linux/drivers/md/dm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27
  28#define DM_MSG_PREFIX "core"
  29
  30/*
  31 * Cookies are numeric values sent with CHANGE and REMOVE
  32 * uevents while resuming, removing or renaming the device.
  33 */
  34#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  35#define DM_COOKIE_LENGTH 24
  36
  37static const char *_name = DM_NAME;
  38
  39static unsigned int major = 0;
  40static unsigned int _major = 0;
  41
  42static DEFINE_IDR(_minor_idr);
  43
  44static DEFINE_SPINLOCK(_minor_lock);
  45
  46static void do_deferred_remove(struct work_struct *w);
  47
  48static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  49
  50static struct workqueue_struct *deferred_remove_workqueue;
  51
  52atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  53DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  54
  55void dm_issue_global_event(void)
  56{
  57        atomic_inc(&dm_global_event_nr);
  58        wake_up(&dm_global_eventq);
  59}
  60
  61/*
  62 * One of these is allocated per bio.
  63 */
  64struct dm_io {
  65        struct mapped_device *md;
  66        blk_status_t status;
  67        atomic_t io_count;
  68        struct bio *bio;
  69        unsigned long start_time;
  70        spinlock_t endio_lock;
  71        struct dm_stats_aux stats_aux;
  72};
  73
  74#define MINOR_ALLOCED ((void *)-1)
  75
  76/*
  77 * Bits for the md->flags field.
  78 */
  79#define DMF_BLOCK_IO_FOR_SUSPEND 0
  80#define DMF_SUSPENDED 1
  81#define DMF_FROZEN 2
  82#define DMF_FREEING 3
  83#define DMF_DELETING 4
  84#define DMF_NOFLUSH_SUSPENDING 5
  85#define DMF_DEFERRED_REMOVE 6
  86#define DMF_SUSPENDED_INTERNALLY 7
  87
  88#define DM_NUMA_NODE NUMA_NO_NODE
  89static int dm_numa_node = DM_NUMA_NODE;
  90
  91/*
  92 * For mempools pre-allocation at the table loading time.
  93 */
  94struct dm_md_mempools {
  95        mempool_t *io_pool;
  96        struct bio_set *bs;
  97};
  98
  99struct table_device {
 100        struct list_head list;
 101        atomic_t count;
 102        struct dm_dev dm_dev;
 103};
 104
 105static struct kmem_cache *_io_cache;
 106static struct kmem_cache *_rq_tio_cache;
 107static struct kmem_cache *_rq_cache;
 108
 109/*
 110 * Bio-based DM's mempools' reserved IOs set by the user.
 111 */
 112#define RESERVED_BIO_BASED_IOS          16
 113static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 114
 115static int __dm_get_module_param_int(int *module_param, int min, int max)
 116{
 117        int param = ACCESS_ONCE(*module_param);
 118        int modified_param = 0;
 119        bool modified = true;
 120
 121        if (param < min)
 122                modified_param = min;
 123        else if (param > max)
 124                modified_param = max;
 125        else
 126                modified = false;
 127
 128        if (modified) {
 129                (void)cmpxchg(module_param, param, modified_param);
 130                param = modified_param;
 131        }
 132
 133        return param;
 134}
 135
 136unsigned __dm_get_module_param(unsigned *module_param,
 137                               unsigned def, unsigned max)
 138{
 139        unsigned param = ACCESS_ONCE(*module_param);
 140        unsigned modified_param = 0;
 141
 142        if (!param)
 143                modified_param = def;
 144        else if (param > max)
 145                modified_param = max;
 146
 147        if (modified_param) {
 148                (void)cmpxchg(module_param, param, modified_param);
 149                param = modified_param;
 150        }
 151
 152        return param;
 153}
 154
 155unsigned dm_get_reserved_bio_based_ios(void)
 156{
 157        return __dm_get_module_param(&reserved_bio_based_ios,
 158                                     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 159}
 160EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 161
 162static unsigned dm_get_numa_node(void)
 163{
 164        return __dm_get_module_param_int(&dm_numa_node,
 165                                         DM_NUMA_NODE, num_online_nodes() - 1);
 166}
 167
 168static int __init local_init(void)
 169{
 170        int r = -ENOMEM;
 171
 172        /* allocate a slab for the dm_ios */
 173        _io_cache = KMEM_CACHE(dm_io, 0);
 174        if (!_io_cache)
 175                return r;
 176
 177        _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 178        if (!_rq_tio_cache)
 179                goto out_free_io_cache;
 180
 181        _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 182                                      __alignof__(struct request), 0, NULL);
 183        if (!_rq_cache)
 184                goto out_free_rq_tio_cache;
 185
 186        r = dm_uevent_init();
 187        if (r)
 188                goto out_free_rq_cache;
 189
 190        deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 191        if (!deferred_remove_workqueue) {
 192                r = -ENOMEM;
 193                goto out_uevent_exit;
 194        }
 195
 196        _major = major;
 197        r = register_blkdev(_major, _name);
 198        if (r < 0)
 199                goto out_free_workqueue;
 200
 201        if (!_major)
 202                _major = r;
 203
 204        return 0;
 205
 206out_free_workqueue:
 207        destroy_workqueue(deferred_remove_workqueue);
 208out_uevent_exit:
 209        dm_uevent_exit();
 210out_free_rq_cache:
 211        kmem_cache_destroy(_rq_cache);
 212out_free_rq_tio_cache:
 213        kmem_cache_destroy(_rq_tio_cache);
 214out_free_io_cache:
 215        kmem_cache_destroy(_io_cache);
 216
 217        return r;
 218}
 219
 220static void local_exit(void)
 221{
 222        flush_scheduled_work();
 223        destroy_workqueue(deferred_remove_workqueue);
 224
 225        kmem_cache_destroy(_rq_cache);
 226        kmem_cache_destroy(_rq_tio_cache);
 227        kmem_cache_destroy(_io_cache);
 228        unregister_blkdev(_major, _name);
 229        dm_uevent_exit();
 230
 231        _major = 0;
 232
 233        DMINFO("cleaned up");
 234}
 235
 236static int (*_inits[])(void) __initdata = {
 237        local_init,
 238        dm_target_init,
 239        dm_linear_init,
 240        dm_stripe_init,
 241        dm_io_init,
 242        dm_kcopyd_init,
 243        dm_interface_init,
 244        dm_statistics_init,
 245};
 246
 247static void (*_exits[])(void) = {
 248        local_exit,
 249        dm_target_exit,
 250        dm_linear_exit,
 251        dm_stripe_exit,
 252        dm_io_exit,
 253        dm_kcopyd_exit,
 254        dm_interface_exit,
 255        dm_statistics_exit,
 256};
 257
 258static int __init dm_init(void)
 259{
 260        const int count = ARRAY_SIZE(_inits);
 261
 262        int r, i;
 263
 264        for (i = 0; i < count; i++) {
 265                r = _inits[i]();
 266                if (r)
 267                        goto bad;
 268        }
 269
 270        return 0;
 271
 272      bad:
 273        while (i--)
 274                _exits[i]();
 275
 276        return r;
 277}
 278
 279static void __exit dm_exit(void)
 280{
 281        int i = ARRAY_SIZE(_exits);
 282
 283        while (i--)
 284                _exits[i]();
 285
 286        /*
 287         * Should be empty by this point.
 288         */
 289        idr_destroy(&_minor_idr);
 290}
 291
 292/*
 293 * Block device functions
 294 */
 295int dm_deleting_md(struct mapped_device *md)
 296{
 297        return test_bit(DMF_DELETING, &md->flags);
 298}
 299
 300static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 301{
 302        struct mapped_device *md;
 303
 304        spin_lock(&_minor_lock);
 305
 306        md = bdev->bd_disk->private_data;
 307        if (!md)
 308                goto out;
 309
 310        if (test_bit(DMF_FREEING, &md->flags) ||
 311            dm_deleting_md(md)) {
 312                md = NULL;
 313                goto out;
 314        }
 315
 316        dm_get(md);
 317        atomic_inc(&md->open_count);
 318out:
 319        spin_unlock(&_minor_lock);
 320
 321        return md ? 0 : -ENXIO;
 322}
 323
 324static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 325{
 326        struct mapped_device *md;
 327
 328        spin_lock(&_minor_lock);
 329
 330        md = disk->private_data;
 331        if (WARN_ON(!md))
 332                goto out;
 333
 334        if (atomic_dec_and_test(&md->open_count) &&
 335            (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 336                queue_work(deferred_remove_workqueue, &deferred_remove_work);
 337
 338        dm_put(md);
 339out:
 340        spin_unlock(&_minor_lock);
 341}
 342
 343int dm_open_count(struct mapped_device *md)
 344{
 345        return atomic_read(&md->open_count);
 346}
 347
 348/*
 349 * Guarantees nothing is using the device before it's deleted.
 350 */
 351int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 352{
 353        int r = 0;
 354
 355        spin_lock(&_minor_lock);
 356
 357        if (dm_open_count(md)) {
 358                r = -EBUSY;
 359                if (mark_deferred)
 360                        set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 361        } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 362                r = -EEXIST;
 363        else
 364                set_bit(DMF_DELETING, &md->flags);
 365
 366        spin_unlock(&_minor_lock);
 367
 368        return r;
 369}
 370
 371int dm_cancel_deferred_remove(struct mapped_device *md)
 372{
 373        int r = 0;
 374
 375        spin_lock(&_minor_lock);
 376
 377        if (test_bit(DMF_DELETING, &md->flags))
 378                r = -EBUSY;
 379        else
 380                clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 381
 382        spin_unlock(&_minor_lock);
 383
 384        return r;
 385}
 386
 387static void do_deferred_remove(struct work_struct *w)
 388{
 389        dm_deferred_remove();
 390}
 391
 392sector_t dm_get_size(struct mapped_device *md)
 393{
 394        return get_capacity(md->disk);
 395}
 396
 397struct request_queue *dm_get_md_queue(struct mapped_device *md)
 398{
 399        return md->queue;
 400}
 401
 402struct dm_stats *dm_get_stats(struct mapped_device *md)
 403{
 404        return &md->stats;
 405}
 406
 407static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 408{
 409        struct mapped_device *md = bdev->bd_disk->private_data;
 410
 411        return dm_get_geometry(md, geo);
 412}
 413
 414static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
 415                                  struct block_device **bdev,
 416                                  fmode_t *mode)
 417{
 418        struct dm_target *tgt;
 419        struct dm_table *map;
 420        int srcu_idx, r;
 421
 422retry:
 423        r = -ENOTTY;
 424        map = dm_get_live_table(md, &srcu_idx);
 425        if (!map || !dm_table_get_size(map))
 426                goto out;
 427
 428        /* We only support devices that have a single target */
 429        if (dm_table_get_num_targets(map) != 1)
 430                goto out;
 431
 432        tgt = dm_table_get_target(map, 0);
 433        if (!tgt->type->prepare_ioctl)
 434                goto out;
 435
 436        if (dm_suspended_md(md)) {
 437                r = -EAGAIN;
 438                goto out;
 439        }
 440
 441        r = tgt->type->prepare_ioctl(tgt, bdev, mode);
 442        if (r < 0)
 443                goto out;
 444
 445        bdgrab(*bdev);
 446        dm_put_live_table(md, srcu_idx);
 447        return r;
 448
 449out:
 450        dm_put_live_table(md, srcu_idx);
 451        if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 452                msleep(10);
 453                goto retry;
 454        }
 455        return r;
 456}
 457
 458static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 459                        unsigned int cmd, unsigned long arg)
 460{
 461        struct mapped_device *md = bdev->bd_disk->private_data;
 462        int r;
 463
 464        r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
 465        if (r < 0)
 466                return r;
 467
 468        if (r > 0) {
 469                /*
 470                 * Target determined this ioctl is being issued against a
 471                 * subset of the parent bdev; require extra privileges.
