MODULE_DEVICE_TABLE(of, edma_of_ids);
 283
 284static const struct of_device_id edma_tptc_of_ids[] = {
 285        { .compatible = "ti,edma3-tptc", },
 286        {}
 287};
 288MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
 289
 290static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
 291{
 292        return (unsigned int)__raw_readl(ecc->base + offset);
 293}
 294
 295static inline void edma_write(struct edma_cc *ecc, int offset, int val)
 296{
 297        __raw_writel(val, ecc->base + offset);
 298}
 299
 300static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
 301                               unsigned or)
 302{
 303        unsigned val = edma_read(ecc, offset);
 304
 305        val &= and;
 306        val |= or;
 307        edma_write(ecc, offset, val);
 308}
 309
 310static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
 311{
 312        unsigned val = edma_read(ecc, offset);
 313
 314        val &= and;
 315        edma_write(ecc, offset, val);
 316}
 317
 318static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
 319{
 320        unsigned val = edma_read(ecc, offset);
 321
 322        val |= or;
 323        edma_write(ecc, offset, val);
 324}
 325
 326static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
 327                                           int i)
 328{
 329        return edma_read(ecc, offset + (i << 2));
 330}
 331
 332static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
 333                                    unsigned val)
 334{
 335        edma_write(ecc, offset + (i << 2), val);
 336}
 337
 338static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
 339                                     unsigned and, unsigned or)
 340{
 341        edma_modify(ecc, offset + (i << 2), and, or);
 342}
 343
 344static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
 345                                 unsigned or)
 346{
 347        edma_or(ecc, offset + (i << 2), or);
 348}
 349
 350static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
 351                                  unsigned or)
 352{
 353        edma_or(ecc, offset + ((i * 2 + j) << 2), or);
 354}
 355
 356static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
 357                                     int j, unsigned val)
 358{
 359        edma_write(ecc, offset + ((i * 2 + j) << 2), val);
 360}
 361
 362static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
 363{
 364        return edma_read(ecc, EDMA_SHADOW0 + offset);
 365}
 366
 367static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
 368                                                   int offset, int i)
 369{
 370        return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
 371}
 372
 373static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
 374                                      unsigned val)
 375{
 376        edma_write(ecc, EDMA_SHADOW0 + offset, val);
 377}
 378
 379static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
 380                                            int i, unsigned val)
 381{
 382        edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
 383}
 384
 385static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
 386                                           int param_no)
 387{
 388        return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
 389}
 390
 391static inline void edma_param_write(struct edma_cc *ecc, int offset,
 392                                    int param_no, unsigned val)
 393{
 394        edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
 395}
 396
 397static inline void edma_param_modify(struct edma_cc *ecc, int offset,
 398                                     int param_no, unsigned and, unsigned or)
 399{
 400        edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
 401}
 402
 403static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
 404                                  unsigned and)
 405{
 406        edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
 407}
 408
 409static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
 410                                 unsigned or)
 411{
 412        edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
 413}
 414
 415static inline void edma_set_bits(int offset, int len, unsigned long *p)
 416{
 417        for (; len > 0; len--)
 418                set_bit(offset + (len - 1), p);
 419}
 420
 421static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
 422                                          int priority)
 423{
 424        int bit = queue_no * 4;
 425
 426        edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
 427}
 428
 429static void edma_set_chmap(struct edma_chan *echan, int slot)
 430{
 431        struct edma_cc *ecc = echan->ecc;
 432        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 433
 434        if (ecc->chmap_exist) {
 435                slot = EDMA_CHAN_SLOT(slot);
 436                edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
 437        }
 438}
 439
 440static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
 441{
 442        struct edma_cc *ecc = echan->ecc;
 443        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 444
 445        if (enable) {
 446                edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
 447                                         BIT(channel & 0x1f));
 448                edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
 449                                         BIT(channel & 0x1f));
 450        } else {
 451                edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
 452                                         BIT(channel & 0x1f));
 453        }
 454}
 455
 456/*
 457 * paRAM slot management functions
 458 */
 459static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
 460                            const struct edmacc_param *param)
 461{
 462        slot = EDMA_CHAN_SLOT(slot);
 463        if (slot >= ecc->num_slots)
 464                return;
 465        memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
 466}
 467
 468static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
 469                           struct edmacc_param *param)
 470{
 471        slot = EDMA_CHAN_SLOT(slot);
 472        if (slot >= ecc->num_slots)
 473                return -EINVAL;
 474        memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
 475
 476        return 0;
 477}
 478
 479/**
 480 * edma_alloc_slot - allocate DMA parameter RAM
 481 * @ecc: pointer to edma_cc struct
 482 * @slot: specific slot to allocate; negative for "any unused slot"
 483 *
 484 * This allocates a parameter RAM slot, initializing it to hold a
 485 * dummy transfer.  Slots allocated using this routine have not been
 486 * mapped to a hardware DMA channel, and will normally be used by
 487 * linking to them from a slot associated with a DMA channel.
 488 *
 489 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 490 * slots may be allocated on behalf of DSP firmware.
 491 *
 492 * Returns the number of the slot, else negative errno.
 493 */
 494static int edma_alloc_slot(struct edma_cc *ecc, int slot)
 495{
 496        if (slot >= 0) {
 497                slot = EDMA_CHAN_SLOT(slot);
 498                /* Requesting entry paRAM slot for a HW triggered channel. */
 499                if (ecc->chmap_exist && slot < ecc->num_channels)
 500                        slot = EDMA_SLOT_ANY;
 501        }
 502
 503        if (slot < 0) {
 504                if (ecc->chmap_exist)
 505                        slot = 0;
 506                else
 507                        slot = ecc->num_channels;
 508                for (;;) {
 509                        slot = find_next_zero_bit(ecc->slot_inuse,
 510                                                  ecc->num_slots,
 511                                                  slot);
 512                        if (slot == ecc->num_slots)
 513                                return -ENOMEM;
 514                        if (!test_and_set_bit(slot, ecc->slot_inuse))
 515                                break;
 516                }
 517        } else if (slot >= ecc->num_slots) {
 518                return -EINVAL;
 519        } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
 520                return -EBUSY;
 521        }
 522
 523        edma_write_slot(ecc, slot, &dummy_paramset);
 524
 525        return EDMA_CTLR_CHAN(ecc->id, slot);
 526}
 527
 528static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
 529{
 530        slot = EDMA_CHAN_SLOT(slot);
 531        if (slot >= ecc->num_slots)
 532                return;
 533
 534        edma_write_slot(ecc, slot, &dummy_paramset);
 535        clear_bit(slot, ecc->slot_inuse);
 536}
 537
 538/**
 539 * edma_link - link one parameter RAM slot to another
 540 * @ecc: pointer to edma_cc struct
 541 * @from: parameter RAM slot originating the link
 542 * @to: parameter RAM slot which is the link target
 543 *
 544 * The originating slot should not be part of any active DMA transfer.
 545 */
 546static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
 547{
 548        if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
 549                dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
 550
 551        from = EDMA_CHAN_SLOT(from);
 552        to = EDMA_CHAN_SLOT(to);
 553        if (from >= ecc->num_slots || to >= ecc->num_slots)
 554                return;
 555
 556        edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
 557                          PARM_OFFSET(to));
 558}
 559
 560/**
 561 * edma_get_position - returns the current transfer point
 562 * @ecc: pointer to edma_cc struct
 563 * @slot: parameter RAM slot being examined
 564 * @dst:  true selects the dest position, false the source
 565 *
 566 * Returns the position of the current active slot
 567 */
 568static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
 569                                    bool dst)
 570{
 571        u32 offs;
 572
 573        slot = EDMA_CHAN_SLOT(slot);
 574        offs = PARM_OFFSET(slot);
 575        offs += dst ? PARM_DST : PARM_SRC;
 576
 577        return edma_read(ecc, offs);
 578}
 579
 580/*
 581 * Channels with event associations will be triggered by their hardware
 582 * events, and channels without such associations will be triggered by
 583 * software.  (At this writing there is no interface for using software
 584 * triggers except with channels that don't support hardware triggers.)
