linux/drivers/md/raid10.c
<<
>>
Prefs
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include <trace/events/block.h>
  29#include "md.h"
  30#include "raid10.h"
  31#include "raid0.h"
  32#include "bitmap.h"
  33
  34/*
  35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  36 * The layout of data is defined by
  37 *    chunk_size
  38 *    raid_disks
  39 *    near_copies (stored in low byte of layout)
  40 *    far_copies (stored in second byte of layout)
  41 *    far_offset (stored in bit 16 of layout )
  42 *    use_far_sets (stored in bit 17 of layout )
  43 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  44 *
  45 * The data to be stored is divided into chunks using chunksize.  Each device
  46 * is divided into far_copies sections.   In each section, chunks are laid out
  47 * in a style similar to raid0, but near_copies copies of each chunk is stored
  48 * (each on a different drive).  The starting device for each section is offset
  49 * near_copies from the starting device of the previous section.  Thus there
  50 * are (near_copies * far_copies) of each chunk, and each is on a different
  51 * drive.  near_copies and far_copies must be at least one, and their product
  52 * is at most raid_disks.
  53 *
  54 * If far_offset is true, then the far_copies are handled a bit differently.
  55 * The copies are still in different stripes, but instead of being very far
  56 * apart on disk, there are adjacent stripes.
  57 *
  58 * The far and offset algorithms are handled slightly differently if
  59 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  60 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  61 * are still shifted by 'near_copies' devices, but this shifting stays confined
  62 * to the set rather than the entire array.  This is done to improve the number
  63 * of device combinations that can fail without causing the array to fail.
  64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  65 * on a device):
  66 *    A B C D    A B C D E
  67 *      ...         ...
  68 *    D A B C    E A B C D
  69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  70 *    [A B] [C D]    [A B] [C D E]
  71 *    |...| |...|    |...| | ... |
  72 *    [B A] [D C]    [B A] [E C D]
  73 */
  74
  75/*
  76 * Number of guaranteed r10bios in case of extreme VM load:
  77 */
  78#define NR_RAID10_BIOS 256
  79
  80/* when we get a read error on a read-only array, we redirect to another
  81 * device without failing the first device, or trying to over-write to
  82 * correct the read error.  To keep track of bad blocks on a per-bio
  83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  84 */
  85#define IO_BLOCKED ((struct bio *)1)
  86/* When we successfully write to a known bad-block, we need to remove the
  87 * bad-block marking which must be done from process context.  So we record
  88 * the success by setting devs[n].bio to IO_MADE_GOOD
  89 */
  90#define IO_MADE_GOOD ((struct bio *)2)
  91
  92#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  93
  94/* When there are this many requests queued to be written by
  95 * the raid10 thread, we become 'congested' to provide back-pressure
  96 * for writeback.
  97 */
  98static int max_queued_requests = 1024;
  99
 100static void allow_barrier(struct r10conf *conf);
 101static void lower_barrier(struct r10conf *conf);
 102static int _enough(struct r10conf *conf, int previous, int ignore);
 103static int enough(struct r10conf *conf, int ignore);
 104static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 105                                int *skipped);
 106static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 107static void end_reshape_write(struct bio *bio);
 108static void end_reshape(struct r10conf *conf);
 109
 110#define raid10_log(md, fmt, args...)                            \
 111        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
 112
 113#include "raid1-10.c"
 114
 115/*
 116 * for resync bio, r10bio pointer can be retrieved from the per-bio
 117 * 'struct resync_pages'.
 118 */
 119static inline struct r10bio *get_resync_r10bio(struct bio *bio)
 120{
 121        return get_resync_pages(bio)->raid_bio;
 122}
 123
 124static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 125{
 126        struct r10conf *conf = data;
 127        int size = offsetof(struct r10bio, devs[conf->copies]);
 128
 129        /* allocate a r10bio with room for raid_disks entries in the
 130         * bios array */
 131        return kzalloc(size, gfp_flags);
 132}
 133
 134static void r10bio_pool_free(void *r10_bio, void *data)
 135{
 136        kfree(r10_bio);
 137}
 138
 139/* amount of memory to reserve for resync requests */
 140#define RESYNC_WINDOW (1024*1024)
 141/* maximum number of concurrent requests, memory permitting */
 142#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 143
 144/*
 145 * When performing a resync, we need to read and compare, so
 146 * we need as many pages are there are copies.
 147 * When performing a recovery, we need 2 bios, one for read,
 148 * one for write (we recover only one drive per r10buf)
 149 *
 150 */
 151static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 152{
 153        struct r10conf *conf = data;
 154        struct r10bio *r10_bio;
 155        struct bio *bio;
 156        int j;
 157        int nalloc, nalloc_rp;
 158        struct resync_pages *rps;
 159
 160        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 161        if (!r10_bio)
 162                return NULL;
 163
 164        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 165            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 166                nalloc = conf->copies; /* resync */
 167        else
 168                nalloc = 2; /* recovery */
 169
 170        /* allocate once for all bios */
 171        if (!conf->have_replacement)
 172                nalloc_rp = nalloc;
 173        else
 174                nalloc_rp = nalloc * 2;
 175        rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
 176        if (!rps)
 177                goto out_free_r10bio;
 178
 179        /*
 180         * Allocate bios.
 181         */
 182        for (j = nalloc ; j-- ; ) {
 183                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 184                if (!bio)
 185                        goto out_free_bio;
 186                r10_bio->devs[j].bio = bio;
 187                if (!conf->have_replacement)
 188                        continue;
 189                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 190                if (!bio)
 191                        goto out_free_bio;
 192                r10_bio->devs[j].repl_bio = bio;
 193        }
 194        /*
 195         * Allocate RESYNC_PAGES data pages and attach them
 196         * where needed.
 197         */
 198        for (j = 0; j < nalloc; j++) {
 199                struct bio *rbio = r10_bio->devs[j].repl_bio;
 200                struct resync_pages *rp, *rp_repl;
 201
 202                rp = &rps[j];
 203                if (rbio)
 204                        rp_repl = &rps[nalloc + j];
 205
 206                bio = r10_bio->devs[j].bio;
 207
 208                if (!j || test_bit(MD_RECOVERY_SYNC,
 209                                   &conf->mddev->recovery)) {
 210                        if (resync_alloc_pages(rp, gfp_flags))
 211                                goto out_free_pages;
 212                } else {
 213                        memcpy(rp, &rps[0], sizeof(*rp));
 214                        resync_get_all_pages(rp);
 215                }
 216
 217                rp->raid_bio = r10_bio;
 218                bio->bi_private = rp;
 219                if (rbio) {
 220                        memcpy(rp_repl, rp, sizeof(*rp));
 221                        rbio->bi_private = rp_repl;
 222                }
 223        }
 224
 225        return r10_bio;
 226
 227out_free_pages:
 228        while (--j >= 0)
 229                resync_free_pages(&rps[j * 2]);
 230
 231        j = 0;
 232out_free_bio:
 233        for ( ; j < nalloc; j++) {
 234                if (r10_bio->devs[j].bio)
 235                        bio_put(r10_bio->devs[j].bio);
 236                if (r10_bio->devs[j].repl_bio)
 237                        bio_put(r10_bio->devs[j].repl_bio);
 238        }
 239        kfree(rps);
 240out_free_r10bio:
 241        r10bio_pool_free(r10_bio, conf);
 242        return NULL;
 243}
 244
 245static void r10buf_pool_free(void *__r10_bio, void *data)
 246{
 247        struct r10conf *conf = data;
 248        struct r10bio *r10bio = __r10_bio;
 249        int j;
 250        struct resync_pages *rp = NULL;
 251
 252        for (j = conf->copies; j--; ) {
 253                struct bio *bio = r10bio->devs[j].bio;
 254
 255                rp = get_resync_pages(bio);
 256                resync_free_pages(rp);
 257                bio_put(bio);
 258
 259                bio = r10bio->devs[j].repl_bio;
 260                if (bio)
 261                        bio_put(bio);
 262        }
 263
 264        /* resync pages array stored in the 1st bio's .bi_private */
 265        kfree(rp);
 266
 267        r10bio_pool_free(r10bio, conf);
 268}
 269
 270static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 271{
 272        int i;
 273
 274        for (i = 0; i < conf->copies; i++) {
 275                struct bio **bio = & r10_bio->devs[i].bio;
 276                if (!BIO_SPECIAL(*bio))
 277                        bio_put(*bio);
 278                *bio = NULL;
 279                bio = &r10_bio->devs[i].repl_bio;
 280                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 281                        bio_put(*bio);
 282                *bio = NULL;
 283        }
 284}
 285
 286static void free_r10bio(struct r10bio *r10_bio)
 287{
 288        struct r10conf *conf = r10_bio->mddev->private;
 289
 290        put_all_bios(conf, r10_bio);
 291        mempool_free(r10_bio, conf->r10bio_pool);
 292}
 293
 294static void put_buf(struct r10bio *r10_bio)
 295{
 296        struct r10conf *conf = r10_bio->mddev->private;
 297
 298        mempool_free(r10_bio, conf->r10buf_pool);
 299
 300        lower_barrier(conf);
 301}
 302
 303static void reschedule_retry(struct r10bio *r10_bio)
 304{
 305        unsigned long flags;
 306        struct mddev *mddev = r10_bio->mddev;
 307        struct r10conf *conf = mddev->private;
 308
 309        spin_lock_irqsave(&conf->device_lock, flags);
 310        list_add(&r10_bio->retry_list, &conf->retry_list);
 311        conf->nr_queued ++;
 312        spin_unlock_irqrestore(&conf->device_lock, flags);
 313
 314        /* wake up frozen array... */
 315        wake_up(&conf->wait_barrier);
 316
 317        md_wakeup_thread(mddev->thread);
 318}
 319
 320/*
 321 * raid_end_bio_io() is called when we have finished servicing a mirrored
 322 * operation and are ready to return a success/failure code to the buffer
 323 * cache layer.
 324 */
 325static void raid_end_bio_io(struct r10bio *r10_bio)
 326{
 327        struct bio *bio = r10_bio->master_bio;
 328        struct r10conf *conf = r10_bio->mddev->private;
 329
 330        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 331                bio->bi_status = BLK_STS_IOERR;
 332
 333        bio_endio(bio);
 334        /*
 335         * Wake up any possible resync thread that waits for the device
 336         * to go idle.
 337         */
 338        allow_barrier(conf);
 339
 340        free_r10bio(r10_bio);
 341}
 342
 343/*
 344 * Update disk head position estimator based on IRQ completion info.
 345 */
 346static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 347{
 348        struct r10conf *conf = r10_bio->mddev->private;
 349
 350        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 351                r10_bio->devs[slot].addr + (r10_bio->sectors);
 352}
 353
 354/*
 355 * Find the disk number which triggered given bio
 356 */
 357static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 358                         struct bio *bio, int *slotp, int *replp)
 359{
 360        int slot;
 361        int repl = 0;
 362
 363        for (slot = 0; slot < conf->copies; slot++) {
 364                if (r10_bio->devs[slot].bio == bio)
 365                        break;
 366                if (r10_bio->devs[slot].repl_bio == bio) {
 367                        repl = 1;
 368                        break;
 369                }
 370        }
 371
 372        BUG_ON(slot == conf->copies);
 373        update_head_pos(slot, r10_bio);
 374
 375        if (slotp)
 376                *slotp = slot;
 377        if (replp)
 378                *replp = repl;
 379        return r10_bio->devs[slot].devnum;
 380}
 381
 382static void raid10_end_read_request(struct bio *bio)
 383{
 384        int uptodate = !bio->bi_status;
 385        struct r10bio *r10_bio = bio->bi_private;
 386        int slot, dev;
 387        struct md_rdev *rdev;
 388        struct r10conf *conf = r10_bio->mddev->private;
 389
 390        slot = r10_bio->read_slot;
 391        dev = r10_bio->devs[slot].devnum;
 392        rdev = r10_bio->devs[slot].rdev;
 393        /*
 394         * this branch is our 'one mirror IO has finished' event handler:
 395         */
 396        update_head_pos(slot, r10_bio);
 397
 398        if (uptodate) {
 399                /*
 400                 * Set R10BIO_Uptodate in our master bio, so that
 401                 * we will return a good error code to the higher
 402                 * levels even if IO on some other mirrored buffer fails.
 403                 *
 404                 * The 'master' represents the composite IO operation to
 405                 * user-side. So if something waits for IO, then it will
 406                 * wait for the 'master' bio.
 407                 */
 408                set_bit(R10BIO_Uptodate, &r10_bio->state);
 409        } else {
 410                /* If all other devices that store this block have
 411                 * failed, we want to return the error upwards rather
 412                 * than fail the last device.  Here we redefine
 413                 * "uptodate" to mean "Don't want to retry"
 414                 */
 415                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 416                             rdev->raid_disk))
 417                        uptodate = 1;
 418        }
 419        if (uptodate) {
 420                raid_end_bio_io(r10_bio);
 421                rdev_dec_pending(rdev, conf->mddev);
 422        } else {
 423                /*
 424                 * oops, read error - keep the refcount on the rdev
 425                 */
 426                char b[BDEVNAME_SIZE];
 427                pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 428                                   mdname(conf->mddev),
 429                                   bdevname(rdev->bdev, b),
 430                                   (unsigned long long)r10_bio->sector);
 431                set_bit(R10BIO_ReadError, &r10_bio->state);
 432                reschedule_retry(r10_bio);
 433        }
 434}
 435
 436static void close_write(struct r10bio *r10_bio)
 437{
 438        /* clear the bitmap if all writes complete successfully */
 439        bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 440                        r10_bio->sectors,
 441                        !test_bit(R10BIO_Degraded, &r10_bio->state),
 442                        0);
 443        md_write_end(r10_bio->mddev);
 444}
 445
 446static void one_write_done(struct r10bio *r10_bio)
 447{
 448        if (atomic_dec_and_test(&r10_bio->remaining)) {
 449                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 450                        reschedule_retry(r10_bio);
 451                else {
 452                        close_write(r10_bio);
 453                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 454                                reschedule_retry(r10_bio);
 455                        else
 456                                raid_end_bio_io(r10_bio);
 457                }
 458        }
 459}
 460
 461static void raid10_end_write_request(struct bio *bio)
 462{
 463        struct r10bio *r10_bio = bio->bi_private;
 464        int dev;
 465        int dec_rdev = 1;
 466        struct r10conf *conf = r10_bio->mddev->private;
 467        int slot, repl;
 468        struct md_rdev *rdev = NULL;
 469        struct bio *to_put = NULL;
 470        bool discard_error;
 471
 472        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 473
 474        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 475
 476        if (repl)
 477                rdev = conf->mirrors[dev].replacement;
 478        if (!rdev) {
 479                smp_rmb();
 480                repl = 0;
 481                rdev = conf->mirrors[dev].rdev;
 482        }
 483        /*
 484         * this branch is our 'one mirror IO has finished' event handler:
 485         */
 486        if (bio->bi_status && !discard_error) {
 487                if (repl)
 488                        /* Never record new bad blocks to replacement,
 489                         * just fail it.
