linux/drivers/md/persistent-data/dm-btree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-btree-internal.h"
   8#include "dm-space-map.h"
   9#include "dm-transaction-manager.h"
  10
  11#include <linux/export.h>
  12#include <linux/device-mapper.h>
  13
  14#define DM_MSG_PREFIX "btree"
  15
  16/*----------------------------------------------------------------
  17 * Array manipulation
  18 *--------------------------------------------------------------*/
  19static void memcpy_disk(void *dest, const void *src, size_t len)
  20        __dm_written_to_disk(src)
  21{
  22        memcpy(dest, src, len);
  23        __dm_unbless_for_disk(src);
  24}
  25
  26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
  27                         unsigned index, void *elt)
  28        __dm_written_to_disk(elt)
  29{
  30        if (index < nr_elts)
  31                memmove(base + (elt_size * (index + 1)),
  32                        base + (elt_size * index),
  33                        (nr_elts - index) * elt_size);
  34
  35        memcpy_disk(base + (elt_size * index), elt, elt_size);
  36}
  37
  38/*----------------------------------------------------------------*/
  39
  40/* makes the assumption that no two keys are the same. */
  41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
  42{
  43        int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
  44
  45        while (hi - lo > 1) {
  46                int mid = lo + ((hi - lo) / 2);
  47                uint64_t mid_key = le64_to_cpu(n->keys[mid]);
  48
  49                if (mid_key == key)
  50                        return mid;
  51
  52                if (mid_key < key)
  53                        lo = mid;
  54                else
  55                        hi = mid;
  56        }
  57
  58        return want_hi ? hi : lo;
  59}
  60
  61int lower_bound(struct btree_node *n, uint64_t key)
  62{
  63        return bsearch(n, key, 0);
  64}
  65
  66static int upper_bound(struct btree_node *n, uint64_t key)
  67{
  68        return bsearch(n, key, 1);
  69}
  70
  71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
  72                  struct dm_btree_value_type *vt)
  73{
  74        unsigned i;
  75        uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
  76
  77        if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
  78                for (i = 0; i < nr_entries; i++)
  79                        dm_tm_inc(tm, value64(n, i));
  80        else if (vt->inc)
  81                for (i = 0; i < nr_entries; i++)
  82                        vt->inc(vt->context, value_ptr(n, i));
  83}
  84
  85static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
  86                      uint64_t key, void *value)
  87                      __dm_written_to_disk(value)
  88{
  89        uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
  90        __le64 key_le = cpu_to_le64(key);
  91
  92        if (index > nr_entries ||
  93            index >= le32_to_cpu(node->header.max_entries)) {
  94                DMERR("too many entries in btree node for insert");
  95                __dm_unbless_for_disk(value);
  96                return -ENOMEM;
  97        }
  98
  99        __dm_bless_for_disk(&key_le);
 100
 101        array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 102        array_insert(value_base(node), value_size, nr_entries, index, value);
 103        node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 104
 105        return 0;
 106}
 107
 108/*----------------------------------------------------------------*/
 109
 110/*
 111 * We want 3n entries (for some n).  This works more nicely for repeated
 112 * insert remove loops than (2n + 1).
 113 */
 114static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 115{
 116        uint32_t total, n;
 117        size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 118
 119        block_size -= sizeof(struct node_header);
 120        total = block_size / elt_size;
 121        n = total / 3;          /* rounds down */
 122
 123        return 3 * n;
 124}
 125
 126int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 127{
 128        int r;
 129        struct dm_block *b;
 130        struct btree_node *n;
 131        size_t block_size;
 132        uint32_t max_entries;
 133
 134        r = new_block(info, &b);
 135        if (r < 0)
 136                return r;
 137
 138        block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 139        max_entries = calc_max_entries(info->value_type.size, block_size);
 140
 141        n = dm_block_data(b);
 142        memset(n, 0, block_size);
 143        n->header.flags = cpu_to_le32(LEAF_NODE);
 144        n->header.nr_entries = cpu_to_le32(0);
 145        n->header.max_entries = cpu_to_le32(max_entries);
 146        n->header.value_size = cpu_to_le32(info->value_type.size);
 147
 148        *root = dm_block_location(b);
 149        unlock_block(info, b);
 150
 151        return 0;
 152}
 153EXPORT_SYMBOL_GPL(dm_btree_empty);
 154
 155/*----------------------------------------------------------------*/
 156
 157/*
 158 * Deletion uses a recursive algorithm, since we have limited stack space
 159 * we explicitly manage our own stack on the heap.