 585 */
 586static void edma_start(struct edma_chan *echan)
 587{
 588        struct edma_cc *ecc = echan->ecc;
 589        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 590        int j = (channel >> 5);
 591        unsigned int mask = BIT(channel & 0x1f);
 592
 593        if (!echan->hw_triggered) {
 594                /* EDMA channels without event association */
 595                dev_dbg(ecc->dev, "ESR%d %08x\n", j,
 596                        edma_shadow0_read_array(ecc, SH_ESR, j));
 597                edma_shadow0_write_array(ecc, SH_ESR, j, mask);
 598        } else {
 599                /* EDMA channel with event association */
 600                dev_dbg(ecc->dev, "ER%d %08x\n", j,
 601                        edma_shadow0_read_array(ecc, SH_ER, j));
 602                /* Clear any pending event or error */
 603                edma_write_array(ecc, EDMA_ECR, j, mask);
 604                edma_write_array(ecc, EDMA_EMCR, j, mask);
 605                /* Clear any SER */
 606                edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 607                edma_shadow0_write_array(ecc, SH_EESR, j, mask);
 608                dev_dbg(ecc->dev, "EER%d %08x\n", j,
 609                        edma_shadow0_read_array(ecc, SH_EER, j));
 610        }
 611}
 612
 613static void edma_stop(struct edma_chan *echan)
 614{
 615        struct edma_cc *ecc = echan->ecc;
 616        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 617        int j = (channel >> 5);
 618        unsigned int mask = BIT(channel & 0x1f);
 619
 620        edma_shadow0_write_array(ecc, SH_EECR, j, mask);
 621        edma_shadow0_write_array(ecc, SH_ECR, j, mask);
 622        edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 623        edma_write_array(ecc, EDMA_EMCR, j, mask);
 624
 625        /* clear possibly pending completion interrupt */
 626        edma_shadow0_write_array(ecc, SH_ICR, j, mask);
 627
 628        dev_dbg(ecc->dev, "EER%d %08x\n", j,
 629                edma_shadow0_read_array(ecc, SH_EER, j));
 630
 631        /* REVISIT:  consider guarding against inappropriate event
 632         * chaining by overwriting with dummy_paramset.
 633         */
 634}
 635
 636/*
 637 * Temporarily disable EDMA hardware events on the specified channel,
 638 * preventing them from triggering new transfers
 639 */
 640static void edma_pause(struct edma_chan *echan)
 641{
 642        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 643        unsigned int mask = BIT(channel & 0x1f);
 644
 645        edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
 646}
 647
 648/* Re-enable EDMA hardware events on the specified channel.  */
 649static void edma_resume(struct edma_chan *echan)
 650{
 651        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 652        unsigned int mask = BIT(channel & 0x1f);
 653
 654        edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
 655}
 656
 657static void edma_trigger_channel(struct edma_chan *echan)
 658{
 659        struct edma_cc *ecc = echan->ecc;
 660        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 661        unsigned int mask = BIT(channel & 0x1f);
 662
 663        edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
 664
 665        dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
 666                edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
 667}
 668
 669static void edma_clean_channel(struct edma_chan *echan)
 670{
 671        struct edma_cc *ecc = echan->ecc;
 672        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 673        int j = (channel >> 5);
 674        unsigned int mask = BIT(channel & 0x1f);
 675
 676        dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
 677        edma_shadow0_write_array(ecc, SH_ECR, j, mask);
 678        /* Clear the corresponding EMR bits */
 679        edma_write_array(ecc, EDMA_EMCR, j, mask);
 680        /* Clear any SER */
 681        edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 682        edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
 683}
 684
 685/* Move channel to a specific event queue */
 686static void edma_assign_channel_eventq(struct edma_chan *echan,
 687                                       enum dma_event_q eventq_no)
 688{
 689        struct edma_cc *ecc = echan->ecc;
 690        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 691        int bit = (channel & 0x7) * 4;
 692
 693        /* default to low priority queue */
 694        if (eventq_no == EVENTQ_DEFAULT)
 695                eventq_no = ecc->default_queue;
 696        if (eventq_no >= ecc->num_tc)
 697                return;
 698
 699        eventq_no &= 7;
 700        edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
 701                          eventq_no << bit);
 702}
 703
 704static int edma_alloc_channel(struct edma_chan *echan,
 705                              enum dma_event_q eventq_no)
 706{
 707        struct edma_cc *ecc = echan->ecc;
 708        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 709
 710        /* ensure access through shadow region 0 */
 711        edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
 712
 713        /* ensure no events are pending */
 714        edma_stop(echan);
 715
 716        edma_setup_interrupt(echan, true);
 717
 718        edma_assign_channel_eventq(echan, eventq_no);
 719
 720        return 0;
 721}
 722
 723static void edma_free_channel(struct edma_chan *echan)
 724{
 725        /* ensure no events are pending */
 726        edma_stop(echan);
 727        /* REVISIT should probably take out of shadow region 0 */
 728        edma_setup_interrupt(echan, false);
 729}
 730
 731static inline struct edma_cc *to_edma_cc(struct dma_device *d)
 732{
 733        return container_of(d, struct edma_cc, dma_slave);
 734}
 735
 736static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
 737{
 738        return container_of(c, struct edma_chan, vchan.chan);
 739}
 740
 741static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
 742{
 743        return container_of(tx, struct edma_desc, vdesc.tx);
 744}
 745
 746static void edma_desc_free(struct virt_dma_desc *vdesc)
 747{
 748        kfree(container_of(vdesc, struct edma_desc, vdesc));
 749}
 750
 751/* Dispatch a queued descriptor to the controller (caller holds lock) */
 752static void edma_execute(struct edma_chan *echan)
 753{
 754        struct edma_cc *ecc = echan->ecc;
 755        struct virt_dma_desc *vdesc;
 756        struct edma_desc *edesc;
 757        struct device *dev = echan->vchan.chan.device->dev;
 758        int i, j, left, nslots;
 759
 760        if (!echan->edesc) {
 761                /* Setup is needed for the first transfer */
 762                vdesc = vchan_next_desc(&echan->vchan);
 763                if (!vdesc)
 764                        return;
 765                list_del(&vdesc->node);
 766                echan->edesc = to_edma_desc(&vdesc->tx);
 767        }
 768
 769        edesc = echan->edesc;
 770
 771        /* Find out how many left */
 772        left = edesc->pset_nr - edesc->processed;
 773        nslots = min(MAX_NR_SG, left);
 774        edesc->sg_len = 0;
 775
 776        /* Write descriptor PaRAM set(s) */
 777        for (i = 0; i < nslots; i++) {
 778                j = i + edesc->processed;
 779                edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
 780                edesc->sg_len += edesc->pset[j].len;
 781                dev_vdbg(dev,
 782                         "\n pset[%d]:\n"
 783                         "  chnum\t%d\n"
 784                         "  slot\t%d\n"
 785                         "  opt\t%08x\n"
 786                         "  src\t%08x\n"
 787                         "  dst\t%08x\n"
 788                         "  abcnt\t%08x\n"
 789                         "  ccnt\t%08x\n"
 790                         "  bidx\t%08x\n"
 791                         "  cidx\t%08x\n"
 792                         "  lkrld\t%08x\n",
 793                         j, echan->ch_num, echan->slot[i],
 794                         edesc->pset[j].param.opt,
 795                         edesc->pset[j].param.src,
 796                         edesc->pset[j].param.dst,
 797                         edesc->pset[j].param.a_b_cnt,
 798                         edesc->pset[j].param.ccnt,
 799                         edesc->pset[j].param.src_dst_bidx,
 800                         edesc->pset[j].param.src_dst_cidx,
 801                         edesc->pset[j].param.link_bcntrld);
 802                /* Link to the previous slot if not the last set */
 803                if (i != (nslots - 1))
 804                        edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
 805        }
 806
 807        edesc->processed += nslots;
 808
 809        /*
 810         * If this is either the last set in a set of SG-list transactions
 811         * then setup a link to the dummy slot, this results in all future
 812         * events being absorbed and that's OK because we're done
 813         */
 814        if (edesc->processed == edesc->pset_nr) {
 815                if (edesc->cyclic)
 816                        edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
 817                else
 818                        edma_link(ecc, echan->slot[nslots - 1],
 819                                  echan->ecc->dummy_slot);
 820        }
 821
 822        if (echan->missed) {
 823                /*
 824                 * This happens due to setup times between intermediate
 825                 * transfers in long SG lists which have to be broken up into
 826                 * transfers of MAX_NR_SG
 827                 */
 828                dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
 829                edma_clean_channel(echan);
 830                edma_stop(echan);
 831                edma_start(echan);
 832                edma_trigger_channel(echan);
 833                echan->missed = 0;
 834        } else if (edesc->processed <= MAX_NR_SG) {
 835                dev_dbg(dev, "first transfer starting on channel %d\n",
 836                        echan->ch_num);
 837                edma_start(echan);
 838        } else {
 839                dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
 840                        echan->ch_num, edesc->processed);
 841                edma_resume(echan);
 842        }
 843}
 844
 845static int edma_terminate_all(struct dma_chan *chan)
 846{
 847        struct edma_chan *echan = to_edma_chan(chan);
 848        unsigned long flags;
 849        LIST_HEAD(head);
 850
 851        spin_lock_irqsave(&echan->vchan.lock, flags);
 852
 853        /*
 854         * Stop DMA activity: we assume the callback will not be called
 855         * after edma_dma() returns (even if it does, it will see
 856         * echan->edesc is NULL and exit.)
