linux/drivers/edac/i5400_edac.c
<<
>>
Prefs
   1/*
   2 * Intel 5400 class Memory Controllers kernel module (Seaburg)
   3 *
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Copyright (c) 2008 by:
   8 *       Ben Woodard <woodard@redhat.com>
   9 *       Mauro Carvalho Chehab
  10 *
  11 * Red Hat Inc. http://www.redhat.com
  12 *
  13 * Forked and adapted from the i5000_edac driver which was
  14 * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
  15 *
  16 * This module is based on the following document:
  17 *
  18 * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
  19 *      http://developer.intel.com/design/chipsets/datashts/313070.htm
  20 *
  21 * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
  22 * 2 channels operating in lockstep no-mirror mode. Each channel can have up to
  23 * 4 dimm's, each with up to 8GB.
  24 *
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/init.h>
  29#include <linux/pci.h>
  30#include <linux/pci_ids.h>
  31#include <linux/slab.h>
  32#include <linux/edac.h>
  33#include <linux/mmzone.h>
  34
  35#include "edac_module.h"
  36
  37/*
  38 * Alter this version for the I5400 module when modifications are made
  39 */
  40#define I5400_REVISION    " Ver: 1.0.0"
  41
  42#define EDAC_MOD_STR      "i5400_edac"
  43
  44#define i5400_printk(level, fmt, arg...) \
  45        edac_printk(level, "i5400", fmt, ##arg)
  46
  47#define i5400_mc_printk(mci, level, fmt, arg...) \
  48        edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
  49
  50/* Limits for i5400 */
  51#define MAX_BRANCHES            2
  52#define CHANNELS_PER_BRANCH     2
  53#define DIMMS_PER_CHANNEL       4
  54#define MAX_CHANNELS            (MAX_BRANCHES * CHANNELS_PER_BRANCH)
  55
  56/* Device 16,
  57 * Function 0: System Address
  58 * Function 1: Memory Branch Map, Control, Errors Register
  59 * Function 2: FSB Error Registers
  60 *
  61 * All 3 functions of Device 16 (0,1,2) share the SAME DID and
  62 * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
  63 * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
  64 * for device 21 (0,1).
  65 */
  66
  67        /* OFFSETS for Function 0 */
  68#define         AMBASE                  0x48 /* AMB Mem Mapped Reg Region Base */
  69#define         MAXCH                   0x56 /* Max Channel Number */
  70#define         MAXDIMMPERCH            0x57 /* Max DIMM PER Channel Number */
  71
  72        /* OFFSETS for Function 1 */
  73#define         TOLM                    0x6C
  74#define         REDMEMB                 0x7C
  75#define                 REC_ECC_LOCATOR_ODD(x)  ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
  76#define         MIR0                    0x80
  77#define         MIR1                    0x84
  78#define         AMIR0                   0x8c
  79#define         AMIR1                   0x90
  80
  81        /* Fatal error registers */
  82#define         FERR_FAT_FBD            0x98    /* also called as FERR_FAT_FB_DIMM at datasheet */
  83#define                 FERR_FAT_FBDCHAN (3<<28)        /* channel index where the highest-order error occurred */
  84
  85#define         NERR_FAT_FBD            0x9c
  86#define         FERR_NF_FBD             0xa0    /* also called as FERR_NFAT_FB_DIMM at datasheet */
  87
  88        /* Non-fatal error register */
  89#define         NERR_NF_FBD             0xa4
  90
  91        /* Enable error mask */
  92#define         EMASK_FBD               0xa8
  93
  94#define         ERR0_FBD                0xac
  95#define         ERR1_FBD                0xb0
  96#define         ERR2_FBD                0xb4
  97#define         MCERR_FBD               0xb8
  98
  99        /* No OFFSETS for Device 16 Function 2 */
 100
 101/*
 102 * Device 21,
 103 * Function 0: Memory Map Branch 0
 104 *
 105 * Device 22,
 106 * Function 0: Memory Map Branch 1
 107 */
 108
 109        /* OFFSETS for Function 0 */
 110#define AMBPRESENT_0    0x64
 111#define AMBPRESENT_1    0x66
 112#define MTR0            0x80
 113#define MTR1            0x82
 114#define MTR2            0x84
 115#define MTR3            0x86
 116
 117        /* OFFSETS for Function 1 */
 118#define NRECFGLOG               0x74
 119#define RECFGLOG                0x78
 120#define NRECMEMA                0xbe
 121#define NRECMEMB                0xc0
 122#define NRECFB_DIMMA            0xc4
 123#define NRECFB_DIMMB            0xc8
 124#define NRECFB_DIMMC            0xcc
 125#define NRECFB_DIMMD            0xd0
 126#define NRECFB_DIMME            0xd4
 127#define NRECFB_DIMMF            0xd8
 128#define REDMEMA                 0xdC
 129#define RECMEMA                 0xf0
 130#define RECMEMB                 0xf4
 131#define RECFB_DIMMA             0xf8
 132#define RECFB_DIMMB             0xec
 133#define RECFB_DIMMC             0xf0
 134#define RECFB_DIMMD             0xf4
 135#define RECFB_DIMME             0xf8
 136#define RECFB_DIMMF             0xfC
 137
 138/*
 139 * Error indicator bits and masks
 140 * Error masks are according with Table 5-17 of i5400 datasheet
 141 */
 142
 143enum error_mask {
 144        EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
 145        EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
 146        EMASK_M3  = 1<<2,  /* Reserved */
 147        EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
 148        EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
 149        EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
 150        EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
 151        EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
 152        EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
 153        EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
 154        EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
 155        EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
 156        EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
 157        EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
 158        EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
 159        EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
 160        EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
 161        EMASK_M18 = 1<<17, /* Unsupported on i5400 */
 162        EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
 163        EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
 164        EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
 165        EMASK_M22 = 1<<21, /* SPD protocol Error */
 166        EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
 167        EMASK_M24 = 1<<23, /* Refresh error */
 168        EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
 169        EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
 170        EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
 171        EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
 172        EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