 160 */
 161#define MAX_SPINE_DEPTH 64
 162struct frame {
 163        struct dm_block *b;
 164        struct btree_node *n;
 165        unsigned level;
 166        unsigned nr_children;
 167        unsigned current_child;
 168};
 169
 170struct del_stack {
 171        struct dm_btree_info *info;
 172        struct dm_transaction_manager *tm;
 173        int top;
 174        struct frame spine[MAX_SPINE_DEPTH];
 175};
 176
 177static int top_frame(struct del_stack *s, struct frame **f)
 178{
 179        if (s->top < 0) {
 180                DMERR("btree deletion stack empty");
 181                return -EINVAL;
 182        }
 183
 184        *f = s->spine + s->top;
 185
 186        return 0;
 187}
 188
 189static int unprocessed_frames(struct del_stack *s)
 190{
 191        return s->top >= 0;
 192}
 193
 194static void prefetch_children(struct del_stack *s, struct frame *f)
 195{
 196        unsigned i;
 197        struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
 198
 199        for (i = 0; i < f->nr_children; i++)
 200                dm_bm_prefetch(bm, value64(f->n, i));
 201}
 202
 203static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
 204{
 205        return f->level < (info->levels - 1);
 206}
 207
 208static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
 209{
 210        int r;
 211        uint32_t ref_count;
 212
 213        if (s->top >= MAX_SPINE_DEPTH - 1) {
 214                DMERR("btree deletion stack out of memory");
 215                return -ENOMEM;
 216        }
 217
 218        r = dm_tm_ref(s->tm, b, &ref_count);
 219        if (r)
 220                return r;
 221
 222        if (ref_count > 1)
 223                /*
 224                 * This is a shared node, so we can just decrement it's
 225                 * reference counter and leave the children.
 226                 */
 227                dm_tm_dec(s->tm, b);
 228
 229        else {
 230                uint32_t flags;
 231                struct frame *f = s->spine + ++s->top;
 232
 233                r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 234                if (r) {
 235                        s->top--;
 236                        return r;
 237                }
 238
 239                f->n = dm_block_data(f->b);
 240                f->level = level;
 241                f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 242                f->current_child = 0;
 243
 244                flags = le32_to_cpu(f->n->header.flags);
 245                if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
 246                        prefetch_children(s, f);
 247        }
 248
 249        return 0;
 250}
 251
 252static void pop_frame(struct del_stack *s)
 253{
 254        struct frame *f = s->spine + s->top--;
 255
 256        dm_tm_dec(s->tm, dm_block_location(f->b));
 257        dm_tm_unlock(s->tm, f->b);
 258}
 259
 260static void unlock_all_frames(struct del_stack *s)
 261{
 262        struct frame *f;
 263
 264        while (unprocessed_frames(s)) {
 265                f = s->spine + s->top--;
 266                dm_tm_unlock(s->tm, f->b);
 267        }
 268}
 269
 270int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 271{
 272        int r;
 273        struct del_stack *s;
 274
 275        /*
 276         * dm_btree_del() is called via an ioctl, as such should be
 277         * considered an FS op.  We can't recurse back into the FS, so we
 278         * allocate GFP_NOFS.