 857         */
 858        if (echan->edesc) {
 859                edma_stop(echan);
 860                /* Move the cyclic channel back to default queue */
 861                if (!echan->tc && echan->edesc->cyclic)
 862                        edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
 863                /*
 864                 * free the running request descriptor
 865                 * since it is not in any of the vdesc lists
 866                 */
 867                edma_desc_free(&echan->edesc->vdesc);
 868                echan->edesc = NULL;
 869        }
 870
 871        vchan_get_all_descriptors(&echan->vchan, &head);
 872        spin_unlock_irqrestore(&echan->vchan.lock, flags);
 873        vchan_dma_desc_free_list(&echan->vchan, &head);
 874
 875        return 0;
 876}
 877
 878static void edma_synchronize(struct dma_chan *chan)
 879{
 880        struct edma_chan *echan = to_edma_chan(chan);
 881
 882        vchan_synchronize(&echan->vchan);
 883}
 884
 885static int edma_slave_config(struct dma_chan *chan,
 886        struct dma_slave_config *cfg)
 887{
 888        struct edma_chan *echan = to_edma_chan(chan);
 889
 890        if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 891            cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 892                return -EINVAL;
 893
 894        memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
 895
 896        return 0;
 897}
 898
 899static int edma_dma_pause(struct dma_chan *chan)
 900{
 901        struct edma_chan *echan = to_edma_chan(chan);
 902
 903        if (!echan->edesc)
 904                return -EINVAL;
 905
 906        edma_pause(echan);
 907        return 0;
 908}
 909
 910static int edma_dma_resume(struct dma_chan *chan)
 911{
 912        struct edma_chan *echan = to_edma_chan(chan);
 913
 914        edma_resume(echan);
 915        return 0;
 916}
 917
 918/*
 919 * A PaRAM set configuration abstraction used by other modes
 920 * @chan: Channel who's PaRAM set we're configuring
 921 * @pset: PaRAM set to initialize and setup.
 922 * @src_addr: Source address of the DMA
 923 * @dst_addr: Destination address of the DMA
 924 * @burst: In units of dev_width, how much to send
 925 * @dev_width: How much is the dev_width
 926 * @dma_length: Total length of the DMA transfer
 927 * @direction: Direction of the transfer
 928 */
 929static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
 930                            dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
 931                            unsigned int acnt, unsigned int dma_length,
 932                            enum dma_transfer_direction direction)
 933{
 934        struct edma_chan *echan = to_edma_chan(chan);
 935        struct device *dev = chan->device->dev;
 936        struct edmacc_param *param = &epset->param;
 937        int bcnt, ccnt, cidx;
 938        int src_bidx, dst_bidx, src_cidx, dst_cidx;
 939        int absync;
 940
 941        /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
 942        if (!burst)
 943                burst = 1;
 944        /*
 945         * If the maxburst is equal to the fifo width, use
 946         * A-synced transfers. This allows for large contiguous
 947         * buffer transfers using only one PaRAM set.
 948         */
 949        if (burst == 1) {
 950                /*
 951                 * For the A-sync case, bcnt and ccnt are the remainder
 952                 * and quotient respectively of the division of:
 953                 * (dma_length / acnt) by (SZ_64K -1). This is so
 954                 * that in case bcnt over flows, we have ccnt to use.
 955                 * Note: In A-sync tranfer only, bcntrld is used, but it
 956                 * only applies for sg_dma_len(sg) >= SZ_64K.
 957                 * In this case, the best way adopted is- bccnt for the
 958                 * first frame will be the remainder below. Then for
 959                 * every successive frame, bcnt will be SZ_64K-1. This
 960                 * is assured as bcntrld = 0xffff in end of function.
 961                 */
 962                absync = false;
 963                ccnt = dma_length / acnt / (SZ_64K - 1);
 964                bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
 965                /*
 966                 * If bcnt is non-zero, we have a remainder and hence an
 967                 * extra frame to transfer, so increment ccnt.
 968                 */
 969                if (bcnt)
 970                        ccnt++;
 971                else
 972                        bcnt = SZ_64K - 1;
 973                cidx = acnt;
 974        } else {
 975                /*
 976                 * If maxburst is greater than the fifo address_width,
 977                 * use AB-synced transfers where A count is the fifo
 978                 * address_width and B count is the maxburst. In this
 979                 * case, we are limited to transfers of C count frames
 980                 * of (address_width * maxburst) where C count is limited
 981                 * to SZ_64K-1. This places an upper bound on the length
 982                 * of an SG segment that can be handled.
 983                 */
 984                absync = true;
 985                bcnt = burst;
 986                ccnt = dma_length / (acnt * bcnt);
 987                if (ccnt > (SZ_64K - 1)) {
 988                        dev_err(dev, "Exceeded max SG segment size\n");
 989                        return -EINVAL;
 990                }
 991                cidx = acnt * bcnt;
 992        }
 993
 994        epset->len = dma_length;
 995
 996        if (direction == DMA_MEM_TO_DEV) {
 997                src_bidx = acnt;
 998                src_cidx = cidx;
 999                dst_bidx = 0;
1000                dst_cidx = 0;
1001                epset->addr = src_addr;
1002        } else if (direction == DMA_DEV_TO_MEM)  {
1003                src_bidx = 0;
1004                src_cidx = 0;
1005                dst_bidx = acnt;
1006                dst_cidx = cidx;
1007                epset->addr = dst_addr;
1008        } else if (direction == DMA_MEM_TO_MEM)  {
1009                src_bidx = acnt;
1010                src_cidx = cidx;
1011                dst_bidx = acnt;
1012                dst_cidx = cidx;
1013        } else {
1014                dev_err(dev, "%s: direction not implemented yet\n", __func__);
1015                return -EINVAL;
1016        }
1017
1018        param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1019        /* Configure A or AB synchronized transfers */
1020        if (absync)
1021                param->opt |= SYNCDIM;
1022
1023        param->src = src_addr;
1024        param->dst = dst_addr;
1025
1026        param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1027        param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1028
1029        param->a_b_cnt = bcnt << 16 | acnt;
1030        param->ccnt = ccnt;
1031        /*
1032         * Only time when (bcntrld) auto reload is required is for
1033         * A-sync case, and in this case, a requirement of reload value
1034         * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1035         * and then later will be populated by edma_execute.
1036         */
1037        param->link_bcntrld = 0xffffffff;
1038        return absync;
1039}
1040
1041static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1042        struct dma_chan *chan, struct scatterlist *sgl,
1043        unsigned int sg_len, enum dma_transfer_direction direction,
1044        unsigned long tx_flags, void *context)
1045{
1046        struct edma_chan *echan = to_edma_chan(chan);
1047        struct device *dev = chan->device->dev;
1048        struct edma_desc *edesc;
1049        dma_addr_t src_addr = 0, dst_addr = 0;
1050        enum dma_slave_buswidth dev_width;
1051        u32 burst;
1052        struct scatterlist *sg;
1053        int i, nslots, ret;
1054
1055        if (unlikely(!echan || !sgl || !sg_len))
1056                return NULL;
1057
1058        if (direction == DMA_DEV_TO_MEM) {
1059                src_addr = echan->cfg.src_addr;
1060                dev_width = echan->cfg.src_addr_width;
1061                burst = echan->cfg.src_maxburst;
1062        } else if (direction == DMA_MEM_TO_DEV) {
1063                dst_addr = echan->cfg.dst_addr;
1064                dev_width = echan->cfg.dst_addr_width;
1065                burst = echan->cfg.dst_maxburst;
1066        } else {
1067                dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1068                return NULL;
1069        }
1070
1071        if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1072                dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1073                return NULL;
1074        }
1075
1076        edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1077                        GFP_ATOMIC);
1078        if (!edesc)
1079                return NULL;
1080
1081        edesc->pset_nr = sg_len;
1082        edesc->residue = 0;
1083        edesc->direction = direction;
1084        edesc->echan = echan;
1085
1086        /* Allocate a PaRAM slot, if needed */
1087        nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1088
1089        for (i = 0; i < nslots; i++) {
1090                if (echan->slot[i] < 0) {
1091                        echan->slot[i] =
1092                                edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1093                        if (echan->slot[i] < 0) {
1094                                kfree(edesc);
1095                                dev_err(dev, "%s: Failed to allocate slot\n",
1096                                        __func__);
1097                                return NULL;
1098                        }
1099                }
1100        }
1101
1102        /* Configure PaRAM sets for each SG */
1103        for_each_sg(sgl, sg, sg_len, i) {
1104                /* Get address for each SG */
1105                if (direction == DMA_DEV_TO_MEM)
1106                        dst_addr = sg_dma_address(sg);
1107                else
1108                        src_addr = sg_dma_address(sg);
1109
1110                ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1111                                       dst_addr, burst, dev_width,
1112                                       sg_dma_len(sg), direction);
1113                if (ret < 0) {
1114                        kfree(edesc);
1115                        return NULL;
1116                }
1117
1118                edesc->absync = ret;
1119                edesc->residue += sg_dma_len(sg);
1120
1121                if (i == sg_len - 1)
1122                        /* Enable completion interrupt */
1123                        edesc->pset[i].param.opt |= TCINTEN;
1124                else if (!((i+1) % MAX_NR_SG))
1125                        /*
1126                         * Enable early completion interrupt for the
1127                         * intermediateset. In this case the driver will be
1128                         * notified when the paRAM set is submitted to TC. This
1129                         * will allow more time to set up the next set of slots.
