linux/drivers/gpu/drm/i915/i915_drv.h
<<
>>
Prefs
   1/* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
   2 */
   3/*
   4 *
   5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   6 * All Rights Reserved.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a
   9 * copy of this software and associated documentation files (the
  10 * "Software"), to deal in the Software without restriction, including
  11 * without limitation the rights to use, copy, modify, merge, publish,
  12 * distribute, sub license, and/or sell copies of the Software, and to
  13 * permit persons to whom the Software is furnished to do so, subject to
  14 * the following conditions:
  15 *
  16 * The above copyright notice and this permission notice (including the
  17 * next paragraph) shall be included in all copies or substantial portions
  18 * of the Software.
  19 *
  20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  27 *
  28 */
  29
  30#ifndef _I915_DRV_H_
  31#define _I915_DRV_H_
  32
  33#include <uapi/drm/i915_drm.h>
  34#include <uapi/drm/drm_fourcc.h>
  35
  36#include <linux/io-mapping.h>
  37#include <linux/i2c.h>
  38#include <linux/i2c-algo-bit.h>
  39#include <linux/backlight.h>
  40#include <linux/hash.h>
  41#include <linux/intel-iommu.h>
  42#include <linux/kref.h>
  43#include <linux/pm_qos.h>
  44#include <linux/reservation.h>
  45#include <linux/shmem_fs.h>
  46
  47#include <drm/drmP.h>
  48#include <drm/intel-gtt.h>
  49#include <drm/drm_legacy.h> /* for struct drm_dma_handle */
  50#include <drm/drm_gem.h>
  51#include <drm/drm_auth.h>
  52#include <drm/drm_cache.h>
  53
  54#include "i915_params.h"
  55#include "i915_reg.h"
  56#include "i915_utils.h"
  57
  58#include "intel_uncore.h"
  59#include "intel_bios.h"
  60#include "intel_dpll_mgr.h"
  61#include "intel_uc.h"
  62#include "intel_lrc.h"
  63#include "intel_ringbuffer.h"
  64
  65#include "i915_gem.h"
  66#include "i915_gem_context.h"
  67#include "i915_gem_fence_reg.h"
  68#include "i915_gem_object.h"
  69#include "i915_gem_gtt.h"
  70#include "i915_gem_render_state.h"
  71#include "i915_gem_request.h"
  72#include "i915_gem_timeline.h"
  73
  74#include "i915_vma.h"
  75
  76#include "intel_gvt.h"
  77
  78/* General customization:
  79 */
  80
  81#define DRIVER_NAME             "i915"
  82#define DRIVER_DESC             "Intel Graphics"
  83#define DRIVER_DATE             "20170818"
  84#define DRIVER_TIMESTAMP        1503088845
  85
  86/* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
  87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
  88 * which may not necessarily be a user visible problem.  This will either
  89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
  90 * enable distros and users to tailor their preferred amount of i915 abrt
  91 * spam.
  92 */
  93#define I915_STATE_WARN(condition, format...) ({                        \
  94        int __ret_warn_on = !!(condition);                              \
  95        if (unlikely(__ret_warn_on))                                    \
  96                if (!WARN(i915.verbose_state_checks, format))           \
  97                        DRM_ERROR(format);                              \
  98        unlikely(__ret_warn_on);                                        \
  99})
 100
 101#define I915_STATE_WARN_ON(x)                                           \
 102        I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
 103
 104bool __i915_inject_load_failure(const char *func, int line);
 105#define i915_inject_load_failure() \
 106        __i915_inject_load_failure(__func__, __LINE__)
 107
 108typedef struct {
 109        uint32_t val;
 110} uint_fixed_16_16_t;
 111
 112#define FP_16_16_MAX ({ \
 113        uint_fixed_16_16_t fp; \
 114        fp.val = UINT_MAX; \
 115        fp; \
 116})
 117
 118static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
 119{
 120        if (val.val == 0)
 121                return true;
 122        return false;
 123}
 124
 125static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
 126{
 127        uint_fixed_16_16_t fp;
 128
 129        WARN_ON(val >> 16);
 130
 131        fp.val = val << 16;
 132        return fp;
 133}
 134
 135static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
 136{
 137        return DIV_ROUND_UP(fp.val, 1 << 16);
 138}
 139
 140static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
 141{
 142        return fp.val >> 16;
 143}
 144
 145static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
 146                                                 uint_fixed_16_16_t min2)
 147{
 148        uint_fixed_16_16_t min;
 149
 150        min.val = min(min1.val, min2.val);
 151        return min;
 152}
 153
 154static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
 155                                                 uint_fixed_16_16_t max2)
 156{
 157        uint_fixed_16_16_t max;
 158
 159        max.val = max(max1.val, max2.val);
 160        return max;
 161}
 162
 163static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
 164{
 165        uint_fixed_16_16_t fp;
 166        WARN_ON(val >> 32);
 167        fp.val = clamp_t(uint32_t, val, 0, ~0);
 168        return fp;
 169}
 170
 171static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
 172                                            uint_fixed_16_16_t d)
 173{
 174        return DIV_ROUND_UP(val.val, d.val);
 175}
 176
 177static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
 178                                                uint_fixed_16_16_t mul)
 179{
 180        uint64_t intermediate_val;
 181
 182        intermediate_val = (uint64_t) val * mul.val;
 183        intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
 184        WARN_ON(intermediate_val >> 32);
 185        return clamp_t(uint32_t, intermediate_val, 0, ~0);
 186}
 187
 188static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
 189                                             uint_fixed_16_16_t mul)
 190{
 191        uint64_t intermediate_val;
 192
 193        intermediate_val = (uint64_t) val.val * mul.val;
 194        intermediate_val = intermediate_val >> 16;
 195        return clamp_u64_to_fixed16(intermediate_val);
 196}
 197
 198static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
 199{
 200        uint64_t interm_val;
 201
 202        interm_val = (uint64_t)val << 16;
 203        interm_val = DIV_ROUND_UP_ULL(interm_val, d);
 204        return clamp_u64_to_fixed16(interm_val);
 205}
 206
 207static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
 208                                                uint_fixed_16_16_t d)
 209{
 210        uint64_t interm_val;
 211
 212        interm_val = (uint64_t)val << 16;
 213        interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
 214        WARN_ON(interm_val >> 32);
 215        return clamp_t(uint32_t, interm_val, 0, ~0);
 216}
 217
 218static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
 219                                                     uint_fixed_16_16_t mul)
 220{
 221        uint64_t intermediate_val;
 222
 223        intermediate_val = (uint64_t) val * mul.val;
 224        return clamp_u64_to_fixed16(intermediate_val);
 225}
 226
 227static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
 228                                             uint_fixed_16_16_t add2)
 229{
 230        uint64_t interm_sum;
 231
 232        interm_sum = (uint64_t) add1.val + add2.val;
 233        return clamp_u64_to_fixed16(interm_sum);
 234}
 235
 236static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
 237                                                 uint32_t add2)
 238{
 239        uint64_t interm_sum;
 240        uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
 241
 242        interm_sum = (uint64_t) add1.val + interm_add2.val;
 243        return clamp_u64_to_fixed16(interm_sum);
 244}
 245
 246static inline const char *yesno(bool v)
 247{
 248        return v ? "yes" : "no";
 249}
 250
 251static inline const char *onoff(bool v)
 252{
 253        return v ? "on" : "off";
 254}
 255
 256static inline const char *enableddisabled(bool v)
 257{
 258        return v ? "enabled" : "disabled";
 259}
 260
 261enum pipe {
 262        INVALID_PIPE = -1,
 263        PIPE_A = 0,
 264        PIPE_B,
 265        PIPE_C,
 266        _PIPE_EDP,
 267        I915_MAX_PIPES = _PIPE_EDP
 268};
 269#define pipe_name(p) ((p) + 'A')
 270
 271enum transcoder {
 272        TRANSCODER_A = 0,
 273        TRANSCODER_B,
 274        TRANSCODER_C,
 275        TRANSCODER_EDP,
 276        TRANSCODER_DSI_A,
 277        TRANSCODER_DSI_C,
 278        I915_MAX_TRANSCODERS
 279};
 280
 281static inline const char *transcoder_name(enum transcoder transcoder)
 282{
 283        switch (transcoder) {
 284        case TRANSCODER_A:
 285                return "A";
 286        case TRANSCODER_B:
 287                return "B";
 288        case TRANSCODER_C:
 289                return "C";
 290        case TRANSCODER_EDP:
 291                return "EDP";
 292        case TRANSCODER_DSI_A:
 293                return "DSI A";
 294        case TRANSCODER_DSI_C:
 295                return "DSI C";
 296        default:
 297                return "<invalid>";
 298        }
 299}
 300
 301static inline bool transcoder_is_dsi(enum transcoder transcoder)
 302{
 303        return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
 304}
 305
 306/*
 307 * Global legacy plane identifier. Valid only for primary/sprite
 308 * planes on pre-g4x, and only for primary planes on g4x+.
 309 */
 310enum plane {
 311        PLANE_A,
 312        PLANE_B,
 313        PLANE_C,
 314};
 315#define plane_name(p) ((p) + 'A')
 316
 317#define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
 318
 319/*
 320 * Per-pipe plane identifier.
 321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
 322 * number of planes per CRTC.  Not all platforms really have this many planes,
 323 * which means some arrays of size I915_MAX_PLANES may have unused entries
 324 * between the topmost sprite plane and the cursor plane.
 325 *
 326 * This is expected to be passed to various register macros
 327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
 328 */
 329enum plane_id {
 330        PLANE_PRIMARY,
 331        PLANE_SPRITE0,
 332        PLANE_SPRITE1,
 333        PLANE_SPRITE2,
 334        PLANE_CURSOR,
 335        I915_MAX_PLANES,
 336};
 337
 338#define for_each_plane_id_on_crtc(__crtc, __p) \
 339        for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
 340                for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
 341
 342enum port {
 343        PORT_NONE = -1,
 344        PORT_A = 0,
 345        PORT_B,
 346        PORT_C,
 347        PORT_D,
 348        PORT_E,
 349        I915_MAX_PORTS
 350};
 351#define port_name(p) ((p) + 'A')
 352
 353#define I915_NUM_PHYS_VLV 2
 354
 355enum dpio_channel {
 356        DPIO_CH0,
 357        DPIO_CH1
 358};
 359
 360enum dpio_phy {
 361        DPIO_PHY0,
 362        DPIO_PHY1,
 363        DPIO_PHY2,
 364};
 365
 366enum intel_display_power_domain {
 367        POWER_DOMAIN_PIPE_A,
 368        POWER_DOMAIN_PIPE_B,
 369        POWER_DOMAIN_PIPE_C,
 370        POWER_DOMAIN_PIPE_A_PANEL_FITTER,
 371        POWER_DOMAIN_PIPE_B_PANEL_FITTER,
 372        POWER_DOMAIN_PIPE_C_PANEL_FITTER,
 373        POWER_DOMAIN_TRANSCODER_A,
 374        POWER_DOMAIN_TRANSCODER_B,
 375        POWER_DOMAIN_TRANSCODER_C,
 376        POWER_DOMAIN_TRANSCODER_EDP,
 377        POWER_DOMAIN_TRANSCODER_DSI_A,
 378        POWER_DOMAIN_TRANSCODER_DSI_C,
 379        POWER_DOMAIN_PORT_DDI_A_LANES,
 380        POWER_DOMAIN_PORT_DDI_B_LANES,
 381        POWER_DOMAIN_PORT_DDI_C_LANES,
 382        POWER_DOMAIN_PORT_DDI_D_LANES,
 383        POWER_DOMAIN_PORT_DDI_E_LANES,
 384        POWER_DOMAIN_PORT_DDI_A_IO,
 385        POWER_DOMAIN_PORT_DDI_B_IO,
 386        POWER_DOMAIN_PORT_DDI_C_IO,
 387        POWER_DOMAIN_PORT_DDI_D_IO,
 388        POWER_DOMAIN_PORT_DDI_E_IO,
 389        POWER_DOMAIN_PORT_DSI,
 390        POWER_DOMAIN_PORT_CRT,
 391        POWER_DOMAIN_PORT_OTHER,
 392        POWER_DOMAIN_VGA,
 393        POWER_DOMAIN_AUDIO,
 394        POWER_DOMAIN_PLLS,
 395        POWER_DOMAIN_AUX_A,
 396        POWER_DOMAIN_AUX_B,
 397        POWER_DOMAIN_AUX_C,
 398        POWER_DOMAIN_AUX_D,
 399        POWER_DOMAIN_GMBUS,
 400        POWER_DOMAIN_MODESET,
 401        POWER_DOMAIN_INIT,
 402
 403        POWER_DOMAIN_NUM,
 404};
 405
 406#define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
 407#define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
 408                ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
 409#define POWER_DOMAIN_TRANSCODER(tran) \
 410        ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
 411         (tran) + POWER_DOMAIN_TRANSCODER_A)
 412
 413enum hpd_pin {
 414        HPD_NONE = 0,
 415        HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
 416        HPD_CRT,
 417        HPD_SDVO_B,
 418        HPD_SDVO_C,
 419        HPD_PORT_A,
 420        HPD_PORT_B,
 421        HPD_PORT_C,
 422        HPD_PORT_D,
 423        HPD_PORT_E,
 424        HPD_NUM_PINS
 425};
 426
 427#define for_each_hpd_pin(__pin) \
 428        for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
 429
 430#define HPD_STORM_DEFAULT_THRESHOLD 5
 431
 432struct i915_hotplug {
 433        struct work_struct hotplug_work;
 434
 435        struct {
 436                unsigned long last_jiffies;
 437                int count;
 438                enum {
 439                        HPD_ENABLED = 0,
 440                        HPD_DISABLED = 1,
 441                        HPD_MARK_DISABLED = 2
 442                } state;
 443        } stats[HPD_NUM_PINS];
 444        u32 event_bits;
 445        struct delayed_work reenable_work;
 446
 447        struct intel_digital_port *irq_port[I915_MAX_PORTS];
 448        u32 long_port_mask;
 449        u32 short_port_mask;
 450        struct work_struct dig_port_work;
 451
 452        struct work_struct poll_init_work;
 453        bool poll_enabled;
 454
 455        unsigned int hpd_storm_threshold;
 456
 457        /*
 458         * if we get a HPD irq from DP and a HPD irq from non-DP
 459         * the non-DP HPD could block the workqueue on a mode config
 460         * mutex getting, that userspace may have taken. However
 461         * userspace is waiting on the DP workqueue to run which is
 462         * blocked behind the non-DP one.
 463         */
 464        struct workqueue_struct *dp_wq;
 465};
 466
 467#define I915_GEM_GPU_DOMAINS \
 468        (I915_GEM_DOMAIN_RENDER | \
 469         I915_GEM_DOMAIN_SAMPLER | \
 470         I915_GEM_DOMAIN_COMMAND | \
 471         I915_GEM_DOMAIN_INSTRUCTION | \
 472         I915_GEM_DOMAIN_VERTEX)
 473
 474#define for_each_pipe(__dev_priv, __p) \
 475        for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
 476#define for_each_pipe_masked(__dev_priv, __p, __mask) \
 477        for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
 478                for_each_if ((__mask) & (1 << (__p)))
 479#define for_each_universal_plane(__dev_priv, __pipe, __p)               \
 480        for ((__p) = 0;                                                 \
 481             (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
 482             (__p)++)
 483#define for_each_sprite(__dev_priv, __p, __s)                           \
 484        for ((__s) = 0;                                                 \
 485             (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];        \
 486             (__s)++)
 487
 488#define for_each_port_masked(__port, __ports_mask) \
 489        for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)  \
 490                for_each_if ((__ports_mask) & (1 << (__port)))
 491
 492#define for_each_crtc(dev, crtc) \
 493        list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
 494
 495#define for_each_intel_plane(dev, intel_plane) \
 496        list_for_each_entry(intel_plane,                        \
 497                            &(dev)->mode_config.plane_list,     \
 498                            base.head)
 499
 500#define for_each_intel_plane_mask(dev, intel_plane, plane_mask)         \
 501        list_for_each_entry(intel_plane,                                \
 502                            &(dev)->mode_config.plane_list,             \
 503                            base.head)                                  \
 504                for_each_if ((plane_mask) &                             \
 505                             (1 << drm_plane_index(&intel_plane->base)))
 506
 507#define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)      \
 508        list_for_each_entry(intel_plane,                                \
 509                            &(dev)->mode_config.plane_list,             \
 510                            base.head)                                  \
 511                for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
 512
 513#define for_each_intel_crtc(dev, intel_crtc)                            \
 514        list_for_each_entry(intel_crtc,                                 \
 515                            &(dev)->mode_config.crtc_list,              \
 516                            base.head)
 517
 518#define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)            \
 519        list_for_each_entry(intel_crtc,                                 \
 520                            &(dev)->mode_config.crtc_list,              \
 521                            base.head)                                  \
 522                for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
 523
 524#define for_each_intel_encoder(dev, intel_encoder)              \
 525        list_for_each_entry(intel_encoder,                      \
 526                            &(dev)->mode_config.encoder_list,   \
 527                            base.head)
 528
 529#define for_each_intel_connector_iter(intel_connector, iter) \
 530        while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
 531
 532#define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
 533        list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
 534                for_each_if ((intel_encoder)->base.crtc == (__crtc))
 535
 536#define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
 537        list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
 538                for_each_if ((intel_connector)->base.encoder == (__encoder))
 539
 540#define for_each_power_domain(domain, mask)                             \
 541        for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
 542                for_each_if (BIT_ULL(domain) & (mask))
 543
 544#define for_each_power_well(__dev_priv, __power_well)                           \
 545        for ((__power_well) = (__dev_priv)->power_domains.power_wells;  \
 546             (__power_well) - (__dev_priv)->power_domains.power_wells < \
 547                (__dev_priv)->power_domains.power_well_count;           \
 548             (__power_well)++)
 549
 550#define for_each_power_well_rev(__dev_priv, __power_well)                       \
 551        for ((__power_well) = (__dev_priv)->power_domains.power_wells +         \
 552                              (__dev_priv)->power_domains.power_well_count - 1; \
 553             (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;     \
 554             (__power_well)--)
 555
 556#define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)     \
 557        for_each_power_well(__dev_priv, __power_well)                           \
 558                for_each_if ((__power_well)->domains & (__domain_mask))
 559
 560#define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
 561        for_each_power_well_rev(__dev_priv, __power_well)                       \
 562                for_each_if ((__power_well)->domains & (__domain_mask))
 563
 564#define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
 565        for ((__i) = 0; \
 566             (__i) < (__state)->base.dev->mode_config.num_total_plane && \
 567                     ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
 568                      (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
 569             (__i)++) \
 570                for_each_if (plane_state)
 571
 572struct drm_i915_private;
 573struct i915_mm_struct;
 574struct i915_mmu_object;
 575
 576struct drm_i915_file_private {
 577        struct drm_i915_private *dev_priv;
 578        struct drm_file *file;
 579
 580        struct {
 581                spinlock_t lock;
 582                struct list_head request_list;
 583/* 20ms is a fairly arbitrary limit (greater than the average frame time)
 584 * chosen to prevent the CPU getting more than a frame ahead of the GPU
 585 * (when using lax throttling for the frontbuffer). We also use it to
 586 * offer free GPU waitboosts for severely congested workloads.