 490                         */
 491                        md_error(rdev->mddev, rdev);
 492                else {
 493                        set_bit(WriteErrorSeen, &rdev->flags);
 494                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 495                                set_bit(MD_RECOVERY_NEEDED,
 496                                        &rdev->mddev->recovery);
 497
 498                        dec_rdev = 0;
 499                        if (test_bit(FailFast, &rdev->flags) &&
 500                            (bio->bi_opf & MD_FAILFAST)) {
 501                                md_error(rdev->mddev, rdev);
 502                                if (!test_bit(Faulty, &rdev->flags))
 503                                        /* This is the only remaining device,
 504                                         * We need to retry the write without
 505                                         * FailFast
 506                                         */
 507                                        set_bit(R10BIO_WriteError, &r10_bio->state);
 508                                else {
 509                                        r10_bio->devs[slot].bio = NULL;
 510                                        to_put = bio;
 511                                        dec_rdev = 1;
 512                                }
 513                        } else
 514                                set_bit(R10BIO_WriteError, &r10_bio->state);
 515                }
 516        } else {
 517                /*
 518                 * Set R10BIO_Uptodate in our master bio, so that
 519                 * we will return a good error code for to the higher
 520                 * levels even if IO on some other mirrored buffer fails.
 521                 *
 522                 * The 'master' represents the composite IO operation to
 523                 * user-side. So if something waits for IO, then it will
 524                 * wait for the 'master' bio.
 525                 */
 526                sector_t first_bad;
 527                int bad_sectors;
 528
 529                /*
 530                 * Do not set R10BIO_Uptodate if the current device is
 531                 * rebuilding or Faulty. This is because we cannot use
 532                 * such device for properly reading the data back (we could
 533                 * potentially use it, if the current write would have felt
 534                 * before rdev->recovery_offset, but for simplicity we don't
 535                 * check this here.
 536                 */
 537                if (test_bit(In_sync, &rdev->flags) &&
 538                    !test_bit(Faulty, &rdev->flags))
 539                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 540
 541                /* Maybe we can clear some bad blocks. */
 542                if (is_badblock(rdev,
 543                                r10_bio->devs[slot].addr,
 544                                r10_bio->sectors,
 545                                &first_bad, &bad_sectors) && !discard_error) {
 546                        bio_put(bio);
 547                        if (repl)
 548                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 549                        else
 550                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 551                        dec_rdev = 0;
 552                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 553                }
 554        }
 555
 556        /*
 557         *
 558         * Let's see if all mirrored write operations have finished
 559         * already.
 560         */
 561        one_write_done(r10_bio);
 562        if (dec_rdev)
 563                rdev_dec_pending(rdev, conf->mddev);
 564        if (to_put)
 565                bio_put(to_put);
 566}
 567
 568/*
 569 * RAID10 layout manager
 570 * As well as the chunksize and raid_disks count, there are two
 571 * parameters: near_copies and far_copies.
 572 * near_copies * far_copies must be <= raid_disks.
 573 * Normally one of these will be 1.
 574 * If both are 1, we get raid0.
 575 * If near_copies == raid_disks, we get raid1.
 576 *
 577 * Chunks are laid out in raid0 style with near_copies copies of the
 578 * first chunk, followed by near_copies copies of the next chunk and
 579 * so on.
 580 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 581 * as described above, we start again with a device offset of near_copies.
 582 * So we effectively have another copy of the whole array further down all
 583 * the drives, but with blocks on different drives.
 584 * With this layout, and block is never stored twice on the one device.
 585 *
 586 * raid10_find_phys finds the sector offset of a given virtual sector
 587 * on each device that it is on.
 588 *
 589 * raid10_find_virt does the reverse mapping, from a device and a
 590 * sector offset to a virtual address
 591 */
 592
 593static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 594{
 595        int n,f;
 596        sector_t sector;
 597        sector_t chunk;
 598        sector_t stripe;
 599        int dev;
 600        int slot = 0;
 601        int last_far_set_start, last_far_set_size;
 602
 603        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 604        last_far_set_start *= geo->far_set_size;
 605
 606        last_far_set_size = geo->far_set_size;
 607        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 608
 609        /* now calculate first sector/dev */
 610        chunk = r10bio->sector >> geo->chunk_shift;
 611        sector = r10bio->sector & geo->chunk_mask;
 612
 613        chunk *= geo->near_copies;
 614        stripe = chunk;
 615        dev = sector_div(stripe, geo->raid_disks);
 616        if (geo->far_offset)
 617                stripe *= geo->far_copies;
 618
 619        sector += stripe << geo->chunk_shift;
 620
 621        /* and calculate all the others */
 622        for (n = 0; n < geo->near_copies; n++) {
 623                int d = dev;
 624                int set;
 625                sector_t s = sector;
 626                r10bio->devs[slot].devnum = d;
 627                r10bio->devs[slot].addr = s;
 628                slot++;
 629
 630                for (f = 1; f < geo->far_copies; f++) {
 631                        set = d / geo->far_set_size;
 632                        d += geo->near_copies;
 633
 634                        if ((geo->raid_disks % geo->far_set_size) &&
 635                            (d > last_far_set_start)) {
 636                                d -= last_far_set_start;
 637                                d %= last_far_set_size;
 638                                d += last_far_set_start;
 639                        } else {
 640                                d %= geo->far_set_size;
 641                                d += geo->far_set_size * set;
 642                        }
 643                        s += geo->stride;
 644                        r10bio->devs[slot].devnum = d;
 645                        r10bio->devs[slot].addr = s;
 646                        slot++;
 647                }
 648                dev++;
 649                if (dev >= geo->raid_disks) {
 650                        dev = 0;
 651                        sector += (geo->chunk_mask + 1);
 652                }
 653        }
 654}
 655
 656static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 657{
 658        struct geom *geo = &conf->geo;
 659
 660        if (conf->reshape_progress != MaxSector &&
 661            ((r10bio->sector >= conf->reshape_progress) !=
 662             conf->mddev->reshape_backwards)) {
 663                set_bit(R10BIO_Previous, &r10bio->state);
 664                geo = &conf->prev;
 665        } else
 666                clear_bit(R10BIO_Previous, &r10bio->state);
 667
 668        __raid10_find_phys(geo, r10bio);
 669}
 670
 671static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 672{
 673        sector_t offset, chunk, vchunk;
 674        /* Never use conf->prev as this is only called during resync
 675         * or recovery, so reshape isn't happening
 676         */
 677        struct geom *geo = &conf->geo;
 678        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 679        int far_set_size = geo->far_set_size;
 680        int last_far_set_start;
 681
 682        if (geo->raid_disks % geo->far_set_size) {
 683                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 684                last_far_set_start *= geo->far_set_size;
 685
 686                if (dev >= last_far_set_start) {
 687                        far_set_size = geo->far_set_size;
 688                        far_set_size += (geo->raid_disks % geo->far_set_size);
 689                        far_set_start = last_far_set_start;
 690                }
 691        }
 692
 693        offset = sector & geo->chunk_mask;
 694        if (geo->far_offset) {
 695                int fc;
 696                chunk = sector >> geo->chunk_shift;
 697                fc = sector_div(chunk, geo->far_copies);
 698                dev -= fc * geo->near_copies;
 699                if (dev < far_set_start)
 700                        dev += far_set_size;
 701        } else {
 702                while (sector >= geo->stride) {
 703                        sector -= geo->stride;
 704                        if (dev < (geo->near_copies + far_set_start))
 705                                dev += far_set_size - geo->near_copies;
 706                        else
 707                                dev -= geo->near_copies;
 708                }
 709                chunk = sector >> geo->chunk_shift;
 710        }
 711        vchunk = chunk * geo->raid_disks + dev;
 712        sector_div(vchunk, geo->near_copies);
 713        return (vchunk << geo->chunk_shift) + offset;
 714}
 715
 716/*
 717 * This routine returns the disk from which the requested read should
 718 * be done. There is a per-array 'next expected sequential IO' sector
 719 * number - if this matches on the next IO then we use the last disk.
 720 * There is also a per-disk 'last know head position' sector that is
 721 * maintained from IRQ contexts, both the normal and the resync IO
 722 * completion handlers update this position correctly. If there is no
 723 * perfect sequential match then we pick the disk whose head is closest.
 724 *
 725 * If there are 2 mirrors in the same 2 devices, performance degrades
 726 * because position is mirror, not device based.
 727 *
 728 * The rdev for the device selected will have nr_pending incremented.
 729 */
 730
 731/*
 732 * FIXME: possibly should rethink readbalancing and do it differently
 733 * depending on near_copies / far_copies geometry.
 734 */
 735static struct md_rdev *read_balance(struct r10conf *conf,
 736                                    struct r10bio *r10_bio,
 737                                    int *max_sectors)
 738{
 739        const sector_t this_sector = r10_bio->sector;
 740        int disk, slot;
 741        int sectors = r10_bio->sectors;
 742        int best_good_sectors;
 743        sector_t new_distance, best_dist;
 744        struct md_rdev *best_rdev, *rdev = NULL;
 745        int do_balance;
 746        int best_slot;
 747        struct geom *geo = &conf->geo;
 748
 749        raid10_find_phys(conf, r10_bio);
 750        rcu_read_lock();
 751        sectors = r10_bio->sectors;
 752        best_slot = -1;
 753        best_rdev = NULL;
 754        best_dist = MaxSector;
 755        best_good_sectors = 0;
 756        do_balance = 1;
 757        clear_bit(R10BIO_FailFast, &r10_bio->state);
 758        /*
 759         * Check if we can balance. We can balance on the whole
 760         * device if no resync is going on (recovery is ok), or below
 761         * the resync window. We take the first readable disk when
 762         * above the resync window.
 763         */
 764        if (conf->mddev->recovery_cp < MaxSector
 765            && (this_sector + sectors >= conf->next_resync))
 766                do_balance = 0;
 767
 768        for (slot = 0; slot < conf->copies ; slot++) {
 769                sector_t first_bad;
 770                int bad_sectors;
 771                sector_t dev_sector;
 772
 773                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 774                        continue;
 775                disk = r10_bio->devs[slot].devnum;
 776                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 777                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 778                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 779                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 780                if (rdev == NULL ||
 781                    test_bit(Faulty, &rdev->flags))
 782                        continue;
 783                if (!test_bit(In_sync, &rdev->flags) &&
 784                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 785                        continue;
 786
 787                dev_sector = r10_bio->devs[slot].addr;
 788                if (is_badblock(rdev, dev_sector, sectors,
 789                                &first_bad, &bad_sectors)) {
 790                        if (best_dist < MaxSector)
 791                                /* Already have a better slot */
 792                                continue;
 793                        if (first_bad <= dev_sector) {
 794                                /* Cannot read here.  If this is the
 795                                 * 'primary' device, then we must not read
 796                                 * beyond 'bad_sectors' from another device.
 797                                 */
 798                                bad_sectors -= (dev_sector - first_bad);
 799                                if (!do_balance && sectors > bad_sectors)
 800                                        sectors = bad_sectors;
 801                                if (best_good_sectors > sectors)
 802                                        best_good_sectors = sectors;
 803                        } else {
 804                                sector_t good_sectors =
 805                                        first_bad - dev_sector;
 806                                if (good_sectors > best_good_sectors) {
 807                                        best_good_sectors = good_sectors;
 808                                        best_slot = slot;
 809                                        best_rdev = rdev;
 810                                }
 811                                if (!do_balance)
 812                                        /* Must read from here */
 813                                        break;
 814                        }
 815                        continue;
 816                } else
 817                        best_good_sectors = sectors;
 818
 819                if (!do_balance)
 820                        break;
 821
 822                if (best_slot >= 0)
 823                        /* At least 2 disks to choose from so failfast is OK */
 824                        set_bit(R10BIO_FailFast, &r10_bio->state);
 825                /* This optimisation is debatable, and completely destroys
 826                 * sequential read speed for 'far copies' arrays.  So only
 827                 * keep it for 'near' arrays, and review those later.
 828                 */
 829                if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 830                        new_distance = 0;
 831
 832                /* for far > 1 always use the lowest address */
 833                else if (geo->far_copies > 1)
 834                        new_distance = r10_bio->devs[slot].addr;
 835                else
 836                        new_distance = abs(r10_bio->devs[slot].addr -
 837                                           conf->mirrors[disk].head_position);
 838                if (new_distance < best_dist) {
 839                        best_dist = new_distance;
 840                        best_slot = slot;
 841                        best_rdev = rdev;
 842                }
 843        }
 844        if (slot >= conf->copies) {
 845                slot = best_slot;
 846                rdev = best_rdev;
 847        }
 848
 849        if (slot >= 0) {
 850                atomic_inc(&rdev->nr_pending);
 851                r10_bio->read_slot = slot;
 852        } else
 853                rdev = NULL;
 854        rcu_read_unlock();
 855        *max_sectors = best_good_sectors;
 856
 857        return rdev;
 858}
 859
 860static int raid10_congested(struct mddev *mddev, int bits)
 861{
 862        struct r10conf *conf = mddev->private;
 863        int i, ret = 0;
 864
 865        if ((bits & (1 << WB_async_congested)) &&
 866            conf->pending_count >= max_queued_requests)
 867                return 1;
 868
 869        rcu_read_lock();
 870        for (i = 0;
 871             (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 872                     && ret == 0;
 873             i++) {
 874                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 875                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 876                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 877
 878                        ret |= bdi_congested(q->backing_dev_info, bits);
 879                }
 880        }
 881        rcu_read_unlock();
 882        return ret;
 883}
 884
 885static void flush_pending_writes(struct r10conf *conf)
 886{
 887        /* Any writes that have been queued but are awaiting
 888         * bitmap updates get flushed here.