 472                 */
 473                if (!capable(CAP_SYS_RAWIO)) {
 474                        DMWARN_LIMIT(
 475        "%s: sending ioctl %x to DM device without required privilege.",
 476                                current->comm, cmd);
 477                        r = -ENOIOCTLCMD;
 478                        goto out;
 479                }
 480        }
 481
 482        r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 483out:
 484        bdput(bdev);
 485        return r;
 486}
 487
 488static struct dm_io *alloc_io(struct mapped_device *md)
 489{
 490        return mempool_alloc(md->io_pool, GFP_NOIO);
 491}
 492
 493static void free_io(struct mapped_device *md, struct dm_io *io)
 494{
 495        mempool_free(io, md->io_pool);
 496}
 497
 498static void free_tio(struct dm_target_io *tio)
 499{
 500        bio_put(&tio->clone);
 501}
 502
 503int md_in_flight(struct mapped_device *md)
 504{
 505        return atomic_read(&md->pending[READ]) +
 506               atomic_read(&md->pending[WRITE]);
 507}
 508
 509static void start_io_acct(struct dm_io *io)
 510{
 511        struct mapped_device *md = io->md;
 512        struct bio *bio = io->bio;
 513        int cpu;
 514        int rw = bio_data_dir(bio);
 515
 516        io->start_time = jiffies;
 517
 518        cpu = part_stat_lock();
 519        part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
 520        part_stat_unlock();
 521        atomic_set(&dm_disk(md)->part0.in_flight[rw],
 522                atomic_inc_return(&md->pending[rw]));
 523
 524        if (unlikely(dm_stats_used(&md->stats)))
 525                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 526                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 527                                    false, 0, &io->stats_aux);
 528}
 529
 530static void end_io_acct(struct dm_io *io)
 531{
 532        struct mapped_device *md = io->md;
 533        struct bio *bio = io->bio;
 534        unsigned long duration = jiffies - io->start_time;
 535        int pending;
 536        int rw = bio_data_dir(bio);
 537
 538        generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
 539
 540        if (unlikely(dm_stats_used(&md->stats)))
 541                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 542                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 543                                    true, duration, &io->stats_aux);
 544
 545        /*
 546         * After this is decremented the bio must not be touched if it is
 547         * a flush.
 548         */
 549        pending = atomic_dec_return(&md->pending[rw]);
 550        atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 551        pending += atomic_read(&md->pending[rw^0x1]);
 552
 553        /* nudge anyone waiting on suspend queue */
 554        if (!pending)
 555                wake_up(&md->wait);
 556}
 557
 558/*
 559 * Add the bio to the list of deferred io.
 560 */
 561static void queue_io(struct mapped_device *md, struct bio *bio)
 562{
 563        unsigned long flags;
 564
 565        spin_lock_irqsave(&md->deferred_lock, flags);
 566        bio_list_add(&md->deferred, bio);
 567        spin_unlock_irqrestore(&md->deferred_lock, flags);
 568        queue_work(md->wq, &md->work);
 569}
 570
 571/*
 572 * Everyone (including functions in this file), should use this
 573 * function to access the md->map field, and make sure they call
 574 * dm_put_live_table() when finished.
 575 */
 576struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 577{
 578        *srcu_idx = srcu_read_lock(&md->io_barrier);
 579
 580        return srcu_dereference(md->map, &md->io_barrier);
 581}
 582
 583void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 584{
 585        srcu_read_unlock(&md->io_barrier, srcu_idx);
 586}
 587
 588void dm_sync_table(struct mapped_device *md)
 589{
 590        synchronize_srcu(&md->io_barrier);
 591        synchronize_rcu_expedited();
 592}
 593
 594/*
 595 * A fast alternative to dm_get_live_table/dm_put_live_table.
 596 * The caller must not block between these two functions.
 597 */
 598static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 599{
 600        rcu_read_lock();
 601        return rcu_dereference(md->map);
 602}
 603
 604static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 605{
 606        rcu_read_unlock();
 607}
 608
 609/*
 610 * Open a table device so we can use it as a map destination.
 611 */
 612static int open_table_device(struct table_device *td, dev_t dev,
 613                             struct mapped_device *md)
 614{
 615        static char *_claim_ptr = "I belong to device-mapper";
 616        struct block_device *bdev;
 617
 618        int r;
 619
 620        BUG_ON(td->dm_dev.bdev);
 621
 622        bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 623        if (IS_ERR(bdev))
 624                return PTR_ERR(bdev);
 625
 626        r = bd_link_disk_holder(bdev, dm_disk(md));
 627        if (r) {
 628                blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 629                return r;
 630        }
 631
 632        td->dm_dev.bdev = bdev;
 633        td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 634        return 0;
 635}
 636
 637/*
 638 * Close a table device that we've been using.
 639 */
 640static void close_table_device(struct table_device *td, struct mapped_device *md)
 641{
 642        if (!td->dm_dev.bdev)
 643                return;
 644
 645        bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 646        blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 647        put_dax(td->dm_dev.dax_dev);
 648        td->dm_dev.bdev = NULL;
 649        td->dm_dev.dax_dev = NULL;
 650}
 651
 652static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 653                                              fmode_t mode) {
 654        struct table_device *td;
 655
 656        list_for_each_entry(td, l, list)
 657                if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 658                        return td;
 659
 660        return NULL;
 661}
 662
 663int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 664                        struct dm_dev **result) {
 665        int r;
 666        struct table_device *td;
 667
 668        mutex_lock(&md->table_devices_lock);
 669        td = find_table_device(&md->table_devices, dev, mode);
 670        if (!td) {
 671                td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 672                if (!td) {
 673                        mutex_unlock(&md->table_devices_lock);
 674                        return -ENOMEM;
 675                }
 676
 677                td->dm_dev.mode = mode;
 678                td->dm_dev.bdev = NULL;
 679
 680                if ((r = open_table_device(td, dev, md))) {
 681                        mutex_unlock(&md->table_devices_lock);
 682                        kfree(td);
 683                        return r;
 684                }
 685
 686                format_dev_t(td->dm_dev.name, dev);
 687
 688                atomic_set(&td->count, 0);
 689                list_add(&td->list, &md->table_devices);
 690        }
 691        atomic_inc(&td->count);
 692        mutex_unlock(&md->table_devices_lock);
 693
 694        *result = &td->dm_dev;
 695        return 0;
 696}
 697EXPORT_SYMBOL_GPL(dm_get_table_device);
 698
 699void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 700{
 701        struct table_device *td = container_of(d, struct table_device, dm_dev);
 702
 703        mutex_lock(&md->table_devices_lock);
 704        if (atomic_dec_and_test(&td->count)) {
 705                close_table_device(td, md);
 706                list_del(&td->list);
 707                kfree(td);
 708        }
 709        mutex_unlock(&md->table_devices_lock);
 710}
 711EXPORT_SYMBOL(dm_put_table_device);
 712
 713static void free_table_devices(struct list_head *devices)
 714{
 715        struct list_head *tmp, *next;
 716
 717        list_for_each_safe(tmp, next, devices) {
 718                struct table_device *td = list_entry(tmp, struct table_device, list);
 719
 720                DMWARN("dm_destroy: %s still exists with %d references",
 721                       td->dm_dev.name, atomic_read(&td->count));
 722                kfree(td);
 723        }
 724}
 725
 726/*
 727 * Get the geometry associated with a dm device
 728 */
 729int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 730{
 731        *geo = md->geometry;
 732
 733        return 0;
 734}
 735
 736/*
 737 * Set the geometry of a device.
 738 */
 739int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 740{
 741        sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 742
 743        if (geo->start > sz) {
 744                DMWARN("Start sector is beyond the geometry limits.");
 745                return -EINVAL;
 746        }
 747
 748        md->geometry = *geo;
 749
 750        return 0;
 751}
 752
 753/*-----------------------------------------------------------------
 754 * CRUD START:
 755 *   A more elegant soln is in the works that uses the queue
 756 *   merge fn, unfortunately there are a couple of changes to
 757 *   the block layer that I want to make for this.  So in the
 758 *   interests of getting something for people to use I give
 759 *   you this clearly demarcated crap.
 760 *---------------------------------------------------------------*/
 761
 762static int __noflush_suspending(struct mapped_device *md)
 763{
 764        return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 765}
 766
 767/*
 768 * Decrements the number of outstanding ios that a bio has been
 769 * cloned into, completing the original io if necc.
 770 */
 771static void dec_pending(struct dm_io *io, blk_status_t error)
 772{
 773        unsigned long flags;
 774        blk_status_t io_error;
 775        struct bio *bio;
 776        struct mapped_device *md = io->md;
 777
 778        /* Push-back supersedes any I/O errors */
 779        if (unlikely(error)) {
 780                spin_lock_irqsave(&io->endio_lock, flags);
 781                if (!(io->status == BLK_STS_DM_REQUEUE &&
 782                                __noflush_suspending(md)))
 783                        io->status = error;
 784                spin_unlock_irqrestore(&io->endio_lock, flags);
 785        }
 786
 787        if (atomic_dec_and_test(&io->io_count)) {
 788                if (io->status == BLK_STS_DM_REQUEUE) {
 789                        /*
 790                         * Target requested pushing back the I/O.