 587 */
 588#define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
 589        } mm;
 590        struct idr context_idr;
 591
 592        struct intel_rps_client {
 593                atomic_t boosts;
 594        } rps;
 595
 596        unsigned int bsd_engine;
 597
 598/* Client can have a maximum of 3 contexts banned before
 599 * it is denied of creating new contexts. As one context
 600 * ban needs 4 consecutive hangs, and more if there is
 601 * progress in between, this is a last resort stop gap measure
 602 * to limit the badly behaving clients access to gpu.
 603 */
 604#define I915_MAX_CLIENT_CONTEXT_BANS 3
 605        atomic_t context_bans;
 606};
 607
 608/* Used by dp and fdi links */
 609struct intel_link_m_n {
 610        uint32_t        tu;
 611        uint32_t        gmch_m;
 612        uint32_t        gmch_n;
 613        uint32_t        link_m;
 614        uint32_t        link_n;
 615};
 616
 617void intel_link_compute_m_n(int bpp, int nlanes,
 618                            int pixel_clock, int link_clock,
 619                            struct intel_link_m_n *m_n,
 620                            bool reduce_m_n);
 621
 622/* Interface history:
 623 *
 624 * 1.1: Original.
 625 * 1.2: Add Power Management
 626 * 1.3: Add vblank support
 627 * 1.4: Fix cmdbuffer path, add heap destroy
 628 * 1.5: Add vblank pipe configuration
 629 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
 630 *      - Support vertical blank on secondary display pipe
 631 */
 632#define DRIVER_MAJOR            1
 633#define DRIVER_MINOR            6
 634#define DRIVER_PATCHLEVEL       0
 635
 636struct opregion_header;
 637struct opregion_acpi;
 638struct opregion_swsci;
 639struct opregion_asle;
 640
 641struct intel_opregion {
 642        struct opregion_header *header;
 643        struct opregion_acpi *acpi;
 644        struct opregion_swsci *swsci;
 645        u32 swsci_gbda_sub_functions;
 646        u32 swsci_sbcb_sub_functions;
 647        struct opregion_asle *asle;
 648        void *rvda;
 649        void *vbt_firmware;
 650        const void *vbt;
 651        u32 vbt_size;
 652        u32 *lid_state;
 653        struct work_struct asle_work;
 654};
 655#define OPREGION_SIZE            (8*1024)
 656
 657struct intel_overlay;
 658struct intel_overlay_error_state;
 659
 660struct sdvo_device_mapping {
 661        u8 initialized;
 662        u8 dvo_port;
 663        u8 slave_addr;
 664        u8 dvo_wiring;
 665        u8 i2c_pin;
 666        u8 ddc_pin;
 667};
 668
 669struct intel_connector;
 670struct intel_encoder;
 671struct intel_atomic_state;
 672struct intel_crtc_state;
 673struct intel_initial_plane_config;
 674struct intel_crtc;
 675struct intel_limit;
 676struct dpll;
 677struct intel_cdclk_state;
 678
 679struct drm_i915_display_funcs {
 680        void (*get_cdclk)(struct drm_i915_private *dev_priv,
 681                          struct intel_cdclk_state *cdclk_state);
 682        void (*set_cdclk)(struct drm_i915_private *dev_priv,
 683                          const struct intel_cdclk_state *cdclk_state);
 684        int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
 685        int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
 686        int (*compute_intermediate_wm)(struct drm_device *dev,
 687                                       struct intel_crtc *intel_crtc,
 688                                       struct intel_crtc_state *newstate);
 689        void (*initial_watermarks)(struct intel_atomic_state *state,
 690                                   struct intel_crtc_state *cstate);
 691        void (*atomic_update_watermarks)(struct intel_atomic_state *state,
 692                                         struct intel_crtc_state *cstate);
 693        void (*optimize_watermarks)(struct intel_atomic_state *state,
 694                                    struct intel_crtc_state *cstate);
 695        int (*compute_global_watermarks)(struct drm_atomic_state *state);
 696        void (*update_wm)(struct intel_crtc *crtc);
 697        int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
 698        /* Returns the active state of the crtc, and if the crtc is active,
 699         * fills out the pipe-config with the hw state. */
 700        bool (*get_pipe_config)(struct intel_crtc *,
 701                                struct intel_crtc_state *);
 702        void (*get_initial_plane_config)(struct intel_crtc *,
 703                                         struct intel_initial_plane_config *);
 704        int (*crtc_compute_clock)(struct intel_crtc *crtc,
 705                                  struct intel_crtc_state *crtc_state);
 706        void (*crtc_enable)(struct intel_crtc_state *pipe_config,
 707                            struct drm_atomic_state *old_state);
 708        void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
 709                             struct drm_atomic_state *old_state);
 710        void (*update_crtcs)(struct drm_atomic_state *state,
 711                             unsigned int *crtc_vblank_mask);
 712        void (*audio_codec_enable)(struct drm_connector *connector,
 713                                   struct intel_encoder *encoder,
 714                                   const struct drm_display_mode *adjusted_mode);
 715        void (*audio_codec_disable)(struct intel_encoder *encoder);
 716        void (*fdi_link_train)(struct intel_crtc *crtc,
 717                               const struct intel_crtc_state *crtc_state);
 718        void (*init_clock_gating)(struct drm_i915_private *dev_priv);
 719        void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
 720        /* clock updates for mode set */
 721        /* cursor updates */
 722        /* render clock increase/decrease */
 723        /* display clock increase/decrease */
 724        /* pll clock increase/decrease */
 725
 726        void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
 727        void (*load_luts)(struct drm_crtc_state *crtc_state);
 728};
 729
 730#define CSR_VERSION(major, minor)       ((major) << 16 | (minor))
 731#define CSR_VERSION_MAJOR(version)      ((version) >> 16)
 732#define CSR_VERSION_MINOR(version)      ((version) & 0xffff)
 733
 734struct intel_csr {
 735        struct work_struct work;
 736        const char *fw_path;
 737        uint32_t *dmc_payload;
 738        uint32_t dmc_fw_size;
 739        uint32_t version;
 740        uint32_t mmio_count;
 741        i915_reg_t mmioaddr[8];
 742        uint32_t mmiodata[8];
 743        uint32_t dc_state;
 744        uint32_t allowed_dc_mask;
 745};
 746
 747#define DEV_INFO_FOR_EACH_FLAG(func) \
 748        func(is_mobile); \
 749        func(is_lp); \
 750        func(is_alpha_support); \
 751        /* Keep has_* in alphabetical order */ \
 752        func(has_64bit_reloc); \
 753        func(has_aliasing_ppgtt); \
 754        func(has_csr); \
 755        func(has_ddi); \
 756        func(has_dp_mst); \
 757        func(has_reset_engine); \
 758        func(has_fbc); \
 759        func(has_fpga_dbg); \
 760        func(has_full_ppgtt); \
 761        func(has_full_48bit_ppgtt); \
 762        func(has_gmbus_irq); \
 763        func(has_gmch_display); \
 764        func(has_guc); \
 765        func(has_guc_ct); \
 766        func(has_hotplug); \
 767        func(has_l3_dpf); \
 768        func(has_llc); \
 769        func(has_logical_ring_contexts); \
 770        func(has_overlay); \
 771        func(has_pipe_cxsr); \
 772        func(has_pooled_eu); \
 773        func(has_psr); \
 774        func(has_rc6); \
 775        func(has_rc6p); \
 776        func(has_resource_streamer); \
 777        func(has_runtime_pm); \
 778        func(has_snoop); \
 779        func(unfenced_needs_alignment); \
 780        func(cursor_needs_physical); \
 781        func(hws_needs_physical); \
 782        func(overlay_needs_physical); \
 783        func(supports_tv);
 784
 785struct sseu_dev_info {
 786        u8 slice_mask;
 787        u8 subslice_mask;
 788        u8 eu_total;
 789        u8 eu_per_subslice;
 790        u8 min_eu_in_pool;
 791        /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
 792        u8 subslice_7eu[3];
 793        u8 has_slice_pg:1;
 794        u8 has_subslice_pg:1;
 795        u8 has_eu_pg:1;
 796};
 797
 798static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
 799{
 800        return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
 801}
 802
 803/* Keep in gen based order, and chronological order within a gen */
 804enum intel_platform {
 805        INTEL_PLATFORM_UNINITIALIZED = 0,
 806        INTEL_I830,
 807        INTEL_I845G,
 808        INTEL_I85X,
 809        INTEL_I865G,
 810        INTEL_I915G,
 811        INTEL_I915GM,
 812        INTEL_I945G,
 813        INTEL_I945GM,
 814        INTEL_G33,
 815        INTEL_PINEVIEW,
 816        INTEL_I965G,
 817        INTEL_I965GM,
 818        INTEL_G45,
 819        INTEL_GM45,
 820        INTEL_IRONLAKE,
 821        INTEL_SANDYBRIDGE,
 822        INTEL_IVYBRIDGE,
 823        INTEL_VALLEYVIEW,
 824        INTEL_HASWELL,
 825        INTEL_BROADWELL,
 826        INTEL_CHERRYVIEW,
 827        INTEL_SKYLAKE,
 828        INTEL_BROXTON,
 829        INTEL_KABYLAKE,
 830        INTEL_GEMINILAKE,
 831        INTEL_COFFEELAKE,
 832        INTEL_CANNONLAKE,
 833        INTEL_MAX_PLATFORMS
 834};
 835
 836struct intel_device_info {
 837        u32 display_mmio_offset;
 838        u16 device_id;
 839        u8 num_pipes;
 840        u8 num_sprites[I915_MAX_PIPES];
 841        u8 num_scalers[I915_MAX_PIPES];
 842        u8 gen;
 843        u16 gen_mask;
 844        enum intel_platform platform;
 845        u8 ring_mask; /* Rings supported by the HW */
 846        u8 num_rings;
 847#define DEFINE_FLAG(name) u8 name:1
 848        DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
 849#undef DEFINE_FLAG
 850        u16 ddb_size; /* in blocks */
 851        /* Register offsets for the various display pipes and transcoders */
 852        int pipe_offsets[I915_MAX_TRANSCODERS];
 853        int trans_offsets[I915_MAX_TRANSCODERS];
 854        int palette_offsets[I915_MAX_PIPES];
 855        int cursor_offsets[I915_MAX_PIPES];
 856
 857        /* Slice/subslice/EU info */
 858        struct sseu_dev_info sseu;
 859
 860        struct color_luts {
 861                u16 degamma_lut_size;
 862                u16 gamma_lut_size;
 863        } color;
 864};
 865
 866struct intel_display_error_state;
 867
 868struct i915_gpu_state {
 869        struct kref ref;
 870        struct timeval time;
 871        struct timeval boottime;
 872        struct timeval uptime;
 873
 874        struct drm_i915_private *i915;
 875
 876        char error_msg[128];
 877        bool simulated;
 878        bool awake;
 879        bool wakelock;
 880        bool suspended;
 881        int iommu;
 882        u32 reset_count;
 883        u32 suspend_count;
 884        struct intel_device_info device_info;
 885        struct i915_params params;
 886
 887        /* Generic register state */
 888        u32 eir;
 889        u32 pgtbl_er;
 890        u32 ier;
 891        u32 gtier[4], ngtier;
 892        u32 ccid;
 893        u32 derrmr;
 894        u32 forcewake;
 895        u32 error; /* gen6+ */
 896        u32 err_int; /* gen7 */
 897        u32 fault_data0; /* gen8, gen9 */
 898        u32 fault_data1; /* gen8, gen9 */
 899        u32 done_reg;
 900        u32 gac_eco;
 901        u32 gam_ecochk;
 902        u32 gab_ctl;
 903        u32 gfx_mode;
 904
 905        u32 nfence;
 906        u64 fence[I915_MAX_NUM_FENCES];
 907        struct intel_overlay_error_state *overlay;
 908        struct intel_display_error_state *display;
 909        struct drm_i915_error_object *semaphore;
 910        struct drm_i915_error_object *guc_log;
 911
 912        struct drm_i915_error_engine {
 913                int engine_id;
 914                /* Software tracked state */
 915                bool waiting;
 916                int num_waiters;
 917                unsigned long hangcheck_timestamp;
 918                bool hangcheck_stalled;
 919                enum intel_engine_hangcheck_action hangcheck_action;
 920                struct i915_address_space *vm;
 921                int num_requests;
 922                u32 reset_count;
 923
 924                /* position of active request inside the ring */
 925                u32 rq_head, rq_post, rq_tail;
 926
 927                /* our own tracking of ring head and tail */
 928                u32 cpu_ring_head;
 929                u32 cpu_ring_tail;
 930
 931                u32 last_seqno;
 932
 933                /* Register state */
 934                u32 start;
 935                u32 tail;
 936                u32 head;
 937                u32 ctl;
 938                u32 mode;
 939                u32 hws;
 940                u32 ipeir;
 941                u32 ipehr;
 942                u32 bbstate;
 943                u32 instpm;
 944                u32 instps;
 945                u32 seqno;
 946                u64 bbaddr;
 947                u64 acthd;
 948                u32 fault_reg;
 949                u64 faddr;
 950                u32 rc_psmi; /* sleep state */
 951                u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
 952                struct intel_instdone instdone;
 953
 954                struct drm_i915_error_context {
 955                        char comm[TASK_COMM_LEN];
 956                        pid_t pid;
 957                        u32 handle;
 958                        u32 hw_id;
 959                        int ban_score;
 960                        int active;
 961                        int guilty;
 962                } context;
 963
 964                struct drm_i915_error_object {
 965                        u64 gtt_offset;
 966                        u64 gtt_size;
 967                        int page_count;
 968                        int unused;
 969                        u32 *pages[0];
 970                } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
 971
 972                struct drm_i915_error_object **user_bo;
 973                long user_bo_count;
 974
 975                struct drm_i915_error_object *wa_ctx;
 976
 977                struct drm_i915_error_request {
 978                        long jiffies;
 979                        pid_t pid;
 980                        u32 context;
 981                        int ban_score;
 982                        u32 seqno;
 983                        u32 head;
 984                        u32 tail;
 985                } *requests, execlist[2];
 986
 987                struct drm_i915_error_waiter {
 988                        char comm[TASK_COMM_LEN];
 989                        pid_t pid;
 990                        u32 seqno;
 991                } *waiters;
 992
 993                struct {
 994                        u32 gfx_mode;
 995                        union {
 996                                u64 pdp[4];
 997                                u32 pp_dir_base;
 998                        };
 999                } vm_info;
1000        } engine[I915_NUM_ENGINES];
1001
1002        struct drm_i915_error_buffer {
1003                u32 size;
1004                u32 name;
1005                u32 rseqno[I915_NUM_ENGINES], wseqno;
1006                u64 gtt_offset;
1007                u32 read_domains;
1008                u32 write_domain;
1009                s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1010                u32 tiling:2;
1011                u32 dirty:1;
1012                u32 purgeable:1;
1013                u32 userptr:1;
1014                s32 engine:4;
1015                u32 cache_level:3;
1016        } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1017        u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1018        struct i915_address_space *active_vm[I915_NUM_ENGINES];
1019};
1020
1021enum i915_cache_level {
1022        I915_CACHE_NONE = 0,
1023        I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1024        I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1025                              caches, eg sampler/render caches, and the
1026                              large Last-Level-Cache. LLC is coherent with
1027                              the CPU, but L3 is only visible to the GPU. */
1028        I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1029};
1030
1031#define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1032
1033enum fb_op_origin {
1034        ORIGIN_GTT,
1035        ORIGIN_CPU,
1036        ORIGIN_CS,
1037        ORIGIN_FLIP,
1038        ORIGIN_DIRTYFB,
1039};
1040
1041struct intel_fbc {
1042        /* This is always the inner lock when overlapping with struct_mutex and
1043         * it's the outer lock when overlapping with stolen_lock. */
1044        struct mutex lock;
1045        unsigned threshold;
1046        unsigned int possible_framebuffer_bits;
1047        unsigned int busy_bits;
1048        unsigned int visible_pipes_mask;
1049        struct intel_crtc *crtc;
1050
1051        struct drm_mm_node compressed_fb;
1052        struct drm_mm_node *compressed_llb;
1053
1054        bool false_color;
1055
1056        bool enabled;
1057        bool active;
1058
1059        bool underrun_detected;
1060        struct work_struct underrun_work;
1061
1062        /*
1063         * Due to the atomic rules we can't access some structures without the
1064         * appropriate locking, so we cache information here in order to avoid
1065         * these problems.