 889         */
 890        spin_lock_irq(&conf->device_lock);
 891
 892        if (conf->pending_bio_list.head) {
 893                struct bio *bio;
 894                bio = bio_list_get(&conf->pending_bio_list);
 895                conf->pending_count = 0;
 896                spin_unlock_irq(&conf->device_lock);
 897                /* flush any pending bitmap writes to disk
 898                 * before proceeding w/ I/O */
 899                bitmap_unplug(conf->mddev->bitmap);
 900                wake_up(&conf->wait_barrier);
 901
 902                while (bio) { /* submit pending writes */
 903                        struct bio *next = bio->bi_next;
 904                        struct md_rdev *rdev = (void*)bio->bi_disk;
 905                        bio->bi_next = NULL;
 906                        bio_set_dev(bio, rdev->bdev);
 907                        if (test_bit(Faulty, &rdev->flags)) {
 908                                bio_io_error(bio);
 909                        } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 910                                            !blk_queue_discard(bio->bi_disk->queue)))
 911                                /* Just ignore it */
 912                                bio_endio(bio);
 913                        else
 914                                generic_make_request(bio);
 915                        bio = next;
 916                }
 917        } else
 918                spin_unlock_irq(&conf->device_lock);
 919}
 920
 921/* Barriers....
 922 * Sometimes we need to suspend IO while we do something else,
 923 * either some resync/recovery, or reconfigure the array.
 924 * To do this we raise a 'barrier'.
 925 * The 'barrier' is a counter that can be raised multiple times
 926 * to count how many activities are happening which preclude
 927 * normal IO.
 928 * We can only raise the barrier if there is no pending IO.
 929 * i.e. if nr_pending == 0.
 930 * We choose only to raise the barrier if no-one is waiting for the
 931 * barrier to go down.  This means that as soon as an IO request
 932 * is ready, no other operations which require a barrier will start
 933 * until the IO request has had a chance.
 934 *
 935 * So: regular IO calls 'wait_barrier'.  When that returns there
 936 *    is no backgroup IO happening,  It must arrange to call
 937 *    allow_barrier when it has finished its IO.
 938 * backgroup IO calls must call raise_barrier.  Once that returns
 939 *    there is no normal IO happeing.  It must arrange to call
 940 *    lower_barrier when the particular background IO completes.
 941 */
 942
 943static void raise_barrier(struct r10conf *conf, int force)
 944{
 945        BUG_ON(force && !conf->barrier);
 946        spin_lock_irq(&conf->resync_lock);
 947
 948        /* Wait until no block IO is waiting (unless 'force') */
 949        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 950                            conf->resync_lock);
 951
 952        /* block any new IO from starting */
 953        conf->barrier++;
 954
 955        /* Now wait for all pending IO to complete */
 956        wait_event_lock_irq(conf->wait_barrier,
 957                            !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 958                            conf->resync_lock);
 959
 960        spin_unlock_irq(&conf->resync_lock);
 961}
 962
 963static void lower_barrier(struct r10conf *conf)
 964{
 965        unsigned long flags;
 966        spin_lock_irqsave(&conf->resync_lock, flags);
 967        conf->barrier--;
 968        spin_unlock_irqrestore(&conf->resync_lock, flags);
 969        wake_up(&conf->wait_barrier);
 970}
 971
 972static void wait_barrier(struct r10conf *conf)
 973{
 974        spin_lock_irq(&conf->resync_lock);
 975        if (conf->barrier) {
 976                conf->nr_waiting++;
 977                /* Wait for the barrier to drop.
 978                 * However if there are already pending
 979                 * requests (preventing the barrier from
 980                 * rising completely), and the
 981                 * pre-process bio queue isn't empty,
 982                 * then don't wait, as we need to empty
 983                 * that queue to get the nr_pending
 984                 * count down.
 985                 */
 986                raid10_log(conf->mddev, "wait barrier");
 987                wait_event_lock_irq(conf->wait_barrier,
 988                                    !conf->barrier ||
 989                                    (atomic_read(&conf->nr_pending) &&
 990                                     current->bio_list &&
 991                                     (!bio_list_empty(&current->bio_list[0]) ||
 992                                      !bio_list_empty(&current->bio_list[1]))),
 993                                    conf->resync_lock);
 994                conf->nr_waiting--;
 995                if (!conf->nr_waiting)
 996                        wake_up(&conf->wait_barrier);
 997        }
 998        atomic_inc(&conf->nr_pending);
 999        spin_unlock_irq(&conf->resync_lock);
1000}
1001
1002static void allow_barrier(struct r10conf *conf)
1003{
1004        if ((atomic_dec_and_test(&conf->nr_pending)) ||
1005                        (conf->array_freeze_pending))
1006                wake_up(&conf->wait_barrier);
1007}
1008
1009static void freeze_array(struct r10conf *conf, int extra)
1010{
1011        /* stop syncio and normal IO and wait for everything to
1012         * go quiet.
1013         * We increment barrier and nr_waiting, and then
1014         * wait until nr_pending match nr_queued+extra
1015         * This is called in the context of one normal IO request
1016         * that has failed. Thus any sync request that might be pending
1017         * will be blocked by nr_pending, and we need to wait for
1018         * pending IO requests to complete or be queued for re-try.
1019         * Thus the number queued (nr_queued) plus this request (extra)
1020         * must match the number of pending IOs (nr_pending) before
1021         * we continue.
1022         */
1023        spin_lock_irq(&conf->resync_lock);
1024        conf->array_freeze_pending++;
1025        conf->barrier++;
1026        conf->nr_waiting++;
1027        wait_event_lock_irq_cmd(conf->wait_barrier,
1028                                atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1029                                conf->resync_lock,
1030                                flush_pending_writes(conf));
1031
1032        conf->array_freeze_pending--;
1033        spin_unlock_irq(&conf->resync_lock);
1034}
1035
1036static void unfreeze_array(struct r10conf *conf)
1037{
1038        /* reverse the effect of the freeze */
1039        spin_lock_irq(&conf->resync_lock);
1040        conf->barrier--;
1041        conf->nr_waiting--;
1042        wake_up(&conf->wait_barrier);
1043        spin_unlock_irq(&conf->resync_lock);
1044}
1045
1046static sector_t choose_data_offset(struct r10bio *r10_bio,
1047                                   struct md_rdev *rdev)
1048{
1049        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1050            test_bit(R10BIO_Previous, &r10_bio->state))
1051                return rdev->data_offset;
1052        else
1053                return rdev->new_data_offset;
1054}
1055
1056struct raid10_plug_cb {
1057        struct blk_plug_cb      cb;
1058        struct bio_list         pending;
1059        int                     pending_cnt;
1060};
1061
1062static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1063{
1064        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1065                                                   cb);
1066        struct mddev *mddev = plug->cb.data;
1067        struct r10conf *conf = mddev->private;
1068        struct bio *bio;
1069
1070        if (from_schedule || current->bio_list) {
1071                spin_lock_irq(&conf->device_lock);
1072                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1073                conf->pending_count += plug->pending_cnt;
1074                spin_unlock_irq(&conf->device_lock);
1075                wake_up(&conf->wait_barrier);
1076                md_wakeup_thread(mddev->thread);
1077                kfree(plug);
1078                return;
1079        }
1080
1081        /* we aren't scheduling, so we can do the write-out directly. */
1082        bio = bio_list_get(&plug->pending);
1083        bitmap_unplug(mddev->bitmap);
1084        wake_up(&conf->wait_barrier);
1085
1086        while (bio) { /* submit pending writes */
1087                struct bio *next = bio->bi_next;
1088                struct md_rdev *rdev = (void*)bio->bi_disk;
1089                bio->bi_next = NULL;
1090                bio_set_dev(bio, rdev->bdev);
1091                if (test_bit(Faulty, &rdev->flags)) {
1092                        bio_io_error(bio);
1093                } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1094                                    !blk_queue_discard(bio->bi_disk->queue)))
1095                        /* Just ignore it */
1096                        bio_endio(bio);
1097                else
1098                        generic_make_request(bio);
1099                bio = next;
1100        }
1101        kfree(plug);
1102}
1103
1104static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1105                                struct r10bio *r10_bio)
1106{
1107        struct r10conf *conf = mddev->private;
1108        struct bio *read_bio;
1109        const int op = bio_op(bio);
1110        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1111        int max_sectors;
1112        sector_t sectors;
1113        struct md_rdev *rdev;
1114        char b[BDEVNAME_SIZE];
1115        int slot = r10_bio->read_slot;
1116        struct md_rdev *err_rdev = NULL;
1117        gfp_t gfp = GFP_NOIO;
1118
1119        if (r10_bio->devs[slot].rdev) {
1120                /*
1121                 * This is an error retry, but we cannot
1122                 * safely dereference the rdev in the r10_bio,
1123                 * we must use the one in conf.
1124                 * If it has already been disconnected (unlikely)
1125                 * we lose the device name in error messages.
1126                 */
1127                int disk;
1128                /*
1129                 * As we are blocking raid10, it is a little safer to
1130                 * use __GFP_HIGH.
1131                 */
1132                gfp = GFP_NOIO | __GFP_HIGH;
1133
1134                rcu_read_lock();
1135                disk = r10_bio->devs[slot].devnum;
1136                err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1137                if (err_rdev)
1138                        bdevname(err_rdev->bdev, b);
1139                else {
1140                        strcpy(b, "???");
1141                        /* This never gets dereferenced */
1142                        err_rdev = r10_bio->devs[slot].rdev;
1143                }
1144                rcu_read_unlock();
1145        }
1146        /*
1147         * Register the new request and wait if the reconstruction
1148         * thread has put up a bar for new requests.
1149         * Continue immediately if no resync is active currently.
1150         */
1151        wait_barrier(conf);
1152
1153        sectors = r10_bio->sectors;
1154        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1155            bio->bi_iter.bi_sector < conf->reshape_progress &&
1156            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1157                /*
1158                 * IO spans the reshape position.  Need to wait for reshape to
1159                 * pass
1160                 */
1161                raid10_log(conf->mddev, "wait reshape");
1162                allow_barrier(conf);
1163                wait_event(conf->wait_barrier,
1164                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1165                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1166                           sectors);
1167                wait_barrier(conf);
1168        }
1169
1170        rdev = read_balance(conf, r10_bio, &max_sectors);
1171        if (!rdev) {
1172                if (err_rdev) {
1173                        pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1174                                            mdname(mddev), b,
1175                                            (unsigned long long)r10_bio->sector);
1176                }
1177                raid_end_bio_io(r10_bio);
1178                return;
1179        }
1180        if (err_rdev)
1181                pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1182                                   mdname(mddev),
1183                                   bdevname(rdev->bdev, b),
1184                                   (unsigned long long)r10_bio->sector);
1185        if (max_sectors < bio_sectors(bio)) {
1186                struct bio *split = bio_split(bio, max_sectors,
1187                                              gfp, conf->bio_split);
1188                bio_chain(split, bio);
1189                generic_make_request(bio);
1190                bio = split;
1191                r10_bio->master_bio = bio;
1192                r10_bio->sectors = max_sectors;
1193        }
1194        slot = r10_bio->read_slot;
1195
1196        read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1197
1198        r10_bio->devs[slot].bio = read_bio;
1199        r10_bio->devs[slot].rdev = rdev;
1200
1201        read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1202                choose_data_offset(r10_bio, rdev);
1203        bio_set_dev(read_bio, rdev->bdev);
1204        read_bio->bi_end_io = raid10_end_read_request;
1205        bio_set_op_attrs(read_bio, op, do_sync);
1206        if (test_bit(FailFast, &rdev->flags) &&
1207            test_bit(R10BIO_FailFast, &r10_bio->state))
1208                read_bio->bi_opf |= MD_FAILFAST;
1209        read_bio->bi_private = r10_bio;
1210
1211        if (mddev->gendisk)
1212                trace_block_bio_remap(read_bio->bi_disk->queue,
1213                                      read_bio, disk_devt(mddev->gendisk),
1214                                      r10_bio->sector);
1215        generic_make_request(read_bio);
1216        return;
1217}
1218
1219static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1220                                  struct bio *bio, bool replacement,
1221                                  int n_copy)
1222{
1223        const int op = bio_op(bio);
1224        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1225        const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1226        unsigned long flags;
1227        struct blk_plug_cb *cb;
1228        struct raid10_plug_cb *plug = NULL;
1229        struct r10conf *conf = mddev->private;
1230        struct md_rdev *rdev;
1231        int devnum = r10_bio->devs[n_copy].devnum;
1232        struct bio *mbio;
1233
1234        if (replacement) {
1235                rdev = conf->mirrors[devnum].replacement;
1236                if (rdev == NULL) {
1237                        /* Replacement just got moved to main 'rdev' */
1238                        smp_mb();
1239                        rdev = conf->mirrors[devnum].rdev;
1240                }
1241        } else
1242                rdev = conf->mirrors[devnum].rdev;
1243
1244        mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1245        if (replacement)
1246                r10_bio->devs[n_copy].repl_bio = mbio;
1247        else
1248                r10_bio->devs[n_copy].bio = mbio;
1249
1250        mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1251                                   choose_data_offset(r10_bio, rdev));
1252        bio_set_dev(mbio, rdev->bdev);
1253        mbio->bi_end_io = raid10_end_write_request;
1254        bio_set_op_attrs(mbio, op, do_sync | do_fua);
1255        if (!replacement && test_bit(FailFast,
1256                                     &conf->mirrors[devnum].rdev->flags)
1257                         && enough(conf, devnum))
1258                mbio->bi_opf |= MD_FAILFAST;
1259        mbio->bi_private = r10_bio;
1260
1261        if (conf->mddev->gendisk)
1262                trace_block_bio_remap(mbio->bi_disk->queue,
1263                                      mbio, disk_devt(conf->mddev->gendisk),
1264                                      r10_bio->sector);
1265        /* flush_pending_writes() needs access to the rdev so...*/
1266        mbio->bi_disk = (void *)rdev;
1267
1268        atomic_inc(&r10_bio->remaining);
1269
1270        cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1271        if (cb)
1272                plug = container_of(cb, struct raid10_plug_cb, cb);
1273        else
1274                plug = NULL;
1275        if (plug) {
1276                bio_list_add(&plug->pending, mbio);
1277                plug->pending_cnt++;
1278        } else {
1279                spin_lock_irqsave(&conf->device_lock, flags);
1280                bio_list_add(&conf->pending_bio_list, mbio);
1281                conf->pending_count++;
1282                spin_unlock_irqrestore(&conf->device_lock, flags);
1283                md_wakeup_thread(mddev->thread);
1284        }
1285}
1286
1287static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1288                                 struct r10bio *r10_bio)
1289{
1290        struct r10conf *conf = mddev->private;
1291        int i;
1292        struct md_rdev *blocked_rdev;
1293        sector_t sectors;
1294        int max_sectors;
1295
1296        /*
1297         * Register the new request and wait if the reconstruction
1298         * thread has put up a bar for new requests.
1299         * Continue immediately if no resync is active currently.