 791                         */
 792                        spin_lock_irqsave(&md->deferred_lock, flags);
 793                        if (__noflush_suspending(md))
 794                                bio_list_add_head(&md->deferred, io->bio);
 795                        else
 796                                /* noflush suspend was interrupted. */
 797                                io->status = BLK_STS_IOERR;
 798                        spin_unlock_irqrestore(&md->deferred_lock, flags);
 799                }
 800
 801                io_error = io->status;
 802                bio = io->bio;
 803                end_io_acct(io);
 804                free_io(md, io);
 805
 806                if (io_error == BLK_STS_DM_REQUEUE)
 807                        return;
 808
 809                if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 810                        /*
 811                         * Preflush done for flush with data, reissue
 812                         * without REQ_PREFLUSH.
 813                         */
 814                        bio->bi_opf &= ~REQ_PREFLUSH;
 815                        queue_io(md, bio);
 816                } else {
 817                        /* done with normal IO or empty flush */
 818                        bio->bi_status = io_error;
 819                        bio_endio(bio);
 820                }
 821        }
 822}
 823
 824void disable_write_same(struct mapped_device *md)
 825{
 826        struct queue_limits *limits = dm_get_queue_limits(md);
 827
 828        /* device doesn't really support WRITE SAME, disable it */
 829        limits->max_write_same_sectors = 0;
 830}
 831
 832void disable_write_zeroes(struct mapped_device *md)
 833{
 834        struct queue_limits *limits = dm_get_queue_limits(md);
 835
 836        /* device doesn't really support WRITE ZEROES, disable it */
 837        limits->max_write_zeroes_sectors = 0;
 838}
 839
 840static void clone_endio(struct bio *bio)
 841{
 842        blk_status_t error = bio->bi_status;
 843        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 844        struct dm_io *io = tio->io;
 845        struct mapped_device *md = tio->io->md;
 846        dm_endio_fn endio = tio->ti->type->end_io;
 847
 848        if (unlikely(error == BLK_STS_TARGET)) {
 849                if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 850                    !bio->bi_disk->queue->limits.max_write_same_sectors)
 851                        disable_write_same(md);
 852                if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 853                    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 854                        disable_write_zeroes(md);
 855        }
 856
 857        if (endio) {
 858                int r = endio(tio->ti, bio, &error);
 859                switch (r) {
 860                case DM_ENDIO_REQUEUE:
 861                        error = BLK_STS_DM_REQUEUE;
 862                        /*FALLTHRU*/
 863                case DM_ENDIO_DONE:
 864                        break;
 865                case DM_ENDIO_INCOMPLETE:
 866                        /* The target will handle the io */
 867                        return;
 868                default:
 869                        DMWARN("unimplemented target endio return value: %d", r);
 870                        BUG();
 871                }
 872        }
 873
 874        free_tio(tio);
 875        dec_pending(io, error);
 876}
 877
 878/*
 879 * Return maximum size of I/O possible at the supplied sector up to the current
 880 * target boundary.
 881 */
 882static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 883{
 884        sector_t target_offset = dm_target_offset(ti, sector);
 885
 886        return ti->len - target_offset;
 887}
 888
 889static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 890{
 891        sector_t len = max_io_len_target_boundary(sector, ti);
 892        sector_t offset, max_len;
 893
 894        /*
 895         * Does the target need to split even further?
 896         */
 897        if (ti->max_io_len) {
 898                offset = dm_target_offset(ti, sector);
 899                if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 900                        max_len = sector_div(offset, ti->max_io_len);
 901                else
 902                        max_len = offset & (ti->max_io_len - 1);
 903                max_len = ti->max_io_len - max_len;
 904
 905                if (len > max_len)
 906                        len = max_len;
 907        }
 908
 909        return len;
 910}
 911
 912int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 913{
 914        if (len > UINT_MAX) {
 915                DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 916                      (unsigned long long)len, UINT_MAX);
 917                ti->error = "Maximum size of target IO is too large";
 918                return -EINVAL;
 919        }
 920
 921        ti->max_io_len = (uint32_t) len;
 922
 923        return 0;
 924}
 925EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 926
 927static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
 928                sector_t sector, int *srcu_idx)
 929{
 930        struct dm_table *map;
 931        struct dm_target *ti;
 932
 933        map = dm_get_live_table(md, srcu_idx);
 934        if (!map)
 935                return NULL;
 936
 937        ti = dm_table_find_target(map, sector);
 938        if (!dm_target_is_valid(ti))
 939                return NULL;
 940
 941        return ti;
 942}
 943
 944static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
 945                long nr_pages, void **kaddr, pfn_t *pfn)
 946{
 947        struct mapped_device *md = dax_get_private(dax_dev);
 948        sector_t sector = pgoff * PAGE_SECTORS;
 949        struct dm_target *ti;
 950        long len, ret = -EIO;
 951        int srcu_idx;
 952
 953        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 954
 955        if (!ti)
 956                goto out;
 957        if (!ti->type->direct_access)
 958                goto out;
 959        len = max_io_len(sector, ti) / PAGE_SECTORS;
 960        if (len < 1)
 961                goto out;
 962        nr_pages = min(len, nr_pages);
 963        if (ti->type->direct_access)
 964                ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
 965
 966 out:
 967        dm_put_live_table(md, srcu_idx);
 968
 969        return ret;
 970}
 971
 972static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 973                void *addr, size_t bytes, struct iov_iter *i)
 974{
 975        struct mapped_device *md = dax_get_private(dax_dev);
 976        sector_t sector = pgoff * PAGE_SECTORS;
 977        struct dm_target *ti;
 978        long ret = 0;
 979        int srcu_idx;
 980
 981        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 982
 983        if (!ti)
 984                goto out;
 985        if (!ti->type->dax_copy_from_iter) {
 986                ret = copy_from_iter(addr, bytes, i);
 987                goto out;
 988        }
 989        ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
 990 out:
 991        dm_put_live_table(md, srcu_idx);
 992
 993        return ret;
 994}
 995
 996/*
 997 * A target may call dm_accept_partial_bio only from the map routine.  It is
 998 * allowed for all bio types except REQ_PREFLUSH.
 999 *
1000 * dm_accept_partial_bio informs the dm that the target only wants to process
1001 * additional n_sectors sectors of the bio and the rest of the data should be
1002 * sent in a next bio.
1003 *
1004 * A diagram that explains the arithmetics:
1005 * +--------------------+---------------+-------+
1006 * |         1          |       2       |   3   |
1007 * +--------------------+---------------+-------+
1008 *
1009 * <-------------- *tio->len_ptr --------------->
1010 *                      <------- bi_size ------->
1011 *                      <-- n_sectors -->
1012 *
1013 * Region 1 was already iterated over with bio_advance or similar function.
1014 *      (it may be empty if the target doesn't use bio_advance)
1015 * Region 2 is the remaining bio size that the target wants to process.
1016 *      (it may be empty if region 1 is non-empty, although there is no reason
1017 *       to make it empty)
1018 * The target requires that region 3 is to be sent in the next bio.
1019 *
1020 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1021 * the partially processed part (the sum of regions 1+2) must be the same for all
1022 * copies of the bio.
1023 */
1024void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1025{
1026        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1027        unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1028        BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1029        BUG_ON(bi_size > *tio->len_ptr);
1030        BUG_ON(n_sectors > bi_size);
1031        *tio->len_ptr -= bi_size - n_sectors;
1032        bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1033}
1034EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1035
1036/*
1037 * The zone descriptors obtained with a zone report indicate
1038 * zone positions within the target device. The zone descriptors
1039 * must be remapped to match their position within the dm device.
1040 * A target may call dm_remap_zone_report after completion of a
1041 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1042 * from the target device mapping to the dm device.
1043 */
1044void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1045{
1046#ifdef CONFIG_BLK_DEV_ZONED
1047        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1048        struct bio *report_bio = tio->io->bio;
1049        struct blk_zone_report_hdr *hdr = NULL;
1050        struct blk_zone *zone;
1051        unsigned int nr_rep = 0;
1052        unsigned int ofst;
1053        struct bio_vec bvec;
1054        struct bvec_iter iter;
1055        void *addr;
1056
1057        if (bio->bi_status)
1058                return;
1059
1060        /*
1061         * Remap the start sector of the reported zones. For sequential zones,
1062         * also remap the write pointer position.
1063         */
1064        bio_for_each_segment(bvec, report_bio, iter) {
1065                addr = kmap_atomic(bvec.bv_page);
1066
1067                /* Remember the report header in the first page */
1068                if (!hdr) {
1069                        hdr = addr;
1070                        ofst = sizeof(struct blk_zone_report_hdr);
1071                } else
1072                        ofst = 0;
1073
1074                /* Set zones start sector */
1075                while (hdr->nr_zones && ofst < bvec.bv_len) {
1076                        zone = addr + ofst;
1077                        if (zone->start >= start + ti->len) {
1078                                hdr->nr_zones = 0;
1079                                break;
1080                        }
1081                        zone->start = zone->start + ti->begin - start;
1082                        if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1083                                if (zone->cond == BLK_ZONE_COND_FULL)
1084                                        zone->wp = zone->start + zone->len;
1085                                else if (zone->cond == BLK_ZONE_COND_EMPTY)
1086                                        zone->wp = zone->start;
1087                                else
1088                                        zone->wp = zone->wp + ti->begin - start;
1089                        }
1090                        ofst += sizeof(struct blk_zone);
1091                        hdr->nr_zones--;
1092                        nr_rep++;
1093                }
1094
1095                if (addr != hdr)
1096                        kunmap_atomic(addr);
1097
1098                if (!hdr->nr_zones)
1099                        break;
1100        }
1101
1102        if (hdr) {
1103                hdr->nr_zones = nr_rep;
1104                kunmap_atomic(hdr);
1105        }
1106
1107        bio_advance(report_bio, report_bio->bi_iter.bi_size);
1108
1109#else /* !CONFIG_BLK_DEV_ZONED */
1110        bio->bi_status = BLK_STS_NOTSUPP;
1111#endif
1112}
1113EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1114
1115/*
1116 * Flush current->bio_list when the target map method blocks.
1117 * This fixes deadlocks in snapshot and possibly in other targets.