 173};
 174
 175/*
 176 * Names to translate bit error into something useful
 177 */
 178static const char *error_name[] = {
 179        [0]  = "Memory Write error on non-redundant retry",
 180        [1]  = "Memory or FB-DIMM configuration CRC read error",
 181        /* Reserved */
 182        [3]  = "Uncorrectable Data ECC on Replay",
 183        [4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
 184        /* M6 Unsupported on i5400 */
 185        [6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
 186        [7]  = "Aliased Uncorrectable Patrol Data ECC",
 187        [8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
 188        /* M10 Unsupported on i5400 */
 189        [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
 190        [11] = "Non-Aliased Uncorrectable Patrol Data ECC",
 191        [12] = "Memory Write error on first attempt",
 192        [13] = "FB-DIMM Configuration Write error on first attempt",
 193        [14] = "Memory or FB-DIMM configuration CRC read error",
 194        [15] = "Channel Failed-Over Occurred",
 195        [16] = "Correctable Non-Mirrored Demand Data ECC",
 196        /* M18 Unsupported on i5400 */
 197        [18] = "Correctable Resilver- or Spare-Copy Data ECC",
 198        [19] = "Correctable Patrol Data ECC",
 199        [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
 200        [21] = "SPD protocol Error",
 201        [22] = "Non-Redundant Fast Reset Timeout",
 202        [23] = "Refresh error",
 203        [24] = "Memory Write error on redundant retry",
 204        [25] = "Redundant Fast Reset Timeout",
 205        [26] = "Correctable Counter Threshold Exceeded",
 206        [27] = "DIMM-Spare Copy Completed",
 207        [28] = "DIMM-Isolation Completed",
 208};
 209
 210/* Fatal errors */
 211#define ERROR_FAT_MASK          (EMASK_M1 | \
 212                                 EMASK_M2 | \
 213                                 EMASK_M23)
 214
 215/* Correctable errors */
 216#define ERROR_NF_CORRECTABLE    (EMASK_M27 | \
 217                                 EMASK_M20 | \
 218                                 EMASK_M19 | \
 219                                 EMASK_M18 | \
 220                                 EMASK_M17 | \
 221                                 EMASK_M16)
 222#define ERROR_NF_DIMM_SPARE     (EMASK_M29 | \
 223                                 EMASK_M28)
 224#define ERROR_NF_SPD_PROTOCOL   (EMASK_M22)
 225#define ERROR_NF_NORTH_CRC      (EMASK_M21)
 226
 227/* Recoverable errors */
 228#define ERROR_NF_RECOVERABLE    (EMASK_M26 | \
 229                                 EMASK_M25 | \
 230                                 EMASK_M24 | \
 231                                 EMASK_M15 | \
 232                                 EMASK_M14 | \
 233                                 EMASK_M13 | \
 234                                 EMASK_M12 | \
 235                                 EMASK_M11 | \
 236                                 EMASK_M9  | \
 237                                 EMASK_M8  | \
 238                                 EMASK_M7  | \
 239                                 EMASK_M5)
 240
 241/* uncorrectable errors */
 242#define ERROR_NF_UNCORRECTABLE  (EMASK_M4)
 243
 244/* mask to all non-fatal errors */
 245#define ERROR_NF_MASK           (ERROR_NF_CORRECTABLE   | \
 246                                 ERROR_NF_UNCORRECTABLE | \
 247                                 ERROR_NF_RECOVERABLE   | \
 248                                 ERROR_NF_DIMM_SPARE    | \
 249                                 ERROR_NF_SPD_PROTOCOL  | \
 250                                 ERROR_NF_NORTH_CRC)
 251
 252/*
 253 * Define error masks for the several registers
 254 */
 255
 256/* Enable all fatal and non fatal errors */
 257#define ENABLE_EMASK_ALL        (ERROR_FAT_MASK | ERROR_NF_MASK)
 258
 259/* mask for fatal error registers */
 260#define FERR_FAT_MASK ERROR_FAT_MASK
 261
 262/* masks for non-fatal error register */
 263static inline int to_nf_mask(unsigned int mask)
 264{
 265        return (mask & EMASK_M29) | (mask >> 3);
 266};
 267
 268static inline int from_nf_ferr(unsigned int mask)
 269{
 270        return (mask & EMASK_M29) |             /* Bit 28 */
 271               (mask & ((1 << 28) - 1) << 3);   /* Bits 0 to 27 */
 272};
 273
 274#define FERR_NF_MASK            to_nf_mask(ERROR_NF_MASK)
 275#define FERR_NF_CORRECTABLE     to_nf_mask(ERROR_NF_CORRECTABLE)
 276#define FERR_NF_DIMM_SPARE      to_nf_mask(ERROR_NF_DIMM_SPARE)
 277#define FERR_NF_SPD_PROTOCOL    to_nf_mask(ERROR_NF_SPD_PROTOCOL)
 278#define FERR_NF_NORTH_CRC       to_nf_mask(ERROR_NF_NORTH_CRC)
 279#define FERR_NF_RECOVERABLE     to_nf_mask(ERROR_NF_RECOVERABLE)
 280#define FERR_NF_UNCORRECTABLE   to_nf_mask(ERROR_NF_UNCORRECTABLE)
 281
 282/* Defines to extract the vaious fields from the
 283 *      MTRx - Memory Technology Registers
 284 */
 285#define MTR_DIMMS_PRESENT(mtr)          ((mtr) & (1 << 10))
 286#define MTR_DIMMS_ETHROTTLE(mtr)        ((mtr) & (1 << 9))
 287#define MTR_DRAM_WIDTH(mtr)             (((mtr) & (1 << 8)) ? 8 : 4)
 288#define MTR_DRAM_BANKS(mtr)             (((mtr) & (1 << 6)) ? 8 : 4)
 289#define MTR_DRAM_BANKS_ADDR_BITS(mtr)   ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
 290#define MTR_DIMM_RANK(mtr)              (((mtr) >> 5) & 0x1)
 291#define MTR_DIMM_RANK_ADDR_BITS(mtr)    (MTR_DIMM_RANK(mtr) ? 2 : 1)
 292#define MTR_DIMM_ROWS(mtr)              (((mtr) >> 2) & 0x3)
 293#define MTR_DIMM_ROWS_ADDR_BITS(mtr)    (MTR_DIMM_ROWS(mtr) + 13)
 294#define MTR_DIMM_COLS(mtr)              ((mtr) & 0x3)
 295#define MTR_DIMM_COLS_ADDR_BITS(mtr)    (MTR_DIMM_COLS(mtr) + 10)
 296
 297/* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
 298static inline int extract_fbdchan_indx(u32 x)
 299{
 300        return (x>>28) & 0x3;
 301}
 302
 303/* Device name and register DID (Device ID) */
 304struct i5400_dev_info {
 305        const char *ctl_name;   /* name for this device */
 306        u16 fsb_mapping_errors; /* DID for the branchmap,control */
 307};
 308
 309/* Table of devices attributes supported by this driver */
 310static const struct i5400_dev_info i5400_devs[] = {
 311        {
 312                .ctl_name = "I5400",
 313                .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
 314        },
 315};
 316
 317struct i5400_dimm_info {
 318        int megabytes;          /* size, 0 means not present  */
 319};
 320
 321/* driver private data structure */
 322struct i5400_pvt {
 323        struct pci_dev *system_address;         /* 16.0 */
 324        struct pci_dev *branchmap_werrors;      /* 16.1 */
 325        struct pci_dev *fsb_error_regs;         /* 16.2 */
 326        struct pci_dev *branch_0;               /* 21.0 */
 327        struct pci_dev *branch_1;               /* 22.0 */
 328
 329        u16 tolm;                               /* top of low memory */
 330        union {