1066         */
1067        struct intel_fbc_state_cache {
1068                struct i915_vma *vma;
1069
1070                struct {
1071                        unsigned int mode_flags;
1072                        uint32_t hsw_bdw_pixel_rate;
1073                } crtc;
1074
1075                struct {
1076                        unsigned int rotation;
1077                        int src_w;
1078                        int src_h;
1079                        bool visible;
1080                } plane;
1081
1082                struct {
1083                        const struct drm_format_info *format;
1084                        unsigned int stride;
1085                } fb;
1086        } state_cache;
1087
1088        /*
1089         * This structure contains everything that's relevant to program the
1090         * hardware registers. When we want to figure out if we need to disable
1091         * and re-enable FBC for a new configuration we just check if there's
1092         * something different in the struct. The genx_fbc_activate functions
1093         * are supposed to read from it in order to program the registers.
1094         */
1095        struct intel_fbc_reg_params {
1096                struct i915_vma *vma;
1097
1098                struct {
1099                        enum pipe pipe;
1100                        enum plane plane;
1101                        unsigned int fence_y_offset;
1102                } crtc;
1103
1104                struct {
1105                        const struct drm_format_info *format;
1106                        unsigned int stride;
1107                } fb;
1108
1109                int cfb_size;
1110        } params;
1111
1112        struct intel_fbc_work {
1113                bool scheduled;
1114                u32 scheduled_vblank;
1115                struct work_struct work;
1116        } work;
1117
1118        const char *no_fbc_reason;
1119};
1120
1121/*
1122 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1123 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1124 * parsing for same resolution.
1125 */
1126enum drrs_refresh_rate_type {
1127        DRRS_HIGH_RR,
1128        DRRS_LOW_RR,
1129        DRRS_MAX_RR, /* RR count */
1130};
1131
1132enum drrs_support_type {
1133        DRRS_NOT_SUPPORTED = 0,
1134        STATIC_DRRS_SUPPORT = 1,
1135        SEAMLESS_DRRS_SUPPORT = 2
1136};
1137
1138struct intel_dp;
1139struct i915_drrs {
1140        struct mutex mutex;
1141        struct delayed_work work;
1142        struct intel_dp *dp;
1143        unsigned busy_frontbuffer_bits;
1144        enum drrs_refresh_rate_type refresh_rate_type;
1145        enum drrs_support_type type;
1146};
1147
1148struct i915_psr {
1149        struct mutex lock;
1150        bool sink_support;
1151        bool source_ok;
1152        struct intel_dp *enabled;
1153        bool active;
1154        struct delayed_work work;
1155        unsigned busy_frontbuffer_bits;
1156        bool psr2_support;
1157        bool aux_frame_sync;
1158        bool link_standby;
1159        bool y_cord_support;
1160        bool colorimetry_support;
1161        bool alpm;
1162};
1163
1164enum intel_pch {
1165        PCH_NONE = 0,   /* No PCH present */
1166        PCH_IBX,        /* Ibexpeak PCH */
1167        PCH_CPT,        /* Cougarpoint/Pantherpoint PCH */
1168        PCH_LPT,        /* Lynxpoint/Wildcatpoint PCH */
1169        PCH_SPT,        /* Sunrisepoint PCH */
1170        PCH_KBP,        /* Kaby Lake PCH */
1171        PCH_CNP,        /* Cannon Lake PCH */
1172        PCH_NOP,
1173};
1174
1175enum intel_sbi_destination {
1176        SBI_ICLK,
1177        SBI_MPHY,
1178};
1179
1180#define QUIRK_LVDS_SSC_DISABLE (1<<1)
1181#define QUIRK_INVERT_BRIGHTNESS (1<<2)
1182#define QUIRK_BACKLIGHT_PRESENT (1<<3)
1183#define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1184#define QUIRK_INCREASE_T12_DELAY (1<<6)
1185
1186struct intel_fbdev;
1187struct intel_fbc_work;
1188
1189struct intel_gmbus {
1190        struct i2c_adapter adapter;
1191#define GMBUS_FORCE_BIT_RETRY (1U << 31)
1192        u32 force_bit;
1193        u32 reg0;
1194        i915_reg_t gpio_reg;
1195        struct i2c_algo_bit_data bit_algo;
1196        struct drm_i915_private *dev_priv;
1197};
1198
1199struct i915_suspend_saved_registers {
1200        u32 saveDSPARB;
1201        u32 saveFBC_CONTROL;
1202        u32 saveCACHE_MODE_0;
1203        u32 saveMI_ARB_STATE;
1204        u32 saveSWF0[16];
1205        u32 saveSWF1[16];
1206        u32 saveSWF3[3];
1207        uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1208        u32 savePCH_PORT_HOTPLUG;
1209        u16 saveGCDGMBUS;
1210};
1211
1212struct vlv_s0ix_state {
1213        /* GAM */
1214        u32 wr_watermark;
1215        u32 gfx_prio_ctrl;
1216        u32 arb_mode;
1217        u32 gfx_pend_tlb0;
1218        u32 gfx_pend_tlb1;
1219        u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1220        u32 media_max_req_count;
1221        u32 gfx_max_req_count;
1222        u32 render_hwsp;
1223        u32 ecochk;
1224        u32 bsd_hwsp;
1225        u32 blt_hwsp;
1226        u32 tlb_rd_addr;
1227
1228        /* MBC */
1229        u32 g3dctl;
1230        u32 gsckgctl;
1231        u32 mbctl;
1232
1233        /* GCP */
1234        u32 ucgctl1;
1235        u32 ucgctl3;
1236        u32 rcgctl1;
1237        u32 rcgctl2;
1238        u32 rstctl;
1239        u32 misccpctl;
1240
1241        /* GPM */
1242        u32 gfxpause;
1243        u32 rpdeuhwtc;
1244        u32 rpdeuc;
1245        u32 ecobus;
1246        u32 pwrdwnupctl;
1247        u32 rp_down_timeout;
1248        u32 rp_deucsw;
1249        u32 rcubmabdtmr;
1250        u32 rcedata;
1251        u32 spare2gh;
1252
1253        /* Display 1 CZ domain */
1254        u32 gt_imr;
1255        u32 gt_ier;
1256        u32 pm_imr;
1257        u32 pm_ier;
1258        u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1259
1260        /* GT SA CZ domain */
1261        u32 tilectl;
1262        u32 gt_fifoctl;
1263        u32 gtlc_wake_ctrl;
1264        u32 gtlc_survive;
1265        u32 pmwgicz;
1266
1267        /* Display 2 CZ domain */
1268        u32 gu_ctl0;
1269        u32 gu_ctl1;
1270        u32 pcbr;
1271        u32 clock_gate_dis2;
1272};
1273
1274struct intel_rps_ei {
1275        ktime_t ktime;
1276        u32 render_c0;
1277        u32 media_c0;
1278};
1279
1280struct intel_gen6_power_mgmt {
1281        /*
1282         * work, interrupts_enabled and pm_iir are protected by
1283         * dev_priv->irq_lock
1284         */
1285        struct work_struct work;
1286        bool interrupts_enabled;
1287        u32 pm_iir;
1288
1289        /* PM interrupt bits that should never be masked */
1290        u32 pm_intrmsk_mbz;
1291
1292        /* Frequencies are stored in potentially platform dependent multiples.
1293         * In other words, *_freq needs to be multiplied by X to be interesting.
1294         * Soft limits are those which are used for the dynamic reclocking done
1295         * by the driver (raise frequencies under heavy loads, and lower for
1296         * lighter loads). Hard limits are those imposed by the hardware.
1297         *
1298         * A distinction is made for overclocking, which is never enabled by
1299         * default, and is considered to be above the hard limit if it's
1300         * possible at all.
1301         */
1302        u8 cur_freq;            /* Current frequency (cached, may not == HW) */
1303        u8 min_freq_softlimit;  /* Minimum frequency permitted by the driver */
1304        u8 max_freq_softlimit;  /* Max frequency permitted by the driver */
1305        u8 max_freq;            /* Maximum frequency, RP0 if not overclocking */
1306        u8 min_freq;            /* AKA RPn. Minimum frequency */
1307        u8 boost_freq;          /* Frequency to request when wait boosting */
1308        u8 idle_freq;           /* Frequency to request when we are idle */
1309        u8 efficient_freq;      /* AKA RPe. Pre-determined balanced frequency */
1310        u8 rp1_freq;            /* "less than" RP0 power/freqency */
1311        u8 rp0_freq;            /* Non-overclocked max frequency. */
1312        u16 gpll_ref_freq;      /* vlv/chv GPLL reference frequency */
1313
1314        u8 up_threshold; /* Current %busy required to uplock */
1315        u8 down_threshold; /* Current %busy required to downclock */
1316
1317        int last_adj;
1318        enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1319
1320        bool enabled;
1321        struct delayed_work autoenable_work;
1322        atomic_t num_waiters;
1323        atomic_t boosts;
1324
1325        /* manual wa residency calculations */
1326        struct intel_rps_ei ei;
1327
1328        /*
1329         * Protects RPS/RC6 register access and PCU communication.
1330         * Must be taken after struct_mutex if nested. Note that
1331         * this lock may be held for long periods of time when
1332         * talking to hw - so only take it when talking to hw!
1333         */
1334        struct mutex hw_lock;
1335};
1336
1337/* defined intel_pm.c */
1338extern spinlock_t mchdev_lock;
1339
1340struct intel_ilk_power_mgmt {
1341        u8 cur_delay;
1342        u8 min_delay;
1343        u8 max_delay;
1344        u8 fmax;
1345        u8 fstart;
1346
1347        u64 last_count1;
1348        unsigned long last_time1;
1349        unsigned long chipset_power;
1350        u64 last_count2;
1351        u64 last_time2;
1352        unsigned long gfx_power;
1353        u8 corr;
1354
1355        int c_m;
1356        int r_t;
1357};
1358
1359struct drm_i915_private;
1360struct i915_power_well;
1361
1362struct i915_power_well_ops {
1363        /*
1364         * Synchronize the well's hw state to match the current sw state, for
1365         * example enable/disable it based on the current refcount. Called
1366         * during driver init and resume time, possibly after first calling
1367         * the enable/disable handlers.
1368         */
1369        void (*sync_hw)(struct drm_i915_private *dev_priv,
1370                        struct i915_power_well *power_well);
1371        /*
1372         * Enable the well and resources that depend on it (for example
1373         * interrupts located on the well). Called after the 0->1 refcount
1374         * transition.
1375         */
1376        void (*enable)(struct drm_i915_private *dev_priv,
1377                       struct i915_power_well *power_well);
1378        /*
1379         * Disable the well and resources that depend on it. Called after
1380         * the 1->0 refcount transition.
1381         */
1382        void (*disable)(struct drm_i915_private *dev_priv,
1383                        struct i915_power_well *power_well);
1384        /* Returns the hw enabled state. */
1385        bool (*is_enabled)(struct drm_i915_private *dev_priv,
1386                           struct i915_power_well *power_well);
1387};
1388
1389/* Power well structure for haswell */
1390struct i915_power_well {
1391        const char *name;
1392        bool always_on;
1393        /* power well enable/disable usage count */
1394        int count;
1395        /* cached hw enabled state */
1396        bool hw_enabled;
1397        u64 domains;
1398        /* unique identifier for this power well */
1399        enum i915_power_well_id id;
1400        /*
1401         * Arbitraty data associated with this power well. Platform and power
1402         * well specific.
1403         */
1404        union {
1405                struct {
1406                        enum dpio_phy phy;
1407                } bxt;
1408                struct {
1409                        /* Mask of pipes whose IRQ logic is backed by the pw */
1410                        u8 irq_pipe_mask;
1411                        /* The pw is backing the VGA functionality */
1412                        bool has_vga:1;
1413                        bool has_fuses:1;
1414                } hsw;
1415        };
1416        const struct i915_power_well_ops *ops;
1417};
1418
1419struct i915_power_domains {
1420        /*
1421         * Power wells needed for initialization at driver init and suspend
1422         * time are on. They are kept on until after the first modeset.
1423         */
1424        bool init_power_on;
1425        bool initializing;
1426        int power_well_count;
1427
1428        struct mutex lock;
1429        int domain_use_count[POWER_DOMAIN_NUM];
1430        struct i915_power_well *power_wells;
1431};
1432
1433#define MAX_L3_SLICES 2
1434struct intel_l3_parity {
1435        u32 *remap_info[MAX_L3_SLICES];
1436        struct work_struct error_work;
1437        int which_slice;
1438};
1439
1440struct i915_gem_mm {
1441        /** Memory allocator for GTT stolen memory */
1442        struct drm_mm stolen;
1443        /** Protects the usage of the GTT stolen memory allocator. This is
1444         * always the inner lock when overlapping with struct_mutex. */
1445        struct mutex stolen_lock;
1446
1447        /** List of all objects in gtt_space. Used to restore gtt
1448         * mappings on resume */
1449        struct list_head bound_list;
1450        /**
1451         * List of objects which are not bound to the GTT (thus
1452         * are idle and not used by the GPU). These objects may or may
1453         * not actually have any pages attached.
1454         */
1455        struct list_head unbound_list;
1456
1457        /** List of all objects in gtt_space, currently mmaped by userspace.
1458         * All objects within this list must also be on bound_list.
1459         */
1460        struct list_head userfault_list;
1461
1462        /**
1463         * List of objects which are pending destruction.
1464         */
1465        struct llist_head free_list;
1466        struct work_struct free_work;
1467
1468        /** Usable portion of the GTT for GEM */
1469        dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1470
1471        /** PPGTT used for aliasing the PPGTT with the GTT */
1472        struct i915_hw_ppgtt *aliasing_ppgtt;
1473
1474        struct notifier_block oom_notifier;
1475        struct notifier_block vmap_notifier;
1476        struct shrinker shrinker;
1477
1478        /** LRU list of objects with fence regs on them. */
1479        struct list_head fence_list;
1480
1481        /**
1482         * Workqueue to fault in userptr pages, flushed by the execbuf
1483         * when required but otherwise left to userspace to try again
1484         * on EAGAIN.
1485         */
1486        struct workqueue_struct *userptr_wq;
1487
1488        u64 unordered_timeline;
1489
1490        /* the indicator for dispatch video commands on two BSD rings */
1491        atomic_t bsd_engine_dispatch_index;
1492
1493        /** Bit 6 swizzling required for X tiling */
1494        uint32_t bit_6_swizzle_x;
1495        /** Bit 6 swizzling required for Y tiling */
1496        uint32_t bit_6_swizzle_y;
1497
1498        /* accounting, useful for userland debugging */
1499        spinlock_t object_stat_lock;
1500        u64 object_memory;
1501        u32 object_count;
1502};
1503
1504struct drm_i915_error_state_buf {
1505        struct drm_i915_private *i915;
1506        unsigned bytes;
1507        unsigned size;
1508        int err;
1509        u8 *buf;
1510        loff_t start;
1511        loff_t pos;
1512};
1513
1514#define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1515#define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1516
1517#define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1518#define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1519
1520struct i915_gpu_error {
1521        /* For hangcheck timer */
1522#define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1523#define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1524
1525        struct delayed_work hangcheck_work;
1526
1527        /* For reset and error_state handling. */
1528        spinlock_t lock;
1529        /* Protected by the above dev->gpu_error.lock. */
1530        struct i915_gpu_state *first_error;
1531
1532        atomic_t pending_fb_pin;
1533
1534        unsigned long missed_irq_rings;
1535
1536        /**
1537         * State variable controlling the reset flow and count
1538         *
1539         * This is a counter which gets incremented when reset is triggered,
1540         *
1541         * Before the reset commences, the I915_RESET_BACKOFF bit is set
1542         * meaning that any waiters holding onto the struct_mutex should
1543         * relinquish the lock immediately in order for the reset to start.
1544         *
1545         * If reset is not completed succesfully, the I915_WEDGE bit is
1546         * set meaning that hardware is terminally sour and there is no
1547         * recovery. All waiters on the reset_queue will be woken when
1548         * that happens.
1549         *
1550         * This counter is used by the wait_seqno code to notice that reset
1551         * event happened and it needs to restart the entire ioctl (since most
1552         * likely the seqno it waited for won't ever signal anytime soon).
1553         *
1554         * This is important for lock-free wait paths, where no contended lock
1555         * naturally enforces the correct ordering between the bail-out of the
1556         * waiter and the gpu reset work code.