1130                         */
1131                        edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1132        }
1133        edesc->residue_stat = edesc->residue;
1134
1135        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1136}
1137
1138static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1139        struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1140        size_t len, unsigned long tx_flags)
1141{
1142        int ret, nslots;
1143        struct edma_desc *edesc;
1144        struct device *dev = chan->device->dev;
1145        struct edma_chan *echan = to_edma_chan(chan);
1146        unsigned int width, pset_len, array_size;
1147
1148        if (unlikely(!echan || !len))
1149                return NULL;
1150
1151        /* Align the array size (acnt block) with the transfer properties */
1152        switch (__ffs((src | dest | len))) {
1153        case 0:
1154                array_size = SZ_32K - 1;
1155                break;
1156        case 1:
1157                array_size = SZ_32K - 2;
1158                break;
1159        default:
1160                array_size = SZ_32K - 4;
1161                break;
1162        }
1163
1164        if (len < SZ_64K) {
1165                /*
1166                 * Transfer size less than 64K can be handled with one paRAM
1167                 * slot and with one burst.
1168                 * ACNT = length
1169                 */
1170                width = len;
1171                pset_len = len;
1172                nslots = 1;
1173        } else {
1174                /*
1175                 * Transfer size bigger than 64K will be handled with maximum of
1176                 * two paRAM slots.
1177                 * slot1: (full_length / 32767) times 32767 bytes bursts.
1178                 *        ACNT = 32767, length1: (full_length / 32767) * 32767
1179                 * slot2: the remaining amount of data after slot1.
1180                 *        ACNT = full_length - length1, length2 = ACNT
1181                 *
1182                 * When the full_length is multibple of 32767 one slot can be
1183                 * used to complete the transfer.
1184                 */
1185                width = array_size;
1186                pset_len = rounddown(len, width);
1187                /* One slot is enough for lengths multiple of (SZ_32K -1) */
1188                if (unlikely(pset_len == len))
1189                        nslots = 1;
1190                else
1191                        nslots = 2;
1192        }
1193
1194        edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1195                        GFP_ATOMIC);
1196        if (!edesc)
1197                return NULL;
1198
1199        edesc->pset_nr = nslots;
1200        edesc->residue = edesc->residue_stat = len;
1201        edesc->direction = DMA_MEM_TO_MEM;
1202        edesc->echan = echan;
1203
1204        ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1205                               width, pset_len, DMA_MEM_TO_MEM);
1206        if (ret < 0) {
1207                kfree(edesc);
1208                return NULL;
1209        }
1210
1211        edesc->absync = ret;
1212
1213        edesc->pset[0].param.opt |= ITCCHEN;
1214        if (nslots == 1) {
1215                /* Enable transfer complete interrupt */
1216                edesc->pset[0].param.opt |= TCINTEN;
1217        } else {
1218                /* Enable transfer complete chaining for the first slot */
1219                edesc->pset[0].param.opt |= TCCHEN;
1220
1221                if (echan->slot[1] < 0) {
1222                        echan->slot[1] = edma_alloc_slot(echan->ecc,
1223                                                         EDMA_SLOT_ANY);
1224                        if (echan->slot[1] < 0) {
1225                                kfree(edesc);
1226                                dev_err(dev, "%s: Failed to allocate slot\n",
1227                                        __func__);
1228                                return NULL;
1229                        }
1230                }
1231                dest += pset_len;
1232                src += pset_len;
1233                pset_len = width = len % array_size;
1234
1235                ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1236                                       width, pset_len, DMA_MEM_TO_MEM);
1237                if (ret < 0) {
1238                        kfree(edesc);
1239                        return NULL;
1240                }
1241
1242                edesc->pset[1].param.opt |= ITCCHEN;
1243                edesc->pset[1].param.opt |= TCINTEN;
1244        }
1245
1246        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1247}
1248
1249static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1250        struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1251        size_t period_len, enum dma_transfer_direction direction,
1252        unsigned long tx_flags)
1253{
1254        struct edma_chan *echan = to_edma_chan(chan);
1255        struct device *dev = chan->device->dev;
1256        struct edma_desc *edesc;
1257        dma_addr_t src_addr, dst_addr;
1258        enum dma_slave_buswidth dev_width;
1259        bool use_intermediate = false;
1260        u32 burst;
1261        int i, ret, nslots;
1262
1263        if (unlikely(!echan || !buf_len || !period_len))
1264                return NULL;
1265
1266        if (direction == DMA_DEV_TO_MEM) {
1267                src_addr = echan->cfg.src_addr;
1268                dst_addr = buf_addr;
1269                dev_width = echan->cfg.src_addr_width;
1270                burst = echan->cfg.src_maxburst;
1271        } else if (direction == DMA_MEM_TO_DEV) {
1272                src_addr = buf_addr;
1273                dst_addr = echan->cfg.dst_addr;
1274                dev_width = echan->cfg.dst_addr_width;
1275                burst = echan->cfg.dst_maxburst;
1276        } else {
1277                dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1278                return NULL;
1279        }
1280
1281        if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1282                dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1283                return NULL;
1284        }
1285
1286        if (unlikely(buf_len % period_len)) {
1287                dev_err(dev, "Period should be multiple of Buffer length\n");
1288                return NULL;
1289        }
1290
1291        nslots = (buf_len / period_len) + 1;
1292
1293        /*
1294         * Cyclic DMA users such as audio cannot tolerate delays introduced
1295         * by cases where the number of periods is more than the maximum
1296         * number of SGs the EDMA driver can handle at a time. For DMA types
1297         * such as Slave SGs, such delays are tolerable and synchronized,
1298         * but the synchronization is difficult to achieve with Cyclic and
1299         * cannot be guaranteed, so we error out early.
1300         */
1301        if (nslots > MAX_NR_SG) {
1302                /*
1303                 * If the burst and period sizes are the same, we can put
1304                 * the full buffer into a single period and activate
1305                 * intermediate interrupts. This will produce interrupts
1306                 * after each burst, which is also after each desired period.
1307                 */
1308                if (burst == period_len) {
1309                        period_len = buf_len;
1310                        nslots = 2;
1311                        use_intermediate = true;
1312                } else {
1313                        return NULL;
1314                }
1315        }
1316
1317        edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1318                        GFP_ATOMIC);
1319        if (!edesc)
1320                return NULL;
1321
1322        edesc->cyclic = 1;
1323        edesc->pset_nr = nslots;
1324        edesc->residue = edesc->residue_stat = buf_len;
1325        edesc->direction = direction;
1326        edesc->echan = echan;
1327
1328        dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1329                __func__, echan->ch_num, nslots, period_len, buf_len);
1330
1331        for (i = 0; i < nslots; i++) {
1332                /* Allocate a PaRAM slot, if needed */
1333                if (echan->slot[i] < 0) {
1334                        echan->slot[i] =
1335                                edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1336                        if (echan->slot[i] < 0) {
1337                                kfree(edesc);
1338                                dev_err(dev, "%s: Failed to allocate slot\n",
1339                                        __func__);
1340                                return NULL;
1341                        }
1342                }
1343
1344                if (i == nslots - 1) {
1345                        memcpy(&edesc->pset[i], &edesc->pset[0],
1346                               sizeof(edesc->pset[0]));
1347                        break;
1348                }
1349
1350                ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1351                                       dst_addr, burst, dev_width, period_len,
1352                                       direction);
1353                if (ret < 0) {
1354                        kfree(edesc);
1355                        return NULL;
1356                }
1357
1358                if (direction == DMA_DEV_TO_MEM)
1359                        dst_addr += period_len;
1360                else
1361                        src_addr += period_len;
1362
1363                dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1364                dev_vdbg(dev,
1365                        "\n pset[%d]:\n"
1366                        "  chnum\t%d\n"
1367                        "  slot\t%d\n"
1368                        "  opt\t%08x\n"
1369                        "  src\t%08x\n"
1370                        "  dst\t%08x\n"
1371                        "  abcnt\t%08x\n"
1372                        "  ccnt\t%08x\n"
1373                        "  bidx\t%08x\n"
1374                        "  cidx\t%08x\n"
1375                        "  lkrld\t%08x\n",
1376                        i, echan->ch_num, echan->slot[i],
1377                        edesc->pset[i].param.opt,
1378                        edesc->pset[i].param.src,
1379                        edesc->pset[i].param.dst,
1380                        edesc->pset[i].param.a_b_cnt,
1381                        edesc->pset[i].param.ccnt,
1382                        edesc->pset[i].param.src_dst_bidx,
1383                        edesc->pset[i].param.src_dst_cidx,
1384                        edesc->pset[i].param.link_bcntrld);
1385
1386                edesc->absync = ret;
1387
1388                /*
1389                 * Enable period interrupt only if it is requested
1390                 */
1391                if (tx_flags & DMA_PREP_INTERRUPT) {
1392                        edesc->pset[i].param.opt |= TCINTEN;
1393
1394                        /* Also enable intermediate interrupts if necessary */
1395                        if (use_intermediate)
1396                                edesc->pset[i].param.opt |= ITCINTEN;
1397                }
1398        }
1399
1400        /* Place the cyclic channel to highest priority queue */
1401        if (!echan->tc)
1402                edma_assign_channel_eventq(echan, EVENTQ_0);
1403
1404        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1405}
1406
1407static void edma_completion_handler(struct edma_chan *echan)
1408{
1409        struct device *dev = echan->vchan.chan.device->dev;