1300         */
1301        wait_barrier(conf);
1302
1303        sectors = r10_bio->sectors;
1304        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1305            bio->bi_iter.bi_sector < conf->reshape_progress &&
1306            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1307                /*
1308                 * IO spans the reshape position.  Need to wait for reshape to
1309                 * pass
1310                 */
1311                raid10_log(conf->mddev, "wait reshape");
1312                allow_barrier(conf);
1313                wait_event(conf->wait_barrier,
1314                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1315                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1316                           sectors);
1317                wait_barrier(conf);
1318        }
1319
1320        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1321            (mddev->reshape_backwards
1322             ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1323                bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1324             : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1325                bio->bi_iter.bi_sector < conf->reshape_progress))) {
1326                /* Need to update reshape_position in metadata */
1327                mddev->reshape_position = conf->reshape_progress;
1328                set_mask_bits(&mddev->sb_flags, 0,
1329                              BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1330                md_wakeup_thread(mddev->thread);
1331                raid10_log(conf->mddev, "wait reshape metadata");
1332                wait_event(mddev->sb_wait,
1333                           !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1334
1335                conf->reshape_safe = mddev->reshape_position;
1336        }
1337
1338        if (conf->pending_count >= max_queued_requests) {
1339                md_wakeup_thread(mddev->thread);
1340                raid10_log(mddev, "wait queued");
1341                wait_event(conf->wait_barrier,
1342                           conf->pending_count < max_queued_requests);
1343        }
1344        /* first select target devices under rcu_lock and
1345         * inc refcount on their rdev.  Record them by setting
1346         * bios[x] to bio
1347         * If there are known/acknowledged bad blocks on any device
1348         * on which we have seen a write error, we want to avoid
1349         * writing to those blocks.  This potentially requires several
1350         * writes to write around the bad blocks.  Each set of writes
1351         * gets its own r10_bio with a set of bios attached.
1352         */
1353
1354        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1355        raid10_find_phys(conf, r10_bio);
1356retry_write:
1357        blocked_rdev = NULL;
1358        rcu_read_lock();
1359        max_sectors = r10_bio->sectors;
1360
1361        for (i = 0;  i < conf->copies; i++) {
1362                int d = r10_bio->devs[i].devnum;
1363                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1364                struct md_rdev *rrdev = rcu_dereference(
1365                        conf->mirrors[d].replacement);
1366                if (rdev == rrdev)
1367                        rrdev = NULL;
1368                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1369                        atomic_inc(&rdev->nr_pending);
1370                        blocked_rdev = rdev;
1371                        break;
1372                }
1373                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1374                        atomic_inc(&rrdev->nr_pending);
1375                        blocked_rdev = rrdev;
1376                        break;
1377                }
1378                if (rdev && (test_bit(Faulty, &rdev->flags)))
1379                        rdev = NULL;
1380                if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1381                        rrdev = NULL;
1382
1383                r10_bio->devs[i].bio = NULL;
1384                r10_bio->devs[i].repl_bio = NULL;
1385
1386                if (!rdev && !rrdev) {
1387                        set_bit(R10BIO_Degraded, &r10_bio->state);
1388                        continue;
1389                }
1390                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1391                        sector_t first_bad;
1392                        sector_t dev_sector = r10_bio->devs[i].addr;
1393                        int bad_sectors;
1394                        int is_bad;
1395
1396                        is_bad = is_badblock(rdev, dev_sector, max_sectors,
1397                                             &first_bad, &bad_sectors);
1398                        if (is_bad < 0) {
1399                                /* Mustn't write here until the bad block
1400                                 * is acknowledged
1401                                 */
1402                                atomic_inc(&rdev->nr_pending);
1403                                set_bit(BlockedBadBlocks, &rdev->flags);
1404                                blocked_rdev = rdev;
1405                                break;
1406                        }
1407                        if (is_bad && first_bad <= dev_sector) {
1408                                /* Cannot write here at all */
1409                                bad_sectors -= (dev_sector - first_bad);
1410                                if (bad_sectors < max_sectors)
1411                                        /* Mustn't write more than bad_sectors
1412                                         * to other devices yet
1413                                         */
1414                                        max_sectors = bad_sectors;
1415                                /* We don't set R10BIO_Degraded as that
1416                                 * only applies if the disk is missing,
1417                                 * so it might be re-added, and we want to
1418                                 * know to recover this chunk.
1419                                 * In this case the device is here, and the
1420                                 * fact that this chunk is not in-sync is
1421                                 * recorded in the bad block log.
1422                                 */
1423                                continue;
1424                        }
1425                        if (is_bad) {
1426                                int good_sectors = first_bad - dev_sector;
1427                                if (good_sectors < max_sectors)
1428                                        max_sectors = good_sectors;
1429                        }
1430                }
1431                if (rdev) {
1432                        r10_bio->devs[i].bio = bio;
1433                        atomic_inc(&rdev->nr_pending);
1434                }
1435                if (rrdev) {
1436                        r10_bio->devs[i].repl_bio = bio;
1437                        atomic_inc(&rrdev->nr_pending);
1438                }
1439        }
1440        rcu_read_unlock();
1441
1442        if (unlikely(blocked_rdev)) {
1443                /* Have to wait for this device to get unblocked, then retry */
1444                int j;
1445                int d;
1446
1447                for (j = 0; j < i; j++) {
1448                        if (r10_bio->devs[j].bio) {
1449                                d = r10_bio->devs[j].devnum;
1450                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1451                        }
1452                        if (r10_bio->devs[j].repl_bio) {
1453                                struct md_rdev *rdev;
1454                                d = r10_bio->devs[j].devnum;
1455                                rdev = conf->mirrors[d].replacement;
1456                                if (!rdev) {
1457                                        /* Race with remove_disk */
1458                                        smp_mb();
1459                                        rdev = conf->mirrors[d].rdev;
1460                                }
1461                                rdev_dec_pending(rdev, mddev);
1462                        }
1463                }
1464                allow_barrier(conf);
1465                raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1466                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1467                wait_barrier(conf);
1468                goto retry_write;
1469        }
1470
1471        if (max_sectors < r10_bio->sectors)
1472                r10_bio->sectors = max_sectors;
1473
1474        if (r10_bio->sectors < bio_sectors(bio)) {
1475                struct bio *split = bio_split(bio, r10_bio->sectors,
1476                                              GFP_NOIO, conf->bio_split);
1477                bio_chain(split, bio);
1478                generic_make_request(bio);
1479                bio = split;
1480                r10_bio->master_bio = bio;
1481        }
1482
1483        atomic_set(&r10_bio->remaining, 1);
1484        bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1485
1486        for (i = 0; i < conf->copies; i++) {
1487                if (r10_bio->devs[i].bio)
1488                        raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1489                if (r10_bio->devs[i].repl_bio)
1490                        raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1491        }
1492        one_write_done(r10_bio);
1493}
1494
1495static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1496{
1497        struct r10conf *conf = mddev->private;
1498        struct r10bio *r10_bio;
1499
1500        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1501
1502        r10_bio->master_bio = bio;
1503        r10_bio->sectors = sectors;
1504
1505        r10_bio->mddev = mddev;
1506        r10_bio->sector = bio->bi_iter.bi_sector;
1507        r10_bio->state = 0;
1508        memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1509
1510        if (bio_data_dir(bio) == READ)
1511                raid10_read_request(mddev, bio, r10_bio);
1512        else
1513                raid10_write_request(mddev, bio, r10_bio);
1514}
1515
1516static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1517{
1518        struct r10conf *conf = mddev->private;
1519        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1520        int chunk_sects = chunk_mask + 1;
1521        int sectors = bio_sectors(bio);
1522
1523        if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1524                md_flush_request(mddev, bio);
1525                return true;
1526        }
1527
1528        if (!md_write_start(mddev, bio))
1529                return false;
1530
1531        /*
1532         * If this request crosses a chunk boundary, we need to split
1533         * it.
1534         */
1535        if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1536                     sectors > chunk_sects
1537                     && (conf->geo.near_copies < conf->geo.raid_disks
1538                         || conf->prev.near_copies <
1539                         conf->prev.raid_disks)))
1540                sectors = chunk_sects -
1541                        (bio->bi_iter.bi_sector &
1542                         (chunk_sects - 1));
1543        __make_request(mddev, bio, sectors);
1544
1545        /* In case raid10d snuck in to freeze_array */
1546        wake_up(&conf->wait_barrier);
1547        return true;
1548}
1549
1550static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1551{
1552        struct r10conf *conf = mddev->private;
1553        int i;
1554
1555        if (conf->geo.near_copies < conf->geo.raid_disks)
1556                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1557        if (conf->geo.near_copies > 1)
1558                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1559        if (conf->geo.far_copies > 1) {
1560                if (conf->geo.far_offset)
1561                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1562                else
1563                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1564                if (conf->geo.far_set_size != conf->geo.raid_disks)
1565                        seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1566        }
1567        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1568                                        conf->geo.raid_disks - mddev->degraded);
1569        rcu_read_lock();
1570        for (i = 0; i < conf->geo.raid_disks; i++) {
1571                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1572                seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1573        }
1574        rcu_read_unlock();
1575        seq_printf(seq, "]");
1576}
1577
1578/* check if there are enough drives for
1579 * every block to appear on atleast one.
1580 * Don't consider the device numbered 'ignore'
1581 * as we might be about to remove it.
1582 */
1583static int _enough(struct r10conf *conf, int previous, int ignore)
1584{
1585        int first = 0;
1586        int has_enough = 0;
1587        int disks, ncopies;
1588        if (previous) {
1589                disks = conf->prev.raid_disks;
1590                ncopies = conf->prev.near_copies;
1591        } else {
1592                disks = conf->geo.raid_disks;
1593                ncopies = conf->geo.near_copies;
1594        }
1595
1596        rcu_read_lock();
1597        do {
1598                int n = conf->copies;
1599                int cnt = 0;
1600                int this = first;
1601                while (n--) {
1602                        struct md_rdev *rdev;
1603                        if (this != ignore &&
1604                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1605                            test_bit(In_sync, &rdev->flags))
1606                                cnt++;
1607                        this = (this+1) % disks;
1608                }
1609                if (cnt == 0)
1610                        goto out;
1611                first = (first + ncopies) % disks;
1612        } while (first != 0);
1613        has_enough = 1;
1614out:
1615        rcu_read_unlock();
1616        return has_enough;
1617}
1618
1619static int enough(struct r10conf *conf, int ignore)
1620{
1621        /* when calling 'enough', both 'prev' and 'geo' must
1622         * be stable.
1623         * This is ensured if ->reconfig_mutex or ->device_lock
1624         * is held.
1625         */
1626        return _enough(conf, 0, ignore) &&
1627                _enough(conf, 1, ignore);
1628}
1629
1630static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1631{
1632        char b[BDEVNAME_SIZE];
1633        struct r10conf *conf = mddev->private;
1634        unsigned long flags;
1635
1636        /*
1637         * If it is not operational, then we have already marked it as dead
1638         * else if it is the last working disks, ignore the error, let the
1639         * next level up know.
1640         * else mark the drive as failed
1641         */
1642        spin_lock_irqsave(&conf->device_lock, flags);
1643        if (test_bit(In_sync, &rdev->flags)
1644            && !enough(conf, rdev->raid_disk)) {
1645                /*
1646                 * Don't fail the drive, just return an IO error.
1647                 */
1648                spin_unlock_irqrestore(&conf->device_lock, flags);
1649                return;
1650        }
1651        if (test_and_clear_bit(In_sync, &rdev->flags))
1652                mddev->degraded++;
1653        /*
1654         * If recovery is running, make sure it aborts.
1655         */
1656        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1657        set_bit(Blocked, &rdev->flags);
1658        set_bit(Faulty, &rdev->flags);
1659        set_mask_bits(&mddev->sb_flags, 0,
1660                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1661        spin_unlock_irqrestore(&conf->device_lock, flags);
1662        pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1663                "md/raid10:%s: Operation continuing on %d devices.\n",
1664                mdname(mddev), bdevname(rdev->bdev, b),
1665                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1666}
1667
1668static void print_conf(struct r10conf *conf)
1669{
1670        int i;
1671        struct md_rdev *rdev;
1672
1673        pr_debug("RAID10 conf printout:\n");
1674        if (!conf) {
1675                pr_debug("(!conf)\n");
1676                return;
1677        }
1678        pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1679                 conf->geo.raid_disks);
1680
1681        /* This is only called with ->reconfix_mutex held, so
1682         * rcu protection of rdev is not needed */
1683        for (i = 0; i < conf->geo.raid_disks; i++) {
1684                char b[BDEVNAME_SIZE];
1685                rdev = conf->mirrors[i].rdev;
1686                if (rdev)
1687                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1688                                 i, !test_bit(In_sync, &rdev->flags),
1689                                 !test_bit(Faulty, &rdev->flags),
1690                                 bdevname(rdev->bdev,b));
1691        }
1692}
1693
1694static void close_sync(struct r10conf *conf)
1695{
1696        wait_barrier(conf);
1697        allow_barrier(conf);
1698
1699        mempool_destroy(conf->r10buf_pool);
1700        conf->r10buf_pool = NULL;
1701}
1702
1703static int raid10_spare_active(struct mddev *mddev)
1704{
1705        int i;
1706        struct r10conf *conf = mddev->private;
1707        struct raid10_info *tmp;
1708        int count = 0;
1709        unsigned long flags;
1710
1711        /*
1712         * Find all non-in_sync disks within the RAID10 configuration
1713         * and mark them in_sync
1714         */
1715        for (i = 0; i < conf->geo.raid_disks; i++) {
1716                tmp = conf->mirrors + i;
1717                if (tmp->replacement
1718                    && tmp->replacement->recovery_offset == MaxSector
1719                    && !test_bit(Faulty, &tmp->replacement->flags)
1720                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1721                        /* Replacement has just become active */
1722                        if (!tmp->rdev
1723                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1724                                count++;
1725                        if (tmp->rdev) {
1726                                /* Replaced device not technically faulty,
1727                                 * but we need to be sure it gets removed
1728                                 * and never re-added.