 331                u64 ambase;                             /* AMB BAR */
 332                struct {
 333                        u32 ambase_bottom;
 334                        u32 ambase_top;
 335                } u __packed;
 336        };
 337
 338        u16 mir0, mir1;
 339
 340        u16 b0_mtr[DIMMS_PER_CHANNEL];  /* Memory Technlogy Reg */
 341        u16 b0_ambpresent0;                     /* Branch 0, Channel 0 */
 342        u16 b0_ambpresent1;                     /* Brnach 0, Channel 1 */
 343
 344        u16 b1_mtr[DIMMS_PER_CHANNEL];  /* Memory Technlogy Reg */
 345        u16 b1_ambpresent0;                     /* Branch 1, Channel 8 */
 346        u16 b1_ambpresent1;                     /* Branch 1, Channel 1 */
 347
 348        /* DIMM information matrix, allocating architecture maximums */
 349        struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
 350
 351        /* Actual values for this controller */
 352        int maxch;                              /* Max channels */
 353        int maxdimmperch;                       /* Max DIMMs per channel */
 354};
 355
 356/* I5400 MCH error information retrieved from Hardware */
 357struct i5400_error_info {
 358        /* These registers are always read from the MC */
 359        u32 ferr_fat_fbd;       /* First Errors Fatal */
 360        u32 nerr_fat_fbd;       /* Next Errors Fatal */
 361        u32 ferr_nf_fbd;        /* First Errors Non-Fatal */
 362        u32 nerr_nf_fbd;        /* Next Errors Non-Fatal */
 363
 364        /* These registers are input ONLY if there was a Recoverable Error */
 365        u32 redmemb;            /* Recoverable Mem Data Error log B */
 366        u16 recmema;            /* Recoverable Mem Error log A */
 367        u32 recmemb;            /* Recoverable Mem Error log B */
 368
 369        /* These registers are input ONLY if there was a Non-Rec Error */
 370        u16 nrecmema;           /* Non-Recoverable Mem log A */
 371        u32 nrecmemb;           /* Non-Recoverable Mem log B */
 372
 373};
 374
 375/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
 376   5400 better to use an inline function than a macro in this case */
 377static inline int nrec_bank(struct i5400_error_info *info)
 378{
 379        return ((info->nrecmema) >> 12) & 0x7;
 380}
 381static inline int nrec_rank(struct i5400_error_info *info)
 382{
 383        return ((info->nrecmema) >> 8) & 0xf;
 384}
 385static inline int nrec_buf_id(struct i5400_error_info *info)
 386{
 387        return ((info->nrecmema)) & 0xff;
 388}
 389static inline int nrec_rdwr(struct i5400_error_info *info)
 390{
 391        return (info->nrecmemb) >> 31;
 392}
 393/* This applies to both NREC and REC string so it can be used with nrec_rdwr
 394   and rec_rdwr */
 395static inline const char *rdwr_str(int rdwr)
 396{
 397        return rdwr ? "Write" : "Read";
 398}
 399static inline int nrec_cas(struct i5400_error_info *info)
 400{
 401        return ((info->nrecmemb) >> 16) & 0x1fff;
 402}
 403static inline int nrec_ras(struct i5400_error_info *info)
 404{
 405        return (info->nrecmemb) & 0xffff;
 406}
 407static inline int rec_bank(struct i5400_error_info *info)
 408{
 409        return ((info->recmema) >> 12) & 0x7;
 410}
 411static inline int rec_rank(struct i5400_error_info *info)
 412{
 413        return ((info->recmema) >> 8) & 0xf;
 414}
 415static inline int rec_rdwr(struct i5400_error_info *info)
 416{
 417        return (info->recmemb) >> 31;
 418}
 419static inline int rec_cas(struct i5400_error_info *info)
 420{
 421        return ((info->recmemb) >> 16) & 0x1fff;
 422}
 423static inline int rec_ras(struct i5400_error_info *info)
 424{
 425        return (info->recmemb) & 0xffff;
 426}
 427
 428static struct edac_pci_ctl_info *i5400_pci;
 429
 430/*
 431 *      i5400_get_error_info    Retrieve the hardware error information from
 432 *                              the hardware and cache it in the 'info'
 433 *                              structure
 434 */
 435static void i5400_get_error_info(struct mem_ctl_info *mci,
 436                                 struct i5400_error_info *info)
 437{
 438        struct i5400_pvt *pvt;
 439        u32 value;
 440
 441        pvt = mci->pvt_info;
 442
 443        /* read in the 1st FATAL error register */
 444        pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
 445
 446        /* Mask only the bits that the doc says are valid
 447         */
 448        value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
 449
 450        /* If there is an error, then read in the
 451           NEXT FATAL error register and the Memory Error Log Register A
 452         */
 453        if (value & FERR_FAT_MASK) {
 454                info->ferr_fat_fbd = value;
 455
 456                /* harvest the various error data we need */
 457                pci_read_config_dword(pvt->branchmap_werrors,
 458                                NERR_FAT_FBD, &info->nerr_fat_fbd);
 459                pci_read_config_word(pvt->branchmap_werrors,
 460                                NRECMEMA, &info->nrecmema);
 461                pci_read_config_dword(pvt->branchmap_werrors,
 462                                NRECMEMB, &info->nrecmemb);
 463
 464                /* Clear the error bits, by writing them back */
 465                pci_write_config_dword(pvt->branchmap_werrors,
 466                                FERR_FAT_FBD, value);
 467        } else {
 468                info->ferr_fat_fbd = 0;
 469                info->nerr_fat_fbd = 0;
 470                info->nrecmema = 0;
 471                info->nrecmemb = 0;
 472        }
 473
 474        /* read in the 1st NON-FATAL error register */
 475        pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
 476
 477        /* If there is an error, then read in the 1st NON-FATAL error
 478         * register as well */
 479        if (value & FERR_NF_MASK) {
 480                info->ferr_nf_fbd = value;
 481
 482                /* harvest the various error data we need */
 483                pci_read_config_dword(pvt->branchmap_werrors,
 484                                NERR_NF_FBD, &info->nerr_nf_fbd);
 485                pci_read_config_word(pvt->branchmap_werrors,
 486                                RECMEMA, &info->recmema);
 487                pci_read_config_dword(pvt->branchmap_werrors,
 488                                RECMEMB, &info->recmemb);
 489                pci_read_config_dword(pvt->branchmap_werrors,
 490                                REDMEMB, &info->redmemb);
 491
 492                /* Clear the error bits, by writing them back */
 493                pci_write_config_dword(pvt->branchmap_werrors,
 494                                FERR_NF_FBD, value);
 495        } else {
 496                info->ferr_nf_fbd = 0;
 497                info->nerr_nf_fbd = 0;
 498                info->recmema = 0;
 499                info->recmemb = 0;
 500                info->redmemb = 0;