1118 */
1119struct dm_offload {
1120        struct blk_plug plug;
1121        struct blk_plug_cb cb;
1122};
1123
1124static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1125{
1126        struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1127        struct bio_list list;
1128        struct bio *bio;
1129        int i;
1130
1131        INIT_LIST_HEAD(&o->cb.list);
1132
1133        if (unlikely(!current->bio_list))
1134                return;
1135
1136        for (i = 0; i < 2; i++) {
1137                list = current->bio_list[i];
1138                bio_list_init(&current->bio_list[i]);
1139
1140                while ((bio = bio_list_pop(&list))) {
1141                        struct bio_set *bs = bio->bi_pool;
1142                        if (unlikely(!bs) || bs == fs_bio_set ||
1143                            !bs->rescue_workqueue) {
1144                                bio_list_add(&current->bio_list[i], bio);
1145                                continue;
1146                        }
1147
1148                        spin_lock(&bs->rescue_lock);
1149                        bio_list_add(&bs->rescue_list, bio);
1150                        queue_work(bs->rescue_workqueue, &bs->rescue_work);
1151                        spin_unlock(&bs->rescue_lock);
1152                }
1153        }
1154}
1155
1156static void dm_offload_start(struct dm_offload *o)
1157{
1158        blk_start_plug(&o->plug);
1159        o->cb.callback = flush_current_bio_list;
1160        list_add(&o->cb.list, &current->plug->cb_list);
1161}
1162
1163static void dm_offload_end(struct dm_offload *o)
1164{
1165        list_del(&o->cb.list);
1166        blk_finish_plug(&o->plug);
1167}
1168
1169static void __map_bio(struct dm_target_io *tio)
1170{
1171        int r;
1172        sector_t sector;
1173        struct dm_offload o;
1174        struct bio *clone = &tio->clone;
1175        struct dm_target *ti = tio->ti;
1176
1177        clone->bi_end_io = clone_endio;
1178
1179        /*
1180         * Map the clone.  If r == 0 we don't need to do
1181         * anything, the target has assumed ownership of
1182         * this io.
1183         */
1184        atomic_inc(&tio->io->io_count);
1185        sector = clone->bi_iter.bi_sector;
1186
1187        dm_offload_start(&o);
1188        r = ti->type->map(ti, clone);
1189        dm_offload_end(&o);
1190
1191        switch (r) {
1192        case DM_MAPIO_SUBMITTED:
1193                break;
1194        case DM_MAPIO_REMAPPED:
1195                /* the bio has been remapped so dispatch it */
1196                trace_block_bio_remap(clone->bi_disk->queue, clone,
1197                                      bio_dev(tio->io->bio), sector);
1198                generic_make_request(clone);
1199                break;
1200        case DM_MAPIO_KILL:
1201                dec_pending(tio->io, BLK_STS_IOERR);
1202                free_tio(tio);
1203                break;
1204        case DM_MAPIO_REQUEUE:
1205                dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1206                free_tio(tio);
1207                break;
1208        default:
1209                DMWARN("unimplemented target map return value: %d", r);
1210                BUG();
1211        }
1212}
1213
1214struct clone_info {
1215        struct mapped_device *md;
1216        struct dm_table *map;
1217        struct bio *bio;
1218        struct dm_io *io;
1219        sector_t sector;
1220        unsigned sector_count;
1221};
1222
1223static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1224{
1225        bio->bi_iter.bi_sector = sector;
1226        bio->bi_iter.bi_size = to_bytes(len);
1227}
1228
1229/*
1230 * Creates a bio that consists of range of complete bvecs.
1231 */
1232static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1233                     sector_t sector, unsigned len)
1234{
1235        struct bio *clone = &tio->clone;
1236
1237        __bio_clone_fast(clone, bio);
1238
1239        if (unlikely(bio_integrity(bio) != NULL)) {
1240                int r;
1241
1242                if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1243                             !dm_target_passes_integrity(tio->ti->type))) {
1244                        DMWARN("%s: the target %s doesn't support integrity data.",
1245                                dm_device_name(tio->io->md),
1246                                tio->ti->type->name);
1247                        return -EIO;
1248                }
1249
1250                r = bio_integrity_clone(clone, bio, GFP_NOIO);
1251                if (r < 0)
1252                        return r;
1253        }
1254
1255        if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1256                bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1257        clone->bi_iter.bi_size = to_bytes(len);
1258
1259        if (unlikely(bio_integrity(bio) != NULL))
1260                bio_integrity_trim(clone);
1261
1262        return 0;
1263}
1264
1265static struct dm_target_io *alloc_tio(struct clone_info *ci,
1266                                      struct dm_target *ti,
1267                                      unsigned target_bio_nr)
1268{
1269        struct dm_target_io *tio;
1270        struct bio *clone;
1271
1272        clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1273        tio = container_of(clone, struct dm_target_io, clone);
1274
1275        tio->io = ci->io;
1276        tio->ti = ti;
1277        tio->target_bio_nr = target_bio_nr;
1278
1279        return tio;
1280}
1281
1282static void __clone_and_map_simple_bio(struct clone_info *ci,
1283                                       struct dm_target *ti,
1284                                       unsigned target_bio_nr, unsigned *len)
1285{
1286        struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1287        struct bio *clone = &tio->clone;
1288
1289        tio->len_ptr = len;
1290
1291        __bio_clone_fast(clone, ci->bio);
1292        if (len)
1293                bio_setup_sector(clone, ci->sector, *len);
1294
1295        __map_bio(tio);
1296}
1297
1298static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1299                                  unsigned num_bios, unsigned *len)
1300{
1301        unsigned target_bio_nr;
1302
1303        for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1304                __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1305}
1306
1307static int __send_empty_flush(struct clone_info *ci)
1308{
1309        unsigned target_nr = 0;
1310        struct dm_target *ti;
1311
1312        BUG_ON(bio_has_data(ci->bio));
1313        while ((ti = dm_table_get_target(ci->map, target_nr++)))
1314                __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1315
1316        return 0;
1317}
1318
1319static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1320                                     sector_t sector, unsigned *len)
1321{
1322        struct bio *bio = ci->bio;
1323        struct dm_target_io *tio;
1324        unsigned target_bio_nr;
1325        unsigned num_target_bios = 1;
1326        int r = 0;
1327
1328        /*
1329         * Does the target want to receive duplicate copies of the bio?
1330         */
1331        if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1332                num_target_bios = ti->num_write_bios(ti, bio);
1333
1334        for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1335                tio = alloc_tio(ci, ti, target_bio_nr);
1336                tio->len_ptr = len;
1337                r = clone_bio(tio, bio, sector, *len);
1338                if (r < 0) {
1339                        free_tio(tio);
1340                        break;
1341                }
1342                __map_bio(tio);
1343        }
1344
1345        return r;
1346}
1347
1348typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1349
1350static unsigned get_num_discard_bios(struct dm_target *ti)
1351{
1352        return ti->num_discard_bios;
1353}
1354
1355static unsigned get_num_write_same_bios(struct dm_target *ti)
1356{
1357        return ti->num_write_same_bios;
1358}
1359
1360static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1361{
1362        return ti->num_write_zeroes_bios;
1363}
1364
1365typedef bool (*is_split_required_fn)(struct dm_target *ti);
1366
1367static bool is_split_required_for_discard(struct dm_target *ti)
1368{
1369        return ti->split_discard_bios;
1370}
1371
1372static int __send_changing_extent_only(struct clone_info *ci,
1373                                       get_num_bios_fn get_num_bios,
1374                                       is_split_required_fn is_split_required)
1375{
1376        struct dm_target *ti;
1377        unsigned len;
1378        unsigned num_bios;
1379
1380        do {
1381                ti = dm_table_find_target(ci->map, ci->sector);
1382                if (!dm_target_is_valid(ti))
1383                        return -EIO;
1384
1385                /*
1386                 * Even though the device advertised support for this type of
1387                 * request, that does not mean every target supports it, and
1388                 * reconfiguration might also have changed that since the
1389                 * check was performed.
1390                 */
1391                num_bios = get_num_bios ? get_num_bios(ti) : 0;
1392                if (!num_bios)
1393                        return -EOPNOTSUPP;
1394
1395                if (is_split_required && !is_split_required(ti))
1396                        len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1397                else
1398                        len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1399
1400                __send_duplicate_bios(ci, ti, num_bios, &len);
1401
1402                ci->sector += len;
1403        } while (ci->sector_count -= len);
1404
1405        return 0;
1406}
1407
1408static int __send_discard(struct clone_info *ci)
1409{
1410        return __send_changing_extent_only(ci, get_num_discard_bios,
1411                                           is_split_required_for_discard);
1412}
1413
1414static int __send_write_same(struct clone_info *ci)
1415{
1416        return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1417}
1418
1419static int __send_write_zeroes(struct clone_info *ci)
1420{
1421        return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1422}
1423
1424/*
1425 * Select the correct strategy for processing a non-flush bio.
1426 */
1427static int __split_and_process_non_flush(struct clone_info *ci)
1428{
1429        struct bio *bio = ci->bio;
1430        struct dm_target *ti;
1431        unsigned len;
1432        int r;
1433
1434        if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1435                return __send_discard(ci);
1436        else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1437                return __send_write_same(ci);
1438        else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1439                return __send_write_zeroes(ci);
1440
1441        ti = dm_table_find_target(ci->map, ci->sector);
1442        if (!dm_target_is_valid(ti))
1443                return -EIO;
1444
1445        if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1446                len = ci->sector_count;
1447        else
1448                len = min_t(sector_t, max_io_len(ci->sector, ti),
1449                            ci->sector_count);
1450
1451        r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1452        if (r < 0)
1453                return r;
1454
1455        ci->sector += len;
1456        ci->sector_count -= len;
1457
1458        return 0;
1459}
1460
1461/*
1462 * Entry point to split a bio into clones and submit them to the targets.
1463 */
1464static void __split_and_process_bio(struct mapped_device *md,
1465                                    struct dm_table *map, struct bio *bio)
1466{
1467        struct clone_info ci;
1468        int error = 0;
1469
1470        if (unlikely(!map)) {
1471                bio_io_error(bio);
1472                return;
1473        }
1474
1475        ci.map = map;
1476        ci.md = md;
1477        ci.io = alloc_io(md);
1478        ci.io->status = 0;
1479        atomic_set(&ci.io->io_count, 1);
1480        ci.io->bio = bio;
1481        ci.io->md = md;
1482        spin_lock_init(&ci.io->endio_lock);
1483        ci.sector = bio->bi_iter.bi_sector;
1484
1485        start_io_acct(ci.io);
1486
1487        if (bio->bi_opf & REQ_PREFLUSH) {
1488                ci.bio = &ci.md->flush_bio;
1489                ci.sector_count = 0;
1490                error = __send_empty_flush(&ci);
1491                /* dec_pending submits any data associated with flush */
1492        } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1493                ci.bio = bio;
1494                ci.sector_count = 0;
1495                error = __split_and_process_non_flush(&ci);
1496        } else {
1497                ci.bio = bio;
1498                ci.sector_count = bio_sectors(bio);
1499                while (ci.sector_count && !error)
1500                        error = __split_and_process_non_flush(&ci);
1501        }
1502
1503        /* drop the extra reference count */
1504        dec_pending(ci.io, errno_to_blk_status(error));
1505}
1506/*-----------------------------------------------------------------
1507 * CRUD END
1508 *---------------------------------------------------------------*/
1509
1510/*
1511 * The request function that just remaps the bio built up by
1512 * dm_merge_bvec.