1729                                 */
1730                                set_bit(Faulty, &tmp->rdev->flags);
1731                                sysfs_notify_dirent_safe(
1732                                        tmp->rdev->sysfs_state);
1733                        }
1734                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1735                } else if (tmp->rdev
1736                           && tmp->rdev->recovery_offset == MaxSector
1737                           && !test_bit(Faulty, &tmp->rdev->flags)
1738                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1739                        count++;
1740                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1741                }
1742        }
1743        spin_lock_irqsave(&conf->device_lock, flags);
1744        mddev->degraded -= count;
1745        spin_unlock_irqrestore(&conf->device_lock, flags);
1746
1747        print_conf(conf);
1748        return count;
1749}
1750
1751static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1752{
1753        struct r10conf *conf = mddev->private;
1754        int err = -EEXIST;
1755        int mirror;
1756        int first = 0;
1757        int last = conf->geo.raid_disks - 1;
1758
1759        if (mddev->recovery_cp < MaxSector)
1760                /* only hot-add to in-sync arrays, as recovery is
1761                 * very different from resync
1762                 */
1763                return -EBUSY;
1764        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1765                return -EINVAL;
1766
1767        if (md_integrity_add_rdev(rdev, mddev))
1768                return -ENXIO;
1769
1770        if (rdev->raid_disk >= 0)
1771                first = last = rdev->raid_disk;
1772
1773        if (rdev->saved_raid_disk >= first &&
1774            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1775                mirror = rdev->saved_raid_disk;
1776        else
1777                mirror = first;
1778        for ( ; mirror <= last ; mirror++) {
1779                struct raid10_info *p = &conf->mirrors[mirror];
1780                if (p->recovery_disabled == mddev->recovery_disabled)
1781                        continue;
1782                if (p->rdev) {
1783                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
1784                            p->replacement != NULL)
1785                                continue;
1786                        clear_bit(In_sync, &rdev->flags);
1787                        set_bit(Replacement, &rdev->flags);
1788                        rdev->raid_disk = mirror;
1789                        err = 0;
1790                        if (mddev->gendisk)
1791                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1792                                                  rdev->data_offset << 9);
1793                        conf->fullsync = 1;
1794                        rcu_assign_pointer(p->replacement, rdev);
1795                        break;
1796                }
1797
1798                if (mddev->gendisk)
1799                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1800                                          rdev->data_offset << 9);
1801
1802                p->head_position = 0;
1803                p->recovery_disabled = mddev->recovery_disabled - 1;
1804                rdev->raid_disk = mirror;
1805                err = 0;
1806                if (rdev->saved_raid_disk != mirror)
1807                        conf->fullsync = 1;
1808                rcu_assign_pointer(p->rdev, rdev);
1809                break;
1810        }
1811        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1812                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1813
1814        print_conf(conf);
1815        return err;
1816}
1817
1818static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1819{
1820        struct r10conf *conf = mddev->private;
1821        int err = 0;
1822        int number = rdev->raid_disk;
1823        struct md_rdev **rdevp;
1824        struct raid10_info *p = conf->mirrors + number;
1825
1826        print_conf(conf);
1827        if (rdev == p->rdev)
1828                rdevp = &p->rdev;
1829        else if (rdev == p->replacement)
1830                rdevp = &p->replacement;
1831        else
1832                return 0;
1833
1834        if (test_bit(In_sync, &rdev->flags) ||
1835            atomic_read(&rdev->nr_pending)) {
1836                err = -EBUSY;
1837                goto abort;
1838        }
1839        /* Only remove non-faulty devices if recovery
1840         * is not possible.
1841         */
1842        if (!test_bit(Faulty, &rdev->flags) &&
1843            mddev->recovery_disabled != p->recovery_disabled &&
1844            (!p->replacement || p->replacement == rdev) &&
1845            number < conf->geo.raid_disks &&
1846            enough(conf, -1)) {
1847                err = -EBUSY;
1848                goto abort;
1849        }
1850        *rdevp = NULL;
1851        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1852                synchronize_rcu();
1853                if (atomic_read(&rdev->nr_pending)) {
1854                        /* lost the race, try later */
1855                        err = -EBUSY;
1856                        *rdevp = rdev;
1857                        goto abort;
1858                }
1859        }
1860        if (p->replacement) {
1861                /* We must have just cleared 'rdev' */
1862                p->rdev = p->replacement;
1863                clear_bit(Replacement, &p->replacement->flags);
1864                smp_mb(); /* Make sure other CPUs may see both as identical
1865                           * but will never see neither -- if they are careful.
1866                           */
1867                p->replacement = NULL;
1868        }
1869
1870        clear_bit(WantReplacement, &rdev->flags);
1871        err = md_integrity_register(mddev);
1872
1873abort:
1874
1875        print_conf(conf);
1876        return err;
1877}
1878
1879static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1880{
1881        struct r10conf *conf = r10_bio->mddev->private;
1882
1883        if (!bio->bi_status)
1884                set_bit(R10BIO_Uptodate, &r10_bio->state);
1885        else
1886                /* The write handler will notice the lack of
1887                 * R10BIO_Uptodate and record any errors etc
1888                 */
1889                atomic_add(r10_bio->sectors,
1890                           &conf->mirrors[d].rdev->corrected_errors);
1891
1892        /* for reconstruct, we always reschedule after a read.
1893         * for resync, only after all reads
1894         */
1895        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1896        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1897            atomic_dec_and_test(&r10_bio->remaining)) {
1898                /* we have read all the blocks,
1899                 * do the comparison in process context in raid10d
1900                 */
1901                reschedule_retry(r10_bio);
1902        }
1903}
1904
1905static void end_sync_read(struct bio *bio)
1906{
1907        struct r10bio *r10_bio = get_resync_r10bio(bio);
1908        struct r10conf *conf = r10_bio->mddev->private;
1909        int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1910
1911        __end_sync_read(r10_bio, bio, d);
1912}
1913
1914static void end_reshape_read(struct bio *bio)
1915{
1916        /* reshape read bio isn't allocated from r10buf_pool */
1917        struct r10bio *r10_bio = bio->bi_private;
1918
1919        __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1920}
1921
1922static void end_sync_request(struct r10bio *r10_bio)
1923{
1924        struct mddev *mddev = r10_bio->mddev;
1925
1926        while (atomic_dec_and_test(&r10_bio->remaining)) {
1927                if (r10_bio->master_bio == NULL) {
1928                        /* the primary of several recovery bios */
1929                        sector_t s = r10_bio->sectors;
1930                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1931                            test_bit(R10BIO_WriteError, &r10_bio->state))
1932                                reschedule_retry(r10_bio);
1933                        else
1934                                put_buf(r10_bio);
1935                        md_done_sync(mddev, s, 1);
1936                        break;
1937                } else {
1938                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1939                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1940                            test_bit(R10BIO_WriteError, &r10_bio->state))
1941                                reschedule_retry(r10_bio);
1942                        else
1943                                put_buf(r10_bio);
1944                        r10_bio = r10_bio2;
1945                }
1946        }
1947}
1948
1949static void end_sync_write(struct bio *bio)
1950{
1951        struct r10bio *r10_bio = get_resync_r10bio(bio);
1952        struct mddev *mddev = r10_bio->mddev;
1953        struct r10conf *conf = mddev->private;
1954        int d;
1955        sector_t first_bad;
1956        int bad_sectors;
1957        int slot;
1958        int repl;
1959        struct md_rdev *rdev = NULL;
1960
1961        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1962        if (repl)
1963                rdev = conf->mirrors[d].replacement;
1964        else
1965                rdev = conf->mirrors[d].rdev;
1966
1967        if (bio->bi_status) {
1968                if (repl)
1969                        md_error(mddev, rdev);
1970                else {
1971                        set_bit(WriteErrorSeen, &rdev->flags);
1972                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
1973                                set_bit(MD_RECOVERY_NEEDED,
1974                                        &rdev->mddev->recovery);
1975                        set_bit(R10BIO_WriteError, &r10_bio->state);
1976                }
1977        } else if (is_badblock(rdev,
1978                             r10_bio->devs[slot].addr,
1979                             r10_bio->sectors,
1980                             &first_bad, &bad_sectors))
1981                set_bit(R10BIO_MadeGood, &r10_bio->state);
1982
1983        rdev_dec_pending(rdev, mddev);
1984
1985        end_sync_request(r10_bio);
1986}
1987
1988/*
1989 * Note: sync and recover and handled very differently for raid10
1990 * This code is for resync.
1991 * For resync, we read through virtual addresses and read all blocks.
1992 * If there is any error, we schedule a write.  The lowest numbered
1993 * drive is authoritative.
1994 * However requests come for physical address, so we need to map.
1995 * For every physical address there are raid_disks/copies virtual addresses,
1996 * which is always are least one, but is not necessarly an integer.
1997 * This means that a physical address can span multiple chunks, so we may
1998 * have to submit multiple io requests for a single sync request.
1999 */
2000/*
2001 * We check if all blocks are in-sync and only write to blocks that
2002 * aren't in sync
2003 */
2004static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2005{
2006        struct r10conf *conf = mddev->private;
2007        int i, first;
2008        struct bio *tbio, *fbio;
2009        int vcnt;
2010        struct page **tpages, **fpages;
2011
2012        atomic_set(&r10_bio->remaining, 1);
2013
2014        /* find the first device with a block */
2015        for (i=0; i<conf->copies; i++)
2016                if (!r10_bio->devs[i].bio->bi_status)
2017                        break;
2018
2019        if (i == conf->copies)
2020                goto done;
2021
2022        first = i;
2023        fbio = r10_bio->devs[i].bio;
2024        fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2025        fbio->bi_iter.bi_idx = 0;
2026        fpages = get_resync_pages(fbio)->pages;
2027
2028        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2029        /* now find blocks with errors */
2030        for (i=0 ; i < conf->copies ; i++) {
2031                int  j, d;
2032                struct md_rdev *rdev;
2033                struct resync_pages *rp;
2034
2035                tbio = r10_bio->devs[i].bio;
2036
2037                if (tbio->bi_end_io != end_sync_read)
2038                        continue;
2039                if (i == first)
2040                        continue;
2041
2042                tpages = get_resync_pages(tbio)->pages;
2043                d = r10_bio->devs[i].devnum;
2044                rdev = conf->mirrors[d].rdev;
2045                if (!r10_bio->devs[i].bio->bi_status) {
2046                        /* We know that the bi_io_vec layout is the same for
2047                         * both 'first' and 'i', so we just compare them.
2048                         * All vec entries are PAGE_SIZE;
2049                         */
2050                        int sectors = r10_bio->sectors;
2051                        for (j = 0; j < vcnt; j++) {
2052                                int len = PAGE_SIZE;
2053                                if (sectors < (len / 512))
2054                                        len = sectors * 512;
2055                                if (memcmp(page_address(fpages[j]),
2056                                           page_address(tpages[j]),
2057                                           len))
2058                                        break;
2059                                sectors -= len/512;
2060                        }
2061                        if (j == vcnt)
2062                                continue;
2063                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2064                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2065                                /* Don't fix anything. */
2066                                continue;
2067                } else if (test_bit(FailFast, &rdev->flags)) {
2068                        /* Just give up on this device */
2069                        md_error(rdev->mddev, rdev);
2070                        continue;
2071                }
2072                /* Ok, we need to write this bio, either to correct an
2073                 * inconsistency or to correct an unreadable block.
2074                 * First we need to fixup bv_offset, bv_len and
2075                 * bi_vecs, as the read request might have corrupted these
2076                 */
2077                rp = get_resync_pages(tbio);
2078                bio_reset(tbio);
2079
2080                md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2081
2082                rp->raid_bio = r10_bio;
2083                tbio->bi_private = rp;
2084                tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2085                tbio->bi_end_io = end_sync_write;
2086                bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2087
2088                bio_copy_data(tbio, fbio);
2089
2090                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2091                atomic_inc(&r10_bio->remaining);
2092                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2093
2094                if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2095                        tbio->bi_opf |= MD_FAILFAST;
2096                tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2097                bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2098                generic_make_request(tbio);
2099        }
2100
2101        /* Now write out to any replacement devices
2102         * that are active
2103         */
2104        for (i = 0; i < conf->copies; i++) {
2105                int d;
2106
2107                tbio = r10_bio->devs[i].repl_bio;
2108                if (!tbio || !tbio->bi_end_io)
2109                        continue;
2110                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2111                    && r10_bio->devs[i].bio != fbio)
2112                        bio_copy_data(tbio, fbio);
2113                d = r10_bio->devs[i].devnum;
2114                atomic_inc(&r10_bio->remaining);
2115                md_sync_acct(conf->mirrors[d].replacement->bdev,
2116                             bio_sectors(tbio));
2117                generic_make_request(tbio);
2118        }
2119
2120done:
2121        if (atomic_dec_and_test(&r10_bio->remaining)) {
2122                md_done_sync(mddev, r10_bio->sectors, 1);
2123                put_buf(r10_bio);
2124        }
2125}
2126
2127/*
2128 * Now for the recovery code.
2129 * Recovery happens across physical sectors.
2130 * We recover all non-is_sync drives by finding the virtual address of
2131 * each, and then choose a working drive that also has that virt address.
2132 * There is a separate r10_bio for each non-in_sync drive.
2133 * Only the first two slots are in use. The first for reading,
2134 * The second for writing.
2135 *
2136 */
2137static void fix_recovery_read_error(struct r10bio *r10_bio)
2138{
2139        /* We got a read error during recovery.
2140         * We repeat the read in smaller page-sized sections.
2141         * If a read succeeds, write it to the new device or record
2142         * a bad block if we cannot.
2143         * If a read fails, record a bad block on both old and
2144         * new devices.
2145         */
2146        struct mddev *mddev = r10_bio->mddev;
2147        struct r10conf *conf = mddev->private;
2148        struct bio *bio = r10_bio->devs[0].bio;
2149        sector_t sect = 0;
2150        int sectors = r10_bio->sectors;
2151        int idx = 0;
2152        int dr = r10_bio->devs[0].devnum;
2153        int dw = r10_bio->devs[1].devnum;
2154        struct page **pages = get_resync_pages(bio)->pages;
2155
2156        while (sectors) {
2157                int s = sectors;
2158                struct md_rdev *rdev;
2159                sector_t addr;
2160                int ok;
2161
2162                if (s > (PAGE_SIZE>>9))
2163                        s = PAGE_SIZE >> 9;
2164
2165                rdev = conf->mirrors[dr].rdev;
2166                addr = r10_bio->devs[0].addr + sect,
2167                ok = sync_page_io(rdev,
2168                                  addr,
2169                                  s << 9,
2170                                  pages[idx],
2171                                  REQ_OP_READ, 0, false);
2172                if (ok) {
2173                        rdev = conf->mirrors[dw].rdev;
2174                        addr = r10_bio->devs[1].addr + sect;
2175                        ok = sync_page_io(rdev,
2176                                          addr,
2177                                          s << 9,
2178                                          pages[idx],
2179                                          REQ_OP_WRITE, 0, false);
2180                        if (!ok) {
2181                                set_bit(WriteErrorSeen, &rdev->flags);
2182                                if (!test_and_set_bit(WantReplacement,
2183                                                      &rdev->flags))
2184                                        set_bit(MD_RECOVERY_NEEDED,
2185                                                &rdev->mddev->recovery);
2186                        }
2187                }
2188                if (!ok) {
2189                        /* We don't worry if we cannot set a bad block -
2190                         * it really is bad so there is no loss in not
2191                         * recording it yet
2192                         */
2193                        rdev_set_badblocks(rdev, addr, s, 0);
2194
2195                        if (rdev != conf->mirrors[dw].rdev) {
2196                                /* need bad block on destination too */
2197                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2198                                addr = r10_bio->devs[1].addr + sect;
2199                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2200                                if (!ok) {
2201                                        /* just abort the recovery */
2202                                        pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2203                                                  mdname(mddev));
2204
2205                                        conf->mirrors[dw].recovery_disabled
2206                                                = mddev->recovery_disabled;
2207                                        set_bit(MD_RECOVERY_INTR,
2208                                                &mddev->recovery);
2209                                        break;
2210                                }
2211                        }
2212                }
2213
2214                sectors -= s;
2215                sect += s;
2216                idx++;
2217        }
2218}
2219
2220static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2221{
2222        struct r10conf *conf = mddev->private;
2223        int d;
2224        struct bio *wbio, *wbio2;
2225
2226        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2227                fix_recovery_read_error(r10_bio);
2228                end_sync_request(r10_bio);
2229                return;
2230        }
2231
2232        /*
2233         * share the pages with the first bio
2234         * and submit the write request
2235         */
2236        d = r10_bio->devs[1].devnum;
2237        wbio = r10_bio->devs[1].bio;
2238        wbio2 = r10_bio->devs[1].repl_bio;
2239        /* Need to test wbio2->bi_end_io before we call
2240         * generic_make_request as if the former is NULL,
2241         * the latter is free to free wbio2.