 501        }
 502}
 503
 504/*
 505 * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
 506 *                                      struct i5400_error_info *info,
 507 *                                      int handle_errors);
 508 *
 509 *      handle the Intel FATAL and unrecoverable errors, if any
 510 */
 511static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
 512                                    struct i5400_error_info *info,
 513                                    unsigned long allErrors)
 514{
 515        char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
 516        int branch;
 517        int channel;
 518        int bank;
 519        int buf_id;
 520        int rank;
 521        int rdwr;
 522        int ras, cas;
 523        int errnum;
 524        char *type = NULL;
 525        enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
 526
 527        if (!allErrors)
 528                return;         /* if no error, return now */
 529
 530        if (allErrors &  ERROR_FAT_MASK) {
 531                type = "FATAL";
 532                tp_event = HW_EVENT_ERR_FATAL;
 533        } else if (allErrors & FERR_NF_UNCORRECTABLE)
 534                type = "NON-FATAL uncorrected";
 535        else
 536                type = "NON-FATAL recoverable";
 537
 538        /* ONLY ONE of the possible error bits will be set, as per the docs */
 539
 540        branch = extract_fbdchan_indx(info->ferr_fat_fbd);
 541        channel = branch;
 542
 543        /* Use the NON-Recoverable macros to extract data */
 544        bank = nrec_bank(info);
 545        rank = nrec_rank(info);
 546        buf_id = nrec_buf_id(info);
 547        rdwr = nrec_rdwr(info);
 548        ras = nrec_ras(info);
 549        cas = nrec_cas(info);
 550
 551        edac_dbg(0, "\t\tDIMM= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
 552                 rank, channel, channel + 1, branch >> 1, bank,
 553                 buf_id, rdwr_str(rdwr), ras, cas);
 554
 555        /* Only 1 bit will be on */
 556        errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 557
 558        /* Form out message */
 559        snprintf(msg, sizeof(msg),
 560                 "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
 561                 bank, buf_id, ras, cas, allErrors, error_name[errnum]);
 562
 563        edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
 564                             branch >> 1, -1, rank,
 565                             rdwr ? "Write error" : "Read error",
 566                             msg);
 567}
 568
 569/*
 570 * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
 571 *                              struct i5400_error_info *info,
 572 *                              int handle_errors);
 573 *
 574 *      handle the Intel NON-FATAL errors, if any
 575 */
 576static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
 577                                        struct i5400_error_info *info)
 578{
 579        char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
 580        unsigned long allErrors;
 581        int branch;
 582        int channel;
 583        int bank;
 584        int rank;
 585        int rdwr;
 586        int ras, cas;
 587        int errnum;
 588
 589        /* mask off the Error bits that are possible */
 590        allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
 591        if (!allErrors)
 592                return;         /* if no error, return now */
 593
 594        /* ONLY ONE of the possible error bits will be set, as per the docs */
 595
 596        if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
 597                i5400_proccess_non_recoverable_info(mci, info, allErrors);
 598                return;
 599        }
 600
 601        /* Correctable errors */
 602        if (allErrors & ERROR_NF_CORRECTABLE) {
 603                edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
 604
 605                branch = extract_fbdchan_indx(info->ferr_nf_fbd);
 606
 607                channel = 0;
 608                if (REC_ECC_LOCATOR_ODD(info->redmemb))
 609                        channel = 1;
 610
 611                /* Convert channel to be based from zero, instead of
 612                 * from branch base of 0 */
 613                channel += branch;
 614
 615                bank = rec_bank(info);
 616                rank = rec_rank(info);
 617                rdwr = rec_rdwr(info);
 618                ras = rec_ras(info);
 619                cas = rec_cas(info);
 620
 621                /* Only 1 bit will be on */
 622                errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 623
 624                edac_dbg(0, "\t\tDIMM= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 625                         rank, channel, branch >> 1, bank,
 626                         rdwr_str(rdwr), ras, cas);
 627
 628                /* Form out message */
 629                snprintf(msg, sizeof(msg),
 630                         "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
 631                         "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
 632                         branch >> 1, bank, rdwr_str(rdwr), ras, cas,
 633                         allErrors, error_name[errnum]);
 634
 635                edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 636                                     branch >> 1, channel % 2, rank,
 637                                     rdwr ? "Write error" : "Read error",
 638                                     msg);
 639
 640                return;
 641        }
 642
 643        /* Miscellaneous errors */
 644        errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 645
 646        branch = extract_fbdchan_indx(info->ferr_nf_fbd);
 647
 648        i5400_mc_printk(mci, KERN_EMERG,
 649                        "Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
 650                        branch >> 1, allErrors, error_name[errnum]);
 651}
 652
 653/*
 654 *      i5400_process_error_info        Process the error info that is
 655 *      in the 'info' structure, previously retrieved from hardware
 656 */
 657static void i5400_process_error_info(struct mem_ctl_info *mci,
 658                                struct i5400_error_info *info)
 659{       u32 allErrors;
 660
 661        /* First handle any fatal errors that occurred */
 662        allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
 663        i5400_proccess_non_recoverable_info(mci, info, allErrors);
 664
 665        /* now handle any non-fatal errors that occurred */
 666        i5400_process_nonfatal_error_info(mci, info);
 667}
 668
 669/*
 670 *      i5400_clear_error       Retrieve any error from the hardware
 671 *                              but do NOT process that error.
 672 *                              Used for 'clearing' out of previous errors
 673 *                              Called by the Core module.