1513 */
1514static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1515{
1516        int rw = bio_data_dir(bio);
1517        struct mapped_device *md = q->queuedata;
1518        int srcu_idx;
1519        struct dm_table *map;
1520
1521        map = dm_get_live_table(md, &srcu_idx);
1522
1523        generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1524
1525        /* if we're suspended, we have to queue this io for later */
1526        if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1527                dm_put_live_table(md, srcu_idx);
1528
1529                if (!(bio->bi_opf & REQ_RAHEAD))
1530                        queue_io(md, bio);
1531                else
1532                        bio_io_error(bio);
1533                return BLK_QC_T_NONE;
1534        }
1535
1536        __split_and_process_bio(md, map, bio);
1537        dm_put_live_table(md, srcu_idx);
1538        return BLK_QC_T_NONE;
1539}
1540
1541static int dm_any_congested(void *congested_data, int bdi_bits)
1542{
1543        int r = bdi_bits;
1544        struct mapped_device *md = congested_data;
1545        struct dm_table *map;
1546
1547        if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1548                if (dm_request_based(md)) {
1549                        /*
1550                         * With request-based DM we only need to check the
1551                         * top-level queue for congestion.
1552                         */
1553                        r = md->queue->backing_dev_info->wb.state & bdi_bits;
1554                } else {
1555                        map = dm_get_live_table_fast(md);
1556                        if (map)
1557                                r = dm_table_any_congested(map, bdi_bits);
1558                        dm_put_live_table_fast(md);
1559                }
1560        }
1561
1562        return r;
1563}
1564
1565/*-----------------------------------------------------------------
1566 * An IDR is used to keep track of allocated minor numbers.
1567 *---------------------------------------------------------------*/
1568static void free_minor(int minor)
1569{
1570        spin_lock(&_minor_lock);
1571        idr_remove(&_minor_idr, minor);
1572        spin_unlock(&_minor_lock);
1573}
1574
1575/*
1576 * See if the device with a specific minor # is free.
1577 */
1578static int specific_minor(int minor)
1579{
1580        int r;
1581
1582        if (minor >= (1 << MINORBITS))
1583                return -EINVAL;
1584
1585        idr_preload(GFP_KERNEL);
1586        spin_lock(&_minor_lock);
1587
1588        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1589
1590        spin_unlock(&_minor_lock);
1591        idr_preload_end();
1592        if (r < 0)
1593                return r == -ENOSPC ? -EBUSY : r;
1594        return 0;
1595}
1596
1597static int next_free_minor(int *minor)
1598{
1599        int r;
1600
1601        idr_preload(GFP_KERNEL);
1602        spin_lock(&_minor_lock);
1603
1604        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1605
1606        spin_unlock(&_minor_lock);
1607        idr_preload_end();
1608        if (r < 0)
1609                return r;
1610        *minor = r;
1611        return 0;
1612}
1613
1614static const struct block_device_operations dm_blk_dops;
1615static const struct dax_operations dm_dax_ops;
1616
1617static void dm_wq_work(struct work_struct *work);
1618
1619void dm_init_md_queue(struct mapped_device *md)
1620{
1621        /*
1622         * Request-based dm devices cannot be stacked on top of bio-based dm
1623         * devices.  The type of this dm device may not have been decided yet.
1624         * The type is decided at the first table loading time.
1625         * To prevent problematic device stacking, clear the queue flag
1626         * for request stacking support until then.
1627         *
1628         * This queue is new, so no concurrency on the queue_flags.
1629         */
1630        queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1631
1632        /*
1633         * Initialize data that will only be used by a non-blk-mq DM queue
1634         * - must do so here (in alloc_dev callchain) before queue is used
1635         */
1636        md->queue->queuedata = md;
1637        md->queue->backing_dev_info->congested_data = md;
1638}
1639
1640void dm_init_normal_md_queue(struct mapped_device *md)
1641{
1642        md->use_blk_mq = false;
1643        dm_init_md_queue(md);
1644
1645        /*
1646         * Initialize aspects of queue that aren't relevant for blk-mq
1647         */
1648        md->queue->backing_dev_info->congested_fn = dm_any_congested;
1649}
1650
1651static void cleanup_mapped_device(struct mapped_device *md)
1652{
1653        if (md->wq)
1654                destroy_workqueue(md->wq);
1655        if (md->kworker_task)
1656                kthread_stop(md->kworker_task);
1657        mempool_destroy(md->io_pool);
1658        if (md->bs)
1659                bioset_free(md->bs);
1660
1661        if (md->dax_dev) {
1662                kill_dax(md->dax_dev);
1663                put_dax(md->dax_dev);
1664                md->dax_dev = NULL;
1665        }
1666
1667        if (md->disk) {
1668                spin_lock(&_minor_lock);
1669                md->disk->private_data = NULL;
1670                spin_unlock(&_minor_lock);
1671                del_gendisk(md->disk);
1672                put_disk(md->disk);
1673        }
1674
1675        if (md->queue)
1676                blk_cleanup_queue(md->queue);
1677
1678        cleanup_srcu_struct(&md->io_barrier);
1679
1680        if (md->bdev) {
1681                bdput(md->bdev);
1682                md->bdev = NULL;
1683        }
1684
1685        dm_mq_cleanup_mapped_device(md);
1686}
1687
1688/*
1689 * Allocate and initialise a blank device with a given minor.
1690 */
1691static struct mapped_device *alloc_dev(int minor)
1692{
1693        int r, numa_node_id = dm_get_numa_node();
1694        struct dax_device *dax_dev;
1695        struct mapped_device *md;
1696        void *old_md;
1697
1698        md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1699        if (!md) {
1700                DMWARN("unable to allocate device, out of memory.");
1701                return NULL;
1702        }
1703
1704        if (!try_module_get(THIS_MODULE))
1705                goto bad_module_get;
1706
1707        /* get a minor number for the dev */
1708        if (minor == DM_ANY_MINOR)
1709                r = next_free_minor(&minor);
1710        else
1711                r = specific_minor(minor);
1712        if (r < 0)
1713                goto bad_minor;
1714
1715        r = init_srcu_struct(&md->io_barrier);
1716        if (r < 0)
1717                goto bad_io_barrier;
1718
1719        md->numa_node_id = numa_node_id;
1720        md->use_blk_mq = dm_use_blk_mq_default();
1721        md->init_tio_pdu = false;
1722        md->type = DM_TYPE_NONE;
1723        mutex_init(&md->suspend_lock);
1724        mutex_init(&md->type_lock);
1725        mutex_init(&md->table_devices_lock);
1726        spin_lock_init(&md->deferred_lock);
1727        atomic_set(&md->holders, 1);
1728        atomic_set(&md->open_count, 0);
1729        atomic_set(&md->event_nr, 0);
1730        atomic_set(&md->uevent_seq, 0);
1731        INIT_LIST_HEAD(&md->uevent_list);
1732        INIT_LIST_HEAD(&md->table_devices);
1733        spin_lock_init(&md->uevent_lock);
1734
1735        md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1736        if (!md->queue)
1737                goto bad;
1738
1739        dm_init_md_queue(md);
1740
1741        md->disk = alloc_disk_node(1, numa_node_id);
1742        if (!md->disk)
1743                goto bad;
1744
1745        atomic_set(&md->pending[0], 0);
1746        atomic_set(&md->pending[1], 0);
1747        init_waitqueue_head(&md->wait);
1748        INIT_WORK(&md->work, dm_wq_work);
1749        init_waitqueue_head(&md->eventq);
1750        init_completion(&md->kobj_holder.completion);
1751        md->kworker_task = NULL;
1752
1753        md->disk->major = _major;
1754        md->disk->first_minor = minor;
1755        md->disk->fops = &dm_blk_dops;
1756        md->disk->queue = md->queue;
1757        md->disk->private_data = md;
1758        sprintf(md->disk->disk_name, "dm-%d", minor);
1759
1760        dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1761        if (!dax_dev)
1762                goto bad;
1763        md->dax_dev = dax_dev;
1764
1765        add_disk(md->disk);
1766        format_dev_t(md->name, MKDEV(_major, minor));
1767
1768        md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1769        if (!md->wq)
1770                goto bad;
1771
1772        md->bdev = bdget_disk(md->disk, 0);
1773        if (!md->bdev)
1774                goto bad;
1775
1776        bio_init(&md->flush_bio, NULL, 0);
1777        bio_set_dev(&md->flush_bio, md->bdev);
1778        md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1779
1780        dm_stats_init(&md->stats);
1781
1782        /* Populate the mapping, nobody knows we exist yet */
1783        spin_lock(&_minor_lock);
1784        old_md = idr_replace(&_minor_idr, md, minor);
1785        spin_unlock(&_minor_lock);
1786
1787        BUG_ON(old_md != MINOR_ALLOCED);
1788
1789        return md;
1790
1791bad:
1792        cleanup_mapped_device(md);
1793bad_io_barrier:
1794        free_minor(minor);
1795bad_minor:
1796        module_put(THIS_MODULE);
1797bad_module_get:
1798        kfree(md);
1799        return NULL;
1800}
1801
1802static void unlock_fs(struct mapped_device *md);
1803
1804static void free_dev(struct mapped_device *md)
1805{
1806        int minor = MINOR(disk_devt(md->disk));
1807
1808        unlock_fs(md);
1809
1810        cleanup_mapped_device(md);
1811
1812        free_table_devices(&md->table_devices);
1813        dm_stats_cleanup(&md->stats);
1814        free_minor(minor);
1815
1816        module_put(THIS_MODULE);
1817        kfree(md);
1818}
1819
1820static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1821{
1822        struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1823
1824        if (md->bs) {
1825                /* The md already has necessary mempools. */
1826                if (dm_table_bio_based(t)) {
1827                        /*
1828                         * Reload bioset because front_pad may have changed
1829                         * because a different table was loaded.
1830                         */
1831                        bioset_free(md->bs);
1832                        md->bs = p->bs;
1833                        p->bs = NULL;
1834                }
1835                /*
1836                 * There's no need to reload with request-based dm
1837                 * because the size of front_pad doesn't change.
1838                 * Note for future: If you are to reload bioset,
1839                 * prep-ed requests in the queue may refer
1840                 * to bio from the old bioset, so you must walk
1841                 * through the queue to unprep.
1842                 */
1843                goto out;
1844        }
1845
1846        BUG_ON(!p || md->io_pool || md->bs);
1847
1848        md->io_pool = p->io_pool;
1849        p->io_pool = NULL;
1850        md->bs = p->bs;
1851        p->bs = NULL;
1852
1853out:
1854        /* mempool bind completed, no longer need any mempools in the table */
1855        dm_table_free_md_mempools(t);
1856}
1857
1858/*
1859 * Bind a table to the device.