2242         */
2243        if (wbio2 && !wbio2->bi_end_io)
2244                wbio2 = NULL;
2245        if (wbio->bi_end_io) {
2246                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2247                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2248                generic_make_request(wbio);
2249        }
2250        if (wbio2) {
2251                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2252                md_sync_acct(conf->mirrors[d].replacement->bdev,
2253                             bio_sectors(wbio2));
2254                generic_make_request(wbio2);
2255        }
2256}
2257
2258/*
2259 * Used by fix_read_error() to decay the per rdev read_errors.
2260 * We halve the read error count for every hour that has elapsed
2261 * since the last recorded read error.
2262 *
2263 */
2264static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2265{
2266        long cur_time_mon;
2267        unsigned long hours_since_last;
2268        unsigned int read_errors = atomic_read(&rdev->read_errors);
2269
2270        cur_time_mon = ktime_get_seconds();
2271
2272        if (rdev->last_read_error == 0) {
2273                /* first time we've seen a read error */
2274                rdev->last_read_error = cur_time_mon;
2275                return;
2276        }
2277
2278        hours_since_last = (long)(cur_time_mon -
2279                            rdev->last_read_error) / 3600;
2280
2281        rdev->last_read_error = cur_time_mon;
2282
2283        /*
2284         * if hours_since_last is > the number of bits in read_errors
2285         * just set read errors to 0. We do this to avoid
2286         * overflowing the shift of read_errors by hours_since_last.
2287         */
2288        if (hours_since_last >= 8 * sizeof(read_errors))
2289                atomic_set(&rdev->read_errors, 0);
2290        else
2291                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2292}
2293
2294static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2295                            int sectors, struct page *page, int rw)
2296{
2297        sector_t first_bad;
2298        int bad_sectors;
2299
2300        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2301            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2302                return -1;
2303        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2304                /* success */
2305                return 1;
2306        if (rw == WRITE) {
2307                set_bit(WriteErrorSeen, &rdev->flags);
2308                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2309                        set_bit(MD_RECOVERY_NEEDED,
2310                                &rdev->mddev->recovery);
2311        }
2312        /* need to record an error - either for the block or the device */
2313        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2314                md_error(rdev->mddev, rdev);
2315        return 0;
2316}
2317
2318/*
2319 * This is a kernel thread which:
2320 *
2321 *      1.      Retries failed read operations on working mirrors.
2322 *      2.      Updates the raid superblock when problems encounter.
2323 *      3.      Performs writes following reads for array synchronising.
2324 */
2325
2326static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2327{
2328        int sect = 0; /* Offset from r10_bio->sector */
2329        int sectors = r10_bio->sectors;
2330        struct md_rdev*rdev;
2331        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2332        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2333
2334        /* still own a reference to this rdev, so it cannot
2335         * have been cleared recently.
2336         */
2337        rdev = conf->mirrors[d].rdev;
2338
2339        if (test_bit(Faulty, &rdev->flags))
2340                /* drive has already been failed, just ignore any
2341                   more fix_read_error() attempts */
2342                return;
2343
2344        check_decay_read_errors(mddev, rdev);
2345        atomic_inc(&rdev->read_errors);
2346        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2347                char b[BDEVNAME_SIZE];
2348                bdevname(rdev->bdev, b);
2349
2350                pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2351                          mdname(mddev), b,
2352                          atomic_read(&rdev->read_errors), max_read_errors);
2353                pr_notice("md/raid10:%s: %s: Failing raid device\n",
2354                          mdname(mddev), b);
2355                md_error(mddev, rdev);
2356                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2357                return;
2358        }
2359
2360        while(sectors) {
2361                int s = sectors;
2362                int sl = r10_bio->read_slot;
2363                int success = 0;
2364                int start;
2365
2366                if (s > (PAGE_SIZE>>9))
2367                        s = PAGE_SIZE >> 9;
2368
2369                rcu_read_lock();
2370                do {
2371                        sector_t first_bad;
2372                        int bad_sectors;
2373
2374                        d = r10_bio->devs[sl].devnum;
2375                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2376                        if (rdev &&
2377                            test_bit(In_sync, &rdev->flags) &&
2378                            !test_bit(Faulty, &rdev->flags) &&
2379                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2380                                        &first_bad, &bad_sectors) == 0) {
2381                                atomic_inc(&rdev->nr_pending);
2382                                rcu_read_unlock();
2383                                success = sync_page_io(rdev,
2384                                                       r10_bio->devs[sl].addr +
2385                                                       sect,
2386                                                       s<<9,
2387                                                       conf->tmppage,
2388                                                       REQ_OP_READ, 0, false);
2389                                rdev_dec_pending(rdev, mddev);
2390                                rcu_read_lock();
2391                                if (success)
2392                                        break;
2393                        }
2394                        sl++;
2395                        if (sl == conf->copies)
2396                                sl = 0;
2397                } while (!success && sl != r10_bio->read_slot);
2398                rcu_read_unlock();
2399
2400                if (!success) {
2401                        /* Cannot read from anywhere, just mark the block
2402                         * as bad on the first device to discourage future
2403                         * reads.
2404                         */
2405                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2406                        rdev = conf->mirrors[dn].rdev;
2407
2408                        if (!rdev_set_badblocks(
2409                                    rdev,
2410                                    r10_bio->devs[r10_bio->read_slot].addr
2411                                    + sect,
2412                                    s, 0)) {
2413                                md_error(mddev, rdev);
2414                                r10_bio->devs[r10_bio->read_slot].bio
2415                                        = IO_BLOCKED;
2416                        }
2417                        break;
2418                }
2419
2420                start = sl;
2421                /* write it back and re-read */
2422                rcu_read_lock();
2423                while (sl != r10_bio->read_slot) {
2424                        char b[BDEVNAME_SIZE];
2425
2426                        if (sl==0)
2427                                sl = conf->copies;
2428                        sl--;
2429                        d = r10_bio->devs[sl].devnum;
2430                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2431                        if (!rdev ||
2432                            test_bit(Faulty, &rdev->flags) ||
2433                            !test_bit(In_sync, &rdev->flags))
2434                                continue;
2435
2436                        atomic_inc(&rdev->nr_pending);
2437                        rcu_read_unlock();
2438                        if (r10_sync_page_io(rdev,
2439                                             r10_bio->devs[sl].addr +
2440                                             sect,
2441                                             s, conf->tmppage, WRITE)
2442                            == 0) {
2443                                /* Well, this device is dead */
2444                                pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2445                                          mdname(mddev), s,
2446                                          (unsigned long long)(
2447                                                  sect +
2448                                                  choose_data_offset(r10_bio,
2449                                                                     rdev)),
2450                                          bdevname(rdev->bdev, b));
2451                                pr_notice("md/raid10:%s: %s: failing drive\n",
2452                                          mdname(mddev),
2453                                          bdevname(rdev->bdev, b));
2454                        }
2455                        rdev_dec_pending(rdev, mddev);
2456                        rcu_read_lock();
2457                }
2458                sl = start;
2459                while (sl != r10_bio->read_slot) {
2460                        char b[BDEVNAME_SIZE];
2461
2462                        if (sl==0)
2463                                sl = conf->copies;
2464                        sl--;
2465                        d = r10_bio->devs[sl].devnum;
2466                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2467                        if (!rdev ||
2468                            test_bit(Faulty, &rdev->flags) ||
2469                            !test_bit(In_sync, &rdev->flags))
2470                                continue;
2471
2472                        atomic_inc(&rdev->nr_pending);
2473                        rcu_read_unlock();
2474                        switch (r10_sync_page_io(rdev,
2475                                             r10_bio->devs[sl].addr +
2476                                             sect,
2477                                             s, conf->tmppage,
2478                                                 READ)) {
2479                        case 0:
2480                                /* Well, this device is dead */
2481                                pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2482                                       mdname(mddev), s,
2483                                       (unsigned long long)(
2484                                               sect +
2485                                               choose_data_offset(r10_bio, rdev)),
2486                                       bdevname(rdev->bdev, b));
2487                                pr_notice("md/raid10:%s: %s: failing drive\n",
2488                                       mdname(mddev),
2489                                       bdevname(rdev->bdev, b));
2490                                break;
2491                        case 1:
2492                                pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2493                                       mdname(mddev), s,
2494                                       (unsigned long long)(
2495                                               sect +
2496                                               choose_data_offset(r10_bio, rdev)),
2497                                       bdevname(rdev->bdev, b));
2498                                atomic_add(s, &rdev->corrected_errors);
2499                        }
2500
2501                        rdev_dec_pending(rdev, mddev);
2502                        rcu_read_lock();
2503                }
2504                rcu_read_unlock();
2505
2506                sectors -= s;
2507                sect += s;
2508        }
2509}
2510
2511static int narrow_write_error(struct r10bio *r10_bio, int i)
2512{
2513        struct bio *bio = r10_bio->master_bio;
2514        struct mddev *mddev = r10_bio->mddev;
2515        struct r10conf *conf = mddev->private;
2516        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2517        /* bio has the data to be written to slot 'i' where
2518         * we just recently had a write error.
2519         * We repeatedly clone the bio and trim down to one block,
2520         * then try the write.  Where the write fails we record
2521         * a bad block.
2522         * It is conceivable that the bio doesn't exactly align with
2523         * blocks.  We must handle this.
2524         *
2525         * We currently own a reference to the rdev.
2526         */
2527
2528        int block_sectors;
2529        sector_t sector;
2530        int sectors;
2531        int sect_to_write = r10_bio->sectors;
2532        int ok = 1;
2533
2534        if (rdev->badblocks.shift < 0)
2535                return 0;
2536
2537        block_sectors = roundup(1 << rdev->badblocks.shift,
2538                                bdev_logical_block_size(rdev->bdev) >> 9);
2539        sector = r10_bio->sector;
2540        sectors = ((r10_bio->sector + block_sectors)
2541                   & ~(sector_t)(block_sectors - 1))
2542                - sector;
2543
2544        while (sect_to_write) {
2545                struct bio *wbio;
2546                sector_t wsector;
2547                if (sectors > sect_to_write)
2548                        sectors = sect_to_write;
2549                /* Write at 'sector' for 'sectors' */
2550                wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2551                bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2552                wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2553                wbio->bi_iter.bi_sector = wsector +
2554                                   choose_data_offset(r10_bio, rdev);
2555                bio_set_dev(wbio, rdev->bdev);
2556                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2557
2558                if (submit_bio_wait(wbio) < 0)
2559                        /* Failure! */
2560                        ok = rdev_set_badblocks(rdev, wsector,
2561                                                sectors, 0)
2562                                && ok;
2563
2564                bio_put(wbio);
2565                sect_to_write -= sectors;
2566                sector += sectors;
2567                sectors = block_sectors;
2568        }
2569        return ok;
2570}
2571
2572static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2573{
2574        int slot = r10_bio->read_slot;
2575        struct bio *bio;
2576        struct r10conf *conf = mddev->private;
2577        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2578        sector_t bio_last_sector;
2579
2580        /* we got a read error. Maybe the drive is bad.  Maybe just
2581         * the block and we can fix it.
2582         * We freeze all other IO, and try reading the block from
2583         * other devices.  When we find one, we re-write
2584         * and check it that fixes the read error.
2585         * This is all done synchronously while the array is
2586         * frozen.
2587         */
2588        bio = r10_bio->devs[slot].bio;
2589        bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2590        bio_put(bio);
2591        r10_bio->devs[slot].bio = NULL;
2592
2593        if (mddev->ro)
2594                r10_bio->devs[slot].bio = IO_BLOCKED;
2595        else if (!test_bit(FailFast, &rdev->flags)) {
2596                freeze_array(conf, 1);
2597                fix_read_error(conf, mddev, r10_bio);
2598                unfreeze_array(conf);
2599        } else
2600                md_error(mddev, rdev);
2601
2602        rdev_dec_pending(rdev, mddev);
2603        allow_barrier(conf);
2604        r10_bio->state = 0;
2605        raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2606}
2607
2608static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2609{
2610        /* Some sort of write request has finished and it
2611         * succeeded in writing where we thought there was a
2612         * bad block.  So forget the bad block.
2613         * Or possibly if failed and we need to record
2614         * a bad block.