 674 */
 675static void i5400_clear_error(struct mem_ctl_info *mci)
 676{
 677        struct i5400_error_info info;
 678
 679        i5400_get_error_info(mci, &info);
 680}
 681
 682/*
 683 *      i5400_check_error       Retrieve and process errors reported by the
 684 *                              hardware. Called by the Core module.
 685 */
 686static void i5400_check_error(struct mem_ctl_info *mci)
 687{
 688        struct i5400_error_info info;
 689        edac_dbg(4, "MC%d\n", mci->mc_idx);
 690        i5400_get_error_info(mci, &info);
 691        i5400_process_error_info(mci, &info);
 692}
 693
 694/*
 695 *      i5400_put_devices       'put' all the devices that we have
 696 *                              reserved via 'get'
 697 */
 698static void i5400_put_devices(struct mem_ctl_info *mci)
 699{
 700        struct i5400_pvt *pvt;
 701
 702        pvt = mci->pvt_info;
 703
 704        /* Decrement usage count for devices */
 705        pci_dev_put(pvt->branch_1);
 706        pci_dev_put(pvt->branch_0);
 707        pci_dev_put(pvt->fsb_error_regs);
 708        pci_dev_put(pvt->branchmap_werrors);
 709}
 710
 711/*
 712 *      i5400_get_devices       Find and perform 'get' operation on the MCH's
 713 *                      device/functions we want to reference for this driver
 714 *
 715 *                      Need to 'get' device 16 func 1 and func 2
 716 */
 717static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
 718{
 719        struct i5400_pvt *pvt;
 720        struct pci_dev *pdev;
 721
 722        pvt = mci->pvt_info;
 723        pvt->branchmap_werrors = NULL;
 724        pvt->fsb_error_regs = NULL;
 725        pvt->branch_0 = NULL;
 726        pvt->branch_1 = NULL;
 727
 728        /* Attempt to 'get' the MCH register we want */
 729        pdev = NULL;
 730        while (1) {
 731                pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 732                                      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
 733                if (!pdev) {
 734                        /* End of list, leave */
 735                        i5400_printk(KERN_ERR,
 736                                "'system address,Process Bus' "
 737                                "device not found:"
 738                                "vendor 0x%x device 0x%x ERR func 1 "
 739                                "(broken BIOS?)\n",
 740                                PCI_VENDOR_ID_INTEL,
 741                                PCI_DEVICE_ID_INTEL_5400_ERR);
 742                        return -ENODEV;
 743                }
 744
 745                /* Store device 16 func 1 */
 746                if (PCI_FUNC(pdev->devfn) == 1)
 747                        break;
 748        }
 749        pvt->branchmap_werrors = pdev;
 750
 751        pdev = NULL;
 752        while (1) {
 753                pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 754                                      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
 755                if (!pdev) {
 756                        /* End of list, leave */
 757                        i5400_printk(KERN_ERR,
 758                                "'system address,Process Bus' "
 759                                "device not found:"
 760                                "vendor 0x%x device 0x%x ERR func 2 "
 761                                "(broken BIOS?)\n",
 762                                PCI_VENDOR_ID_INTEL,
 763                                PCI_DEVICE_ID_INTEL_5400_ERR);
 764
 765                        pci_dev_put(pvt->branchmap_werrors);
 766                        return -ENODEV;
 767                }
 768
 769                /* Store device 16 func 2 */
 770                if (PCI_FUNC(pdev->devfn) == 2)
 771                        break;
 772        }
 773        pvt->fsb_error_regs = pdev;
 774
 775        edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
 776                 pci_name(pvt->system_address),
 777                 pvt->system_address->vendor, pvt->system_address->device);
 778        edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
 779                 pci_name(pvt->branchmap_werrors),
 780                 pvt->branchmap_werrors->vendor,
 781                 pvt->branchmap_werrors->device);
 782        edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
 783                 pci_name(pvt->fsb_error_regs),
 784                 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
 785
 786        pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
 787                                       PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
 788        if (!pvt->branch_0) {
 789                i5400_printk(KERN_ERR,
 790                        "MC: 'BRANCH 0' device not found:"
 791                        "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
 792                        PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
 793
 794                pci_dev_put(pvt->fsb_error_regs);
 795                pci_dev_put(pvt->branchmap_werrors);
 796                return -ENODEV;
 797        }
 798
 799        /* If this device claims to have more than 2 channels then
 800         * fetch Branch 1's information
 801         */
 802        if (pvt->maxch < CHANNELS_PER_BRANCH)
 803                return 0;
 804
 805        pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
 806                                       PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
 807        if (!pvt->branch_1) {
 808                i5400_printk(KERN_ERR,
 809                        "MC: 'BRANCH 1' device not found:"
 810                        "vendor 0x%x device 0x%x Func 0 "
 811                        "(broken BIOS?)\n",
 812                        PCI_VENDOR_ID_INTEL,
 813                        PCI_DEVICE_ID_INTEL_5400_FBD1);
 814
 815                pci_dev_put(pvt->branch_0);
 816                pci_dev_put(pvt->fsb_error_regs);
 817                pci_dev_put(pvt->branchmap_werrors);
 818                return -ENODEV;
 819        }
 820
 821        return 0;
 822}
 823
 824/*
 825 *      determine_amb_present
 826 *
 827 *              the information is contained in DIMMS_PER_CHANNEL different
 828 *              registers determining which of the DIMMS_PER_CHANNEL requires
 829 *              knowing which channel is in question
 830 *
 831 *      2 branches, each with 2 channels
 832 *              b0_ambpresent0 for channel '0'
 833 *              b0_ambpresent1 for channel '1'
 834 *              b1_ambpresent0 for channel '2'
 835 *              b1_ambpresent1 for channel '3'
 836 */
 837static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
 838{
 839        int amb_present;
 840
 841        if (channel < CHANNELS_PER_BRANCH) {
 842                if (channel & 0x1)
 843                        amb_present = pvt->b0_ambpresent1;
 844                else
 845                        amb_present = pvt->b0_ambpresent0;
 846        } else {
 847                if (channel & 0x1)
 848                        amb_present = pvt->b1_ambpresent1;
 849                else
 850                        amb_present = pvt->b1_ambpresent0;
 851        }
 852
 853        return amb_present;
 854}
 855
 856/*
 857 * determine_mtr(pvt, dimm, channel)
 858 *
 859 * return the proper MTR register as determine by the dimm and desired channel
 860 */
 861static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
 862{
 863        int mtr;
 864        int n;