1410        struct edma_desc *edesc;
1411
1412        spin_lock(&echan->vchan.lock);
1413        edesc = echan->edesc;
1414        if (edesc) {
1415                if (edesc->cyclic) {
1416                        vchan_cyclic_callback(&edesc->vdesc);
1417                        spin_unlock(&echan->vchan.lock);
1418                        return;
1419                } else if (edesc->processed == edesc->pset_nr) {
1420                        edesc->residue = 0;
1421                        edma_stop(echan);
1422                        vchan_cookie_complete(&edesc->vdesc);
1423                        echan->edesc = NULL;
1424
1425                        dev_dbg(dev, "Transfer completed on channel %d\n",
1426                                echan->ch_num);
1427                } else {
1428                        dev_dbg(dev, "Sub transfer completed on channel %d\n",
1429                                echan->ch_num);
1430
1431                        edma_pause(echan);
1432
1433                        /* Update statistics for tx_status */
1434                        edesc->residue -= edesc->sg_len;
1435                        edesc->residue_stat = edesc->residue;
1436                        edesc->processed_stat = edesc->processed;
1437                }
1438                edma_execute(echan);
1439        }
1440
1441        spin_unlock(&echan->vchan.lock);
1442}
1443
1444/* eDMA interrupt handler */
1445static irqreturn_t dma_irq_handler(int irq, void *data)
1446{
1447        struct edma_cc *ecc = data;
1448        int ctlr;
1449        u32 sh_ier;
1450        u32 sh_ipr;
1451        u32 bank;
1452
1453        ctlr = ecc->id;
1454        if (ctlr < 0)
1455                return IRQ_NONE;
1456
1457        dev_vdbg(ecc->dev, "dma_irq_handler\n");
1458
1459        sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1460        if (!sh_ipr) {
1461                sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1462                if (!sh_ipr)
1463                        return IRQ_NONE;
1464                sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1465                bank = 1;
1466        } else {
1467                sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1468                bank = 0;
1469        }
1470
1471        do {
1472                u32 slot;
1473                u32 channel;
1474
1475                slot = __ffs(sh_ipr);
1476                sh_ipr &= ~(BIT(slot));
1477
1478                if (sh_ier & BIT(slot)) {
1479                        channel = (bank << 5) | slot;
1480                        /* Clear the corresponding IPR bits */
1481                        edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1482                        edma_completion_handler(&ecc->slave_chans[channel]);
1483                }
1484        } while (sh_ipr);
1485
1486        edma_shadow0_write(ecc, SH_IEVAL, 1);
1487        return IRQ_HANDLED;
1488}
1489
1490static void edma_error_handler(struct edma_chan *echan)
1491{
1492        struct edma_cc *ecc = echan->ecc;
1493        struct device *dev = echan->vchan.chan.device->dev;
1494        struct edmacc_param p;
1495        int err;
1496
1497        if (!echan->edesc)
1498                return;
1499
1500        spin_lock(&echan->vchan.lock);
1501
1502        err = edma_read_slot(ecc, echan->slot[0], &p);
1503
1504        /*
1505         * Issue later based on missed flag which will be sure
1506         * to happen as:
1507         * (1) we finished transmitting an intermediate slot and
1508         *     edma_execute is coming up.
1509         * (2) or we finished current transfer and issue will
1510         *     call edma_execute.
1511         *
1512         * Important note: issuing can be dangerous here and
1513         * lead to some nasty recursion when we are in a NULL
1514         * slot. So we avoid doing so and set the missed flag.
1515         */
1516        if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1517                dev_dbg(dev, "Error on null slot, setting miss\n");
1518                echan->missed = 1;
1519        } else {
1520                /*
1521                 * The slot is already programmed but the event got
1522                 * missed, so its safe to issue it here.
1523                 */
1524                dev_dbg(dev, "Missed event, TRIGGERING\n");
1525                edma_clean_channel(echan);
1526                edma_stop(echan);
1527                edma_start(echan);
1528                edma_trigger_channel(echan);
1529        }
1530        spin_unlock(&echan->vchan.lock);
1531}
1532
1533static inline bool edma_error_pending(struct edma_cc *ecc)
1534{
1535        if (edma_read_array(ecc, EDMA_EMR, 0) ||
1536            edma_read_array(ecc, EDMA_EMR, 1) ||
1537            edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1538                return true;
1539
1540        return false;
1541}
1542
1543/* eDMA error interrupt handler */
1544static irqreturn_t dma_ccerr_handler(int irq, void *data)
1545{
1546        struct edma_cc *ecc = data;
1547        int i, j;
1548        int ctlr;
1549        unsigned int cnt = 0;
1550        unsigned int val;
1551
1552        ctlr = ecc->id;
1553        if (ctlr < 0)
1554                return IRQ_NONE;
1555
1556        dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1557
1558        if (!edma_error_pending(ecc)) {
1559                /*
1560                 * The registers indicate no pending error event but the irq
1561                 * handler has been called.
1562                 * Ask eDMA to re-evaluate the error registers.
1563                 */
1564                dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1565                        __func__);
1566                edma_write(ecc, EDMA_EEVAL, 1);
1567                return IRQ_NONE;
1568        }
1569
1570        while (1) {
1571                /* Event missed register(s) */
1572                for (j = 0; j < 2; j++) {
1573                        unsigned long emr;
1574
1575                        val = edma_read_array(ecc, EDMA_EMR, j);
1576                        if (!val)
1577                                continue;
1578
1579                        dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1580                        emr = val;
1581                        for (i = find_next_bit(&emr, 32, 0); i < 32;
1582                             i = find_next_bit(&emr, 32, i + 1)) {
1583                                int k = (j << 5) + i;
1584
1585                                /* Clear the corresponding EMR bits */
1586                                edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1587                                /* Clear any SER */
1588                                edma_shadow0_write_array(ecc, SH_SECR, j,
1589                                                         BIT(i));
1590                                edma_error_handler(&ecc->slave_chans[k]);
1591                        }
1592                }
1593
1594                val = edma_read(ecc, EDMA_QEMR);
1595                if (val) {
1596                        dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1597                        /* Not reported, just clear the interrupt reason. */
1598                        edma_write(ecc, EDMA_QEMCR, val);
1599                        edma_shadow0_write(ecc, SH_QSECR, val);
1600                }
1601
1602                val = edma_read(ecc, EDMA_CCERR);
1603                if (val) {
1604                        dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1605                        /* Not reported, just clear the interrupt reason. */
1606                        edma_write(ecc, EDMA_CCERRCLR, val);
1607                }
1608
1609                if (!edma_error_pending(ecc))
1610                        break;
1611                cnt++;
1612                if (cnt > 10)
1613                        break;
1614        }
1615        edma_write(ecc, EDMA_EEVAL, 1);
1616        return IRQ_HANDLED;
1617}
1618
1619/* Alloc channel resources */
1620static int edma_alloc_chan_resources(struct dma_chan *chan)
1621{
1622        struct edma_chan *echan = to_edma_chan(chan);
1623        struct edma_cc *ecc = echan->ecc;
1624        struct device *dev = ecc->dev;
1625        enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1626        int ret;
1627
1628        if (echan->tc) {
1629                eventq_no = echan->tc->id;
1630        } else if (ecc->tc_list) {
1631                /* memcpy channel */
1632                echan->tc = &ecc->tc_list[ecc->info->default_queue];
1633                eventq_no = echan->tc->id;
1634        }
1635
1636        ret = edma_alloc_channel(echan, eventq_no);
1637        if (ret)
1638                return ret;
1639
1640        echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1641        if (echan->slot[0] < 0) {
1642                dev_err(dev, "Entry slot allocation failed for channel %u\n",
1643                        EDMA_CHAN_SLOT(echan->ch_num));
1644                ret = echan->slot[0];
1645                goto err_slot;
1646        }
1647
1648        /* Set up channel -> slot mapping for the entry slot */
1649        edma_set_chmap(echan, echan->slot[0]);
1650        echan->alloced = true;
1651
1652        dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1653                EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1654                echan->hw_triggered ? "HW" : "SW");
1655
1656        return 0;
1657
1658err_slot:
1659        edma_free_channel(echan);
1660        return ret;
1661}
1662
1663/* Free channel resources */
1664static void edma_free_chan_resources(struct dma_chan *chan)
1665{
1666        struct edma_chan *echan = to_edma_chan(chan);
1667        struct device *dev = echan->ecc->dev;
1668        int i;
1669
1670        /* Terminate transfers */
1671        edma_stop(echan);
1672
1673        vchan_free_chan_resources(&echan->vchan);
1674
1675        /* Free EDMA PaRAM slots */
1676        for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1677                if (echan->slot[i] >= 0) {
1678                        edma_free_slot(echan->ecc, echan->slot[i]);
1679                        echan->slot[i] = -1;
1680                }
1681        }
1682
1683        /* Set entry slot to the dummy slot */
1684        edma_set_chmap(echan, echan->ecc->dummy_slot);
1685
1686        /* Free EDMA channel */
1687        if (echan->alloced) {
1688                edma_free_channel(echan);
1689                echan->alloced = false;
1690        }
1691
1692        echan->tc = NULL;
1693        echan->hw_triggered = false;
1694
1695        dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1696                EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1697}
1698
1699/* Send pending descriptor to hardware */
1700static void edma_issue_pending(struct dma_chan *chan)
1701{
1702        struct edma_chan *echan = to_edma_chan(chan);
1703        unsigned long flags;
1704
1705        spin_lock_irqsave(&echan->vchan.lock, flags);
1706        if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1707                edma_execute(echan);
1708        spin_unlock_irqrestore(&echan->vchan.lock, flags);
1709}
1710
1711/*
1712 * This limit exists to avoid a possible infinite loop when waiting for proof
1713 * that a particular transfer is completed. This limit can be hit if there
1714 * are large bursts to/from slow devices or the CPU is never able to catch
1715 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1716 * RX-FIFO, as many as 55 loops have been seen.