 279         */
 280        s = kmalloc(sizeof(*s), GFP_NOFS);
 281        if (!s)
 282                return -ENOMEM;
 283        s->info = info;
 284        s->tm = info->tm;
 285        s->top = -1;
 286
 287        r = push_frame(s, root, 0);
 288        if (r)
 289                goto out;
 290
 291        while (unprocessed_frames(s)) {
 292                uint32_t flags;
 293                struct frame *f;
 294                dm_block_t b;
 295
 296                r = top_frame(s, &f);
 297                if (r)
 298                        goto out;
 299
 300                if (f->current_child >= f->nr_children) {
 301                        pop_frame(s);
 302                        continue;
 303                }
 304
 305                flags = le32_to_cpu(f->n->header.flags);
 306                if (flags & INTERNAL_NODE) {
 307                        b = value64(f->n, f->current_child);
 308                        f->current_child++;
 309                        r = push_frame(s, b, f->level);
 310                        if (r)
 311                                goto out;
 312
 313                } else if (is_internal_level(info, f)) {
 314                        b = value64(f->n, f->current_child);
 315                        f->current_child++;
 316                        r = push_frame(s, b, f->level + 1);
 317                        if (r)
 318                                goto out;
 319
 320                } else {
 321                        if (info->value_type.dec) {
 322                                unsigned i;
 323
 324                                for (i = 0; i < f->nr_children; i++)
 325                                        info->value_type.dec(info->value_type.context,
 326                                                             value_ptr(f->n, i));
 327                        }
 328                        pop_frame(s);
 329                }
 330        }
 331out:
 332        if (r) {
 333                /* cleanup all frames of del_stack */
 334                unlock_all_frames(s);
 335        }
 336        kfree(s);
 337
 338        return r;
 339}
 340EXPORT_SYMBOL_GPL(dm_btree_del);
 341
 342/*----------------------------------------------------------------*/
 343
 344static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 345                            int (*search_fn)(struct btree_node *, uint64_t),
 346                            uint64_t *result_key, void *v, size_t value_size)
 347{
 348        int i, r;
 349        uint32_t flags, nr_entries;
 350
 351        do {
 352                r = ro_step(s, block);
 353                if (r < 0)
 354                        return r;
 355
 356                i = search_fn(ro_node(s), key);
 357
 358                flags = le32_to_cpu(ro_node(s)->header.flags);
 359                nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 360                if (i < 0 || i >= nr_entries)
 361                        return -ENODATA;
 362
 363                if (flags & INTERNAL_NODE)
 364                        block = value64(ro_node(s), i);
 365
 366        } while (!(flags & LEAF_NODE));
 367
 368        *result_key = le64_to_cpu(ro_node(s)->keys[i]);
 369        memcpy(v, value_ptr(ro_node(s), i), value_size);
 370
 371        return 0;
 372}
 373
 374int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 375                    uint64_t *keys, void *value_le)
 376{
 377        unsigned level, last_level = info->levels - 1;
 378        int r = -ENODATA;
 379        uint64_t rkey;
 380        __le64 internal_value_le;
 381        struct ro_spine spine;
 382
 383        init_ro_spine(&spine, info);
 384        for (level = 0; level < info->levels; level++) {
 385                size_t size;
 386                void *value_p;
 387
 388                if (level == last_level) {
 389                        value_p = value_le;
 390                        size = info->value_type.size;
 391
 392                } else {
 393                        value_p = &internal_value_le;
 394                        size = sizeof(uint64_t);
 395                }
 396
 397                r = btree_lookup_raw(&spine, root, keys[level],
 398                                     lower_bound, &rkey,
 399                                     value_p, size);
 400
 401                if (!r) {
 402                        if (rkey != keys[level]) {
 403                                exit_ro_spine(&spine);
 404                                return -ENODATA;
 405                        }
 406                } else {
 407                        exit_ro_spine(&spine);
 408                        return r;
 409                }
 410
 411                root = le64_to_cpu(internal_value_le);
 412        }
 413        exit_ro_spine(&spine);
 414
 415        return r;
 416}
 417EXPORT_SYMBOL_GPL(dm_btree_lookup);
 418
 419static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
 420                                       uint64_t key, uint64_t *rkey, void *value_le)
 421{
 422        int r, i;
 423        uint32_t flags, nr_entries;
 424        struct dm_block *node;
 425        struct btree_node *n;
 426
 427        r = bn_read_lock(info, root, &node);
 428        if (r)
 429                return r;
 430
 431        n = dm_block_data(node);
 432        flags = le32_to_cpu(n->header.flags);
 433        nr_entries = le32_to_cpu(n->header.nr_entries);
 434
 435        if (flags & INTERNAL_NODE) {
 436                i = lower_bound(n, key);
 437                if (i < 0) {
 438                        /*
 439                         * avoid early -ENODATA return when all entries are
 440                         * higher than the search @key.