 865
 866        /* There is one MTR for each slot pair of FB-DIMMs,
 867           Each slot pair may be at branch 0 or branch 1.
 868         */
 869        n = dimm;
 870
 871        if (n >= DIMMS_PER_CHANNEL) {
 872                edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
 873                         dimm);
 874                return 0;
 875        }
 876
 877        if (channel < CHANNELS_PER_BRANCH)
 878                mtr = pvt->b0_mtr[n];
 879        else
 880                mtr = pvt->b1_mtr[n];
 881
 882        return mtr;
 883}
 884
 885/*
 886 */
 887static void decode_mtr(int slot_row, u16 mtr)
 888{
 889        int ans;
 890
 891        ans = MTR_DIMMS_PRESENT(mtr);
 892
 893        edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
 894                 slot_row, mtr, ans ? "" : "NOT ");
 895        if (!ans)
 896                return;
 897
 898        edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
 899
 900        edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
 901                 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
 902
 903        edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
 904        edac_dbg(2, "\t\tNUMRANK: %s\n",
 905                 MTR_DIMM_RANK(mtr) ? "double" : "single");
 906        edac_dbg(2, "\t\tNUMROW: %s\n",
 907                 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
 908                 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
 909                 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
 910                 "65,536 - 16 rows");
 911        edac_dbg(2, "\t\tNUMCOL: %s\n",
 912                 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
 913                 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
 914                 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
 915                 "reserved");
 916}
 917
 918static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
 919                        struct i5400_dimm_info *dinfo)
 920{
 921        int mtr;
 922        int amb_present_reg;
 923        int addrBits;
 924
 925        mtr = determine_mtr(pvt, dimm, channel);
 926        if (MTR_DIMMS_PRESENT(mtr)) {
 927                amb_present_reg = determine_amb_present_reg(pvt, channel);
 928
 929                /* Determine if there is a DIMM present in this DIMM slot */
 930                if (amb_present_reg & (1 << dimm)) {
 931                        /* Start with the number of bits for a Bank
 932                         * on the DRAM */
 933                        addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
 934                        /* Add thenumber of ROW bits */
 935                        addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
 936                        /* add the number of COLUMN bits */
 937                        addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
 938                        /* add the number of RANK bits */
 939                        addrBits += MTR_DIMM_RANK(mtr);
 940
 941                        addrBits += 6;  /* add 64 bits per DIMM */
 942                        addrBits -= 20; /* divide by 2^^20 */
 943                        addrBits -= 3;  /* 8 bits per bytes */
 944
 945                        dinfo->megabytes = 1 << addrBits;
 946                }
 947        }
 948}
 949
 950/*
 951 *      calculate_dimm_size
 952 *
 953 *      also will output a DIMM matrix map, if debug is enabled, for viewing
 954 *      how the DIMMs are populated
 955 */
 956static void calculate_dimm_size(struct i5400_pvt *pvt)
 957{
 958        struct i5400_dimm_info *dinfo;
 959        int dimm, max_dimms;
 960        char *p, *mem_buffer;
 961        int space, n;
 962        int channel, branch;
 963
 964        /* ================= Generate some debug output ================= */
 965        space = PAGE_SIZE;
 966        mem_buffer = p = kmalloc(space, GFP_KERNEL);
 967        if (p == NULL) {
 968                i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
 969                        __FILE__, __func__);
 970                return;
 971        }
 972
 973        /* Scan all the actual DIMMS
 974         * and calculate the information for each DIMM
 975         * Start with the highest dimm first, to display it first
 976         * and work toward the 0th dimm
 977         */
 978        max_dimms = pvt->maxdimmperch;
 979        for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
 980
 981                /* on an odd dimm, first output a 'boundary' marker,
 982                 * then reset the message buffer  */
 983                if (dimm & 0x1) {
 984                        n = snprintf(p, space, "---------------------------"
 985                                        "-------------------------------");
 986                        p += n;
 987                        space -= n;
 988                        edac_dbg(2, "%s\n", mem_buffer);
 989                        p = mem_buffer;
 990                        space = PAGE_SIZE;
 991                }
 992                n = snprintf(p, space, "dimm %2d    ", dimm);
 993                p += n;
 994                space -= n;
 995
 996                for (channel = 0; channel < pvt->maxch; channel++) {
 997                        dinfo = &pvt->dimm_info[dimm][channel];
 998                        handle_channel(pvt, dimm, channel, dinfo);
 999                        n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1000                        p += n;
1001                        space -= n;
1002                }
1003                edac_dbg(2, "%s\n", mem_buffer);
1004                p = mem_buffer;
1005                space = PAGE_SIZE;
1006        }
1007
1008        /* Output the last bottom 'boundary' marker */
1009        n = snprintf(p, space, "---------------------------"
1010                        "-------------------------------");
1011        p += n;
1012        space -= n;
1013        edac_dbg(2, "%s\n", mem_buffer);
1014        p = mem_buffer;
1015        space = PAGE_SIZE;
1016
1017        /* now output the 'channel' labels */
1018        n = snprintf(p, space, "           ");
1019        p += n;
1020        space -= n;
1021        for (channel = 0; channel < pvt->maxch; channel++) {
1022                n = snprintf(p, space, "channel %d | ", channel);
1023                p += n;
1024                space -= n;
1025        }
1026
1027        space -= n;
1028        edac_dbg(2, "%s\n", mem_buffer);
1029        p = mem_buffer;
1030        space = PAGE_SIZE;
1031
1032        n = snprintf(p, space, "           ");
1033        p += n;
1034        for (branch = 0; branch < MAX_BRANCHES; branch++) {
1035                n = snprintf(p, space, "       branch %d       | ", branch);
1036                p += n;
1037                space -= n;
1038        }
1039
1040        /* output the last message and free buffer */
1041        edac_dbg(2, "%s\n", mem_buffer);
1042        kfree(mem_buffer);
1043}
1044
1045/*
1046 *      i5400_get_mc_regs       read in the necessary registers and
1047 *                              cache locally
1048 *
1049 *                      Fills in the private data members
1050 */
1051static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1052{
1053        struct i5400_pvt *pvt;
1054        u32 actual_tolm;
1055        u16 limit;
1056        int slot_row;
1057        int maxch;
1058        int maxdimmperch;
1059        int way0, way1;
1060
1061        pvt = mci->pvt_info;
1062
1063        pci_read_config_dword(pvt->system_address, AMBASE,
1064                        &pvt->u.ambase_bottom);
1065        pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1066                        &pvt->u.ambase_top);
1067
1068        maxdimmperch = pvt->maxdimmperch;
1069        maxch = pvt->maxch;
1070
1071        edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1072                 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1073
1074        /* Get the Branch Map regs */
1075        pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1076        pvt->tolm >>= 12;
1077        edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
1078                 pvt->tolm, pvt->tolm);
1079