1557         */
1558        unsigned long reset_count;
1559
1560        /**
1561         * flags: Control various stages of the GPU reset
1562         *
1563         * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1564         * other users acquiring the struct_mutex. To do this we set the
1565         * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1566         * and then check for that bit before acquiring the struct_mutex (in
1567         * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1568         * secondary role in preventing two concurrent global reset attempts.
1569         *
1570         * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1571         * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1572         * but it may be held by some long running waiter (that we cannot
1573         * interrupt without causing trouble). Once we are ready to do the GPU
1574         * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1575         * they already hold the struct_mutex and want to participate they can
1576         * inspect the bit and do the reset directly, otherwise the worker
1577         * waits for the struct_mutex.
1578         *
1579         * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1580         * acquire the struct_mutex to reset an engine, we need an explicit
1581         * flag to prevent two concurrent reset attempts in the same engine.
1582         * As the number of engines continues to grow, allocate the flags from
1583         * the most significant bits.
1584         *
1585         * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1586         * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1587         * i915_gem_request_alloc(), this bit is checked and the sequence
1588         * aborted (with -EIO reported to userspace) if set.
1589         */
1590        unsigned long flags;
1591#define I915_RESET_BACKOFF      0
1592#define I915_RESET_HANDOFF      1
1593#define I915_RESET_MODESET      2
1594#define I915_WEDGED             (BITS_PER_LONG - 1)
1595#define I915_RESET_ENGINE       (I915_WEDGED - I915_NUM_ENGINES)
1596
1597        /** Number of times an engine has been reset */
1598        u32 reset_engine_count[I915_NUM_ENGINES];
1599
1600        /**
1601         * Waitqueue to signal when a hang is detected. Used to for waiters
1602         * to release the struct_mutex for the reset to procede.
1603         */
1604        wait_queue_head_t wait_queue;
1605
1606        /**
1607         * Waitqueue to signal when the reset has completed. Used by clients
1608         * that wait for dev_priv->mm.wedged to settle.
1609         */
1610        wait_queue_head_t reset_queue;
1611
1612        /* For missed irq/seqno simulation. */
1613        unsigned long test_irq_rings;
1614};
1615
1616enum modeset_restore {
1617        MODESET_ON_LID_OPEN,
1618        MODESET_DONE,
1619        MODESET_SUSPENDED,
1620};
1621
1622#define DP_AUX_A 0x40
1623#define DP_AUX_B 0x10
1624#define DP_AUX_C 0x20
1625#define DP_AUX_D 0x30
1626
1627#define DDC_PIN_B  0x05
1628#define DDC_PIN_C  0x04
1629#define DDC_PIN_D  0x06
1630
1631struct ddi_vbt_port_info {
1632        /*
1633         * This is an index in the HDMI/DVI DDI buffer translation table.
1634         * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1635         * populate this field.
1636         */
1637#define HDMI_LEVEL_SHIFT_UNKNOWN        0xff
1638        uint8_t hdmi_level_shift;
1639
1640        uint8_t supports_dvi:1;
1641        uint8_t supports_hdmi:1;
1642        uint8_t supports_dp:1;
1643        uint8_t supports_edp:1;
1644
1645        uint8_t alternate_aux_channel;
1646        uint8_t alternate_ddc_pin;
1647
1648        uint8_t dp_boost_level;
1649        uint8_t hdmi_boost_level;
1650};
1651
1652enum psr_lines_to_wait {
1653        PSR_0_LINES_TO_WAIT = 0,
1654        PSR_1_LINE_TO_WAIT,
1655        PSR_4_LINES_TO_WAIT,
1656        PSR_8_LINES_TO_WAIT
1657};
1658
1659struct intel_vbt_data {
1660        struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1661        struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1662
1663        /* Feature bits */
1664        unsigned int int_tv_support:1;
1665        unsigned int lvds_dither:1;
1666        unsigned int lvds_vbt:1;
1667        unsigned int int_crt_support:1;
1668        unsigned int lvds_use_ssc:1;
1669        unsigned int display_clock_mode:1;
1670        unsigned int fdi_rx_polarity_inverted:1;
1671        unsigned int panel_type:4;
1672        int lvds_ssc_freq;
1673        unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1674
1675        enum drrs_support_type drrs_type;
1676
1677        struct {
1678                int rate;
1679                int lanes;
1680                int preemphasis;
1681                int vswing;
1682                bool low_vswing;
1683                bool initialized;
1684                bool support;
1685                int bpp;
1686                struct edp_power_seq pps;
1687        } edp;
1688
1689        struct {
1690                bool full_link;
1691                bool require_aux_wakeup;
1692                int idle_frames;
1693                enum psr_lines_to_wait lines_to_wait;
1694                int tp1_wakeup_time;
1695                int tp2_tp3_wakeup_time;
1696        } psr;
1697
1698        struct {
1699                u16 pwm_freq_hz;
1700                bool present;
1701                bool active_low_pwm;
1702                u8 min_brightness;      /* min_brightness/255 of max */
1703                u8 controller;          /* brightness controller number */
1704                enum intel_backlight_type type;
1705        } backlight;
1706
1707        /* MIPI DSI */
1708        struct {
1709                u16 panel_id;
1710                struct mipi_config *config;
1711                struct mipi_pps_data *pps;
1712                u8 seq_version;
1713                u32 size;
1714                u8 *data;
1715                const u8 *sequence[MIPI_SEQ_MAX];
1716        } dsi;
1717
1718        int crt_ddc_pin;
1719
1720        int child_dev_num;
1721        union child_device_config *child_dev;
1722
1723        struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1724        struct sdvo_device_mapping sdvo_mappings[2];
1725};
1726
1727enum intel_ddb_partitioning {
1728        INTEL_DDB_PART_1_2,
1729        INTEL_DDB_PART_5_6, /* IVB+ */
1730};
1731
1732struct intel_wm_level {
1733        bool enable;
1734        uint32_t pri_val;
1735        uint32_t spr_val;
1736        uint32_t cur_val;
1737        uint32_t fbc_val;
1738};
1739
1740struct ilk_wm_values {
1741        uint32_t wm_pipe[3];
1742        uint32_t wm_lp[3];
1743        uint32_t wm_lp_spr[3];
1744        uint32_t wm_linetime[3];
1745        bool enable_fbc_wm;
1746        enum intel_ddb_partitioning partitioning;
1747};
1748
1749struct g4x_pipe_wm {
1750        uint16_t plane[I915_MAX_PLANES];
1751        uint16_t fbc;
1752};
1753
1754struct g4x_sr_wm {
1755        uint16_t plane;
1756        uint16_t cursor;
1757        uint16_t fbc;
1758};
1759
1760struct vlv_wm_ddl_values {
1761        uint8_t plane[I915_MAX_PLANES];
1762};
1763
1764struct vlv_wm_values {
1765        struct g4x_pipe_wm pipe[3];
1766        struct g4x_sr_wm sr;
1767        struct vlv_wm_ddl_values ddl[3];
1768        uint8_t level;
1769        bool cxsr;
1770};
1771
1772struct g4x_wm_values {
1773        struct g4x_pipe_wm pipe[2];
1774        struct g4x_sr_wm sr;
1775        struct g4x_sr_wm hpll;
1776        bool cxsr;
1777        bool hpll_en;
1778        bool fbc_en;
1779};
1780
1781struct skl_ddb_entry {
1782        uint16_t start, end;    /* in number of blocks, 'end' is exclusive */
1783};
1784
1785static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1786{
1787        return entry->end - entry->start;
1788}
1789
1790static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1791                                       const struct skl_ddb_entry *e2)
1792{
1793        if (e1->start == e2->start && e1->end == e2->end)
1794                return true;
1795
1796        return false;
1797}
1798
1799struct skl_ddb_allocation {
1800        struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1801        struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1802};
1803
1804struct skl_wm_values {
1805        unsigned dirty_pipes;
1806        struct skl_ddb_allocation ddb;
1807};
1808
1809struct skl_wm_level {
1810        bool plane_en;
1811        uint16_t plane_res_b;
1812        uint8_t plane_res_l;
1813};
1814
1815/*
1816 * This struct helps tracking the state needed for runtime PM, which puts the
1817 * device in PCI D3 state. Notice that when this happens, nothing on the
1818 * graphics device works, even register access, so we don't get interrupts nor
1819 * anything else.
1820 *
1821 * Every piece of our code that needs to actually touch the hardware needs to
1822 * either call intel_runtime_pm_get or call intel_display_power_get with the
1823 * appropriate power domain.
1824 *
1825 * Our driver uses the autosuspend delay feature, which means we'll only really
1826 * suspend if we stay with zero refcount for a certain amount of time. The
1827 * default value is currently very conservative (see intel_runtime_pm_enable), but
1828 * it can be changed with the standard runtime PM files from sysfs.
1829 *
1830 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1831 * goes back to false exactly before we reenable the IRQs. We use this variable
1832 * to check if someone is trying to enable/disable IRQs while they're supposed
1833 * to be disabled. This shouldn't happen and we'll print some error messages in
1834 * case it happens.
1835 *
1836 * For more, read the Documentation/power/runtime_pm.txt.
1837 */
1838struct i915_runtime_pm {
1839        atomic_t wakeref_count;
1840        bool suspended;
1841        bool irqs_enabled;
1842};
1843
1844enum intel_pipe_crc_source {
1845        INTEL_PIPE_CRC_SOURCE_NONE,
1846        INTEL_PIPE_CRC_SOURCE_PLANE1,
1847        INTEL_PIPE_CRC_SOURCE_PLANE2,
1848        INTEL_PIPE_CRC_SOURCE_PF,
1849        INTEL_PIPE_CRC_SOURCE_PIPE,
1850        /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1851        INTEL_PIPE_CRC_SOURCE_TV,
1852        INTEL_PIPE_CRC_SOURCE_DP_B,
1853        INTEL_PIPE_CRC_SOURCE_DP_C,
1854        INTEL_PIPE_CRC_SOURCE_DP_D,
1855        INTEL_PIPE_CRC_SOURCE_AUTO,
1856        INTEL_PIPE_CRC_SOURCE_MAX,
1857};
1858
1859struct intel_pipe_crc_entry {
1860        uint32_t frame;
1861        uint32_t crc[5];
1862};
1863
1864#define INTEL_PIPE_CRC_ENTRIES_NR       128
1865struct intel_pipe_crc {
1866        spinlock_t lock;
1867        bool opened;            /* exclusive access to the result file */
1868        struct intel_pipe_crc_entry *entries;
1869        enum intel_pipe_crc_source source;
1870        int head, tail;
1871        wait_queue_head_t wq;
1872        int skipped;
1873};
1874
1875struct i915_frontbuffer_tracking {
1876        spinlock_t lock;
1877
1878        /*
1879         * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1880         * scheduled flips.
1881         */
1882        unsigned busy_bits;
1883        unsigned flip_bits;
1884};
1885
1886struct i915_wa_reg {
1887        i915_reg_t addr;
1888        u32 value;
1889        /* bitmask representing WA bits */
1890        u32 mask;
1891};
1892
1893/*
1894 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1895 * allowing it for RCS as we don't foresee any requirement of having
1896 * a whitelist for other engines. When it is really required for
1897 * other engines then the limit need to be increased.
1898 */
1899#define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1900
1901struct i915_workarounds {
1902        struct i915_wa_reg reg[I915_MAX_WA_REGS];
1903        u32 count;
1904        u32 hw_whitelist_count[I915_NUM_ENGINES];
1905};
1906
1907struct i915_virtual_gpu {
1908        bool active;
1909        u32 caps;
1910};
1911
1912/* used in computing the new watermarks state */
1913struct intel_wm_config {
1914        unsigned int num_pipes_active;
1915        bool sprites_enabled;
1916        bool sprites_scaled;
1917};
1918
1919struct i915_oa_format {
1920        u32 format;
1921        int size;
1922};
1923
1924struct i915_oa_reg {
1925        i915_reg_t addr;
1926        u32 value;
1927};
1928
1929struct i915_oa_config {
1930        char uuid[UUID_STRING_LEN + 1];
1931        int id;
1932
1933        const struct i915_oa_reg *mux_regs;
1934        u32 mux_regs_len;
1935        const struct i915_oa_reg *b_counter_regs;
1936        u32 b_counter_regs_len;
1937        const struct i915_oa_reg *flex_regs;
1938        u32 flex_regs_len;
1939
1940        struct attribute_group sysfs_metric;
1941        struct attribute *attrs[2];
1942        struct device_attribute sysfs_metric_id;
1943
1944        atomic_t ref_count;
1945};
1946
1947struct i915_perf_stream;
1948
1949/**
1950 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1951 */
1952struct i915_perf_stream_ops {
1953        /**
1954         * @enable: Enables the collection of HW samples, either in response to
1955         * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1956         * without `I915_PERF_FLAG_DISABLED`.
1957         */
1958        void (*enable)(struct i915_perf_stream *stream);
1959
1960        /**
1961         * @disable: Disables the collection of HW samples, either in response
1962         * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1963         * the stream.
1964         */
1965        void (*disable)(struct i915_perf_stream *stream);
1966
1967        /**
1968         * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1969         * once there is something ready to read() for the stream
1970         */
1971        void (*poll_wait)(struct i915_perf_stream *stream,
1972                          struct file *file,
1973                          poll_table *wait);
1974
1975        /**
1976         * @wait_unlocked: For handling a blocking read, wait until there is
1977         * something to ready to read() for the stream. E.g. wait on the same
1978         * wait queue that would be passed to poll_wait().
1979         */
1980        int (*wait_unlocked)(struct i915_perf_stream *stream);
1981
1982        /**
1983         * @read: Copy buffered metrics as records to userspace
1984         * **buf**: the userspace, destination buffer
1985         * **count**: the number of bytes to copy, requested by userspace
1986         * **offset**: zero at the start of the read, updated as the read
1987         * proceeds, it represents how many bytes have been copied so far and
1988         * the buffer offset for copying the next record.
1989         *
1990         * Copy as many buffered i915 perf samples and records for this stream
1991         * to userspace as will fit in the given buffer.
1992         *
1993         * Only write complete records; returning -%ENOSPC if there isn't room
1994         * for a complete record.
1995         *
1996         * Return any error condition that results in a short read such as
1997         * -%ENOSPC or -%EFAULT, even though these may be squashed before
1998         * returning to userspace.
1999         */
2000        int (*read)(struct i915_perf_stream *stream,
2001                    char __user *buf,
2002                    size_t count,
2003                    size_t *offset);
2004
2005        /**
2006         * @destroy: Cleanup any stream specific resources.
2007         *
2008         * The stream will always be disabled before this is called.
2009         */
2010        void (*destroy)(struct i915_perf_stream *stream);
2011};
2012
2013/**
2014 * struct i915_perf_stream - state for a single open stream FD
2015 */
2016struct i915_perf_stream {
2017        /**
2018         * @dev_priv: i915 drm device
2019         */
2020        struct drm_i915_private *dev_priv;
2021
2022        /**
2023         * @link: Links the stream into ``&drm_i915_private->streams``
2024         */
2025        struct list_head link;
2026
2027        /**
2028         * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2029         * properties given when opening a stream, representing the contents
2030         * of a single sample as read() by userspace.
2031         */
2032        u32 sample_flags;
2033
2034        /**
2035         * @sample_size: Considering the configured contents of a sample
2036         * combined with the required header size, this is the total size
2037         * of a single sample record.
2038         */
2039        int sample_size;
2040
2041        /**
2042         * @ctx: %NULL if measuring system-wide across all contexts or a
2043         * specific context that is being monitored.
2044         */
2045        struct i915_gem_context *ctx;
2046
2047        /**
2048         * @enabled: Whether the stream is currently enabled, considering
2049         * whether the stream was opened in a disabled state and based
2050         * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2051         */
2052        bool enabled;
2053
2054        /**
2055         * @ops: The callbacks providing the implementation of this specific
2056         * type of configured stream.
2057         */
2058        const struct i915_perf_stream_ops *ops;
2059
2060        /**
2061         * @oa_config: The OA configuration used by the stream.
2062         */
2063        struct i915_oa_config *oa_config;
2064};
2065
2066/**
2067 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2068 */
2069struct i915_oa_ops {
2070        /**
2071         * @is_valid_b_counter_reg: Validates register's address for
2072         * programming boolean counters for a particular platform.
2073         */
2074        bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2075                                       u32 addr);
2076
2077        /**
2078         * @is_valid_mux_reg: Validates register's address for programming mux
2079         * for a particular platform.
2080         */
2081        bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2082
2083        /**
2084         * @is_valid_flex_reg: Validates register's address for programming
2085         * flex EU filtering for a particular platform.
2086         */
2087        bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2088
2089        /**
2090         * @init_oa_buffer: Resets the head and tail pointers of the
2091         * circular buffer for periodic OA reports.
2092         *
2093         * Called when first opening a stream for OA metrics, but also may be
2094         * called in response to an OA buffer overflow or other error
2095         * condition.
2096         *
2097         * Note it may be necessary to clear the full OA buffer here as part of
2098         * maintaining the invariable that new reports must be written to
2099         * zeroed memory for us to be able to reliable detect if an expected
2100         * report has not yet landed in memory.  (At least on Haswell the OA
2101         * buffer tail pointer is not synchronized with reports being visible
2102         * to the CPU)
2103         */
2104        void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2105
2106        /**
2107         * @enable_metric_set: Selects and applies any MUX configuration to set
2108         * up the Boolean and Custom (B/C) counters that are part of the
2109         * counter reports being sampled. May apply system constraints such as
2110         * disabling EU clock gating as required.