 441                         */
 442                        i = 0;
 443                }
 444                if (i >= nr_entries) {
 445                        r = -ENODATA;
 446                        goto out;
 447                }
 448
 449                r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 450                if (r == -ENODATA && i < (nr_entries - 1)) {
 451                        i++;
 452                        r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 453                }
 454
 455        } else {
 456                i = upper_bound(n, key);
 457                if (i < 0 || i >= nr_entries) {
 458                        r = -ENODATA;
 459                        goto out;
 460                }
 461
 462                *rkey = le64_to_cpu(n->keys[i]);
 463                memcpy(value_le, value_ptr(n, i), info->value_type.size);
 464        }
 465out:
 466        dm_tm_unlock(info->tm, node);
 467        return r;
 468}
 469
 470int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
 471                         uint64_t *keys, uint64_t *rkey, void *value_le)
 472{
 473        unsigned level;
 474        int r = -ENODATA;
 475        __le64 internal_value_le;
 476        struct ro_spine spine;
 477
 478        init_ro_spine(&spine, info);
 479        for (level = 0; level < info->levels - 1u; level++) {
 480                r = btree_lookup_raw(&spine, root, keys[level],
 481                                     lower_bound, rkey,
 482                                     &internal_value_le, sizeof(uint64_t));
 483                if (r)
 484                        goto out;
 485
 486                if (*rkey != keys[level]) {
 487                        r = -ENODATA;
 488                        goto out;
 489                }
 490
 491                root = le64_to_cpu(internal_value_le);
 492        }
 493
 494        r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
 495out:
 496        exit_ro_spine(&spine);
 497        return r;
 498}
 499
 500EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
 501
 502/*
 503 * Splits a node by creating a sibling node and shifting half the nodes
 504 * contents across.  Assumes there is a parent node, and it has room for
 505 * another child.
 506 *
 507 * Before:
 508 *        +--------+
 509 *        | Parent |
 510 *        +--------+
 511 *           |
 512 *           v
 513 *      +----------+
 514 *      | A ++++++ |
 515 *      +----------+
 516 *
 517 *
 518 * After:
 519 *              +--------+
 520 *              | Parent |
 521 *              +--------+
 522 *                |     |
 523 *                v     +------+
 524 *          +---------+        |
 525 *          | A* +++  |        v
 526 *          +---------+   +-------+
 527 *                        | B +++ |
 528 *                        +-------+
 529 *
 530 * Where A* is a shadow of A.
 531 */
 532static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
 533                               uint64_t key)
 534{
 535        int r;
 536        size_t size;
 537        unsigned nr_left, nr_right;
 538        struct dm_block *left, *right, *parent;
 539        struct btree_node *ln, *rn, *pn;
 540        __le64 location;
 541
 542        left = shadow_current(s);
 543
 544        r = new_block(s->info, &right);
 545        if (r < 0)
 546                return r;
 547
 548        ln = dm_block_data(left);
 549        rn = dm_block_data(right);
 550
 551        nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
 552        nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
 553
 554        ln->header.nr_entries = cpu_to_le32(nr_left);
 555
 556        rn->header.flags = ln->header.flags;
 557        rn->header.nr_entries = cpu_to_le32(nr_right);
 558        rn->header.max_entries = ln->header.max_entries;
 559        rn->header.value_size = ln->header.value_size;
 560        memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
 561
 562        size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
 563                sizeof(uint64_t) : s->info->value_type.size;
 564        memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
 565               size * nr_right);
 566
 567        /*
 568         * Patch up the parent
 569         */
 570        parent = shadow_parent(s);
 571
 572        pn = dm_block_data(parent);
 573        location = cpu_to_le64(dm_block_location(left));
 574        __dm_bless_for_disk(&location);
 575        memcpy_disk(value_ptr(pn, parent_index),
 576                    &location, sizeof(__le64));
 577
 578        location = cpu_to_le64(dm_block_location(right));
 579        __dm_bless_for_disk(&location);
 580
 581        r = insert_at(sizeof(__le64), pn, parent_index + 1,
 582                      le64_to_cpu(rn->keys[0]), &location);
 583        if (r) {
 584                unlock_block(s->info, right);
 585                return r;
 586        }
 587
 588        if (key < le64_to_cpu(rn->keys[0])) {
 589                unlock_block(s->info, right);
 590                s->nodes[1] = left;
 591        } else {
 592                unlock_block(s->info, left);
 593                s->nodes[1] = right;
 594        }
 595
 596        return 0;
 597}
 598
 599/*
 600 * Splits a node by creating two new children beneath the given node.