1860 */
1861static void event_callback(void *context)
1862{
1863        unsigned long flags;
1864        LIST_HEAD(uevents);
1865        struct mapped_device *md = (struct mapped_device *) context;
1866
1867        spin_lock_irqsave(&md->uevent_lock, flags);
1868        list_splice_init(&md->uevent_list, &uevents);
1869        spin_unlock_irqrestore(&md->uevent_lock, flags);
1870
1871        dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1872
1873        atomic_inc(&md->event_nr);
1874        wake_up(&md->eventq);
1875        dm_issue_global_event();
1876}
1877
1878/*
1879 * Protected by md->suspend_lock obtained by dm_swap_table().
1880 */
1881static void __set_size(struct mapped_device *md, sector_t size)
1882{
1883        lockdep_assert_held(&md->suspend_lock);
1884
1885        set_capacity(md->disk, size);
1886
1887        i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1888}
1889
1890/*
1891 * Returns old map, which caller must destroy.
1892 */
1893static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1894                               struct queue_limits *limits)
1895{
1896        struct dm_table *old_map;
1897        struct request_queue *q = md->queue;
1898        sector_t size;
1899
1900        lockdep_assert_held(&md->suspend_lock);
1901
1902        size = dm_table_get_size(t);
1903
1904        /*
1905         * Wipe any geometry if the size of the table changed.
1906         */
1907        if (size != dm_get_size(md))
1908                memset(&md->geometry, 0, sizeof(md->geometry));
1909
1910        __set_size(md, size);
1911
1912        dm_table_event_callback(t, event_callback, md);
1913
1914        /*
1915         * The queue hasn't been stopped yet, if the old table type wasn't
1916         * for request-based during suspension.  So stop it to prevent
1917         * I/O mapping before resume.
1918         * This must be done before setting the queue restrictions,
1919         * because request-based dm may be run just after the setting.
1920         */
1921        if (dm_table_request_based(t)) {
1922                dm_stop_queue(q);
1923                /*
1924                 * Leverage the fact that request-based DM targets are
1925                 * immutable singletons and establish md->immutable_target
1926                 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1927                 */
1928                md->immutable_target = dm_table_get_immutable_target(t);
1929        }
1930
1931        __bind_mempools(md, t);
1932
1933        old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1934        rcu_assign_pointer(md->map, (void *)t);
1935        md->immutable_target_type = dm_table_get_immutable_target_type(t);
1936
1937        dm_table_set_restrictions(t, q, limits);
1938        if (old_map)
1939                dm_sync_table(md);
1940
1941        return old_map;
1942}
1943
1944/*
1945 * Returns unbound table for the caller to free.
1946 */
1947static struct dm_table *__unbind(struct mapped_device *md)
1948{
1949        struct dm_table *map = rcu_dereference_protected(md->map, 1);
1950
1951        if (!map)
1952                return NULL;
1953
1954        dm_table_event_callback(map, NULL, NULL);
1955        RCU_INIT_POINTER(md->map, NULL);
1956        dm_sync_table(md);
1957
1958        return map;
1959}
1960
1961/*
1962 * Constructor for a new device.
1963 */
1964int dm_create(int minor, struct mapped_device **result)
1965{
1966        struct mapped_device *md;
1967
1968        md = alloc_dev(minor);
1969        if (!md)
1970                return -ENXIO;
1971
1972        dm_sysfs_init(md);
1973
1974        *result = md;
1975        return 0;
1976}
1977
1978/*
1979 * Functions to manage md->type.
1980 * All are required to hold md->type_lock.
1981 */
1982void dm_lock_md_type(struct mapped_device *md)
1983{
1984        mutex_lock(&md->type_lock);
1985}
1986
1987void dm_unlock_md_type(struct mapped_device *md)
1988{
1989        mutex_unlock(&md->type_lock);
1990}
1991
1992void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1993{
1994        BUG_ON(!mutex_is_locked(&md->type_lock));
1995        md->type = type;
1996}
1997
1998enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1999{
2000        return md->type;
2001}
2002
2003struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2004{
2005        return md->immutable_target_type;
2006}
2007
2008/*
2009 * The queue_limits are only valid as long as you have a reference
2010 * count on 'md'.
2011 */
2012struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2013{
2014        BUG_ON(!atomic_read(&md->holders));
2015        return &md->queue->limits;
2016}
2017EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2018
2019/*
2020 * Setup the DM device's queue based on md's type
2021 */
2022int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2023{
2024        int r;
2025        enum dm_queue_mode type = dm_get_md_type(md);
2026
2027        switch (type) {
2028        case DM_TYPE_REQUEST_BASED:
2029                r = dm_old_init_request_queue(md, t);
2030                if (r) {
2031                        DMERR("Cannot initialize queue for request-based mapped device");
2032                        return r;
2033                }
2034                break;
2035        case DM_TYPE_MQ_REQUEST_BASED:
2036                r = dm_mq_init_request_queue(md, t);
2037                if (r) {
2038                        DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2039                        return r;
2040                }
2041                break;
2042        case DM_TYPE_BIO_BASED:
2043        case DM_TYPE_DAX_BIO_BASED:
2044                dm_init_normal_md_queue(md);
2045                blk_queue_make_request(md->queue, dm_make_request);
2046                /*
2047                 * DM handles splitting bios as needed.  Free the bio_split bioset
2048                 * since it won't be used (saves 1 process per bio-based DM device).
2049                 */
2050                bioset_free(md->queue->bio_split);
2051                md->queue->bio_split = NULL;
2052
2053                if (type == DM_TYPE_DAX_BIO_BASED)
2054                        queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2055                break;
2056        case DM_TYPE_NONE:
2057                WARN_ON_ONCE(true);
2058                break;
2059        }
2060
2061        return 0;
2062}
2063
2064struct mapped_device *dm_get_md(dev_t dev)
2065{
2066        struct mapped_device *md;
2067        unsigned minor = MINOR(dev);
2068
2069        if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2070                return NULL;
2071
2072        spin_lock(&_minor_lock);
2073
2074        md = idr_find(&_minor_idr, minor);
2075        if (md) {
2076                if ((md == MINOR_ALLOCED ||
2077                     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2078                     dm_deleting_md(md) ||
2079                     test_bit(DMF_FREEING, &md->flags))) {
2080                        md = NULL;
2081                        goto out;
2082                }
2083                dm_get(md);
2084        }
2085
2086out:
2087        spin_unlock(&_minor_lock);
2088
2089        return md;
2090}
2091EXPORT_SYMBOL_GPL(dm_get_md);
2092
2093void *dm_get_mdptr(struct mapped_device *md)
2094{
2095        return md->interface_ptr;
2096}
2097
2098void dm_set_mdptr(struct mapped_device *md, void *ptr)
2099{
2100        md->interface_ptr = ptr;
2101}
2102
2103void dm_get(struct mapped_device *md)
2104{
2105        atomic_inc(&md->holders);
2106        BUG_ON(test_bit(DMF_FREEING, &md->flags));
2107}
2108
2109int dm_hold(struct mapped_device *md)
2110{
2111        spin_lock(&_minor_lock);
2112        if (test_bit(DMF_FREEING, &md->flags)) {
2113                spin_unlock(&_minor_lock);
2114                return -EBUSY;
2115        }
2116        dm_get(md);
2117        spin_unlock(&_minor_lock);
2118        return 0;
2119}
2120EXPORT_SYMBOL_GPL(dm_hold);
2121
2122const char *dm_device_name(struct mapped_device *md)
2123{
2124        return md->name;
2125}
2126EXPORT_SYMBOL_GPL(dm_device_name);
2127
2128static void __dm_destroy(struct mapped_device *md, bool wait)
2129{
2130        struct request_queue *q = dm_get_md_queue(md);
2131        struct dm_table *map;
2132        int srcu_idx;
2133
2134        might_sleep();
2135
2136        spin_lock(&_minor_lock);
2137        idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2138        set_bit(DMF_FREEING, &md->flags);
2139        spin_unlock(&_minor_lock);
2140
2141        blk_set_queue_dying(q);
2142
2143        if (dm_request_based(md) && md->kworker_task)
2144                kthread_flush_worker(&md->kworker);
2145
2146        /*
2147         * Take suspend_lock so that presuspend and postsuspend methods
2148         * do not race with internal suspend.
2149         */
2150        mutex_lock(&md->suspend_lock);
2151        map = dm_get_live_table(md, &srcu_idx);
2152        if (!dm_suspended_md(md)) {
2153                dm_table_presuspend_targets(map);
2154                dm_table_postsuspend_targets(map);
2155        }
2156        /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2157        dm_put_live_table(md, srcu_idx);
2158        mutex_unlock(&md->suspend_lock);
2159
2160        /*
2161         * Rare, but there may be I/O requests still going to complete,
2162         * for example.  Wait for all references to disappear.
2163         * No one should increment the reference count of the mapped_device,
2164         * after the mapped_device state becomes DMF_FREEING.
2165         */
2166        if (wait)
2167                while (atomic_read(&md->holders))
2168                        msleep(1);
2169        else if (atomic_read(&md->holders))
2170                DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2171                       dm_device_name(md), atomic_read(&md->holders));
2172
2173        dm_sysfs_exit(md);
2174        dm_table_destroy(__unbind(md));
2175        free_dev(md);
2176}
2177
2178void dm_destroy(struct mapped_device *md)
2179{
2180        __dm_destroy(md, true);
2181}
2182
2183void dm_destroy_immediate(struct mapped_device *md)
2184{
2185        __dm_destroy(md, false);
2186}
2187
2188void dm_put(struct mapped_device *md)
2189{
2190        atomic_dec(&md->holders);
2191}
2192EXPORT_SYMBOL_GPL(dm_put);
2193
2194static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2195{
2196        int r = 0;
2197        DEFINE_WAIT(wait);
2198
2199        while (1) {
2200                prepare_to_wait(&md->wait, &wait, task_state);
2201
2202                if (!md_in_flight(md))
2203                        break;
2204
2205                if (signal_pending_state(task_state, current)) {
2206                        r = -EINTR;
2207                        break;
2208                }
2209
2210                io_schedule();
2211        }
2212        finish_wait(&md->wait, &wait);
2213
2214        return r;
2215}
2216
2217/*
2218 * Process the deferred bios
2219 */
2220static void dm_wq_work(struct work_struct *work)
2221{
2222        struct mapped_device *md = container_of(work, struct mapped_device,
2223                                                work);
2224        struct bio *c;
2225        int srcu_idx;
2226        struct dm_table *map;
2227
2228        map = dm_get_live_table(md, &srcu_idx);
2229
2230        while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2231                spin_lock_irq(&md->deferred_lock);
2232                c = bio_list_pop(&md->deferred);
2233                spin_unlock_irq(&md->deferred_lock);
2234
2235                if (!c)
2236                        break;
2237
2238                if (dm_request_based(md))
2239                        generic_make_request(c);
2240                else
2241                        __split_and_process_bio(md, map, c);
2242        }
2243
2244        dm_put_live_table(md, srcu_idx);
2245}
2246
2247static void dm_queue_flush(struct mapped_device *md)
2248{
2249        clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2250        smp_mb__after_atomic();
2251        queue_work(md->wq, &md->work);
2252}
2253
2254/*
2255 * Swap in a new table, returning the old one for the caller to destroy.