2111         */
2112        int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2113                                 const struct i915_oa_config *oa_config);
2114
2115        /**
2116         * @disable_metric_set: Remove system constraints associated with using
2117         * the OA unit.
2118         */
2119        void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2120
2121        /**
2122         * @oa_enable: Enable periodic sampling
2123         */
2124        void (*oa_enable)(struct drm_i915_private *dev_priv);
2125
2126        /**
2127         * @oa_disable: Disable periodic sampling
2128         */
2129        void (*oa_disable)(struct drm_i915_private *dev_priv);
2130
2131        /**
2132         * @read: Copy data from the circular OA buffer into a given userspace
2133         * buffer.
2134         */
2135        int (*read)(struct i915_perf_stream *stream,
2136                    char __user *buf,
2137                    size_t count,
2138                    size_t *offset);
2139
2140        /**
2141         * @oa_hw_tail_read: read the OA tail pointer register
2142         *
2143         * In particular this enables us to share all the fiddly code for
2144         * handling the OA unit tail pointer race that affects multiple
2145         * generations.
2146         */
2147        u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2148};
2149
2150struct intel_cdclk_state {
2151        unsigned int cdclk, vco, ref;
2152};
2153
2154struct drm_i915_private {
2155        struct drm_device drm;
2156
2157        struct kmem_cache *objects;
2158        struct kmem_cache *vmas;
2159        struct kmem_cache *luts;
2160        struct kmem_cache *requests;
2161        struct kmem_cache *dependencies;
2162        struct kmem_cache *priorities;
2163
2164        const struct intel_device_info info;
2165
2166        void __iomem *regs;
2167
2168        struct intel_uncore uncore;
2169
2170        struct i915_virtual_gpu vgpu;
2171
2172        struct intel_gvt *gvt;
2173
2174        struct intel_huc huc;
2175        struct intel_guc guc;
2176
2177        struct intel_csr csr;
2178
2179        struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2180
2181        /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2182         * controller on different i2c buses. */
2183        struct mutex gmbus_mutex;
2184
2185        /**
2186         * Base address of the gmbus and gpio block.
2187         */
2188        uint32_t gpio_mmio_base;
2189
2190        /* MMIO base address for MIPI regs */
2191        uint32_t mipi_mmio_base;
2192
2193        uint32_t psr_mmio_base;
2194
2195        uint32_t pps_mmio_base;
2196
2197        wait_queue_head_t gmbus_wait_queue;
2198
2199        struct pci_dev *bridge_dev;
2200        struct i915_gem_context *kernel_context;
2201        struct intel_engine_cs *engine[I915_NUM_ENGINES];
2202        struct i915_vma *semaphore;
2203
2204        struct drm_dma_handle *status_page_dmah;
2205        struct resource mch_res;
2206
2207        /* protects the irq masks */
2208        spinlock_t irq_lock;
2209
2210        bool display_irqs_enabled;
2211
2212        /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2213        struct pm_qos_request pm_qos;
2214
2215        /* Sideband mailbox protection */
2216        struct mutex sb_lock;
2217
2218        /** Cached value of IMR to avoid reads in updating the bitfield */
2219        union {
2220                u32 irq_mask;
2221                u32 de_irq_mask[I915_MAX_PIPES];
2222        };
2223        u32 gt_irq_mask;
2224        u32 pm_imr;
2225        u32 pm_ier;
2226        u32 pm_rps_events;
2227        u32 pm_guc_events;
2228        u32 pipestat_irq_mask[I915_MAX_PIPES];
2229
2230        struct i915_hotplug hotplug;
2231        struct intel_fbc fbc;
2232        struct i915_drrs drrs;
2233        struct intel_opregion opregion;
2234        struct intel_vbt_data vbt;
2235
2236        bool preserve_bios_swizzle;
2237
2238        /* overlay */
2239        struct intel_overlay *overlay;
2240
2241        /* backlight registers and fields in struct intel_panel */
2242        struct mutex backlight_lock;
2243
2244        /* LVDS info */
2245        bool no_aux_handshake;
2246
2247        /* protects panel power sequencer state */
2248        struct mutex pps_mutex;
2249
2250        struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2251        int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2252
2253        unsigned int fsb_freq, mem_freq, is_ddr3;
2254        unsigned int skl_preferred_vco_freq;
2255        unsigned int max_cdclk_freq;
2256
2257        unsigned int max_dotclk_freq;
2258        unsigned int rawclk_freq;
2259        unsigned int hpll_freq;
2260        unsigned int czclk_freq;
2261
2262        struct {
2263                /*
2264                 * The current logical cdclk state.
2265                 * See intel_atomic_state.cdclk.logical
2266                 *
2267                 * For reading holding any crtc lock is sufficient,
2268                 * for writing must hold all of them.
2269                 */
2270                struct intel_cdclk_state logical;
2271                /*
2272                 * The current actual cdclk state.
2273                 * See intel_atomic_state.cdclk.actual
2274                 */
2275                struct intel_cdclk_state actual;
2276                /* The current hardware cdclk state */
2277                struct intel_cdclk_state hw;
2278        } cdclk;
2279
2280        /**
2281         * wq - Driver workqueue for GEM.
2282         *
2283         * NOTE: Work items scheduled here are not allowed to grab any modeset
2284         * locks, for otherwise the flushing done in the pageflip code will
2285         * result in deadlocks.
2286         */
2287        struct workqueue_struct *wq;
2288
2289        /* Display functions */
2290        struct drm_i915_display_funcs display;
2291
2292        /* PCH chipset type */
2293        enum intel_pch pch_type;
2294        unsigned short pch_id;
2295
2296        unsigned long quirks;
2297
2298        enum modeset_restore modeset_restore;
2299        struct mutex modeset_restore_lock;
2300        struct drm_atomic_state *modeset_restore_state;
2301        struct drm_modeset_acquire_ctx reset_ctx;
2302
2303        struct list_head vm_list; /* Global list of all address spaces */
2304        struct i915_ggtt ggtt; /* VM representing the global address space */
2305
2306        struct i915_gem_mm mm;
2307        DECLARE_HASHTABLE(mm_structs, 7);
2308        struct mutex mm_lock;
2309
2310        /* Kernel Modesetting */
2311
2312        struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2313        struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2314
2315#ifdef CONFIG_DEBUG_FS
2316        struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2317#endif
2318
2319        /* dpll and cdclk state is protected by connection_mutex */
2320        int num_shared_dpll;
2321        struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2322        const struct intel_dpll_mgr *dpll_mgr;
2323
2324        /*
2325         * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2326         * Must be global rather than per dpll, because on some platforms
2327         * plls share registers.
2328         */
2329        struct mutex dpll_lock;
2330
2331        unsigned int active_crtcs;
2332        unsigned int min_pixclk[I915_MAX_PIPES];
2333
2334        int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2335
2336        struct i915_workarounds workarounds;
2337
2338        struct i915_frontbuffer_tracking fb_tracking;
2339
2340        struct intel_atomic_helper {
2341                struct llist_head free_list;
2342                struct work_struct free_work;
2343        } atomic_helper;
2344
2345        u16 orig_clock;
2346
2347        bool mchbar_need_disable;
2348
2349        struct intel_l3_parity l3_parity;
2350
2351        /* Cannot be determined by PCIID. You must always read a register. */
2352        u32 edram_cap;
2353
2354        /* gen6+ rps state */
2355        struct intel_gen6_power_mgmt rps;
2356
2357        /* ilk-only ips/rps state. Everything in here is protected by the global
2358         * mchdev_lock in intel_pm.c */
2359        struct intel_ilk_power_mgmt ips;
2360
2361        struct i915_power_domains power_domains;
2362
2363        struct i915_psr psr;
2364
2365        struct i915_gpu_error gpu_error;
2366
2367        struct drm_i915_gem_object *vlv_pctx;
2368
2369        /* list of fbdev register on this device */
2370        struct intel_fbdev *fbdev;
2371        struct work_struct fbdev_suspend_work;
2372
2373        struct drm_property *broadcast_rgb_property;
2374        struct drm_property *force_audio_property;
2375
2376        /* hda/i915 audio component */
2377        struct i915_audio_component *audio_component;
2378        bool audio_component_registered;
2379        /**
2380         * av_mutex - mutex for audio/video sync
2381         *
2382         */
2383        struct mutex av_mutex;
2384
2385        struct {
2386                struct list_head list;
2387                struct llist_head free_list;
2388                struct work_struct free_work;
2389
2390                /* The hw wants to have a stable context identifier for the
2391                 * lifetime of the context (for OA, PASID, faults, etc).
2392                 * This is limited in execlists to 21 bits.
2393                 */
2394                struct ida hw_ida;
2395#define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2396        } contexts;
2397
2398        u32 fdi_rx_config;
2399
2400        /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2401        u32 chv_phy_control;
2402        /*
2403         * Shadows for CHV DPLL_MD regs to keep the state
2404         * checker somewhat working in the presence hardware
2405         * crappiness (can't read out DPLL_MD for pipes B & C).
2406         */
2407        u32 chv_dpll_md[I915_MAX_PIPES];
2408        u32 bxt_phy_grc;
2409
2410        u32 suspend_count;
2411        bool suspended_to_idle;
2412        struct i915_suspend_saved_registers regfile;
2413        struct vlv_s0ix_state vlv_s0ix_state;
2414
2415        enum {
2416                I915_SAGV_UNKNOWN = 0,
2417                I915_SAGV_DISABLED,
2418                I915_SAGV_ENABLED,
2419                I915_SAGV_NOT_CONTROLLED
2420        } sagv_status;
2421
2422        struct {
2423                /*
2424                 * Raw watermark latency values:
2425                 * in 0.1us units for WM0,
2426                 * in 0.5us units for WM1+.
2427                 */
2428                /* primary */
2429                uint16_t pri_latency[5];
2430                /* sprite */
2431                uint16_t spr_latency[5];
2432                /* cursor */
2433                uint16_t cur_latency[5];
2434                /*
2435                 * Raw watermark memory latency values
2436                 * for SKL for all 8 levels
2437                 * in 1us units.
2438                 */
2439                uint16_t skl_latency[8];
2440
2441                /* current hardware state */
2442                union {
2443                        struct ilk_wm_values hw;
2444                        struct skl_wm_values skl_hw;
2445                        struct vlv_wm_values vlv;
2446                        struct g4x_wm_values g4x;
2447                };
2448
2449                uint8_t max_level;
2450
2451                /*
2452                 * Should be held around atomic WM register writing; also
2453                 * protects * intel_crtc->wm.active and
2454                 * cstate->wm.need_postvbl_update.
2455                 */
2456                struct mutex wm_mutex;
2457
2458                /*
2459                 * Set during HW readout of watermarks/DDB.  Some platforms
2460                 * need to know when we're still using BIOS-provided values
2461                 * (which we don't fully trust).
2462                 */
2463                bool distrust_bios_wm;
2464        } wm;
2465
2466        struct i915_runtime_pm pm;
2467
2468        struct {
2469                bool initialized;
2470
2471                struct kobject *metrics_kobj;
2472                struct ctl_table_header *sysctl_header;
2473
2474                /*
2475                 * Lock associated with adding/modifying/removing OA configs
2476                 * in dev_priv->perf.metrics_idr.
2477                 */
2478                struct mutex metrics_lock;
2479
2480                /*
2481                 * List of dynamic configurations, you need to hold
2482                 * dev_priv->perf.metrics_lock to access it.
2483                 */
2484                struct idr metrics_idr;
2485
2486                /*
2487                 * Lock associated with anything below within this structure
2488                 * except exclusive_stream.
2489                 */
2490                struct mutex lock;
2491                struct list_head streams;
2492
2493                struct {
2494                        /*
2495                         * The stream currently using the OA unit. If accessed
2496                         * outside a syscall associated to its file
2497                         * descriptor, you need to hold
2498                         * dev_priv->drm.struct_mutex.
2499                         */
2500                        struct i915_perf_stream *exclusive_stream;
2501
2502                        u32 specific_ctx_id;
2503
2504                        struct hrtimer poll_check_timer;
2505                        wait_queue_head_t poll_wq;
2506                        bool pollin;
2507
2508                        /**
2509                         * For rate limiting any notifications of spurious
2510                         * invalid OA reports
2511                         */
2512                        struct ratelimit_state spurious_report_rs;
2513
2514                        bool periodic;
2515                        int period_exponent;
2516                        int timestamp_frequency;
2517
2518                        struct i915_oa_config test_config;
2519
2520                        struct {
2521                                struct i915_vma *vma;
2522                                u8 *vaddr;
2523                                u32 last_ctx_id;
2524                                int format;
2525                                int format_size;
2526
2527                                /**
2528                                 * Locks reads and writes to all head/tail state
2529                                 *
2530                                 * Consider: the head and tail pointer state
2531                                 * needs to be read consistently from a hrtimer
2532                                 * callback (atomic context) and read() fop
2533                                 * (user context) with tail pointer updates
2534                                 * happening in atomic context and head updates
2535                                 * in user context and the (unlikely)
2536                                 * possibility of read() errors needing to
2537                                 * reset all head/tail state.
2538                                 *
2539                                 * Note: Contention or performance aren't
2540                                 * currently a significant concern here
2541                                 * considering the relatively low frequency of
2542                                 * hrtimer callbacks (5ms period) and that
2543                                 * reads typically only happen in response to a
2544                                 * hrtimer event and likely complete before the
2545                                 * next callback.
2546                                 *
2547                                 * Note: This lock is not held *while* reading
2548                                 * and copying data to userspace so the value
2549                                 * of head observed in htrimer callbacks won't
2550                                 * represent any partial consumption of data.
2551                                 */
2552                                spinlock_t ptr_lock;
2553
2554                                /**
2555                                 * One 'aging' tail pointer and one 'aged'
2556                                 * tail pointer ready to used for reading.
2557                                 *
2558                                 * Initial values of 0xffffffff are invalid
2559                                 * and imply that an update is required
2560                                 * (and should be ignored by an attempted
2561                                 * read)
2562                                 */
2563                                struct {
2564                                        u32 offset;
2565                                } tails[2];
2566
2567                                /**
2568                                 * Index for the aged tail ready to read()
2569                                 * data up to.
2570                                 */
2571                                unsigned int aged_tail_idx;
2572
2573                                /**
2574                                 * A monotonic timestamp for when the current
2575                                 * aging tail pointer was read; used to
2576                                 * determine when it is old enough to trust.
2577                                 */
2578                                u64 aging_timestamp;
2579
2580                                /**
2581                                 * Although we can always read back the head
2582                                 * pointer register, we prefer to avoid
2583                                 * trusting the HW state, just to avoid any
2584                                 * risk that some hardware condition could
2585                                 * somehow bump the head pointer unpredictably
2586                                 * and cause us to forward the wrong OA buffer
2587                                 * data to userspace.
2588                                 */
2589                                u32 head;
2590                        } oa_buffer;
2591
2592                        u32 gen7_latched_oastatus1;
2593                        u32 ctx_oactxctrl_offset;
2594                        u32 ctx_flexeu0_offset;
2595
2596                        /**
2597                         * The RPT_ID/reason field for Gen8+ includes a bit
2598                         * to determine if the CTX ID in the report is valid
2599                         * but the specific bit differs between Gen 8 and 9
2600                         */
2601                        u32 gen8_valid_ctx_bit;
2602
2603                        struct i915_oa_ops ops;
2604                        const struct i915_oa_format *oa_formats;
2605                } oa;
2606        } perf;
2607
2608        /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2609        struct {
2610                void (*resume)(struct drm_i915_private *);
2611                void (*cleanup_engine)(struct intel_engine_cs *engine);
2612
2613                struct list_head timelines;
2614                struct i915_gem_timeline global_timeline;
2615                u32 active_requests;
2616
2617                /**
2618                 * Is the GPU currently considered idle, or busy executing
2619                 * userspace requests? Whilst idle, we allow runtime power
2620                 * management to power down the hardware and display clocks.
2621                 * In order to reduce the effect on performance, there
2622                 * is a slight delay before we do so.
2623                 */
2624                bool awake;
2625
2626                /**
2627                 * We leave the user IRQ off as much as possible,
2628                 * but this means that requests will finish and never
2629                 * be retired once the system goes idle. Set a timer to
2630                 * fire periodically while the ring is running. When it
2631                 * fires, go retire requests.
2632                 */
2633                struct delayed_work retire_work;
2634
2635                /**
2636                 * When we detect an idle GPU, we want to turn on
2637                 * powersaving features. So once we see that there
2638                 * are no more requests outstanding and no more
2639                 * arrive within a small period of time, we fire
2640                 * off the idle_work.
2641                 */
2642                struct delayed_work idle_work;
2643
2644                ktime_t last_init_time;
2645        } gt;
2646
2647        /* perform PHY state sanity checks? */
2648        bool chv_phy_assert[2];
2649
2650        bool ipc_enabled;
2651
2652        /* Used to save the pipe-to-encoder mapping for audio */
2653        struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2654
2655        /* necessary resource sharing with HDMI LPE audio driver. */
2656        struct {
2657                struct platform_device *platdev;
2658                int     irq;
2659        } lpe_audio;
2660
2661        /*
2662         * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2663         * will be rejected. Instead look for a better place.