 601 *
 602 * Before:
 603 *        +----------+
 604 *        | A ++++++ |
 605 *        +----------+
 606 *
 607 *
 608 * After:
 609 *      +------------+
 610 *      | A (shadow) |
 611 *      +------------+
 612 *          |   |
 613 *   +------+   +----+
 614 *   |               |
 615 *   v               v
 616 * +-------+     +-------+
 617 * | B +++ |     | C +++ |
 618 * +-------+     +-------+
 619 */
 620static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 621{
 622        int r;
 623        size_t size;
 624        unsigned nr_left, nr_right;
 625        struct dm_block *left, *right, *new_parent;
 626        struct btree_node *pn, *ln, *rn;
 627        __le64 val;
 628
 629        new_parent = shadow_current(s);
 630
 631        r = new_block(s->info, &left);
 632        if (r < 0)
 633                return r;
 634
 635        r = new_block(s->info, &right);
 636        if (r < 0) {
 637                unlock_block(s->info, left);
 638                return r;
 639        }
 640
 641        pn = dm_block_data(new_parent);
 642        ln = dm_block_data(left);
 643        rn = dm_block_data(right);
 644
 645        nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 646        nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 647
 648        ln->header.flags = pn->header.flags;
 649        ln->header.nr_entries = cpu_to_le32(nr_left);
 650        ln->header.max_entries = pn->header.max_entries;
 651        ln->header.value_size = pn->header.value_size;
 652
 653        rn->header.flags = pn->header.flags;
 654        rn->header.nr_entries = cpu_to_le32(nr_right);
 655        rn->header.max_entries = pn->header.max_entries;
 656        rn->header.value_size = pn->header.value_size;
 657
 658        memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 659        memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 660
 661        size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 662                sizeof(__le64) : s->info->value_type.size;
 663        memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
 664        memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
 665               nr_right * size);
 666
 667        /* new_parent should just point to l and r now */
 668        pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 669        pn->header.nr_entries = cpu_to_le32(2);
 670        pn->header.max_entries = cpu_to_le32(
 671                calc_max_entries(sizeof(__le64),
 672                                 dm_bm_block_size(
 673                                         dm_tm_get_bm(s->info->tm))));
 674        pn->header.value_size = cpu_to_le32(sizeof(__le64));
 675
 676        val = cpu_to_le64(dm_block_location(left));
 677        __dm_bless_for_disk(&val);
 678        pn->keys[0] = ln->keys[0];
 679        memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
 680
 681        val = cpu_to_le64(dm_block_location(right));
 682        __dm_bless_for_disk(&val);
 683        pn->keys[1] = rn->keys[0];
 684        memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
 685
 686        /*
 687         * rejig the spine.  This is ugly, since it knows too
 688         * much about the spine
 689         */
 690        if (s->nodes[0] != new_parent) {
 691                unlock_block(s->info, s->nodes[0]);
 692                s->nodes[0] = new_parent;
 693        }
 694        if (key < le64_to_cpu(rn->keys[0])) {
 695                unlock_block(s->info, right);
 696                s->nodes[1] = left;
 697        } else {
 698                unlock_block(s->info, left);
 699                s->nodes[1] = right;
 700        }
 701        s->count = 2;
 702
 703        return 0;
 704}
 705
 706static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
 707                            struct dm_btree_value_type *vt,
 708                            uint64_t key, unsigned *index)
 709{
 710        int r, i = *index, top = 1;
 711        struct btree_node *node;
 712
 713        for (;;) {
 714                r = shadow_step(s, root, vt);
 715                if (r < 0)
 716                        return r;
 717
 718                node = dm_block_data(shadow_current(s));
 719
 720                /*
 721                 * We have to patch up the parent node, ugly, but I don't
 722                 * see a way to do this automatically as part of the spine
 723                 * op.