1080        actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1081        edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1082                 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1083
1084        pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1085        pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1086
1087        /* Get the MIR[0-1] regs */
1088        limit = (pvt->mir0 >> 4) & 0x0fff;
1089        way0 = pvt->mir0 & 0x1;
1090        way1 = pvt->mir0 & 0x2;
1091        edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1092                 limit, way1, way0);
1093        limit = (pvt->mir1 >> 4) & 0xfff;
1094        way0 = pvt->mir1 & 0x1;
1095        way1 = pvt->mir1 & 0x2;
1096        edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1097                 limit, way1, way0);
1098
1099        /* Get the set of MTR[0-3] regs by each branch */
1100        for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
1101                int where = MTR0 + (slot_row * sizeof(u16));
1102
1103                /* Branch 0 set of MTR registers */
1104                pci_read_config_word(pvt->branch_0, where,
1105                                &pvt->b0_mtr[slot_row]);
1106
1107                edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1108                         slot_row, where, pvt->b0_mtr[slot_row]);
1109
1110                if (pvt->maxch < CHANNELS_PER_BRANCH) {
1111                        pvt->b1_mtr[slot_row] = 0;
1112                        continue;
1113                }
1114
1115                /* Branch 1 set of MTR registers */
1116                pci_read_config_word(pvt->branch_1, where,
1117                                &pvt->b1_mtr[slot_row]);
1118                edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1119                         slot_row, where, pvt->b1_mtr[slot_row]);
1120        }
1121
1122        /* Read and dump branch 0's MTRs */
1123        edac_dbg(2, "Memory Technology Registers:\n");
1124        edac_dbg(2, "   Branch 0:\n");
1125        for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1126                decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1127
1128        pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1129                        &pvt->b0_ambpresent0);
1130        edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1131        pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1132                        &pvt->b0_ambpresent1);
1133        edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1134
1135        /* Only if we have 2 branchs (4 channels) */
1136        if (pvt->maxch < CHANNELS_PER_BRANCH) {
1137                pvt->b1_ambpresent0 = 0;
1138                pvt->b1_ambpresent1 = 0;
1139        } else {
1140                /* Read and dump  branch 1's MTRs */
1141                edac_dbg(2, "   Branch 1:\n");
1142                for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1143                        decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1144
1145                pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1146                                &pvt->b1_ambpresent0);
1147                edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1148                         pvt->b1_ambpresent0);
1149                pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1150                                &pvt->b1_ambpresent1);
1151                edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1152                         pvt->b1_ambpresent1);
1153        }
1154
1155        /* Go and determine the size of each DIMM and place in an
1156         * orderly matrix */
1157        calculate_dimm_size(pvt);
1158}
1159
1160/*
1161 *      i5400_init_dimms        Initialize the 'dimms' table within
1162 *                              the mci control structure with the
1163 *                              addressing of memory.
1164 *
1165 *      return:
1166 *              0       success
1167 *              1       no actual memory found on this MC
1168 */
1169static int i5400_init_dimms(struct mem_ctl_info *mci)
1170{
1171        struct i5400_pvt *pvt;
1172        struct dimm_info *dimm;
1173        int ndimms, channel_count;
1174        int max_dimms;
1175        int mtr;
1176        int size_mb;
1177        int  channel, slot;
1178
1179        pvt = mci->pvt_info;
1180
1181        channel_count = pvt->maxch;
1182        max_dimms = pvt->maxdimmperch;
1183
1184        ndimms = 0;
1185
1186        /*
1187         * FIXME: remove  pvt->dimm_info[slot][channel] and use the 3
1188         * layers here.
1189         */
1190        for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
1191             channel++) {
1192                for (slot = 0; slot < mci->layers[2].size; slot++) {
1193                        mtr = determine_mtr(pvt, slot, channel);
1194
1195                        /* if no DIMMS on this slot, continue */
1196                        if (!MTR_DIMMS_PRESENT(mtr))
1197                                continue;
1198
1199                        dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1200                                       channel / 2, channel % 2, slot);
1201
1202                        size_mb =  pvt->dimm_info[slot][channel].megabytes;
1203
1204                        edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
1205                                 channel / 2, channel % 2, slot,
1206                                 size_mb / 1000, size_mb % 1000);
1207
1208                        dimm->nr_pages = size_mb << 8;
1209                        dimm->grain = 8;
1210                        dimm->dtype = MTR_DRAM_WIDTH(mtr) == 8 ?
1211                                      DEV_X8 : DEV_X4;
1212                        dimm->mtype = MEM_FB_DDR2;
1213                        /*
1214                         * The eccc mechanism is SDDC (aka SECC), with
1215                         * is similar to Chipkill.
1216                         */
1217                        dimm->edac_mode = MTR_DRAM_WIDTH(mtr) == 8 ?
1218                                          EDAC_S8ECD8ED : EDAC_S4ECD4ED;
1219                        ndimms++;
1220                }
1221        }
1222
1223        /*
1224         * When just one memory is provided, it should be at location (0,0,0).
1225         * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
1226         */
1227        if (ndimms == 1)
1228                mci->dimms[0]->edac_mode = EDAC_SECDED;
1229
1230        return (ndimms == 0);
1231}
1232
1233/*
1234 *      i5400_enable_error_reporting
1235 *                      Turn on the memory reporting features of the hardware
1236 */
1237static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1238{
1239        struct i5400_pvt *pvt;
1240        u32 fbd_error_mask;
1241
1242        pvt = mci->pvt_info;
1243
1244        /* Read the FBD Error Mask Register */
1245        pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1246                        &fbd_error_mask);
1247
1248        /* Enable with a '0' */
1249        fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1250
1251        pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1252                        fbd_error_mask);
1253}
1254
1255/*
1256 *      i5400_probe1    Probe for ONE instance of device to see if it is
1257 *                      present.
1258 *      return:
1259 *              0 for FOUND a device
1260 *              < 0 for error code
1261 */
1262static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1263{
1264        struct mem_ctl_info *mci;
1265        struct i5400_pvt *pvt;
1266        struct edac_mc_layer layers[3];
1267
1268        if (dev_idx >= ARRAY_SIZE(i5400_devs))
1269                return -EINVAL;
1270
1271        edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1272                 pdev->bus->number,
1273                 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1274
1275        /* We only are looking for func 0 of the set */
1276        if (PCI_FUNC(pdev->devfn) != 0)
1277                return -ENODEV;
1278
1279        /*
1280         * allocate a new MC control structure
1281         *
1282         * This drivers uses the DIMM slot as "csrow" and the rest as "channel".