2664         */
2665};
2666
2667static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2668{
2669        return container_of(dev, struct drm_i915_private, drm);
2670}
2671
2672static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2673{
2674        return to_i915(dev_get_drvdata(kdev));
2675}
2676
2677static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2678{
2679        return container_of(guc, struct drm_i915_private, guc);
2680}
2681
2682static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2683{
2684        return container_of(huc, struct drm_i915_private, huc);
2685}
2686
2687/* Simple iterator over all initialised engines */
2688#define for_each_engine(engine__, dev_priv__, id__) \
2689        for ((id__) = 0; \
2690             (id__) < I915_NUM_ENGINES; \
2691             (id__)++) \
2692                for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2693
2694/* Iterator over subset of engines selected by mask */
2695#define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2696        for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;        \
2697             tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2698
2699enum hdmi_force_audio {
2700        HDMI_AUDIO_OFF_DVI = -2,        /* no aux data for HDMI-DVI converter */
2701        HDMI_AUDIO_OFF,                 /* force turn off HDMI audio */
2702        HDMI_AUDIO_AUTO,                /* trust EDID */
2703        HDMI_AUDIO_ON,                  /* force turn on HDMI audio */
2704};
2705
2706#define I915_GTT_OFFSET_NONE ((u32)-1)
2707
2708/*
2709 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2710 * considered to be the frontbuffer for the given plane interface-wise. This
2711 * doesn't mean that the hw necessarily already scans it out, but that any
2712 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2713 *
2714 * We have one bit per pipe and per scanout plane type.
2715 */
2716#define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2717#define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2718#define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2719        (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2720#define INTEL_FRONTBUFFER_CURSOR(pipe) \
2721        (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2722#define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2723        (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2724#define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2725        (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2726#define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2727        (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2728
2729/*
2730 * Optimised SGL iterator for GEM objects
2731 */
2732static __always_inline struct sgt_iter {
2733        struct scatterlist *sgp;
2734        union {
2735                unsigned long pfn;
2736                dma_addr_t dma;
2737        };
2738        unsigned int curr;
2739        unsigned int max;
2740} __sgt_iter(struct scatterlist *sgl, bool dma) {
2741        struct sgt_iter s = { .sgp = sgl };
2742
2743        if (s.sgp) {
2744                s.max = s.curr = s.sgp->offset;
2745                s.max += s.sgp->length;
2746                if (dma)
2747                        s.dma = sg_dma_address(s.sgp);
2748                else
2749                        s.pfn = page_to_pfn(sg_page(s.sgp));
2750        }
2751
2752        return s;
2753}
2754
2755static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2756{
2757        ++sg;
2758        if (unlikely(sg_is_chain(sg)))
2759                sg = sg_chain_ptr(sg);
2760        return sg;
2761}
2762
2763/**
2764 * __sg_next - return the next scatterlist entry in a list
2765 * @sg:         The current sg entry
2766 *
2767 * Description:
2768 *   If the entry is the last, return NULL; otherwise, step to the next
2769 *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2770 *   otherwise just return the pointer to the current element.
2771 **/
2772static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2773{
2774#ifdef CONFIG_DEBUG_SG
2775        BUG_ON(sg->sg_magic != SG_MAGIC);
2776#endif
2777        return sg_is_last(sg) ? NULL : ____sg_next(sg);
2778}
2779
2780/**
2781 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2782 * @__dmap:     DMA address (output)
2783 * @__iter:     'struct sgt_iter' (iterator state, internal)
2784 * @__sgt:      sg_table to iterate over (input)
2785 */
2786#define for_each_sgt_dma(__dmap, __iter, __sgt)                         \
2787        for ((__iter) = __sgt_iter((__sgt)->sgl, true);                 \
2788             ((__dmap) = (__iter).dma + (__iter).curr);                 \
2789             (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2790             ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2791
2792/**
2793 * for_each_sgt_page - iterate over the pages of the given sg_table
2794 * @__pp:       page pointer (output)
2795 * @__iter:     'struct sgt_iter' (iterator state, internal)
2796 * @__sgt:      sg_table to iterate over (input)
2797 */
2798#define for_each_sgt_page(__pp, __iter, __sgt)                          \
2799        for ((__iter) = __sgt_iter((__sgt)->sgl, false);                \
2800             ((__pp) = (__iter).pfn == 0 ? NULL :                       \
2801              pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2802             (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2803             ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2804
2805static inline const struct intel_device_info *
2806intel_info(const struct drm_i915_private *dev_priv)
2807{
2808        return &dev_priv->info;
2809}
2810
2811#define INTEL_INFO(dev_priv)    intel_info((dev_priv))
2812
2813#define INTEL_GEN(dev_priv)     ((dev_priv)->info.gen)
2814#define INTEL_DEVID(dev_priv)   ((dev_priv)->info.device_id)
2815
2816#define REVID_FOREVER           0xff
2817#define INTEL_REVID(dev_priv)   ((dev_priv)->drm.pdev->revision)
2818
2819#define GEN_FOREVER (0)
2820/*
2821 * Returns true if Gen is in inclusive range [Start, End].
2822 *
2823 * Use GEN_FOREVER for unbound start and or end.
2824 */
2825#define IS_GEN(dev_priv, s, e) ({ \
2826        unsigned int __s = (s), __e = (e); \
2827        BUILD_BUG_ON(!__builtin_constant_p(s)); \
2828        BUILD_BUG_ON(!__builtin_constant_p(e)); \
2829        if ((__s) != GEN_FOREVER) \
2830                __s = (s) - 1; \
2831        if ((__e) == GEN_FOREVER) \
2832                __e = BITS_PER_LONG - 1; \
2833        else \
2834                __e = (e) - 1; \
2835        !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2836})
2837
2838/*
2839 * Return true if revision is in range [since,until] inclusive.
2840 *
2841 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2842 */
2843#define IS_REVID(p, since, until) \
2844        (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2845
2846#define IS_I830(dev_priv)       ((dev_priv)->info.platform == INTEL_I830)
2847#define IS_I845G(dev_priv)      ((dev_priv)->info.platform == INTEL_I845G)
2848#define IS_I85X(dev_priv)       ((dev_priv)->info.platform == INTEL_I85X)
2849#define IS_I865G(dev_priv)      ((dev_priv)->info.platform == INTEL_I865G)
2850#define IS_I915G(dev_priv)      ((dev_priv)->info.platform == INTEL_I915G)
2851#define IS_I915GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I915GM)
2852#define IS_I945G(dev_priv)      ((dev_priv)->info.platform == INTEL_I945G)
2853#define IS_I945GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I945GM)
2854#define IS_I965G(dev_priv)      ((dev_priv)->info.platform == INTEL_I965G)
2855#define IS_I965GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I965GM)
2856#define IS_G45(dev_priv)        ((dev_priv)->info.platform == INTEL_G45)
2857#define IS_GM45(dev_priv)       ((dev_priv)->info.platform == INTEL_GM45)
2858#define IS_G4X(dev_priv)        (IS_G45(dev_priv) || IS_GM45(dev_priv))
2859#define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2860#define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2861#define IS_PINEVIEW(dev_priv)   ((dev_priv)->info.platform == INTEL_PINEVIEW)
2862#define IS_G33(dev_priv)        ((dev_priv)->info.platform == INTEL_G33)
2863#define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2864#define IS_IVYBRIDGE(dev_priv)  ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2865#define IS_IVB_GT1(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0156 || \
2866                                 INTEL_DEVID(dev_priv) == 0x0152 || \
2867                                 INTEL_DEVID(dev_priv) == 0x015a)
2868#define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2869#define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2870#define IS_HASWELL(dev_priv)    ((dev_priv)->info.platform == INTEL_HASWELL)
2871#define IS_BROADWELL(dev_priv)  ((dev_priv)->info.platform == INTEL_BROADWELL)
2872#define IS_SKYLAKE(dev_priv)    ((dev_priv)->info.platform == INTEL_SKYLAKE)
2873#define IS_BROXTON(dev_priv)    ((dev_priv)->info.platform == INTEL_BROXTON)
2874#define IS_KABYLAKE(dev_priv)   ((dev_priv)->info.platform == INTEL_KABYLAKE)
2875#define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2876#define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2877#define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2878#define IS_MOBILE(dev_priv)     ((dev_priv)->info.is_mobile)
2879#define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2880                                    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2881#define IS_BDW_ULT(dev_priv)    (IS_BROADWELL(dev_priv) && \
2882                                 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||       \
2883                                 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||        \
2884                                 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2885/* ULX machines are also considered ULT. */
2886#define IS_BDW_ULX(dev_priv)    (IS_BROADWELL(dev_priv) && \
2887                                 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2888#define IS_BDW_GT3(dev_priv)    (IS_BROADWELL(dev_priv) && \
2889                                 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2890#define IS_HSW_ULT(dev_priv)    (IS_HASWELL(dev_priv) && \
2891                                 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2892#define IS_HSW_GT3(dev_priv)    (IS_HASWELL(dev_priv) && \
2893                                 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2894/* ULX machines are also considered ULT. */
2895#define IS_HSW_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0A0E || \
2896                                 INTEL_DEVID(dev_priv) == 0x0A1E)
2897#define IS_SKL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x1906 || \
2898                                 INTEL_DEVID(dev_priv) == 0x1913 || \
2899                                 INTEL_DEVID(dev_priv) == 0x1916 || \
2900                                 INTEL_DEVID(dev_priv) == 0x1921 || \
2901                                 INTEL_DEVID(dev_priv) == 0x1926)
2902#define IS_SKL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x190E || \
2903                                 INTEL_DEVID(dev_priv) == 0x1915 || \
2904                                 INTEL_DEVID(dev_priv) == 0x191E)
2905#define IS_KBL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x5906 || \
2906                                 INTEL_DEVID(dev_priv) == 0x5913 || \
2907                                 INTEL_DEVID(dev_priv) == 0x5916 || \
2908                                 INTEL_DEVID(dev_priv) == 0x5921 || \
2909                                 INTEL_DEVID(dev_priv) == 0x5926)
2910#define IS_KBL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x590E || \
2911                                 INTEL_DEVID(dev_priv) == 0x5915 || \
2912                                 INTEL_DEVID(dev_priv) == 0x591E)
2913#define IS_SKL_GT2(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2914                                 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2915#define IS_SKL_GT3(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2916                                 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2917#define IS_SKL_GT4(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2918                                 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2919#define IS_KBL_GT2(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2920                                 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2921#define IS_KBL_GT3(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2922                                 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2923#define IS_CFL_ULT(dev_priv)    (IS_COFFEELAKE(dev_priv) && \
2924                                 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2925
2926#define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2927
2928#define SKL_REVID_A0            0x0
2929#define SKL_REVID_B0            0x1
2930#define SKL_REVID_C0            0x2
2931#define SKL_REVID_D0            0x3
2932#define SKL_REVID_E0            0x4
2933#define SKL_REVID_F0            0x5
2934#define SKL_REVID_G0            0x6
2935#define SKL_REVID_H0            0x7
2936
2937#define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2938
2939#define BXT_REVID_A0            0x0
2940#define BXT_REVID_A1            0x1
2941#define BXT_REVID_B0            0x3
2942#define BXT_REVID_B_LAST        0x8
2943#define BXT_REVID_C0            0x9
2944
2945#define IS_BXT_REVID(dev_priv, since, until) \
2946        (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2947
2948#define KBL_REVID_A0            0x0
2949#define KBL_REVID_B0            0x1
2950#define KBL_REVID_C0            0x2
2951#define KBL_REVID_D0            0x3
2952#define KBL_REVID_E0            0x4
2953
2954#define IS_KBL_REVID(dev_priv, since, until) \
2955        (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2956
2957#define GLK_REVID_A0            0x0
2958#define GLK_REVID_A1            0x1
2959
2960#define IS_GLK_REVID(dev_priv, since, until) \
2961        (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2962
2963#define CNL_REVID_A0            0x0
2964#define CNL_REVID_B0            0x1
2965
2966#define IS_CNL_REVID(p, since, until) \
2967        (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2968
2969/*
2970 * The genX designation typically refers to the render engine, so render
2971 * capability related checks should use IS_GEN, while display and other checks
2972 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2973 * chips, etc.).
2974 */
2975#define IS_GEN2(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(1)))
2976#define IS_GEN3(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(2)))
2977#define IS_GEN4(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(3)))
2978#define IS_GEN5(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(4)))
2979#define IS_GEN6(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(5)))
2980#define IS_GEN7(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(6)))
2981#define IS_GEN8(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(7)))
2982#define IS_GEN9(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(8)))
2983#define IS_GEN10(dev_priv)      (!!((dev_priv)->info.gen_mask & BIT(9)))
2984
2985#define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2986#define IS_GEN9_LP(dev_priv)    (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2987#define IS_GEN9_BC(dev_priv)    (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2988
2989#define ENGINE_MASK(id) BIT(id)
2990#define RENDER_RING     ENGINE_MASK(RCS)
2991#define BSD_RING        ENGINE_MASK(VCS)
2992#define BLT_RING        ENGINE_MASK(BCS)
2993#define VEBOX_RING      ENGINE_MASK(VECS)
2994#define BSD2_RING       ENGINE_MASK(VCS2)
2995#define ALL_ENGINES     (~0)
2996
2997#define HAS_ENGINE(dev_priv, id) \
2998        (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2999
3000#define HAS_BSD(dev_priv)       HAS_ENGINE(dev_priv, VCS)
3001#define HAS_BSD2(dev_priv)      HAS_ENGINE(dev_priv, VCS2)
3002#define HAS_BLT(dev_priv)       HAS_ENGINE(dev_priv, BCS)
3003#define HAS_VEBOX(dev_priv)     HAS_ENGINE(dev_priv, VECS)
3004
3005#define HAS_LLC(dev_priv)       ((dev_priv)->info.has_llc)
3006#define HAS_SNOOP(dev_priv)     ((dev_priv)->info.has_snoop)
3007#define HAS_EDRAM(dev_priv)     (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3008#define HAS_WT(dev_priv)        ((IS_HASWELL(dev_priv) || \
3009                                 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3010
3011#define HWS_NEEDS_PHYSICAL(dev_priv)    ((dev_priv)->info.hws_needs_physical)
3012
3013#define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3014                ((dev_priv)->info.has_logical_ring_contexts)
3015#define USES_PPGTT(dev_priv)            (i915.enable_ppgtt)
3016#define USES_FULL_PPGTT(dev_priv)       (i915.enable_ppgtt >= 2)
3017#define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
3018
3019#define HAS_OVERLAY(dev_priv)            ((dev_priv)->info.has_overlay)
3020#define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3021                ((dev_priv)->info.overlay_needs_physical)
3022
3023/* Early gen2 have a totally busted CS tlb and require pinned batches. */
3024#define HAS_BROKEN_CS_TLB(dev_priv)     (IS_I830(dev_priv) || IS_I845G(dev_priv))
3025
3026/* WaRsDisableCoarsePowerGating:skl,bxt */
3027#define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3028        (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3029
3030/*
3031 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3032 * even when in MSI mode. This results in spurious interrupt warnings if the
3033 * legacy irq no. is shared with another device. The kernel then disables that
3034 * interrupt source and so prevents the other device from working properly.
3035 */
3036#define HAS_AUX_IRQ(dev_priv)   ((dev_priv)->info.gen >= 5)
3037#define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
3038
3039/* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3040 * rows, which changed the alignment requirements and fence programming.
3041 */
3042#define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3043                                         !(IS_I915G(dev_priv) || \
3044                                         IS_I915GM(dev_priv)))
3045#define SUPPORTS_TV(dev_priv)           ((dev_priv)->info.supports_tv)
3046#define I915_HAS_HOTPLUG(dev_priv)      ((dev_priv)->info.has_hotplug)
3047
3048#define HAS_FW_BLC(dev_priv)    (INTEL_GEN(dev_priv) > 2)
3049#define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3050#define HAS_FBC(dev_priv)       ((dev_priv)->info.has_fbc)
3051#define HAS_CUR_FBC(dev_priv)   (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3052
3053#define HAS_IPS(dev_priv)       (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3054
3055#define HAS_DP_MST(dev_priv)    ((dev_priv)->info.has_dp_mst)
3056
3057#define HAS_DDI(dev_priv)                ((dev_priv)->info.has_ddi)
3058#define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3059#define HAS_PSR(dev_priv)                ((dev_priv)->info.has_psr)
3060#define HAS_RC6(dev_priv)                ((dev_priv)->info.has_rc6)
3061#define HAS_RC6p(dev_priv)               ((dev_priv)->info.has_rc6p)
3062
3063#define HAS_CSR(dev_priv)       ((dev_priv)->info.has_csr)
3064
3065#define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3066#define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3067
3068/*
3069 * For now, anything with a GuC requires uCode loading, and then supports
3070 * command submission once loaded. But these are logically independent
3071 * properties, so we have separate macros to test them.