 724                 */
 725                if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
 726                        __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 727
 728                        __dm_bless_for_disk(&location);
 729                        memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
 730                                    &location, sizeof(__le64));
 731                }
 732
 733                node = dm_block_data(shadow_current(s));
 734
 735                if (node->header.nr_entries == node->header.max_entries) {
 736                        if (top)
 737                                r = btree_split_beneath(s, key);
 738                        else
 739                                r = btree_split_sibling(s, i, key);
 740
 741                        if (r < 0)
 742                                return r;
 743                }
 744
 745                node = dm_block_data(shadow_current(s));
 746
 747                i = lower_bound(node, key);
 748
 749                if (le32_to_cpu(node->header.flags) & LEAF_NODE)
 750                        break;
 751
 752                if (i < 0) {
 753                        /* change the bounds on the lowest key */
 754                        node->keys[0] = cpu_to_le64(key);
 755                        i = 0;
 756                }
 757
 758                root = value64(node, i);
 759                top = 0;
 760        }
 761
 762        if (i < 0 || le64_to_cpu(node->keys[i]) != key)
 763                i++;
 764
 765        *index = i;
 766        return 0;
 767}
 768
 769static bool need_insert(struct btree_node *node, uint64_t *keys,
 770                        unsigned level, unsigned index)
 771{
 772        return ((index >= le32_to_cpu(node->header.nr_entries)) ||
 773                (le64_to_cpu(node->keys[index]) != keys[level]));
 774}
 775
 776static int insert(struct dm_btree_info *info, dm_block_t root,
 777                  uint64_t *keys, void *value, dm_block_t *new_root,
 778                  int *inserted)
 779                  __dm_written_to_disk(value)
 780{
 781        int r;
 782        unsigned level, index = -1, last_level = info->levels - 1;
 783        dm_block_t block = root;
 784        struct shadow_spine spine;
 785        struct btree_node *n;
 786        struct dm_btree_value_type le64_type;
 787
 788        init_le64_type(info->tm, &le64_type);
 789        init_shadow_spine(&spine, info);
 790
 791        for (level = 0; level < (info->levels - 1); level++) {
 792                r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
 793                if (r < 0)
 794                        goto bad;
 795
 796                n = dm_block_data(shadow_current(&spine));
 797
 798                if (need_insert(n, keys, level, index)) {
 799                        dm_block_t new_tree;
 800                        __le64 new_le;
 801
 802                        r = dm_btree_empty(info, &new_tree);
 803                        if (r < 0)
 804                                goto bad;
 805
 806                        new_le = cpu_to_le64(new_tree);
 807                        __dm_bless_for_disk(&new_le);
 808
 809                        r = insert_at(sizeof(uint64_t), n, index,
 810                                      keys[level], &new_le);
 811                        if (r)
 812                                goto bad;
 813                }
 814
 815                if (level < last_level)
 816                        block = value64(n, index);
 817        }
 818
 819        r = btree_insert_raw(&spine, block, &info->value_type,
 820                             keys[level], &index);
 821        if (r < 0)
 822                goto bad;
 823
 824        n = dm_block_data(shadow_current(&spine));
 825
 826        if (need_insert(n, keys, level, index)) {
 827                if (inserted)
 828                        *inserted = 1;
 829
 830                r = insert_at(info->value_type.size, n, index,
 831                              keys[level], value);
 832                if (r)
 833                        goto bad_unblessed;
 834        } else {
 835                if (inserted)
 836                        *inserted = 0;
 837
 838                if (info->value_type.dec &&
 839                    (!info->value_type.equal ||
 840                     !info->value_type.equal(
 841                             info->value_type.context,
 842                             value_ptr(n, index),
 843                             value))) {
 844                        info->value_type.dec(info->value_type.context,
 845                                             value_ptr(n, index));
 846                }
 847                memcpy_disk(value_ptr(n, index),
 848                            value, info->value_type.size);
 849        }
 850
 851        *new_root = shadow_root(&spine);
 852        exit_shadow_spine(&spine);
 853
 854        return 0;
 855
 856bad:
 857        __dm_unbless_for_disk(value);
 858bad_unblessed:
 859        exit_shadow_spine(&spine);
 860        return r;
 861}
 862
 863int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