2256 */
2257struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2258{
2259        struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2260        struct queue_limits limits;
2261        int r;
2262
2263        mutex_lock(&md->suspend_lock);
2264
2265        /* device must be suspended */
2266        if (!dm_suspended_md(md))
2267                goto out;
2268
2269        /*
2270         * If the new table has no data devices, retain the existing limits.
2271         * This helps multipath with queue_if_no_path if all paths disappear,
2272         * then new I/O is queued based on these limits, and then some paths
2273         * reappear.
2274         */
2275        if (dm_table_has_no_data_devices(table)) {
2276                live_map = dm_get_live_table_fast(md);
2277                if (live_map)
2278                        limits = md->queue->limits;
2279                dm_put_live_table_fast(md);
2280        }
2281
2282        if (!live_map) {
2283                r = dm_calculate_queue_limits(table, &limits);
2284                if (r) {
2285                        map = ERR_PTR(r);
2286                        goto out;
2287                }
2288        }
2289
2290        map = __bind(md, table, &limits);
2291        dm_issue_global_event();
2292
2293out:
2294        mutex_unlock(&md->suspend_lock);
2295        return map;
2296}
2297
2298/*
2299 * Functions to lock and unlock any filesystem running on the
2300 * device.
2301 */
2302static int lock_fs(struct mapped_device *md)
2303{
2304        int r;
2305
2306        WARN_ON(md->frozen_sb);
2307
2308        md->frozen_sb = freeze_bdev(md->bdev);
2309        if (IS_ERR(md->frozen_sb)) {
2310                r = PTR_ERR(md->frozen_sb);
2311                md->frozen_sb = NULL;
2312                return r;
2313        }
2314
2315        set_bit(DMF_FROZEN, &md->flags);
2316
2317        return 0;
2318}
2319
2320static void unlock_fs(struct mapped_device *md)
2321{
2322        if (!test_bit(DMF_FROZEN, &md->flags))
2323                return;
2324
2325        thaw_bdev(md->bdev, md->frozen_sb);
2326        md->frozen_sb = NULL;
2327        clear_bit(DMF_FROZEN, &md->flags);
2328}
2329
2330/*
2331 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2332 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2333 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2334 *
2335 * If __dm_suspend returns 0, the device is completely quiescent
2336 * now. There is no request-processing activity. All new requests
2337 * are being added to md->deferred list.
2338 */
2339static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2340                        unsigned suspend_flags, long task_state,
2341                        int dmf_suspended_flag)
2342{
2343        bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2344        bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2345        int r;
2346
2347        lockdep_assert_held(&md->suspend_lock);
2348
2349        /*
2350         * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2351         * This flag is cleared before dm_suspend returns.
2352         */
2353        if (noflush)
2354                set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2355        else
2356                pr_debug("%s: suspending with flush\n", dm_device_name(md));
2357
2358        /*
2359         * This gets reverted if there's an error later and the targets
2360         * provide the .presuspend_undo hook.
2361         */
2362        dm_table_presuspend_targets(map);
2363
2364        /*
2365         * Flush I/O to the device.
2366         * Any I/O submitted after lock_fs() may not be flushed.
2367         * noflush takes precedence over do_lockfs.
2368         * (lock_fs() flushes I/Os and waits for them to complete.)
2369         */
2370        if (!noflush && do_lockfs) {
2371                r = lock_fs(md);
2372                if (r) {
2373                        dm_table_presuspend_undo_targets(map);
2374                        return r;
2375                }
2376        }
2377
2378        /*
2379         * Here we must make sure that no processes are submitting requests
2380         * to target drivers i.e. no one may be executing
2381         * __split_and_process_bio. This is called from dm_request and
2382         * dm_wq_work.
2383         *
2384         * To get all processes out of __split_and_process_bio in dm_request,
2385         * we take the write lock. To prevent any process from reentering
2386         * __split_and_process_bio from dm_request and quiesce the thread
2387         * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2388         * flush_workqueue(md->wq).
2389         */
2390        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2391        if (map)
2392                synchronize_srcu(&md->io_barrier);
2393
2394        /*
2395         * Stop md->queue before flushing md->wq in case request-based
2396         * dm defers requests to md->wq from md->queue.
2397         */
2398        if (dm_request_based(md)) {
2399                dm_stop_queue(md->queue);
2400                if (md->kworker_task)
2401                        kthread_flush_worker(&md->kworker);
2402        }
2403
2404        flush_workqueue(md->wq);
2405
2406        /*
2407         * At this point no more requests are entering target request routines.
2408         * We call dm_wait_for_completion to wait for all existing requests
2409         * to finish.
2410         */
2411        r = dm_wait_for_completion(md, task_state);
2412        if (!r)
2413                set_bit(dmf_suspended_flag, &md->flags);
2414
2415        if (noflush)
2416                clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2417        if (map)
2418                synchronize_srcu(&md->io_barrier);
2419
2420        /* were we interrupted ? */
2421        if (r < 0) {
2422                dm_queue_flush(md);
2423
2424                if (dm_request_based(md))
2425                        dm_start_queue(md->queue);
2426
2427                unlock_fs(md);
2428                dm_table_presuspend_undo_targets(map);
2429                /* pushback list is already flushed, so skip flush */
2430        }
2431
2432        return r;
2433}
2434
2435/*
2436 * We need to be able to change a mapping table under a mounted
2437 * filesystem.  For example we might want to move some data in
2438 * the background.  Before the table can be swapped with
2439 * dm_bind_table, dm_suspend must be called to flush any in
2440 * flight bios and ensure that any further io gets deferred.
2441 */
2442/*
2443 * Suspend mechanism in request-based dm.
2444 *
2445 * 1. Flush all I/Os by lock_fs() if needed.
2446 * 2. Stop dispatching any I/O by stopping the request_queue.
2447 * 3. Wait for all in-flight I/Os to be completed or requeued.
2448 *
2449 * To abort suspend, start the request_queue.
2450 */
2451int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2452{
2453        struct dm_table *map = NULL;
2454        int r = 0;
2455
2456retry:
2457        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2458
2459        if (dm_suspended_md(md)) {
2460                r = -EINVAL;
2461                goto out_unlock;
2462        }
2463
2464        if (dm_suspended_internally_md(md)) {
2465                /* already internally suspended, wait for internal resume */
2466                mutex_unlock(&md->suspend_lock);
2467                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2468                if (r)
2469                        return r;
2470                goto retry;
2471        }
2472
2473        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2474
2475        r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2476        if (r)
2477                goto out_unlock;
2478
2479        dm_table_postsuspend_targets(map);
2480
2481out_unlock:
2482        mutex_unlock(&md->suspend_lock);
2483        return r;
2484}
2485
2486static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2487{
2488        if (map) {
2489                int r = dm_table_resume_targets(map);
2490                if (r)
2491                        return r;
2492        }
2493
2494        dm_queue_flush(md);
2495
2496        /*
2497         * Flushing deferred I/Os must be done after targets are resumed
2498         * so that mapping of targets can work correctly.
2499         * Request-based dm is queueing the deferred I/Os in its request_queue.
2500         */
2501        if (dm_request_based(md))
2502                dm_start_queue(md->queue);
2503
2504        unlock_fs(md);
2505
2506        return 0;
2507}
2508
2509int dm_resume(struct mapped_device *md)
2510{
2511        int r;
2512        struct dm_table *map = NULL;
2513
2514retry:
2515        r = -EINVAL;
2516        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2517
2518        if (!dm_suspended_md(md))
2519                goto out;
2520
2521        if (dm_suspended_internally_md(md)) {
2522                /* already internally suspended, wait for internal resume */
2523                mutex_unlock(&md->suspend_lock);
2524                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2525                if (r)
2526                        return r;
2527                goto retry;
2528        }
2529
2530        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2531        if (!map || !dm_table_get_size(map))
2532                goto out;
2533
2534        r = __dm_resume(md, map);
2535        if (r)
2536                goto out;
2537
2538        clear_bit(DMF_SUSPENDED, &md->flags);
2539out:
2540        mutex_unlock(&md->suspend_lock);
2541
2542        return r;
2543}
2544
2545/*
2546 * Internal suspend/resume works like userspace-driven suspend. It waits
2547 * until all bios finish and prevents issuing new bios to the target drivers.
2548 * It may be used only from the kernel.
2549 */
2550
2551static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2552{
2553        struct dm_table *map = NULL;
2554
2555        lockdep_assert_held(&md->suspend_lock);
2556
2557        if (md->internal_suspend_count++)
2558                return; /* nested internal suspend */
2559
2560        if (dm_suspended_md(md)) {
2561                set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2562                return; /* nest suspend */
2563        }
2564
2565        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2566
2567        /*
2568         * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2569         * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2570         * would require changing .presuspend to return an error -- avoid this
2571         * until there is a need for more elaborate variants of internal suspend.
2572         */
2573        (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2574                            DMF_SUSPENDED_INTERNALLY);
2575
2576        dm_table_postsuspend_targets(map);
2577}
2578
2579static void __dm_internal_resume(struct mapped_device *md)
2580{
2581        BUG_ON(!md->internal_suspend_count);
2582
2583        if (--md->internal_suspend_count)
2584                return; /* resume from nested internal suspend */
2585
2586        if (dm_suspended_md(md))
2587                goto done; /* resume from nested suspend */
2588
2589        /*
2590         * NOTE: existing callers don't need to call dm_table_resume_targets
2591         * (which may fail -- so best to avoid it for now by passing NULL map)
2592         */
2593        (void) __dm_resume(md, NULL);
2594
2595done:
2596        clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2597        smp_mb__after_atomic();
2598        wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2599}
2600
2601void dm_internal_suspend_noflush(struct mapped_device *md)
2602{
2603        mutex_lock(&md->suspend_lock);
2604        __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2605        mutex_unlock(&md->suspend_lock);
2606}
2607EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2608
2609void dm_internal_resume(struct mapped_device *md)
2610{
2611        mutex_lock(&md->suspend_lock);
2612        __dm_internal_resume(md);
2613        mutex_unlock(&md->suspend_lock);
2614}
2615EXPORT_SYMBOL_GPL(dm_internal_resume);
2616
2617/*
2618 * Fast variants of internal suspend/resume hold md->suspend_lock,
2619 * which prevents interaction with userspace-driven suspend.