3072 */
3073#define HAS_GUC(dev_priv)       ((dev_priv)->info.has_guc)
3074#define HAS_GUC_CT(dev_priv)    ((dev_priv)->info.has_guc_ct)
3075#define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3076#define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3077#define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3078
3079#define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3080
3081#define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3082
3083#define INTEL_PCH_DEVICE_ID_MASK                0xff80
3084#define INTEL_PCH_IBX_DEVICE_ID_TYPE            0x3b00
3085#define INTEL_PCH_CPT_DEVICE_ID_TYPE            0x1c00
3086#define INTEL_PCH_PPT_DEVICE_ID_TYPE            0x1e00
3087#define INTEL_PCH_LPT_DEVICE_ID_TYPE            0x8c00
3088#define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE         0x9c00
3089#define INTEL_PCH_WPT_DEVICE_ID_TYPE            0x8c80
3090#define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE         0x9c80
3091#define INTEL_PCH_SPT_DEVICE_ID_TYPE            0xA100
3092#define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE         0x9D00
3093#define INTEL_PCH_KBP_DEVICE_ID_TYPE            0xA280
3094#define INTEL_PCH_CNP_DEVICE_ID_TYPE            0xA300
3095#define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE         0x9D80
3096#define INTEL_PCH_P2X_DEVICE_ID_TYPE            0x7100
3097#define INTEL_PCH_P3X_DEVICE_ID_TYPE            0x7000
3098#define INTEL_PCH_QEMU_DEVICE_ID_TYPE           0x2900 /* qemu q35 has 2918 */
3099
3100#define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3101#define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3102#define HAS_PCH_CNP_LP(dev_priv) \
3103        ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3104#define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3105#define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3106#define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3107#define HAS_PCH_LPT_LP(dev_priv) \
3108        ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3109         (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3110#define HAS_PCH_LPT_H(dev_priv) \
3111        ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3112         (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3113#define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3114#define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3115#define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3116#define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3117
3118#define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3119
3120#define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3121
3122/* DPF == dynamic parity feature */
3123#define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3124#define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3125                                 2 : HAS_L3_DPF(dev_priv))
3126
3127#define GT_FREQUENCY_MULTIPLIER 50
3128#define GEN9_FREQ_SCALER 3
3129
3130#include "i915_trace.h"
3131
3132static inline bool intel_vtd_active(void)
3133{
3134#ifdef CONFIG_INTEL_IOMMU
3135        if (intel_iommu_gfx_mapped)
3136                return true;
3137#endif
3138        return false;
3139}
3140
3141static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3142{
3143        return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3144}
3145
3146static inline bool
3147intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3148{
3149        return IS_BROXTON(dev_priv) && intel_vtd_active();
3150}
3151
3152int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3153                                int enable_ppgtt);
3154
3155bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3156
3157/* i915_drv.c */
3158void __printf(3, 4)
3159__i915_printk(struct drm_i915_private *dev_priv, const char *level,
3160              const char *fmt, ...);
3161
3162#define i915_report_error(dev_priv, fmt, ...)                              \
3163        __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3164
3165#ifdef CONFIG_COMPAT
3166extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3167                              unsigned long arg);
3168#else
3169#define i915_compat_ioctl NULL
3170#endif
3171extern const struct dev_pm_ops i915_pm_ops;
3172
3173extern int i915_driver_load(struct pci_dev *pdev,
3174                            const struct pci_device_id *ent);
3175extern void i915_driver_unload(struct drm_device *dev);
3176extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3177extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3178
3179#define I915_RESET_QUIET BIT(0)
3180extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3181extern int i915_reset_engine(struct intel_engine_cs *engine,
3182                             unsigned int flags);
3183
3184extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3185extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3186extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3187extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3188extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3189extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3190extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3191extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3192int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3193
3194int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3195int intel_engines_init(struct drm_i915_private *dev_priv);
3196
3197/* intel_hotplug.c */
3198void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3199                           u32 pin_mask, u32 long_mask);
3200void intel_hpd_init(struct drm_i915_private *dev_priv);
3201void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3202void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3203enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3204enum hpd_pin intel_hpd_pin(enum port port);
3205bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3206void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3207
3208/* i915_irq.c */
3209static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3210{
3211        unsigned long delay;
3212
3213        if (unlikely(!i915.enable_hangcheck))
3214                return;
3215
3216        /* Don't continually defer the hangcheck so that it is always run at
3217         * least once after work has been scheduled on any ring. Otherwise,
3218         * we will ignore a hung ring if a second ring is kept busy.
3219         */
3220
3221        delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3222        queue_delayed_work(system_long_wq,
3223                           &dev_priv->gpu_error.hangcheck_work, delay);
3224}
3225
3226__printf(3, 4)
3227void i915_handle_error(struct drm_i915_private *dev_priv,
3228                       u32 engine_mask,
3229                       const char *fmt, ...);
3230
3231extern void intel_irq_init(struct drm_i915_private *dev_priv);
3232extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3233int intel_irq_install(struct drm_i915_private *dev_priv);
3234void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3235
3236static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3237{
3238        return dev_priv->gvt;
3239}
3240
3241static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3242{
3243        return dev_priv->vgpu.active;
3244}
3245
3246void
3247i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3248                     u32 status_mask);
3249
3250void
3251i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3252                      u32 status_mask);
3253
3254void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3255void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3256void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3257                                   uint32_t mask,
3258                                   uint32_t bits);
3259void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3260                            uint32_t interrupt_mask,
3261                            uint32_t enabled_irq_mask);
3262static inline void
3263ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3264{
3265        ilk_update_display_irq(dev_priv, bits, bits);
3266}
3267static inline void
3268ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3269{
3270        ilk_update_display_irq(dev_priv, bits, 0);
3271}
3272void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3273                         enum pipe pipe,
3274                         uint32_t interrupt_mask,
3275                         uint32_t enabled_irq_mask);
3276static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3277                                       enum pipe pipe, uint32_t bits)
3278{
3279        bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3280}
3281static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3282                                        enum pipe pipe, uint32_t bits)
3283{
3284        bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3285}
3286void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3287                                  uint32_t interrupt_mask,
3288                                  uint32_t enabled_irq_mask);
3289static inline void
3290ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3291{
3292        ibx_display_interrupt_update(dev_priv, bits, bits);
3293}
3294static inline void
3295ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3296{
3297        ibx_display_interrupt_update(dev_priv, bits, 0);
3298}
3299
3300/* i915_gem.c */
3301int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3302                          struct drm_file *file_priv);
3303int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3304                         struct drm_file *file_priv);
3305int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3306                          struct drm_file *file_priv);
3307int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3308                        struct drm_file *file_priv);
3309int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3310                        struct drm_file *file_priv);
3311int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3312                              struct drm_file *file_priv);
3313int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3314                             struct drm_file *file_priv);
3315int i915_gem_execbuffer(struct drm_device *dev, void *data,
3316                        struct drm_file *file_priv);
3317int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3318                         struct drm_file *file_priv);
3319int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3320                        struct drm_file *file_priv);
3321int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3322                               struct drm_file *file);
3323int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3324                               struct drm_file *file);
3325int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3326                            struct drm_file *file_priv);
3327int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3328                           struct drm_file *file_priv);
3329int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3330                              struct drm_file *file_priv);
3331int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3332                              struct drm_file *file_priv);
3333int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3334void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3335int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3336                           struct drm_file *file);
3337int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3338                                struct drm_file *file_priv);
3339int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3340                        struct drm_file *file_priv);
3341void i915_gem_sanitize(struct drm_i915_private *i915);
3342int i915_gem_load_init(struct drm_i915_private *dev_priv);
3343void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3344void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3345int i915_gem_freeze(struct drm_i915_private *dev_priv);
3346int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3347
3348void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3349void i915_gem_object_free(struct drm_i915_gem_object *obj);
3350void i915_gem_object_init(struct drm_i915_gem_object *obj,
3351                         const struct drm_i915_gem_object_ops *ops);
3352struct drm_i915_gem_object *
3353i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3354struct drm_i915_gem_object *
3355i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3356                                 const void *data, size_t size);
3357void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3358void i915_gem_free_object(struct drm_gem_object *obj);
3359
3360static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3361{
3362        /* A single pass should suffice to release all the freed objects (along
3363         * most call paths) , but be a little more paranoid in that freeing
3364         * the objects does take a little amount of time, during which the rcu
3365         * callbacks could have added new objects into the freed list, and
3366         * armed the work again.
3367         */
3368        do {
3369                rcu_barrier();
3370        } while (flush_work(&i915->mm.free_work));
3371}
3372
3373static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3374{
3375        /*
3376         * Similar to objects above (see i915_gem_drain_freed-objects), in
3377         * general we have workers that are armed by RCU and then rearm
3378         * themselves in their callbacks. To be paranoid, we need to
3379         * drain the workqueue a second time after waiting for the RCU
3380         * grace period so that we catch work queued via RCU from the first
3381         * pass. As neither drain_workqueue() nor flush_workqueue() report
3382         * a result, we make an assumption that we only don't require more
3383         * than 2 passes to catch all recursive RCU delayed work.
3384         *
3385         */
3386        int pass = 2;
3387        do {
3388                rcu_barrier();
3389                drain_workqueue(i915->wq);
3390        } while (--pass);
3391}
3392
3393struct i915_vma * __must_check
3394i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3395                         const struct i915_ggtt_view *view,
3396                         u64 size,
3397                         u64 alignment,
3398                         u64 flags);
3399
3400int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3401void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3402
3403void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3404
3405static inline int __sg_page_count(const struct scatterlist *sg)
3406{
3407        return sg->length >> PAGE_SHIFT;
3408}
3409
3410struct scatterlist *
3411i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3412                       unsigned int n, unsigned int *offset);
3413
3414struct page *
3415i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3416                         unsigned int n);
3417
3418struct page *
3419i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3420                               unsigned int n);
3421
3422dma_addr_t
3423i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3424                                unsigned long n);
3425
3426void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3427                                 struct sg_table *pages);
3428int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3429
3430static inline int __must_check
3431i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3432{
3433        might_lock(&obj->mm.lock);
3434
3435        if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3436                return 0;
3437
3438        return __i915_gem_object_get_pages(obj);
3439}
3440
3441static inline void
3442__i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3443{
3444        GEM_BUG_ON(!obj->mm.pages);
3445
3446        atomic_inc(&obj->mm.pages_pin_count);
3447}
3448
3449static inline bool
3450i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3451{
3452        return atomic_read(&obj->mm.pages_pin_count);
3453}
3454
3455static inline void
3456__i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3457{
3458        GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3459        GEM_BUG_ON(!obj->mm.pages);
3460
3461        atomic_dec(&obj->mm.pages_pin_count);
3462}
3463
3464static inline void
3465i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3466{
3467        __i915_gem_object_unpin_pages(obj);
3468}
3469
3470enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3471        I915_MM_NORMAL = 0,
3472        I915_MM_SHRINKER
3473};
3474
3475void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3476                                 enum i915_mm_subclass subclass);
3477void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3478
3479enum i915_map_type {
3480        I915_MAP_WB = 0,
3481        I915_MAP_WC,
3482#define I915_MAP_OVERRIDE BIT(31)
3483        I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3484        I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3485};
3486
3487/**
3488 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3489 * @obj: the object to map into kernel address space
3490 * @type: the type of mapping, used to select pgprot_t
3491 *
3492 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3493 * pages and then returns a contiguous mapping of the backing storage into
3494 * the kernel address space. Based on the @type of mapping, the PTE will be
3495 * set to either WriteBack or WriteCombine (via pgprot_t).
3496 *
3497 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3498 * mapping is no longer required.
3499 *
3500 * Returns the pointer through which to access the mapped object, or an
3501 * ERR_PTR() on error.
3502 */
3503void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3504                                           enum i915_map_type type);
3505
3506/**
3507 * i915_gem_object_unpin_map - releases an earlier mapping
3508 * @obj: the object to unmap
3509 *
3510 * After pinning the object and mapping its pages, once you are finished
3511 * with your access, call i915_gem_object_unpin_map() to release the pin
3512 * upon the mapping. Once the pin count reaches zero, that mapping may be
3513 * removed.
3514 */
3515static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3516{
3517        i915_gem_object_unpin_pages(obj);
3518}
3519
3520int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3521                                    unsigned int *needs_clflush);
3522int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3523                                     unsigned int *needs_clflush);
3524#define CLFLUSH_BEFORE  BIT(0)
3525#define CLFLUSH_AFTER   BIT(1)
3526#define CLFLUSH_FLAGS   (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3527
3528static inline void
3529i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3530{
3531        i915_gem_object_unpin_pages(obj);
3532}
3533
3534int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3535void i915_vma_move_to_active(struct i915_vma *vma,
3536                             struct drm_i915_gem_request *req,
3537                             unsigned int flags);
3538int i915_gem_dumb_create(struct drm_file *file_priv,
3539                         struct drm_device *dev,
3540                         struct drm_mode_create_dumb *args);
3541int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3542                      uint32_t handle, uint64_t *offset);
3543int i915_gem_mmap_gtt_version(void);
3544
3545void i915_gem_track_fb(struct drm_i915_gem_object *old,
3546                       struct drm_i915_gem_object *new,
3547                       unsigned frontbuffer_bits);
3548
3549int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3550
3551struct drm_i915_gem_request *
3552i915_gem_find_active_request(struct intel_engine_cs *engine);
3553
3554void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3555
3556static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3557{
3558        return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3559}
3560
3561static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3562{
3563        return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3564}
3565
3566static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3567{
3568        return unlikely(test_bit(I915_WEDGED, &error->flags));
3569}
3570
3571static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3572{
3573        return i915_reset_backoff(error) | i915_terminally_wedged(error);
3574}
3575
3576static inline u32 i915_reset_count(struct i915_gpu_error *error)
3577{
3578        return READ_ONCE(error->reset_count);
3579}
3580
3581static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3582                                          struct intel_engine_cs *engine)
3583{
3584        return READ_ONCE(error->reset_engine_count[engine->id]);
3585}
3586
3587struct drm_i915_gem_request *
3588i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3589int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3590void i915_gem_reset(struct drm_i915_private *dev_priv);
3591void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3592void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3593void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3594bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3595void i915_gem_reset_engine(struct intel_engine_cs *engine,
3596                           struct drm_i915_gem_request *request);
3597
3598void i915_gem_init_mmio(struct drm_i915_private *i915);
3599int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3600int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3601void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3602void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3603int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3604                           unsigned int flags);
3605int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3606void i915_gem_resume(struct drm_i915_private *dev_priv);
3607int i915_gem_fault(struct vm_fault *vmf);
3608int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3609                         unsigned int flags,
3610                         long timeout,
3611                         struct intel_rps_client *rps);
3612int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3613                                  unsigned int flags,
3614                                  int priority);
3615#define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3616
3617int __must_check
3618i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3619int __must_check
3620i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3621int __must_check
3622i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3623struct i915_vma * __must_check
3624i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3625                                     u32 alignment,
3626                                     const struct i915_ggtt_view *view);
3627void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3628int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3629                                int align);
3630int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3631void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3632
3633int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3634                                    enum i915_cache_level cache_level);
3635
3636struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3637                                struct dma_buf *dma_buf);
3638
3639struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3640                                struct drm_gem_object *gem_obj, int flags);
3641
3642static inline struct i915_hw_ppgtt *
3643i915_vm_to_ppgtt(struct i915_address_space *vm)
3644{
3645        return container_of(vm, struct i915_hw_ppgtt, base);
3646}
3647
3648/* i915_gem_fence_reg.c */
3649int __must_check i915_vma_get_fence(struct i915_vma *vma);
3650int __must_check i915_vma_put_fence(struct i915_vma *vma);
3651
3652void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3653void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3654
3655void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3656void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3657                                       struct sg_table *pages);
3658void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3659                                         struct sg_table *pages);
3660
3661static inline struct i915_gem_context *
3662__i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3663{
3664        return idr_find(&file_priv->context_idr, id);
3665}
3666
3667static inline struct i915_gem_context *
3668i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3669{
3670        struct i915_gem_context *ctx;
3671
3672        rcu_read_lock();
3673        ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3674        if (ctx && !kref_get_unless_zero(&ctx->ref))
3675                ctx = NULL;
3676        rcu_read_unlock();
3677
3678        return ctx;
3679}
3680
3681static inline struct intel_timeline *
3682i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3683                                 struct intel_engine_cs *engine)
3684{
3685        struct i915_address_space *vm;
3686
3687        vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3688        return &vm->timeline.engine[engine->id];
3689}
3690
3691int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3692                         struct drm_file *file);
3693int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3694                               struct drm_file *file);
3695int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3696                                  struct drm_file *file);
3697void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3698                            struct i915_gem_context *ctx,
3699                            uint32_t *reg_state);
3700
3701/* i915_gem_evict.c */
3702int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3703                                          u64 min_size, u64 alignment,
3704                                          unsigned cache_level,
3705                                          u64 start, u64 end,
3706                                          unsigned flags);
3707int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3708                                         struct drm_mm_node *node,
3709                                         unsigned int flags);
3710int i915_gem_evict_vm(struct i915_address_space *vm);
3711
3712/* belongs in i915_gem_gtt.h */
3713static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3714{
3715        wmb();
3716        if (INTEL_GEN(dev_priv) < 6)
3717                intel_gtt_chipset_flush();
3718}
3719
3720/* i915_gem_stolen.c */
3721int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3722                                struct drm_mm_node *node, u64 size,
3723                                unsigned alignment);
3724int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3725                                         struct drm_mm_node *node, u64 size,