 864                    uint64_t *keys, void *value, dm_block_t *new_root)
 865                    __dm_written_to_disk(value)
 866{
 867        return insert(info, root, keys, value, new_root, NULL);
 868}
 869EXPORT_SYMBOL_GPL(dm_btree_insert);
 870
 871int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
 872                           uint64_t *keys, void *value, dm_block_t *new_root,
 873                           int *inserted)
 874                           __dm_written_to_disk(value)
 875{
 876        return insert(info, root, keys, value, new_root, inserted);
 877}
 878EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
 879
 880/*----------------------------------------------------------------*/
 881
 882static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
 883                    uint64_t *result_key, dm_block_t *next_block)
 884{
 885        int i, r;
 886        uint32_t flags;
 887
 888        do {
 889                r = ro_step(s, block);
 890                if (r < 0)
 891                        return r;
 892
 893                flags = le32_to_cpu(ro_node(s)->header.flags);
 894                i = le32_to_cpu(ro_node(s)->header.nr_entries);
 895                if (!i)
 896                        return -ENODATA;
 897                else
 898                        i--;
 899
 900                if (find_highest)
 901                        *result_key = le64_to_cpu(ro_node(s)->keys[i]);
 902                else
 903                        *result_key = le64_to_cpu(ro_node(s)->keys[0]);
 904
 905                if (next_block || flags & INTERNAL_NODE) {
 906                        if (find_highest)
 907                                block = value64(ro_node(s), i);
 908                        else
 909                                block = value64(ro_node(s), 0);
 910                }
 911
 912        } while (flags & INTERNAL_NODE);
 913
 914        if (next_block)
 915                *next_block = block;
 916        return 0;
 917}
 918
 919static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
 920                             bool find_highest, uint64_t *result_keys)
 921{
 922        int r = 0, count = 0, level;
 923        struct ro_spine spine;
 924
 925        init_ro_spine(&spine, info);
 926        for (level = 0; level < info->levels; level++) {
 927                r = find_key(&spine, root, find_highest, result_keys + level,
 928                             level == info->levels - 1 ? NULL : &root);
 929                if (r == -ENODATA) {
 930                        r = 0;
 931                        break;
 932
 933                } else if (r)
 934                        break;
 935
 936                count++;
 937        }
 938        exit_ro_spine(&spine);
 939
 940        return r ? r : count;
 941}
 942
 943int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
 944                              uint64_t *result_keys)
 945{
 946        return dm_btree_find_key(info, root, true, result_keys);
 947}
 948EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
 949
 950int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
 951                             uint64_t *result_keys)
 952{
 953        return dm_btree_find_key(info, root, false, result_keys);
 954}
 955EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
 956
 957/*----------------------------------------------------------------*/
 958
 959/*
 960 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
 961 * space.  Also this only works for single level trees.
 962 */
 963static int walk_node(struct dm_btree_info *info, dm_block_t block,
 964                     int (*fn)(void *context, uint64_t *keys, void *leaf),
 965                     void *context)
 966{
 967        int r;
 968        unsigned i, nr;
 969        struct dm_block *node;
 970        struct btree_node *n;
 971        uint64_t keys;
 972
 973        r = bn_read_lock(info, block, &node);
 974        if (r)
 975                return r;
 976
 977        n = dm_block_data(node);
 978
 979        nr = le32_to_cpu(n->header.nr_entries);
 980        for (i = 0; i < nr; i++) {
 981                if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
 982                        r = walk_node(info, value64(n, i), fn, context);
 983                        if (r)
 984                                goto out;
 985                } else {
 986                        keys = le64_to_cpu(*key_ptr(n, i));
 987                        r = fn(context, &keys, value_ptr(n, i));
 988                        if (r)
 989                                goto out;
 990                }
 991        }
 992
 993out:
 994        dm_tm_unlock(info->tm, node);
 995        return r;
 996}
 997
 998int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
 999                  int (*fn)(void *context, uint64_t *keys, void *leaf),
1000                  void *context)
1001{
1002        BUG_ON(info->levels > 1);
1003        return walk_node(info, root, fn, context);
1004}
1005EXPORT_SYMBOL_GPL(dm_btree_walk);
1006
1007/*----------------------------------------------------------------*/