1717 */
1718#define EDMA_MAX_TR_WAIT_LOOPS 1000
1719
1720static u32 edma_residue(struct edma_desc *edesc)
1721{
1722        bool dst = edesc->direction == DMA_DEV_TO_MEM;
1723        int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1724        struct edma_chan *echan = edesc->echan;
1725        struct edma_pset *pset = edesc->pset;
1726        dma_addr_t done, pos;
1727        int i;
1728
1729        /*
1730         * We always read the dst/src position from the first RamPar
1731         * pset. That's the one which is active now.
1732         */
1733        pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1734
1735        /*
1736         * "pos" may represent a transfer request that is still being
1737         * processed by the EDMACC or EDMATC. We will busy wait until
1738         * any one of the situations occurs:
1739         *   1. the DMA hardware is idle
1740         *   2. a new transfer request is setup
1741         *   3. we hit the loop limit
1742         */
1743        while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
1744                /* check if a new transfer request is setup */
1745                if (edma_get_position(echan->ecc,
1746                                      echan->slot[0], dst) != pos) {
1747                        break;
1748                }
1749
1750                if (!--loop_count) {
1751                        dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1752                                "%s: timeout waiting for PaRAM update\n",
1753                                __func__);
1754                        break;
1755                }
1756
1757                cpu_relax();
1758        }
1759
1760        /*
1761         * Cyclic is simple. Just subtract pset[0].addr from pos.
1762         *
1763         * We never update edesc->residue in the cyclic case, so we
1764         * can tell the remaining room to the end of the circular
1765         * buffer.
1766         */
1767        if (edesc->cyclic) {
1768                done = pos - pset->addr;
1769                edesc->residue_stat = edesc->residue - done;
1770                return edesc->residue_stat;
1771        }
1772
1773        /*
1774         * For SG operation we catch up with the last processed
1775         * status.
1776         */
1777        pset += edesc->processed_stat;
1778
1779        for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1780                /*
1781                 * If we are inside this pset address range, we know
1782                 * this is the active one. Get the current delta and
1783                 * stop walking the psets.
1784                 */
1785                if (pos >= pset->addr && pos < pset->addr + pset->len)
1786                        return edesc->residue_stat - (pos - pset->addr);
1787
1788                /* Otherwise mark it done and update residue_stat. */
1789                edesc->processed_stat++;
1790                edesc->residue_stat -= pset->len;
1791        }
1792        return edesc->residue_stat;
1793}
1794
1795/* Check request completion status */
1796static enum dma_status edma_tx_status(struct dma_chan *chan,
1797                                      dma_cookie_t cookie,
1798                                      struct dma_tx_state *txstate)
1799{
1800        struct edma_chan *echan = to_edma_chan(chan);
1801        struct virt_dma_desc *vdesc;
1802        enum dma_status ret;
1803        unsigned long flags;
1804
1805        ret = dma_cookie_status(chan, cookie, txstate);
1806        if (ret == DMA_COMPLETE || !txstate)
1807                return ret;
1808
1809        spin_lock_irqsave(&echan->vchan.lock, flags);
1810        if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1811                txstate->residue = edma_residue(echan->edesc);
1812        else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1813                txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1814        spin_unlock_irqrestore(&echan->vchan.lock, flags);
1815
1816        return ret;
1817}
1818
1819static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1820{
1821        if (!memcpy_channels)
1822                return false;
1823        while (*memcpy_channels != -1) {
1824                if (*memcpy_channels == ch_num)
1825                        return true;
1826                memcpy_channels++;
1827        }
1828        return false;
1829}
1830
1831#define EDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1832                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1833                                 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1834                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1835
1836static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1837{
1838        struct dma_device *s_ddev = &ecc->dma_slave;
1839        struct dma_device *m_ddev = NULL;
1840        s32 *memcpy_channels = ecc->info->memcpy_channels;
1841        int i, j;
1842
1843        dma_cap_zero(s_ddev->cap_mask);
1844        dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1845        dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1846        if (ecc->legacy_mode && !memcpy_channels) {
1847                dev_warn(ecc->dev,
1848                         "Legacy memcpy is enabled, things might not work\n");
1849
1850                dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1851                s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1852                s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1853        }
1854
1855        s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1856        s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1857        s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1858        s_ddev->device_free_chan_resources = edma_free_chan_resources;
1859        s_ddev->device_issue_pending = edma_issue_pending;
1860        s_ddev->device_tx_status = edma_tx_status;
1861        s_ddev->device_config = edma_slave_config;
1862        s_ddev->device_pause = edma_dma_pause;
1863        s_ddev->device_resume = edma_dma_resume;
1864        s_ddev->device_terminate_all = edma_terminate_all;
1865        s_ddev->device_synchronize = edma_synchronize;
1866
1867        s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1868        s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1869        s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1870        s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1871
1872        s_ddev->dev = ecc->dev;
1873        INIT_LIST_HEAD(&s_ddev->channels);
1874
1875        if (memcpy_channels) {
1876                m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1877                ecc->dma_memcpy = m_ddev;
1878
1879                dma_cap_zero(m_ddev->cap_mask);
1880                dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1881
1882                m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1883                m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1884                m_ddev->device_free_chan_resources = edma_free_chan_resources;
1885                m_ddev->device_issue_pending = edma_issue_pending;
1886                m_ddev->device_tx_status = edma_tx_status;
1887                m_ddev->device_config = edma_slave_config;
1888                m_ddev->device_pause = edma_dma_pause;
1889                m_ddev->device_resume = edma_dma_resume;
1890                m_ddev->device_terminate_all = edma_terminate_all;
1891                m_ddev->device_synchronize = edma_synchronize;
1892
1893                m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1894                m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1895                m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1896                m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1897
1898                m_ddev->dev = ecc->dev;
1899                INIT_LIST_HEAD(&m_ddev->channels);
1900        } else if (!ecc->legacy_mode) {
1901                dev_info(ecc->dev, "memcpy is disabled\n");
1902        }
1903
1904        for (i = 0; i < ecc->num_channels; i++) {
1905                struct edma_chan *echan = &ecc->slave_chans[i];
1906                echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1907                echan->ecc = ecc;
1908                echan->vchan.desc_free = edma_desc_free;
1909
1910                if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1911                        vchan_init(&echan->vchan, m_ddev);
1912                else
1913                        vchan_init(&echan->vchan, s_ddev);
1914
1915                INIT_LIST_HEAD(&echan->node);
1916                for (j = 0; j < EDMA_MAX_SLOTS; j++)
1917                        echan->slot[j] = -1;
1918        }
1919}
1920
1921static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1922                              struct edma_cc *ecc)
1923{
1924        int i;
1925        u32 value, cccfg;
1926        s8 (*queue_priority_map)[2];
1927
1928        /* Decode the eDMA3 configuration from CCCFG register */
1929        cccfg = edma_read(ecc, EDMA_CCCFG);
1930
1931        value = GET_NUM_REGN(cccfg);
1932        ecc->num_region = BIT(value);
1933
1934        value = GET_NUM_DMACH(cccfg);
1935        ecc->num_channels = BIT(value + 1);
1936
1937        value = GET_NUM_QDMACH(cccfg);
1938        ecc->num_qchannels = value * 2;
1939
1940        value = GET_NUM_PAENTRY(cccfg);
1941        ecc->num_slots = BIT(value + 4);
1942
1943        value = GET_NUM_EVQUE(cccfg);
1944        ecc->num_tc = value + 1;
1945
1946        ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1947
1948        dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1949        dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1950        dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1951        dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1952        dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1953        dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1954        dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1955
1956        /* Nothing need to be done if queue priority is provided */
1957        if (pdata->queue_priority_mapping)
1958                return 0;
1959
1960        /*
1961         * Configure TC/queue priority as follows:
1962         * Q0 - priority 0
1963         * Q1 - priority 1
1964         * Q2 - priority 2
1965         * ...
1966         * The meaning of priority numbers: 0 highest priority, 7 lowest
1967         * priority. So Q0 is the highest priority queue and the last queue has
1968         * the lowest priority.