3726                                         unsigned alignment, u64 start,
3727                                         u64 end);
3728void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3729                                 struct drm_mm_node *node);
3730int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3731void i915_gem_cleanup_stolen(struct drm_device *dev);
3732struct drm_i915_gem_object *
3733i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3734struct drm_i915_gem_object *
3735i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3736                                               u32 stolen_offset,
3737                                               u32 gtt_offset,
3738                                               u32 size);
3739
3740/* i915_gem_internal.c */
3741struct drm_i915_gem_object *
3742i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3743                                phys_addr_t size);
3744
3745/* i915_gem_shrinker.c */
3746unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3747                              unsigned long target,
3748                              unsigned long *nr_scanned,
3749                              unsigned flags);
3750#define I915_SHRINK_PURGEABLE 0x1
3751#define I915_SHRINK_UNBOUND 0x2
3752#define I915_SHRINK_BOUND 0x4
3753#define I915_SHRINK_ACTIVE 0x8
3754#define I915_SHRINK_VMAPS 0x10
3755unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3756void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3757void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3758
3759
3760/* i915_gem_tiling.c */
3761static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3762{
3763        struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3764
3765        return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3766                i915_gem_object_is_tiled(obj);
3767}
3768
3769u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3770                        unsigned int tiling, unsigned int stride);
3771u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3772                             unsigned int tiling, unsigned int stride);
3773
3774/* i915_debugfs.c */
3775#ifdef CONFIG_DEBUG_FS
3776int i915_debugfs_register(struct drm_i915_private *dev_priv);
3777int i915_debugfs_connector_add(struct drm_connector *connector);
3778void intel_display_crc_init(struct drm_i915_private *dev_priv);
3779#else
3780static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3781static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3782{ return 0; }
3783static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3784#endif
3785
3786/* i915_gpu_error.c */
3787#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3788
3789__printf(2, 3)
3790void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3791int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3792                            const struct i915_gpu_state *gpu);
3793int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3794                              struct drm_i915_private *i915,
3795                              size_t count, loff_t pos);
3796static inline void i915_error_state_buf_release(
3797        struct drm_i915_error_state_buf *eb)
3798{
3799        kfree(eb->buf);
3800}
3801
3802struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3803void i915_capture_error_state(struct drm_i915_private *dev_priv,
3804                              u32 engine_mask,
3805                              const char *error_msg);
3806
3807static inline struct i915_gpu_state *
3808i915_gpu_state_get(struct i915_gpu_state *gpu)
3809{
3810        kref_get(&gpu->ref);
3811        return gpu;
3812}
3813
3814void __i915_gpu_state_free(struct kref *kref);
3815static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3816{
3817        if (gpu)
3818                kref_put(&gpu->ref, __i915_gpu_state_free);
3819}
3820
3821struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3822void i915_reset_error_state(struct drm_i915_private *i915);
3823
3824#else
3825
3826static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3827                                            u32 engine_mask,
3828                                            const char *error_msg)
3829{
3830}
3831
3832static inline struct i915_gpu_state *
3833i915_first_error_state(struct drm_i915_private *i915)
3834{
3835        return NULL;
3836}
3837
3838static inline void i915_reset_error_state(struct drm_i915_private *i915)
3839{
3840}
3841
3842#endif
3843
3844const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3845
3846/* i915_cmd_parser.c */
3847int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3848void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3849void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3850int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3851                            struct drm_i915_gem_object *batch_obj,
3852                            struct drm_i915_gem_object *shadow_batch_obj,
3853                            u32 batch_start_offset,
3854                            u32 batch_len,
3855                            bool is_master);
3856
3857/* i915_perf.c */
3858extern void i915_perf_init(struct drm_i915_private *dev_priv);
3859extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3860extern void i915_perf_register(struct drm_i915_private *dev_priv);
3861extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3862
3863/* i915_suspend.c */
3864extern int i915_save_state(struct drm_i915_private *dev_priv);
3865extern int i915_restore_state(struct drm_i915_private *dev_priv);
3866
3867/* i915_sysfs.c */
3868void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3869void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3870
3871/* intel_lpe_audio.c */
3872int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3873void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3874void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3875void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3876                            enum pipe pipe, enum port port,
3877                            const void *eld, int ls_clock, bool dp_output);
3878
3879/* intel_i2c.c */
3880extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3881extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3882extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3883                                     unsigned int pin);
3884
3885extern struct i2c_adapter *
3886intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3887extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3888extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3889static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3890{
3891        return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3892}
3893extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3894
3895/* intel_bios.c */
3896void intel_bios_init(struct drm_i915_private *dev_priv);
3897bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3898bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3899bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3900bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3901bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3902bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3903bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3904bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3905                                     enum port port);
3906bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3907                                enum port port);
3908
3909
3910/* intel_opregion.c */
3911#ifdef CONFIG_ACPI
3912extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3913extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3914extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3915extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3916extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3917                                         bool enable);
3918extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3919                                         pci_power_t state);
3920extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3921#else
3922static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3923static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3924static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3925static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3926{
3927}
3928static inline int
3929intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3930{
3931        return 0;
3932}
3933static inline int
3934intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3935{
3936        return 0;
3937}
3938static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3939{
3940        return -ENODEV;
3941}
3942#endif
3943
3944/* intel_acpi.c */
3945#ifdef CONFIG_ACPI
3946extern void intel_register_dsm_handler(void);
3947extern void intel_unregister_dsm_handler(void);
3948#else
3949static inline void intel_register_dsm_handler(void) { return; }
3950static inline void intel_unregister_dsm_handler(void) { return; }
3951#endif /* CONFIG_ACPI */
3952
3953/* intel_device_info.c */
3954static inline struct intel_device_info *
3955mkwrite_device_info(struct drm_i915_private *dev_priv)
3956{
3957        return (struct intel_device_info *)&dev_priv->info;
3958}
3959
3960const char *intel_platform_name(enum intel_platform platform);
3961void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3962void intel_device_info_dump(struct drm_i915_private *dev_priv);
3963
3964/* modesetting */
3965extern void intel_modeset_init_hw(struct drm_device *dev);
3966extern int intel_modeset_init(struct drm_device *dev);
3967extern void intel_modeset_gem_init(struct drm_device *dev);
3968extern void intel_modeset_cleanup(struct drm_device *dev);
3969extern int intel_connector_register(struct drm_connector *);
3970extern void intel_connector_unregister(struct drm_connector *);
3971extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3972                                       bool state);
3973extern void intel_display_resume(struct drm_device *dev);
3974extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3975extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3976extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3977extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3978extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3979extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3980                                  bool enable);
3981
3982int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3983                        struct drm_file *file);
3984
3985/* overlay */
3986extern struct intel_overlay_error_state *
3987intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3988extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3989                                            struct intel_overlay_error_state *error);
3990
3991extern struct intel_display_error_state *
3992intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3993extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3994                                            struct intel_display_error_state *error);
3995
3996int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3997int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3998int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3999                      u32 reply_mask, u32 reply, int timeout_base_ms);
4000
4001/* intel_sideband.c */
4002u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4003int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4004u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4005u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4006void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4007u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4008void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4009u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4010void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4011u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4012void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4013u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4014void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4015u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4016                   enum intel_sbi_destination destination);
4017void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4018                     enum intel_sbi_destination destination);
4019u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4020void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4021
4022/* intel_dpio_phy.c */
4023void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4024                             enum dpio_phy *phy, enum dpio_channel *ch);
4025void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4026                                  enum port port, u32 margin, u32 scale,
4027                                  u32 enable, u32 deemphasis);
4028void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4029void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4030bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4031                            enum dpio_phy phy);
4032bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4033                              enum dpio_phy phy);
4034uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4035                                             uint8_t lane_count);
4036void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4037                                     uint8_t lane_lat_optim_mask);
4038uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4039
4040void chv_set_phy_signal_level(struct intel_encoder *encoder,
4041                              u32 deemph_reg_value, u32 margin_reg_value,
4042                              bool uniq_trans_scale);
4043void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4044                              bool reset);
4045void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4046void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4047void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4048void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4049
4050void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4051                              u32 demph_reg_value, u32 preemph_reg_value,
4052                              u32 uniqtranscale_reg_value, u32 tx3_demph);
4053void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4054void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4055void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4056
4057int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4058int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4059u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4060                           const i915_reg_t reg);
4061
4062#define I915_READ8(reg)         dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4063#define I915_WRITE8(reg, val)   dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4064
4065#define I915_READ16(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4066#define I915_WRITE16(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4067#define I915_READ16_NOTRACE(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4068#define I915_WRITE16_NOTRACE(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4069
4070#define I915_READ(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4071#define I915_WRITE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4072#define I915_READ_NOTRACE(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4073#define I915_WRITE_NOTRACE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4074
4075/* Be very careful with read/write 64-bit values. On 32-bit machines, they
4076 * will be implemented using 2 32-bit writes in an arbitrary order with
4077 * an arbitrary delay between them. This can cause the hardware to
4078 * act upon the intermediate value, possibly leading to corruption and
4079 * machine death. For this reason we do not support I915_WRITE64, or
4080 * dev_priv->uncore.funcs.mmio_writeq.
4081 *
4082 * When reading a 64-bit value as two 32-bit values, the delay may cause
4083 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4084 * occasionally a 64-bit register does not actualy support a full readq
4085 * and must be read using two 32-bit reads.
4086 *
4087 * You have been warned.
4088 */
4089#define I915_READ64(reg)        dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4090
4091#define I915_READ64_2x32(lower_reg, upper_reg) ({                       \
4092        u32 upper, lower, old_upper, loop = 0;                          \
4093        upper = I915_READ(upper_reg);                                   \
4094        do {                                                            \
4095                old_upper = upper;                                      \
4096                lower = I915_READ(lower_reg);                           \
4097                upper = I915_READ(upper_reg);                           \
4098        } while (upper != old_upper && loop++ < 2);                     \
4099        (u64)upper << 32 | lower; })
4100
4101#define POSTING_READ(reg)       (void)I915_READ_NOTRACE(reg)
4102#define POSTING_READ16(reg)     (void)I915_READ16_NOTRACE(reg)
4103
4104#define __raw_read(x, s) \
4105static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4106                                             i915_reg_t reg) \
4107{ \
4108        return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4109}
4110
4111#define __raw_write(x, s) \
4112static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4113                                       i915_reg_t reg, uint##x##_t val) \
4114{ \
4115        write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4116}
4117__raw_read(8, b)
4118__raw_read(16, w)
4119__raw_read(32, l)
4120__raw_read(64, q)
4121
4122__raw_write(8, b)
4123__raw_write(16, w)
4124__raw_write(32, l)
4125__raw_write(64, q)
4126
4127#undef __raw_read
4128#undef __raw_write
4129
4130/* These are untraced mmio-accessors that are only valid to be used inside
4131 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4132 * controlled.
4133 *
4134 * Think twice, and think again, before using these.
4135 *
4136 * As an example, these accessors can possibly be used between:
4137 *
4138 * spin_lock_irq(&dev_priv->uncore.lock);
4139 * intel_uncore_forcewake_get__locked();
4140 *
4141 * and
4142 *
4143 * intel_uncore_forcewake_put__locked();
4144 * spin_unlock_irq(&dev_priv->uncore.lock);
4145 *
4146 *
4147 * Note: some registers may not need forcewake held, so
4148 * intel_uncore_forcewake_{get,put} can be omitted, see
4149 * intel_uncore_forcewake_for_reg().
4150 *
4151 * Certain architectures will die if the same cacheline is concurrently accessed
4152 * by different clients (e.g. on Ivybridge). Access to registers should
4153 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4154 * a more localised lock guarding all access to that bank of registers.
4155 */
4156#define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4157#define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4158#define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4159#define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4160
4161/* "Broadcast RGB" property */
4162#define INTEL_BROADCAST_RGB_AUTO 0
4163#define INTEL_BROADCAST_RGB_FULL 1
4164#define INTEL_BROADCAST_RGB_LIMITED 2
4165
4166static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4167{
4168        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4169                return VLV_VGACNTRL;
4170        else if (INTEL_GEN(dev_priv) >= 5)
4171                return CPU_VGACNTRL;
4172        else
4173                return VGACNTRL;
4174}
4175
4176static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4177{
4178        unsigned long j = msecs_to_jiffies(m);
4179
4180        return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4181}
4182
4183static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4184{
4185        /* nsecs_to_jiffies64() does not guard against overflow */
4186        if (NSEC_PER_SEC % HZ &&
4187            div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4188                return MAX_JIFFY_OFFSET;
4189
4190        return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4191}
4192
4193static inline unsigned long
4194timespec_to_jiffies_timeout(const struct timespec *value)
4195{
4196        unsigned long j = timespec_to_jiffies(value);
4197
4198        return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4199}
4200
4201/*
4202 * If you need to wait X milliseconds between events A and B, but event B
4203 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4204 * when event A happened, then just before event B you call this function and
4205 * pass the timestamp as the first argument, and X as the second argument.
4206 */
4207static inline void
4208wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4209{
4210        unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4211
4212        /*
4213         * Don't re-read the value of "jiffies" every time since it may change
4214         * behind our back and break the math.
4215         */
4216        tmp_jiffies = jiffies;
4217        target_jiffies = timestamp_jiffies +
4218                         msecs_to_jiffies_timeout(to_wait_ms);
4219
4220        if (time_after(target_jiffies, tmp_jiffies)) {
4221                remaining_jiffies = target_jiffies - tmp_jiffies;
4222                while (remaining_jiffies)
4223                        remaining_jiffies =
4224                            schedule_timeout_uninterruptible(remaining_jiffies);
4225        }
4226}
4227
4228static inline bool
4229__i915_request_irq_complete(const struct drm_i915_gem_request *req)
4230{
4231        struct intel_engine_cs *engine = req->engine;
4232        u32 seqno;
4233
4234        /* Note that the engine may have wrapped around the seqno, and
4235         * so our request->global_seqno will be ahead of the hardware,
4236         * even though it completed the request before wrapping. We catch
4237         * this by kicking all the waiters before resetting the seqno
4238         * in hardware, and also signal the fence.
4239         */
4240        if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4241                return true;
4242
4243        /* The request was dequeued before we were awoken. We check after
4244         * inspecting the hw to confirm that this was the same request
4245         * that generated the HWS update. The memory barriers within
4246         * the request execution are sufficient to ensure that a check
4247         * after reading the value from hw matches this request.
4248         */
4249        seqno = i915_gem_request_global_seqno(req);
4250        if (!seqno)
4251                return false;
4252
4253        /* Before we do the heavier coherent read of the seqno,
4254         * check the value (hopefully) in the CPU cacheline.
4255         */
4256        if (__i915_gem_request_completed(req, seqno))
4257                return true;
4258
4259        /* Ensure our read of the seqno is coherent so that we
4260         * do not "miss an interrupt" (i.e. if this is the last
4261         * request and the seqno write from the GPU is not visible
4262         * by the time the interrupt fires, we will see that the
4263         * request is incomplete and go back to sleep awaiting
4264         * another interrupt that will never come.)
4265         *
4266         * Strictly, we only need to do this once after an interrupt,
4267         * but it is easier and safer to do it every time the waiter
4268         * is woken.
4269         */
4270        if (engine->irq_seqno_barrier &&
4271            test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4272                struct intel_breadcrumbs *b = &engine->breadcrumbs;
4273
4274                /* The ordering of irq_posted versus applying the barrier
4275                 * is crucial. The clearing of the current irq_posted must
4276                 * be visible before we perform the barrier operation,
4277                 * such that if a subsequent interrupt arrives, irq_posted
4278                 * is reasserted and our task rewoken (which causes us to
4279                 * do another __i915_request_irq_complete() immediately
4280                 * and reapply the barrier). Conversely, if the clear
4281                 * occurs after the barrier, then an interrupt that arrived
4282                 * whilst we waited on the barrier would not trigger a
4283                 * barrier on the next pass, and the read may not see the
4284                 * seqno update.
4285                 */
4286                engine->irq_seqno_barrier(engine);
4287
4288                /* If we consume the irq, but we are no longer the bottom-half,
4289                 * the real bottom-half may not have serialised their own
4290                 * seqno check with the irq-barrier (i.e. may have inspected
4291                 * the seqno before we believe it coherent since they see
4292                 * irq_posted == false but we are still running).
4293                 */
4294                spin_lock_irq(&b->irq_lock);
4295                if (b->irq_wait && b->irq_wait->tsk != current)
4296                        /* Note that if the bottom-half is changed as we
4297                         * are sending the wake-up, the new bottom-half will
4298                         * be woken by whomever made the change. We only have
4299                         * to worry about when we steal the irq-posted for
4300                         * ourself.
4301                         */
4302                        wake_up_process(b->irq_wait->tsk);
4303                spin_unlock_irq(&b->irq_lock);
4304
4305                if (__i915_gem_request_completed(req, seqno))
4306                        return true;
4307        }
4308
4309        return false;
4310}
4311
4312void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4313bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4314
4315/* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4316 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4317 * perform the operation. To check beforehand, pass in the parameters to
4318 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4319 * you only need to pass in the minor offsets, page-aligned pointers are
4320 * always valid.
4321 *
4322 * For just checking for SSE4.1, in the foreknowledge that the future use
4323 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4324 */
4325#define i915_can_memcpy_from_wc(dst, src, len) \
4326        i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4327
4328#define i915_has_memcpy_from_wc() \
4329        i915_memcpy_from_wc(NULL, NULL, 0)
4330
4331/* i915_mm.c */
4332int remap_io_mapping(struct vm_area_struct *vma,
4333                     unsigned long addr, unsigned long pfn, unsigned long size,
4334                     struct io_mapping *iomap);
4335
4336static inline bool
4337intel_engine_can_store_dword(struct intel_engine_cs *engine)
4338{
4339        return __intel_engine_can_store_dword(INTEL_GEN(engine->i915),
4340                                              engine->class);
4341}
4342
4343#endif
4344