1008
1009static void prefetch_values(struct dm_btree_cursor *c)
1010{
1011        unsigned i, nr;
1012        __le64 value_le;
1013        struct cursor_node *n = c->nodes + c->depth - 1;
1014        struct btree_node *bn = dm_block_data(n->b);
1015        struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1016
1017        BUG_ON(c->info->value_type.size != sizeof(value_le));
1018
1019        nr = le32_to_cpu(bn->header.nr_entries);
1020        for (i = 0; i < nr; i++) {
1021                memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1022                dm_bm_prefetch(bm, le64_to_cpu(value_le));
1023        }
1024}
1025
1026static bool leaf_node(struct dm_btree_cursor *c)
1027{
1028        struct cursor_node *n = c->nodes + c->depth - 1;
1029        struct btree_node *bn = dm_block_data(n->b);
1030
1031        return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1032}
1033
1034static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1035{
1036        int r;
1037        struct cursor_node *n = c->nodes + c->depth;
1038
1039        if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1040                DMERR("couldn't push cursor node, stack depth too high");
1041                return -EINVAL;
1042        }
1043
1044        r = bn_read_lock(c->info, b, &n->b);
1045        if (r)
1046                return r;
1047
1048        n->index = 0;
1049        c->depth++;
1050
1051        if (c->prefetch_leaves || !leaf_node(c))
1052                prefetch_values(c);
1053
1054        return 0;
1055}
1056
1057static void pop_node(struct dm_btree_cursor *c)
1058{
1059        c->depth--;
1060        unlock_block(c->info, c->nodes[c->depth].b);
1061}
1062
1063static int inc_or_backtrack(struct dm_btree_cursor *c)
1064{
1065        struct cursor_node *n;
1066        struct btree_node *bn;
1067
1068        for (;;) {
1069                if (!c->depth)
1070                        return -ENODATA;
1071
1072                n = c->nodes + c->depth - 1;
1073                bn = dm_block_data(n->b);
1074
1075                n->index++;
1076                if (n->index < le32_to_cpu(bn->header.nr_entries))
1077                        break;
1078
1079                pop_node(c);
1080        }
1081
1082        return 0;
1083}
1084
1085static int find_leaf(struct dm_btree_cursor *c)
1086{
1087        int r = 0;
1088        struct cursor_node *n;
1089        struct btree_node *bn;
1090        __le64 value_le;
1091
1092        for (;;) {
1093                n = c->nodes + c->depth - 1;
1094                bn = dm_block_data(n->b);
1095
1096                if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1097                        break;
1098
1099                memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1100                r = push_node(c, le64_to_cpu(value_le));
1101                if (r) {
1102                        DMERR("push_node failed");
1103                        break;
1104                }
1105        }
1106
1107        if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1108                return -ENODATA;
1109
1110        return r;
1111}
1112
1113int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1114                          bool prefetch_leaves, struct dm_btree_cursor *c)
1115{
1116        int r;
1117
1118        c->info = info;
1119        c->root = root;
1120        c->depth = 0;
1121        c->prefetch_leaves = prefetch_leaves;
1122
1123        r = push_node(c, root);
1124        if (r)
1125                return r;
1126
1127        return find_leaf(c);
1128}
1129EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1130
1131void dm_btree_cursor_end(struct dm_btree_cursor *c)
1132{
1133        while (c->depth)
1134                pop_node(c);
1135}
1136EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1137
1138int dm_btree_cursor_next(struct dm_btree_cursor *c)
1139{
1140        int r = inc_or_backtrack(c);
1141        if (!r) {
1142                r = find_leaf(c);
1143                if (r)
1144                        DMERR("find_leaf failed");
1145        }
1146
1147        return r;
1148}
1149EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1150
1151int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1152{
1153        int r = 0;
1154
1155        while (count-- && !r)
1156                r = dm_btree_cursor_next(c);
1157
1158        return r;
1159}
1160EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1161
1162int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1163{
1164        if (c->depth) {
1165                struct cursor_node *n = c->nodes + c->depth - 1;
1166                struct btree_node *bn = dm_block_data(n->b);
1167
1168                if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1169                        return -EINVAL;
1170
1171                *key = le64_to_cpu(*key_ptr(bn, n->index));
1172                memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1173                return 0;
1174
1175        } else
1176                return -ENODATA;
1177}
1178EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);
1179