1969         */
1970        queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1971                                          GFP_KERNEL);
1972        if (!queue_priority_map)
1973                return -ENOMEM;
1974
1975        for (i = 0; i < ecc->num_tc; i++) {
1976                queue_priority_map[i][0] = i;
1977                queue_priority_map[i][1] = i;
1978        }
1979        queue_priority_map[i][0] = -1;
1980        queue_priority_map[i][1] = -1;
1981
1982        pdata->queue_priority_mapping = queue_priority_map;
1983        /* Default queue has the lowest priority */
1984        pdata->default_queue = i - 1;
1985
1986        return 0;
1987}
1988
1989#if IS_ENABLED(CONFIG_OF)
1990static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1991                               size_t sz)
1992{
1993        const char pname[] = "ti,edma-xbar-event-map";
1994        struct resource res;
1995        void __iomem *xbar;
1996        s16 (*xbar_chans)[2];
1997        size_t nelm = sz / sizeof(s16);
1998        u32 shift, offset, mux;
1999        int ret, i;
2000
2001        xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2002        if (!xbar_chans)
2003                return -ENOMEM;
2004
2005        ret = of_address_to_resource(dev->of_node, 1, &res);
2006        if (ret)
2007                return -ENOMEM;
2008
2009        xbar = devm_ioremap(dev, res.start, resource_size(&res));
2010        if (!xbar)
2011                return -ENOMEM;
2012
2013        ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2014                                         nelm);
2015        if (ret)
2016                return -EIO;
2017
2018        /* Invalidate last entry for the other user of this mess */
2019        nelm >>= 1;
2020        xbar_chans[nelm][0] = -1;
2021        xbar_chans[nelm][1] = -1;
2022
2023        for (i = 0; i < nelm; i++) {
2024                shift = (xbar_chans[i][1] & 0x03) << 3;
2025                offset = xbar_chans[i][1] & 0xfffffffc;
2026                mux = readl(xbar + offset);
2027                mux &= ~(0xff << shift);
2028                mux |= xbar_chans[i][0] << shift;
2029                writel(mux, (xbar + offset));
2030        }
2031
2032        pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2033        return 0;
2034}
2035
2036static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2037                                                     bool legacy_mode)
2038{
2039        struct edma_soc_info *info;
2040        struct property *prop;
2041        int sz, ret;
2042
2043        info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2044        if (!info)
2045                return ERR_PTR(-ENOMEM);
2046
2047        if (legacy_mode) {
2048                prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2049                                        &sz);
2050                if (prop) {
2051                        ret = edma_xbar_event_map(dev, info, sz);
2052                        if (ret)
2053                                return ERR_PTR(ret);
2054                }
2055                return info;
2056        }
2057
2058        /* Get the list of channels allocated to be used for memcpy */
2059        prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2060        if (prop) {
2061                const char pname[] = "ti,edma-memcpy-channels";
2062                size_t nelm = sz / sizeof(s32);
2063                s32 *memcpy_ch;
2064
2065                memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2066                                         GFP_KERNEL);
2067                if (!memcpy_ch)
2068                        return ERR_PTR(-ENOMEM);
2069
2070                ret = of_property_read_u32_array(dev->of_node, pname,
2071                                                 (u32 *)memcpy_ch, nelm);
2072                if (ret)
2073                        return ERR_PTR(ret);
2074
2075                memcpy_ch[nelm] = -1;
2076                info->memcpy_channels = memcpy_ch;
2077        }
2078
2079        prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2080                                &sz);
2081        if (prop) {
2082                const char pname[] = "ti,edma-reserved-slot-ranges";
2083                u32 (*tmp)[2];
2084                s16 (*rsv_slots)[2];
2085                size_t nelm = sz / sizeof(*tmp);
2086                struct edma_rsv_info *rsv_info;
2087                int i;
2088
2089                if (!nelm)
2090                        return info;
2091
2092                tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2093                if (!tmp)
2094                        return ERR_PTR(-ENOMEM);
2095
2096                rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2097                if (!rsv_info) {
2098                        kfree(tmp);
2099                        return ERR_PTR(-ENOMEM);
2100                }
2101
2102                rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2103                                         GFP_KERNEL);
2104                if (!rsv_slots) {
2105                        kfree(tmp);
2106                        return ERR_PTR(-ENOMEM);
2107                }
2108
2109                ret = of_property_read_u32_array(dev->of_node, pname,
2110                                                 (u32 *)tmp, nelm * 2);
2111                if (ret) {
2112                        kfree(tmp);
2113                        return ERR_PTR(ret);
2114                }
2115
2116                for (i = 0; i < nelm; i++) {
2117                        rsv_slots[i][0] = tmp[i][0];
2118                        rsv_slots[i][1] = tmp[i][1];
2119                }
2120                rsv_slots[nelm][0] = -1;
2121                rsv_slots[nelm][1] = -1;
2122
2123                info->rsv = rsv_info;
2124                info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2125
2126                kfree(tmp);
2127        }
2128
2129        return info;
2130}
2131
2132static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2133                                      struct of_dma *ofdma)
2134{
2135        struct edma_cc *ecc = ofdma->of_dma_data;
2136        struct dma_chan *chan = NULL;
2137        struct edma_chan *echan;
2138        int i;
2139
2140        if (!ecc || dma_spec->args_count < 1)
2141                return NULL;
2142
2143        for (i = 0; i < ecc->num_channels; i++) {
2144                echan = &ecc->slave_chans[i];
2145                if (echan->ch_num == dma_spec->args[0]) {
2146                        chan = &echan->vchan.chan;
2147                        break;
2148                }
2149        }
2150
2151        if (!chan)
2152                return NULL;
2153
2154        if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2155                goto out;
2156
2157        if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2158            dma_spec->args[1] < echan->ecc->num_tc) {
2159                echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2160                goto out;
2161        }
2162
2163        return NULL;
2164out:
2165        /* The channel is going to be used as HW synchronized */
2166        echan->hw_triggered = true;
2167        return dma_get_slave_channel(chan);
2168}
2169#else
2170static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2171                                                     bool legacy_mode)
2172{
2173        return ERR_PTR(-EINVAL);
2174}
2175
2176static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2177                                      struct of_dma *ofdma)
2178{
2179        return NULL;
2180}
2181#endif
2182
2183static int edma_probe(struct platform_device *pdev)
2184{
2185        struct edma_soc_info    *info = pdev->dev.platform_data;
2186        s8                      (*queue_priority_mapping)[2];
2187        int                     i, off, ln;
2188        const s16               (*rsv_slots)[2];
2189        const s16               (*xbar_chans)[2];
2190        int                     irq;
2191        char                    *irq_name;
2192        struct resource         *mem;
2193        struct device_node      *node = pdev->dev.of_node;
2194        struct device           *dev = &pdev->dev;
2195        struct edma_cc          *ecc;
2196        bool                    legacy_mode = true;
2197        int ret;
2198
2199        if (node) {
2200                const struct of_device_id *match;
2201
2202                match = of_match_node(edma_of_ids, node);
2203                if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2204                        legacy_mode = false;
2205
2206                info = edma_setup_info_from_dt(dev, legacy_mode);
2207                if (IS_ERR(info)) {
2208                        dev_err(dev, "failed to get DT data\n");
2209                        return PTR_ERR(info);
2210                }
2211        }
2212
2213        if (!info)
2214                return -ENODEV;
2215
2216        pm_runtime_enable(dev);
2217        ret = pm_runtime_get_sync(dev);
2218        if (ret < 0) {
2219                dev_err(dev, "pm_runtime_get_sync() failed\n");
2220                return ret;
2221        }
2222
2223        ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2224        if (ret)
2225                return ret;
2226
2227        ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2228        if (!ecc)
2229                return -ENOMEM;
2230
2231        ecc->dev = dev;
2232        ecc->id = pdev->id;
2233        ecc->legacy_mode = legacy_mode;
2234        /* When booting with DT the pdev->id is -1 */
2235        if (ecc->id < 0)
2236                ecc->id = 0;
2237
2238        mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2239        if (!mem) {
2240                dev_dbg(dev, "mem resource not found, using index 0\n");
2241                mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2242                if (!mem) {
2243                        dev_err(dev, "no mem resource?\n");
2244                        return -ENODEV;
2245                }
2246        }
2247        ecc->base = devm_ioremap_resource(dev, mem);
2248        if (IS_ERR(ecc->base))
2249                return PTR_ERR(ecc->base);
2250
2251        platform_set_drvdata(pdev, ecc);
2252
2253        /* Get eDMA3 configuration from IP */
2254        ret = edma_setup_from_hw(dev, info, ecc);
2255        if (ret)
2256                return ret;
2257
2258        /* Allocate memory based on the information we got from the IP */
2259        ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2260                                        sizeof(*ecc->slave_chans), GFP_KERNEL);
2261        if (!ecc->slave_chans)
2262                return -ENOMEM;
2263
2264        ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2265                                       sizeof(unsigned long), GFP_KERNEL);
2266        if (!ecc->slot_inuse)
2267                return -ENOMEM;
2268