1283         */
1284        layers[0].type = EDAC_MC_LAYER_BRANCH;
1285        layers[0].size = MAX_BRANCHES;
1286        layers[0].is_virt_csrow = false;
1287        layers[1].type = EDAC_MC_LAYER_CHANNEL;
1288        layers[1].size = CHANNELS_PER_BRANCH;
1289        layers[1].is_virt_csrow = false;
1290        layers[2].type = EDAC_MC_LAYER_SLOT;
1291        layers[2].size = DIMMS_PER_CHANNEL;
1292        layers[2].is_virt_csrow = true;
1293        mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1294        if (mci == NULL)
1295                return -ENOMEM;
1296
1297        edac_dbg(0, "MC: mci = %p\n", mci);
1298
1299        mci->pdev = &pdev->dev; /* record ptr  to the generic device */
1300
1301        pvt = mci->pvt_info;
1302        pvt->system_address = pdev;     /* Record this device in our private */
1303        pvt->maxch = MAX_CHANNELS;
1304        pvt->maxdimmperch = DIMMS_PER_CHANNEL;
1305
1306        /* 'get' the pci devices we want to reserve for our use */
1307        if (i5400_get_devices(mci, dev_idx))
1308                goto fail0;
1309
1310        /* Time to get serious */
1311        i5400_get_mc_regs(mci); /* retrieve the hardware registers */
1312
1313        mci->mc_idx = 0;
1314        mci->mtype_cap = MEM_FLAG_FB_DDR2;
1315        mci->edac_ctl_cap = EDAC_FLAG_NONE;
1316        mci->edac_cap = EDAC_FLAG_NONE;
1317        mci->mod_name = "i5400_edac.c";
1318        mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1319        mci->dev_name = pci_name(pdev);
1320        mci->ctl_page_to_phys = NULL;
1321
1322        /* Set the function pointer to an actual operation function */
1323        mci->edac_check = i5400_check_error;
1324
1325        /* initialize the MC control structure 'dimms' table
1326         * with the mapping and control information */
1327        if (i5400_init_dimms(mci)) {
1328                edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
1329                mci->edac_cap = EDAC_FLAG_NONE; /* no dimms found */
1330        } else {
1331                edac_dbg(1, "MC: Enable error reporting now\n");
1332                i5400_enable_error_reporting(mci);
1333        }
1334
1335        /* add this new MC control structure to EDAC's list of MCs */
1336        if (edac_mc_add_mc(mci)) {
1337                edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1338                /* FIXME: perhaps some code should go here that disables error
1339                 * reporting if we just enabled it
1340                 */
1341                goto fail1;
1342        }
1343
1344        i5400_clear_error(mci);
1345
1346        /* allocating generic PCI control info */
1347        i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1348        if (!i5400_pci) {
1349                printk(KERN_WARNING
1350                        "%s(): Unable to create PCI control\n",
1351                        __func__);
1352                printk(KERN_WARNING
1353                        "%s(): PCI error report via EDAC not setup\n",
1354                        __func__);
1355        }
1356
1357        return 0;
1358
1359        /* Error exit unwinding stack */
1360fail1:
1361
1362        i5400_put_devices(mci);
1363
1364fail0:
1365        edac_mc_free(mci);
1366        return -ENODEV;
1367}
1368
1369/*
1370 *      i5400_init_one  constructor for one instance of device
1371 *
1372 *      returns:
1373 *              negative on error
1374 *              count (>= 0)
1375 */
1376static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1377{
1378        int rc;
1379
1380        edac_dbg(0, "MC:\n");
1381
1382        /* wake up device */
1383        rc = pci_enable_device(pdev);
1384        if (rc)
1385                return rc;
1386
1387        /* now probe and enable the device */
1388        return i5400_probe1(pdev, id->driver_data);
1389}
1390
1391/*
1392 *      i5400_remove_one        destructor for one instance of device
1393 *
1394 */
1395static void i5400_remove_one(struct pci_dev *pdev)
1396{
1397        struct mem_ctl_info *mci;
1398
1399        edac_dbg(0, "\n");
1400
1401        if (i5400_pci)
1402                edac_pci_release_generic_ctl(i5400_pci);
1403
1404        mci = edac_mc_del_mc(&pdev->dev);
1405        if (!mci)
1406                return;
1407
1408        /* retrieve references to resources, and free those resources */
1409        i5400_put_devices(mci);
1410
1411        pci_disable_device(pdev);
1412
1413        edac_mc_free(mci);
1414}
1415
1416/*
1417 *      pci_device_id   table for which devices we are looking for
1418 *
1419 *      The "E500P" device is the first device supported.
1420 */
1421static const struct pci_device_id i5400_pci_tbl[] = {
1422        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1423        {0,}                    /* 0 terminated list. */
1424};
1425
1426MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1427
1428/*
1429 *      i5400_driver    pci_driver structure for this module
1430 *
1431 */
1432static struct pci_driver i5400_driver = {
1433        .name = "i5400_edac",
1434        .probe = i5400_init_one,
1435        .remove = i5400_remove_one,
1436        .id_table = i5400_pci_tbl,
1437};
1438
1439/*
1440 *      i5400_init              Module entry function
1441 *                      Try to initialize this module for its devices
1442 */
1443static int __init i5400_init(void)
1444{
1445        int pci_rc;
1446
1447        edac_dbg(2, "MC:\n");
1448
1449        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1450        opstate_init();
1451
1452        pci_rc = pci_register_driver(&i5400_driver);
1453
1454        return (pci_rc < 0) ? pci_rc : 0;
1455}
1456
1457/*
1458 *      i5400_exit()    Module exit function
1459 *                      Unregister the driver
1460 */
1461static void __exit i5400_exit(void)
1462{
1463        edac_dbg(2, "MC:\n");
1464        pci_unregister_driver(&i5400_driver);
1465}
1466
1467module_init(i5400_init);
1468module_exit(i5400_exit);
1469
1470MODULE_LICENSE("GPL");
1471MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1472MODULE_AUTHOR("Mauro Carvalho Chehab");
1473MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1474MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1475                   I5400_REVISION);
1476
1477module_param(edac_op_state, int, 0444);
1478MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1479