2620 */
2621
2622void dm_internal_suspend_fast(struct mapped_device *md)
2623{
2624        mutex_lock(&md->suspend_lock);
2625        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2626                return;
2627
2628        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2629        synchronize_srcu(&md->io_barrier);
2630        flush_workqueue(md->wq);
2631        dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2632}
2633EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2634
2635void dm_internal_resume_fast(struct mapped_device *md)
2636{
2637        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2638                goto done;
2639
2640        dm_queue_flush(md);
2641
2642done:
2643        mutex_unlock(&md->suspend_lock);
2644}
2645EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2646
2647/*-----------------------------------------------------------------
2648 * Event notification.
2649 *---------------------------------------------------------------*/
2650int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2651                       unsigned cookie)
2652{
2653        char udev_cookie[DM_COOKIE_LENGTH];
2654        char *envp[] = { udev_cookie, NULL };
2655
2656        if (!cookie)
2657                return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2658        else {
2659                snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2660                         DM_COOKIE_ENV_VAR_NAME, cookie);
2661                return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2662                                          action, envp);
2663        }
2664}
2665
2666uint32_t dm_next_uevent_seq(struct mapped_device *md)
2667{
2668        return atomic_add_return(1, &md->uevent_seq);
2669}
2670
2671uint32_t dm_get_event_nr(struct mapped_device *md)
2672{
2673        return atomic_read(&md->event_nr);
2674}
2675
2676int dm_wait_event(struct mapped_device *md, int event_nr)
2677{
2678        return wait_event_interruptible(md->eventq,
2679                        (event_nr != atomic_read(&md->event_nr)));
2680}
2681
2682void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2683{
2684        unsigned long flags;
2685
2686        spin_lock_irqsave(&md->uevent_lock, flags);
2687        list_add(elist, &md->uevent_list);
2688        spin_unlock_irqrestore(&md->uevent_lock, flags);
2689}
2690
2691/*
2692 * The gendisk is only valid as long as you have a reference
2693 * count on 'md'.
2694 */
2695struct gendisk *dm_disk(struct mapped_device *md)
2696{
2697        return md->disk;
2698}
2699EXPORT_SYMBOL_GPL(dm_disk);
2700
2701struct kobject *dm_kobject(struct mapped_device *md)
2702{
2703        return &md->kobj_holder.kobj;
2704}
2705
2706struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2707{
2708        struct mapped_device *md;
2709
2710        md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2711
2712        if (test_bit(DMF_FREEING, &md->flags) ||
2713            dm_deleting_md(md))
2714                return NULL;
2715
2716        dm_get(md);
2717        return md;
2718}
2719
2720int dm_suspended_md(struct mapped_device *md)
2721{
2722        return test_bit(DMF_SUSPENDED, &md->flags);
2723}
2724
2725int dm_suspended_internally_md(struct mapped_device *md)
2726{
2727        return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2728}
2729
2730int dm_test_deferred_remove_flag(struct mapped_device *md)
2731{
2732        return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2733}
2734
2735int dm_suspended(struct dm_target *ti)
2736{
2737        return dm_suspended_md(dm_table_get_md(ti->table));
2738}
2739EXPORT_SYMBOL_GPL(dm_suspended);
2740
2741int dm_noflush_suspending(struct dm_target *ti)
2742{
2743        return __noflush_suspending(dm_table_get_md(ti->table));
2744}
2745EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2746
2747struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2748                                            unsigned integrity, unsigned per_io_data_size)
2749{
2750        struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2751        unsigned int pool_size = 0;
2752        unsigned int front_pad;
2753
2754        if (!pools)
2755                return NULL;
2756
2757        switch (type) {
2758        case DM_TYPE_BIO_BASED:
2759        case DM_TYPE_DAX_BIO_BASED:
2760                pool_size = dm_get_reserved_bio_based_ios();
2761                front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2762        
2763                pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2764                if (!pools->io_pool)
2765                        goto out;
2766                break;
2767        case DM_TYPE_REQUEST_BASED:
2768        case DM_TYPE_MQ_REQUEST_BASED:
2769                pool_size = dm_get_reserved_rq_based_ios();
2770                front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2771                /* per_io_data_size is used for blk-mq pdu at queue allocation */
2772                break;
2773        default:
2774                BUG();
2775        }
2776
2777        pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2778        if (!pools->bs)
2779                goto out;
2780
2781        if (integrity && bioset_integrity_create(pools->bs, pool_size))
2782                goto out;
2783
2784        return pools;
2785
2786out:
2787        dm_free_md_mempools(pools);
2788
2789        return NULL;
2790}
2791
2792void dm_free_md_mempools(struct dm_md_mempools *pools)
2793{
2794        if (!pools)
2795                return;
2796
2797        mempool_destroy(pools->io_pool);
2798
2799        if (pools->bs)
2800                bioset_free(pools->bs);
2801
2802        kfree(pools);
2803}
2804
2805struct dm_pr {
2806        u64     old_key;
2807        u64     new_key;
2808        u32     flags;
2809        bool    fail_early;
2810};
2811
2812static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2813                      void *data)
2814{
2815        struct mapped_device *md = bdev->bd_disk->private_data;
2816        struct dm_table *table;
2817        struct dm_target *ti;
2818        int ret = -ENOTTY, srcu_idx;
2819
2820        table = dm_get_live_table(md, &srcu_idx);
2821        if (!table || !dm_table_get_size(table))
2822                goto out;
2823
2824        /* We only support devices that have a single target */
2825        if (dm_table_get_num_targets(table) != 1)
2826                goto out;
2827        ti = dm_table_get_target(table, 0);
2828
2829        ret = -EINVAL;
2830        if (!ti->type->iterate_devices)
2831                goto out;
2832
2833        ret = ti->type->iterate_devices(ti, fn, data);
2834out:
2835        dm_put_live_table(md, srcu_idx);
2836        return ret;
2837}
2838
2839/*
2840 * For register / unregister we need to manually call out to every path.
2841 */
2842static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2843                            sector_t start, sector_t len, void *data)
2844{
2845        struct dm_pr *pr = data;
2846        const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2847
2848        if (!ops || !ops->pr_register)
2849                return -EOPNOTSUPP;
2850        return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2851}
2852
2853static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2854                          u32 flags)
2855{
2856        struct dm_pr pr = {
2857                .old_key        = old_key,
2858                .new_key        = new_key,
2859                .flags          = flags,
2860                .fail_early     = true,
2861        };
2862        int ret;
2863
2864        ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2865        if (ret && new_key) {
2866                /* unregister all paths if we failed to register any path */
2867                pr.old_key = new_key;
2868                pr.new_key = 0;
2869                pr.flags = 0;
2870                pr.fail_early = false;
2871                dm_call_pr(bdev, __dm_pr_register, &pr);
2872        }
2873
2874        return ret;
2875}
2876
2877static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2878                         u32 flags)
2879{
2880        struct mapped_device *md = bdev->bd_disk->private_data;
2881        const struct pr_ops *ops;
2882        fmode_t mode;
2883        int r;
2884
2885        r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2886        if (r < 0)
2887                return r;
2888
2889        ops = bdev->bd_disk->fops->pr_ops;
2890        if (ops && ops->pr_reserve)
2891                r = ops->pr_reserve(bdev, key, type, flags);
2892        else
2893                r = -EOPNOTSUPP;
2894
2895        bdput(bdev);
2896        return r;
2897}
2898
2899static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2900{
2901        struct mapped_device *md = bdev->bd_disk->private_data;
2902        const struct pr_ops *ops;
2903        fmode_t mode;
2904        int r;
2905
2906        r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2907        if (r < 0)
2908                return r;
2909
2910        ops = bdev->bd_disk->fops->pr_ops;
2911        if (ops && ops->pr_release)
2912                r = ops->pr_release(bdev, key, type);
2913        else
2914                r = -EOPNOTSUPP;
2915
2916        bdput(bdev);
2917        return r;
2918}
2919
2920static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2921                         enum pr_type type, bool abort)
2922{
2923        struct mapped_device *md = bdev->bd_disk->private_data;
2924        const struct pr_ops *ops;
2925        fmode_t mode;
2926        int r;
2927
2928        r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2929        if (r < 0)
2930                return r;
2931
2932        ops = bdev->bd_disk->fops->pr_ops;
2933        if (ops && ops->pr_preempt)
2934                r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2935        else
2936                r = -EOPNOTSUPP;
2937
2938        bdput(bdev);
2939        return r;
2940}
2941
2942static int dm_pr_clear(struct block_device *bdev, u64 key)
2943{
2944        struct mapped_device *md = bdev->bd_disk->private_data;
2945        const struct pr_ops *ops;
2946        fmode_t mode;
2947        int r;
2948
2949        r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2950        if (r < 0)
2951                return r;
2952
2953        ops = bdev->bd_disk->fops->pr_ops;
2954        if (ops && ops->pr_clear)
2955                r = ops->pr_clear(bdev, key);
2956        else
2957                r = -EOPNOTSUPP;
2958
2959        bdput(bdev);
2960        return r;
2961}
2962
2963static const struct pr_ops dm_pr_ops = {
2964        .pr_register    = dm_pr_register,
2965        .pr_reserve     = dm_pr_reserve,
2966        .pr_release     = dm_pr_release,
2967        .pr_preempt     = dm_pr_preempt,
2968        .pr_clear       = dm_pr_clear,
2969};
2970
2971static const struct block_device_operations dm_blk_dops = {
2972        .open = dm_blk_open,
2973        .release = dm_blk_close,
2974        .ioctl = dm_blk_ioctl,
2975        .getgeo = dm_blk_getgeo,
2976        .pr_ops = &dm_pr_ops,
2977        .owner = THIS_MODULE
2978};
2979
2980static const struct dax_operations dm_dax_ops = {
2981        .direct_access = dm_dax_direct_access,
2982        .copy_from_iter = dm_dax_copy_from_iter,
2983};
2984
2985/*
2986 * module hooks
2987 */
2988module_init(dm_init);
2989module_exit(dm_exit);
2990
2991module_param(major, uint, 0);
2992MODULE_PARM_DESC(major, "The major number of the device mapper");
2993
2994module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2995MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2996
2997module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2998MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2999
3000MODULE_DESCRIPTION(DM_NAME " driver");
3001MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3002MODULE_LICENSE("GPL");
3003