2615         */
2616        int m;
2617        struct md_rdev *rdev;
2618
2619        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2620            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2621                for (m = 0; m < conf->copies; m++) {
2622                        int dev = r10_bio->devs[m].devnum;
2623                        rdev = conf->mirrors[dev].rdev;
2624                        if (r10_bio->devs[m].bio == NULL)
2625                                continue;
2626                        if (!r10_bio->devs[m].bio->bi_status) {
2627                                rdev_clear_badblocks(
2628                                        rdev,
2629                                        r10_bio->devs[m].addr,
2630                                        r10_bio->sectors, 0);
2631                        } else {
2632                                if (!rdev_set_badblocks(
2633                                            rdev,
2634                                            r10_bio->devs[m].addr,
2635                                            r10_bio->sectors, 0))
2636                                        md_error(conf->mddev, rdev);
2637                        }
2638                        rdev = conf->mirrors[dev].replacement;
2639                        if (r10_bio->devs[m].repl_bio == NULL)
2640                                continue;
2641
2642                        if (!r10_bio->devs[m].repl_bio->bi_status) {
2643                                rdev_clear_badblocks(
2644                                        rdev,
2645                                        r10_bio->devs[m].addr,
2646                                        r10_bio->sectors, 0);
2647                        } else {
2648                                if (!rdev_set_badblocks(
2649                                            rdev,
2650                                            r10_bio->devs[m].addr,
2651                                            r10_bio->sectors, 0))
2652                                        md_error(conf->mddev, rdev);
2653                        }
2654                }
2655                put_buf(r10_bio);
2656        } else {
2657                bool fail = false;
2658                for (m = 0; m < conf->copies; m++) {
2659                        int dev = r10_bio->devs[m].devnum;
2660                        struct bio *bio = r10_bio->devs[m].bio;
2661                        rdev = conf->mirrors[dev].rdev;
2662                        if (bio == IO_MADE_GOOD) {
2663                                rdev_clear_badblocks(
2664                                        rdev,
2665                                        r10_bio->devs[m].addr,
2666                                        r10_bio->sectors, 0);
2667                                rdev_dec_pending(rdev, conf->mddev);
2668                        } else if (bio != NULL && bio->bi_status) {
2669                                fail = true;
2670                                if (!narrow_write_error(r10_bio, m)) {
2671                                        md_error(conf->mddev, rdev);
2672                                        set_bit(R10BIO_Degraded,
2673                                                &r10_bio->state);
2674                                }
2675                                rdev_dec_pending(rdev, conf->mddev);
2676                        }
2677                        bio = r10_bio->devs[m].repl_bio;
2678                        rdev = conf->mirrors[dev].replacement;
2679                        if (rdev && bio == IO_MADE_GOOD) {
2680                                rdev_clear_badblocks(
2681                                        rdev,
2682                                        r10_bio->devs[m].addr,
2683                                        r10_bio->sectors, 0);
2684                                rdev_dec_pending(rdev, conf->mddev);
2685                        }
2686                }
2687                if (fail) {
2688                        spin_lock_irq(&conf->device_lock);
2689                        list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2690                        conf->nr_queued++;
2691                        spin_unlock_irq(&conf->device_lock);
2692                        /*
2693                         * In case freeze_array() is waiting for condition
2694                         * nr_pending == nr_queued + extra to be true.
2695                         */
2696                        wake_up(&conf->wait_barrier);
2697                        md_wakeup_thread(conf->mddev->thread);
2698                } else {
2699                        if (test_bit(R10BIO_WriteError,
2700                                     &r10_bio->state))
2701                                close_write(r10_bio);
2702                        raid_end_bio_io(r10_bio);
2703                }
2704        }
2705}
2706
2707static void raid10d(struct md_thread *thread)
2708{
2709        struct mddev *mddev = thread->mddev;
2710        struct r10bio *r10_bio;
2711        unsigned long flags;
2712        struct r10conf *conf = mddev->private;
2713        struct list_head *head = &conf->retry_list;
2714        struct blk_plug plug;
2715
2716        md_check_recovery(mddev);
2717
2718        if (!list_empty_careful(&conf->bio_end_io_list) &&
2719            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2720                LIST_HEAD(tmp);
2721                spin_lock_irqsave(&conf->device_lock, flags);
2722                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2723                        while (!list_empty(&conf->bio_end_io_list)) {
2724                                list_move(conf->bio_end_io_list.prev, &tmp);
2725                                conf->nr_queued--;
2726                        }
2727                }
2728                spin_unlock_irqrestore(&conf->device_lock, flags);
2729                while (!list_empty(&tmp)) {
2730                        r10_bio = list_first_entry(&tmp, struct r10bio,
2731                                                   retry_list);
2732                        list_del(&r10_bio->retry_list);
2733                        if (mddev->degraded)
2734                                set_bit(R10BIO_Degraded, &r10_bio->state);
2735
2736                        if (test_bit(R10BIO_WriteError,
2737                                     &r10_bio->state))
2738                                close_write(r10_bio);
2739                        raid_end_bio_io(r10_bio);
2740                }
2741        }
2742
2743        blk_start_plug(&plug);
2744        for (;;) {
2745
2746                flush_pending_writes(conf);
2747
2748                spin_lock_irqsave(&conf->device_lock, flags);
2749                if (list_empty(head)) {
2750                        spin_unlock_irqrestore(&conf->device_lock, flags);
2751                        break;
2752                }
2753                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2754                list_del(head->prev);
2755                conf->nr_queued--;
2756                spin_unlock_irqrestore(&conf->device_lock, flags);
2757
2758                mddev = r10_bio->mddev;
2759                conf = mddev->private;
2760                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2761                    test_bit(R10BIO_WriteError, &r10_bio->state))
2762                        handle_write_completed(conf, r10_bio);
2763                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2764                        reshape_request_write(mddev, r10_bio);
2765                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2766                        sync_request_write(mddev, r10_bio);
2767                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2768                        recovery_request_write(mddev, r10_bio);
2769                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2770                        handle_read_error(mddev, r10_bio);
2771                else
2772                        WARN_ON_ONCE(1);
2773
2774                cond_resched();
2775                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2776                        md_check_recovery(mddev);
2777        }
2778        blk_finish_plug(&plug);
2779}
2780
2781static int init_resync(struct r10conf *conf)
2782{
2783        int buffs;
2784        int i;
2785
2786        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2787        BUG_ON(conf->r10buf_pool);
2788        conf->have_replacement = 0;
2789        for (i = 0; i < conf->geo.raid_disks; i++)
2790                if (conf->mirrors[i].replacement)
2791                        conf->have_replacement = 1;
2792        conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2793        if (!conf->r10buf_pool)
2794                return -ENOMEM;
2795        conf->next_resync = 0;
2796        return 0;
2797}
2798
2799static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2800{
2801        struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2802        struct rsync_pages *rp;
2803        struct bio *bio;
2804        int nalloc;
2805        int i;
2806
2807        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2808            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2809                nalloc = conf->copies; /* resync */
2810        else
2811                nalloc = 2; /* recovery */
2812
2813        for (i = 0; i < nalloc; i++) {
2814                bio = r10bio->devs[i].bio;
2815                rp = bio->bi_private;
2816                bio_reset(bio);
2817                bio->bi_private = rp;
2818                bio = r10bio->devs[i].repl_bio;
2819                if (bio) {
2820                        rp = bio->bi_private;
2821                        bio_reset(bio);
2822                        bio->bi_private = rp;
2823                }
2824        }
2825        return r10bio;
2826}
2827
2828/*
2829 * perform a "sync" on one "block"
2830 *
2831 * We need to make sure that no normal I/O request - particularly write
2832 * requests - conflict with active sync requests.
2833 *
2834 * This is achieved by tracking pending requests and a 'barrier' concept
2835 * that can be installed to exclude normal IO requests.
2836 *
2837 * Resync and recovery are handled very differently.
2838 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2839 *
2840 * For resync, we iterate over virtual addresses, read all copies,
2841 * and update if there are differences.  If only one copy is live,
2842 * skip it.
2843 * For recovery, we iterate over physical addresses, read a good
2844 * value for each non-in_sync drive, and over-write.
2845 *
2846 * So, for recovery we may have several outstanding complex requests for a
2847 * given address, one for each out-of-sync device.  We model this by allocating
2848 * a number of r10_bio structures, one for each out-of-sync device.
2849 * As we setup these structures, we collect all bio's together into a list
2850 * which we then process collectively to add pages, and then process again
2851 * to pass to generic_make_request.
2852 *
2853 * The r10_bio structures are linked using a borrowed master_bio pointer.
2854 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2855 * has its remaining count decremented to 0, the whole complex operation
2856 * is complete.
2857 *
2858 */
2859
2860static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2861                             int *skipped)
2862{
2863        struct r10conf *conf = mddev->private;
2864        struct r10bio *r10_bio;
2865        struct bio *biolist = NULL, *bio;
2866        sector_t max_sector, nr_sectors;
2867        int i;
2868        int max_sync;
2869        sector_t sync_blocks;
2870        sector_t sectors_skipped = 0;
2871        int chunks_skipped = 0;
2872        sector_t chunk_mask = conf->geo.chunk_mask;
2873        int page_idx = 0;
2874
2875        if (!conf->r10buf_pool)
2876                if (init_resync(conf))
2877                        return 0;
2878
2879        /*
2880         * Allow skipping a full rebuild for incremental assembly
2881         * of a clean array, like RAID1 does.
2882         */
2883        if (mddev->bitmap == NULL &&
2884            mddev->recovery_cp == MaxSector &&
2885            mddev->reshape_position == MaxSector &&
2886            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2887            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2888            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2889            conf->fullsync == 0) {
2890                *skipped = 1;
2891                return mddev->dev_sectors - sector_nr;
2892        }
2893
2894 skipped:
2895        max_sector = mddev->dev_sectors;
2896        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2897            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2898                max_sector = mddev->resync_max_sectors;
2899        if (sector_nr >= max_sector) {
2900                /* If we aborted, we need to abort the
2901                 * sync on the 'current' bitmap chucks (there can
2902                 * be several when recovering multiple devices).
2903                 * as we may have started syncing it but not finished.
2904                 * We can find the current address in
2905                 * mddev->curr_resync, but for recovery,
2906                 * we need to convert that to several
2907                 * virtual addresses.
2908                 */
2909                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2910                        end_reshape(conf);
2911                        close_sync(conf);
2912                        return 0;
2913                }
2914
2915                if (mddev->curr_resync < max_sector) { /* aborted */
2916                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2917                                bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2918                                                &sync_blocks, 1);
2919                        else for (i = 0; i < conf->geo.raid_disks; i++) {
2920                                sector_t sect =
2921                                        raid10_find_virt(conf, mddev->curr_resync, i);
2922                                bitmap_end_sync(mddev->bitmap, sect,
2923                                                &sync_blocks, 1);
2924                        }
2925                } else {
2926                        /* completed sync */
2927                        if ((!mddev->bitmap || conf->fullsync)
2928                            && conf->have_replacement
2929                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2930                                /* Completed a full sync so the replacements
2931                                 * are now fully recovered.
2932                                 */
2933                                rcu_read_lock();
2934                                for (i = 0; i < conf->geo.raid_disks; i++) {
2935                                        struct md_rdev *rdev =
2936                                                rcu_dereference(conf->mirrors[i].replacement);
2937                                        if (rdev)
2938                                                rdev->recovery_offset = MaxSector;
2939                                }
2940                                rcu_read_unlock();
2941                        }
2942                        conf->fullsync = 0;
2943                }
2944                bitmap_close_sync(mddev->bitmap);
2945                close_sync(conf);
2946                *skipped = 1;
2947                return sectors_skipped;
2948        }
2949
2950        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2951                return reshape_request(mddev, sector_nr, skipped);
2952
2953        if (chunks_skipped >= conf->geo.raid_disks) {
2954                /* if there has been nothing to do on any drive,
2955                 * then there is nothing to do at all..
2956                 */
2957                *skipped = 1;
2958                return (max_sector - sector_nr) + sectors_skipped;
2959        }
2960
2961        if (max_sector > mddev->resync_max)
2962                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2963
2964        /* make sure whole request will fit in a chunk - if chunks
2965         * are meaningful
2966         */
2967        if (conf->geo.near_copies < conf->geo.raid_disks &&
2968            max_sector > (sector_nr | chunk_mask))
2969                max_sector = (sector_nr | chunk_mask) + 1;
2970
2971        /*
2972         * If there is non-resync activity waiting for a turn, then let it
2973         * though before starting on this new sync request.
2974         */
2975        if (conf->nr_waiting)
2976                schedule_timeout_uninterruptible(1);
2977
2978        /* Again, very different code for resync and recovery.
2979         * Both must result in an r10bio with a list of bios that
2980         * have bi_end_io, bi_sector, bi_disk set,
2981         * and bi_private set to the r10bio.
2982         * For recovery, we may actually create several r10bios
2983         * with 2 bios in each, that correspond to the bios in the main one.
2984         * In this case, the subordinate r10bios link back through a
2985         * borrowed master_bio pointer, and the counter in the master
2986         * includes a ref from each subordinate.
2987         */
2988        /* First, we decide what to do and set ->bi_end_io
2989         * To end_sync_read if we want to read, and
2990         * end_sync_write if we will want to write.
2991         */
2992
2993        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2994        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2995                /* recovery... the complicated one */
2996                int j;
2997                r10_bio = NULL;
2998
2999                for (i = 0 ; i < conf->geo.raid_disks; i++) {
3000                        int still_degraded;
3001                        struct r10bio *rb2;
3002                        sector_t sect;
3003                        int must_sync;
3004                        int any_working;
3005                        struct raid10_info *mirror = &conf->mirrors[i];
3006                        struct md_rdev *mrdev, *mreplace;
3007
3008                        rcu_read_lock();
3009                        mrdev = rcu_dereference(mirror->rdev);
3010                        mreplace = rcu_dereference(mirror->replacement);
3011
3012                        if ((mrdev == NULL ||
3013                             test_bit(Faulty, &mrdev->flags) ||
3014                             test_bit(In_sync, &mrdev->flags)) &&
3015                            (mreplace == NULL ||
3016                             test_bit(Faulty, &mreplace->flags))) {
3017                                rcu_read_unlock();
3018                                continue;
3019                        }
3020
3021                        still_degraded = 0;
3022                        /* want to reconstruct this device */
3023                        rb2 = r10_bio;
3024                        sect = raid10_find_virt(conf, sector_nr, i);
3025                        if (sect >= mddev->resync_max_sectors) {
3026                                /* last stripe is not complete - don't
3027                                 * try to recover this sector.