2269        ecc->default_queue = info->default_queue;
2270
2271        for (i = 0; i < ecc->num_slots; i++)
2272                edma_write_slot(ecc, i, &dummy_paramset);
2273
2274        if (info->rsv) {
2275                /* Set the reserved slots in inuse list */
2276                rsv_slots = info->rsv->rsv_slots;
2277                if (rsv_slots) {
2278                        for (i = 0; rsv_slots[i][0] != -1; i++) {
2279                                off = rsv_slots[i][0];
2280                                ln = rsv_slots[i][1];
2281                                edma_set_bits(off, ln, ecc->slot_inuse);
2282                        }
2283                }
2284        }
2285
2286        /* Clear the xbar mapped channels in unused list */
2287        xbar_chans = info->xbar_chans;
2288        if (xbar_chans) {
2289                for (i = 0; xbar_chans[i][1] != -1; i++) {
2290                        off = xbar_chans[i][1];
2291                }
2292        }
2293
2294        irq = platform_get_irq_byname(pdev, "edma3_ccint");
2295        if (irq < 0 && node)
2296                irq = irq_of_parse_and_map(node, 0);
2297
2298        if (irq >= 0) {
2299                irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2300                                          dev_name(dev));
2301                ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2302                                       ecc);
2303                if (ret) {
2304                        dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2305                        return ret;
2306                }
2307                ecc->ccint = irq;
2308        }
2309
2310        irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2311        if (irq < 0 && node)
2312                irq = irq_of_parse_and_map(node, 2);
2313
2314        if (irq >= 0) {
2315                irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2316                                          dev_name(dev));
2317                ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2318                                       ecc);
2319                if (ret) {
2320                        dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2321                        return ret;
2322                }
2323                ecc->ccerrint = irq;
2324        }
2325
2326        ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2327        if (ecc->dummy_slot < 0) {
2328                dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2329                return ecc->dummy_slot;
2330        }
2331
2332        queue_priority_mapping = info->queue_priority_mapping;
2333
2334        if (!ecc->legacy_mode) {
2335                int lowest_priority = 0;
2336                struct of_phandle_args tc_args;
2337
2338                ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2339                                            sizeof(*ecc->tc_list), GFP_KERNEL);
2340                if (!ecc->tc_list)
2341                        return -ENOMEM;
2342
2343                for (i = 0;; i++) {
2344                        ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2345                                                               1, i, &tc_args);
2346                        if (ret || i == ecc->num_tc)
2347                                break;
2348
2349                        ecc->tc_list[i].node = tc_args.np;
2350                        ecc->tc_list[i].id = i;
2351                        queue_priority_mapping[i][1] = tc_args.args[0];
2352                        if (queue_priority_mapping[i][1] > lowest_priority) {
2353                                lowest_priority = queue_priority_mapping[i][1];
2354                                info->default_queue = i;
2355                        }
2356                }
2357        }
2358
2359        /* Event queue priority mapping */
2360        for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2361                edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2362                                              queue_priority_mapping[i][1]);
2363
2364        for (i = 0; i < ecc->num_region; i++) {
2365                edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2366                edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2367                edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2368        }
2369        ecc->info = info;
2370
2371        /* Init the dma device and channels */
2372        edma_dma_init(ecc, legacy_mode);
2373
2374        for (i = 0; i < ecc->num_channels; i++) {
2375                /* Assign all channels to the default queue */
2376                edma_assign_channel_eventq(&ecc->slave_chans[i],
2377                                           info->default_queue);
2378                /* Set entry slot to the dummy slot */
2379                edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2380        }
2381
2382        ecc->dma_slave.filter.map = info->slave_map;
2383        ecc->dma_slave.filter.mapcnt = info->slavecnt;
2384        ecc->dma_slave.filter.fn = edma_filter_fn;
2385
2386        ret = dma_async_device_register(&ecc->dma_slave);
2387        if (ret) {
2388                dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2389                goto err_reg1;
2390        }
2391
2392        if (ecc->dma_memcpy) {
2393                ret = dma_async_device_register(ecc->dma_memcpy);
2394                if (ret) {
2395                        dev_err(dev, "memcpy ddev registration failed (%d)\n",
2396                                ret);
2397                        dma_async_device_unregister(&ecc->dma_slave);
2398                        goto err_reg1;
2399                }
2400        }
2401
2402        if (node)
2403                of_dma_controller_register(node, of_edma_xlate, ecc);
2404
2405        dev_info(dev, "TI EDMA DMA engine driver\n");
2406
2407        return 0;
2408
2409err_reg1:
2410        edma_free_slot(ecc, ecc->dummy_slot);
2411        return ret;
2412}
2413
2414static void edma_cleanupp_vchan(struct dma_device *dmadev)
2415{
2416        struct edma_chan *echan, *_echan;
2417
2418        list_for_each_entry_safe(echan, _echan,
2419                        &dmadev->channels, vchan.chan.device_node) {
2420                list_del(&echan->vchan.chan.device_node);
2421                tasklet_kill(&echan->vchan.task);
2422        }
2423}
2424
2425static int edma_remove(struct platform_device *pdev)
2426{
2427        struct device *dev = &pdev->dev;
2428        struct edma_cc *ecc = dev_get_drvdata(dev);
2429
2430        devm_free_irq(dev, ecc->ccint, ecc);
2431        devm_free_irq(dev, ecc->ccerrint, ecc);
2432
2433        edma_cleanupp_vchan(&ecc->dma_slave);
2434
2435        if (dev->of_node)
2436                of_dma_controller_free(dev->of_node);
2437        dma_async_device_unregister(&ecc->dma_slave);
2438        if (ecc->dma_memcpy)
2439                dma_async_device_unregister(ecc->dma_memcpy);
2440        edma_free_slot(ecc, ecc->dummy_slot);
2441
2442        return 0;
2443}
2444
2445#ifdef CONFIG_PM_SLEEP
2446static int edma_pm_suspend(struct device *dev)
2447{
2448        struct edma_cc *ecc = dev_get_drvdata(dev);
2449        struct edma_chan *echan = ecc->slave_chans;
2450        int i;
2451
2452        for (i = 0; i < ecc->num_channels; i++) {
2453                if (echan[i].alloced)
2454                        edma_setup_interrupt(&echan[i], false);
2455        }
2456
2457        return 0;
2458}
2459
2460static int edma_pm_resume(struct device *dev)
2461{
2462        struct edma_cc *ecc = dev_get_drvdata(dev);
2463        struct edma_chan *echan = ecc->slave_chans;
2464        int i;
2465        s8 (*queue_priority_mapping)[2];
2466
2467        /* re initialize dummy slot to dummy param set */
2468        edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2469
2470        queue_priority_mapping = ecc->info->queue_priority_mapping;
2471
2472        /* Event queue priority mapping */
2473        for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2474                edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2475                                              queue_priority_mapping[i][1]);
2476
2477        for (i = 0; i < ecc->num_channels; i++) {
2478                if (echan[i].alloced) {
2479                        /* ensure access through shadow region 0 */
2480                        edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2481                                       BIT(i & 0x1f));
2482
2483                        edma_setup_interrupt(&echan[i], true);
2484
2485                        /* Set up channel -> slot mapping for the entry slot */
2486                        edma_set_chmap(&echan[i], echan[i].slot[0]);
2487                }
2488        }
2489
2490        return 0;
2491}
2492#endif
2493
2494static const struct dev_pm_ops edma_pm_ops = {
2495        SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2496};
2497
2498static struct platform_driver edma_driver = {
2499        .probe          = edma_probe,
2500        .remove         = edma_remove,
2501        .driver = {
2502                .name   = "edma",
2503                .pm     = &edma_pm_ops,
2504                .of_match_table = edma_of_ids,
2505        },
2506};
2507
2508static int edma_tptc_probe(struct platform_device *pdev)
2509{
2510        pm_runtime_enable(&pdev->dev);
2511        return pm_runtime_get_sync(&pdev->dev);
2512}
2513
2514static struct platform_driver edma_tptc_driver = {
2515        .probe          = edma_tptc_probe,
2516        .driver = {
2517                .name   = "edma3-tptc",
2518                .of_match_table = edma_tptc_of_ids,
2519        },
2520};
2521
2522bool edma_filter_fn(struct dma_chan *chan, void *param)
2523{
2524        bool match = false;
2525
2526        if (chan->device->dev->driver == &edma_driver.driver) {
2527                struct edma_chan *echan = to_edma_chan(chan);
2528                unsigned ch_req = *(unsigned *)param;
2529                if (ch_req == echan->ch_num) {
2530                        /* The channel is going to be used as HW synchronized */
2531                        echan->hw_triggered = true;
2532                        match = true;
2533                }
2534        }
2535        return match;
2536}
2537EXPORT_SYMBOL(edma_filter_fn);
2538
2539static int edma_init(void)
2540{
2541        int ret;
2542
2543        ret = platform_driver_register(&edma_tptc_driver);
2544        if (ret)
2545                return ret;
2546
2547        return platform_driver_register(&edma_driver);
2548}
2549subsys_initcall(edma_init);
2550
2551static void __exit edma_exit(void)
2552{
2553        platform_driver_unregister(&edma_driver);
2554        platform_driver_unregister(&edma_tptc_driver);
2555}
2556module_exit(edma_exit);
2557
2558MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2559MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2560MODULE_LICENSE("GPL v2");
2561