3028                                 */
3029                                rcu_read_unlock();
3030                                continue;
3031                        }
3032                        if (mreplace && test_bit(Faulty, &mreplace->flags))
3033                                mreplace = NULL;
3034                        /* Unless we are doing a full sync, or a replacement
3035                         * we only need to recover the block if it is set in
3036                         * the bitmap
3037                         */
3038                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3039                                                      &sync_blocks, 1);
3040                        if (sync_blocks < max_sync)
3041                                max_sync = sync_blocks;
3042                        if (!must_sync &&
3043                            mreplace == NULL &&
3044                            !conf->fullsync) {
3045                                /* yep, skip the sync_blocks here, but don't assume
3046                                 * that there will never be anything to do here
3047                                 */
3048                                chunks_skipped = -1;
3049                                rcu_read_unlock();
3050                                continue;
3051                        }
3052                        atomic_inc(&mrdev->nr_pending);
3053                        if (mreplace)
3054                                atomic_inc(&mreplace->nr_pending);
3055                        rcu_read_unlock();
3056
3057                        r10_bio = raid10_alloc_init_r10buf(conf);
3058                        r10_bio->state = 0;
3059                        raise_barrier(conf, rb2 != NULL);
3060                        atomic_set(&r10_bio->remaining, 0);
3061
3062                        r10_bio->master_bio = (struct bio*)rb2;
3063                        if (rb2)
3064                                atomic_inc(&rb2->remaining);
3065                        r10_bio->mddev = mddev;
3066                        set_bit(R10BIO_IsRecover, &r10_bio->state);
3067                        r10_bio->sector = sect;
3068
3069                        raid10_find_phys(conf, r10_bio);
3070
3071                        /* Need to check if the array will still be
3072                         * degraded
3073                         */
3074                        rcu_read_lock();
3075                        for (j = 0; j < conf->geo.raid_disks; j++) {
3076                                struct md_rdev *rdev = rcu_dereference(
3077                                        conf->mirrors[j].rdev);
3078                                if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3079                                        still_degraded = 1;
3080                                        break;
3081                                }
3082                        }
3083
3084                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3085                                                      &sync_blocks, still_degraded);
3086
3087                        any_working = 0;
3088                        for (j=0; j<conf->copies;j++) {
3089                                int k;
3090                                int d = r10_bio->devs[j].devnum;
3091                                sector_t from_addr, to_addr;
3092                                struct md_rdev *rdev =
3093                                        rcu_dereference(conf->mirrors[d].rdev);
3094                                sector_t sector, first_bad;
3095                                int bad_sectors;
3096                                if (!rdev ||
3097                                    !test_bit(In_sync, &rdev->flags))
3098                                        continue;
3099                                /* This is where we read from */
3100                                any_working = 1;
3101                                sector = r10_bio->devs[j].addr;
3102
3103                                if (is_badblock(rdev, sector, max_sync,
3104                                                &first_bad, &bad_sectors)) {
3105                                        if (first_bad > sector)
3106                                                max_sync = first_bad - sector;
3107                                        else {
3108                                                bad_sectors -= (sector
3109                                                                - first_bad);
3110                                                if (max_sync > bad_sectors)
3111                                                        max_sync = bad_sectors;
3112                                                continue;
3113                                        }
3114                                }
3115                                bio = r10_bio->devs[0].bio;
3116                                bio->bi_next = biolist;
3117                                biolist = bio;
3118                                bio->bi_end_io = end_sync_read;
3119                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
3120                                if (test_bit(FailFast, &rdev->flags))
3121                                        bio->bi_opf |= MD_FAILFAST;
3122                                from_addr = r10_bio->devs[j].addr;
3123                                bio->bi_iter.bi_sector = from_addr +
3124                                        rdev->data_offset;
3125                                bio_set_dev(bio, rdev->bdev);
3126                                atomic_inc(&rdev->nr_pending);
3127                                /* and we write to 'i' (if not in_sync) */
3128
3129                                for (k=0; k<conf->copies; k++)
3130                                        if (r10_bio->devs[k].devnum == i)
3131                                                break;
3132                                BUG_ON(k == conf->copies);
3133                                to_addr = r10_bio->devs[k].addr;
3134                                r10_bio->devs[0].devnum = d;
3135                                r10_bio->devs[0].addr = from_addr;
3136                                r10_bio->devs[1].devnum = i;
3137                                r10_bio->devs[1].addr = to_addr;
3138
3139                                if (!test_bit(In_sync, &mrdev->flags)) {
3140                                        bio = r10_bio->devs[1].bio;
3141                                        bio->bi_next = biolist;
3142                                        biolist = bio;
3143                                        bio->bi_end_io = end_sync_write;
3144                                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3145                                        bio->bi_iter.bi_sector = to_addr
3146                                                + mrdev->data_offset;
3147                                        bio_set_dev(bio, mrdev->bdev);
3148                                        atomic_inc(&r10_bio->remaining);
3149                                } else
3150                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3151
3152                                /* and maybe write to replacement */
3153                                bio = r10_bio->devs[1].repl_bio;
3154                                if (bio)
3155                                        bio->bi_end_io = NULL;
3156                                /* Note: if mreplace != NULL, then bio
3157                                 * cannot be NULL as r10buf_pool_alloc will
3158                                 * have allocated it.
3159                                 * So the second test here is pointless.
3160                                 * But it keeps semantic-checkers happy, and
3161                                 * this comment keeps human reviewers
3162                                 * happy.
3163                                 */
3164                                if (mreplace == NULL || bio == NULL ||
3165                                    test_bit(Faulty, &mreplace->flags))
3166                                        break;
3167                                bio->bi_next = biolist;
3168                                biolist = bio;
3169                                bio->bi_end_io = end_sync_write;
3170                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3171                                bio->bi_iter.bi_sector = to_addr +
3172                                        mreplace->data_offset;
3173                                bio_set_dev(bio, mreplace->bdev);
3174                                atomic_inc(&r10_bio->remaining);
3175                                break;
3176                        }
3177                        rcu_read_unlock();
3178                        if (j == conf->copies) {
3179                                /* Cannot recover, so abort the recovery or
3180                                 * record a bad block */
3181                                if (any_working) {
3182                                        /* problem is that there are bad blocks
3183                                         * on other device(s)
3184                                         */
3185                                        int k;
3186                                        for (k = 0; k < conf->copies; k++)
3187                                                if (r10_bio->devs[k].devnum == i)
3188                                                        break;
3189                                        if (!test_bit(In_sync,
3190                                                      &mrdev->flags)
3191                                            && !rdev_set_badblocks(
3192                                                    mrdev,
3193                                                    r10_bio->devs[k].addr,
3194                                                    max_sync, 0))
3195                                                any_working = 0;
3196                                        if (mreplace &&
3197                                            !rdev_set_badblocks(
3198                                                    mreplace,
3199                                                    r10_bio->devs[k].addr,
3200                                                    max_sync, 0))
3201                                                any_working = 0;
3202                                }
3203                                if (!any_working)  {
3204                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3205                                                              &mddev->recovery))
3206                                                pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3207                                                       mdname(mddev));
3208                                        mirror->recovery_disabled
3209                                                = mddev->recovery_disabled;
3210                                }
3211                                put_buf(r10_bio);
3212                                if (rb2)
3213                                        atomic_dec(&rb2->remaining);
3214                                r10_bio = rb2;
3215                                rdev_dec_pending(mrdev, mddev);
3216                                if (mreplace)
3217                                        rdev_dec_pending(mreplace, mddev);
3218                                break;
3219                        }
3220                        rdev_dec_pending(mrdev, mddev);
3221                        if (mreplace)
3222                                rdev_dec_pending(mreplace, mddev);
3223                        if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3224                                /* Only want this if there is elsewhere to
3225                                 * read from. 'j' is currently the first
3226                                 * readable copy.
3227                                 */
3228                                int targets = 1;
3229                                for (; j < conf->copies; j++) {
3230                                        int d = r10_bio->devs[j].devnum;
3231                                        if (conf->mirrors[d].rdev &&
3232                                            test_bit(In_sync,
3233                                                      &conf->mirrors[d].rdev->flags))
3234                                                targets++;
3235                                }
3236                                if (targets == 1)
3237                                        r10_bio->devs[0].bio->bi_opf
3238                                                &= ~MD_FAILFAST;
3239                        }
3240                }
3241                if (biolist == NULL) {
3242                        while (r10_bio) {
3243                                struct r10bio *rb2 = r10_bio;
3244                                r10_bio = (struct r10bio*) rb2->master_bio;
3245                                rb2->master_bio = NULL;
3246                                put_buf(rb2);
3247                        }
3248                        goto giveup;
3249                }
3250        } else {
3251                /* resync. Schedule a read for every block at this virt offset */
3252                int count = 0;
3253
3254                bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3255
3256                if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3257                                       &sync_blocks, mddev->degraded) &&
3258                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3259                                                 &mddev->recovery)) {
3260                        /* We can skip this block */
3261                        *skipped = 1;
3262                        return sync_blocks + sectors_skipped;
3263                }
3264                if (sync_blocks < max_sync)
3265                        max_sync = sync_blocks;
3266                r10_bio = raid10_alloc_init_r10buf(conf);
3267                r10_bio->state = 0;
3268
3269                r10_bio->mddev = mddev;
3270                atomic_set(&r10_bio->remaining, 0);
3271                raise_barrier(conf, 0);
3272                conf->next_resync = sector_nr;
3273
3274                r10_bio->master_bio = NULL;
3275                r10_bio->sector = sector_nr;
3276                set_bit(R10BIO_IsSync, &r10_bio->state);
3277                raid10_find_phys(conf, r10_bio);
3278                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3279
3280                for (i = 0; i < conf->copies; i++) {
3281                        int d = r10_bio->devs[i].devnum;
3282                        sector_t first_bad, sector;
3283                        int bad_sectors;
3284                        struct md_rdev *rdev;
3285
3286                        if (r10_bio->devs[i].repl_bio)
3287                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3288
3289                        bio = r10_bio->devs[i].bio;
3290                        bio->bi_status = BLK_STS_IOERR;
3291                        rcu_read_lock();
3292                        rdev = rcu_dereference(conf->mirrors[d].rdev);
3293                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3294                                rcu_read_unlock();
3295                                continue;
3296                        }
3297                        sector = r10_bio->devs[i].addr;
3298                        if (is_badblock(rdev, sector, max_sync,
3299                                        &first_bad, &bad_sectors)) {
3300                                if (first_bad > sector)
3301                                        max_sync = first_bad - sector;
3302                                else {
3303                                        bad_sectors -= (sector - first_bad);
3304                                        if (max_sync > bad_sectors)
3305                                                max_sync = bad_sectors;
3306                                        rcu_read_unlock();
3307                                        continue;
3308                                }
3309                        }
3310                        atomic_inc(&rdev->nr_pending);
3311                        atomic_inc(&r10_bio->remaining);
3312                        bio->bi_next = biolist;
3313                        biolist = bio;
3314                        bio->bi_end_io = end_sync_read;
3315                        bio_set_op_attrs(bio, REQ_OP_READ, 0);
3316                        if (test_bit(FailFast, &rdev->flags))
3317                                bio->bi_opf |= MD_FAILFAST;
3318                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3319                        bio_set_dev(bio, rdev->bdev);
3320                        count++;
3321
3322                        rdev = rcu_dereference(conf->mirrors[d].replacement);
3323                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3324                                rcu_read_unlock();
3325                                continue;
3326                        }
3327                        atomic_inc(&rdev->nr_pending);
3328
3329                        /* Need to set up for writing to the replacement */
3330                        bio = r10_bio->devs[i].repl_bio;
3331                        bio->bi_status = BLK_STS_IOERR;
3332
3333                        sector = r10_bio->devs[i].addr;
3334                        bio->bi_next = biolist;
3335                        biolist = bio;
3336                        bio->bi_end_io = end_sync_write;
3337                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3338                        if (test_bit(FailFast, &rdev->flags))
3339                                bio->bi_opf |= MD_FAILFAST;
3340                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3341                        bio_set_dev(bio, rdev->bdev);
3342                        count++;
3343                        rcu_read_unlock();
3344                }
3345
3346                if (count < 2) {
3347                        for (i=0; i<conf->copies; i++) {
3348                                int d = r10_bio->devs[i].devnum;
3349                                if (r10_bio->devs[i].bio->bi_end_io)
3350                                        rdev_dec_pending(conf->mirrors[d].rdev,
3351                                                         mddev);
3352                                if (r10_bio->devs[i].repl_bio &&
3353                                    r10_bio->devs[i].repl_bio->bi_end_io)
3354                                        rdev_dec_pending(
3355                                                conf->mirrors[d].replacement,
3356                                                mddev);
3357                        }
3358                        put_buf(r10_bio);
3359                        biolist = NULL;
3360                        goto giveup;
3361                }
3362        }
3363
3364        nr_sectors = 0;
3365        if (sector_nr + max_sync < max_sector)
3366                max_sector = sector_nr + max_sync;
3367        do {
3368                struct page *page;
3369                int len = PAGE_SIZE;
3370                if (sector_nr + (len>>9) > max_sector)
3371                        len = (max_sector - sector_nr) << 9;
3372                if (len == 0)
3373                        break;
3374                for (bio= biolist ; bio ; bio=bio->bi_next) {
3375                        struct resync_pages *rp = get_resync_pages(bio);
3376                        page = resync_fetch_page(rp, page_idx);
3377                        /*
3378                         * won't fail because the vec table is big enough
3379                         * to hold all these pages
3380                         */
3381                        bio_add_page(bio, page, len, 0);
3382                }
3383                nr_sectors += len>>9;
3384                sector_nr += len>>9;
3385        } while (++page_idx < RESYNC_PAGES);
3386        r10_bio->sectors = nr_sectors;
3387
3388        while (biolist) {
3389                bio = biolist;
3390                biolist = biolist->bi_next;
3391
3392                bio->bi_next = NULL;
3393                r10_bio = get_resync_r10bio(bio);
3394                r10_bio->sectors = nr_sectors;
3395
3396                if (bio->bi_end_io == end_sync_read) {
3397                        md_sync_acct_bio(bio, nr_sectors);
3398                        bio->bi_status = 0;
3399                        generic_make_request(bio);
3400                }
3401        }
3402
3403        if (sectors_skipped)
3404                /* pretend they weren't skipped, it makes
3405                 * no important difference in this case
3406                 */
3407                md_done_sync(mddev, sectors_skipped, 1);
3408
3409        return sectors_skipped + nr_sectors;
3410 giveup:
3411        /* There is nowhere to write, so all non-sync
3412         * drives must be failed or in resync, all drives
3413         * have a bad block, so try the next chunk...
3414         */
3415        if (sector_nr + max_sync < max_sector)
3416                max_sector = sector_nr + max_sync;
3417
3418        sectors_skipped += (max_sector - sector_nr);
3419        chunks_skipped ++;
3420        sector_nr = max_sector;
3421        goto skipped;
3422}
3423
3424static sector_t
3425raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3426{
3427        sector_t size;
3428        struct r10conf *conf = mddev->private;
3429
3430        if (!raid_disks)
3431                raid_disks = min(conf->geo.raid_disks,
3432                                 conf->prev.raid_disks);
3433        if (!sectors)
3434                sectors = conf->dev_sectors;
3435
3436        size = sectors >> conf->geo.chunk_shift;
3437        sector_div(size, conf->geo.far_copies);
3438        size = size * raid_disks;
3439        sector_div(size, conf->geo.near_copies);
3440
3441        return size << conf->geo.chunk_shift;
3442}
3443
3444static void calc_sectors(struct r10conf *conf, sector_t size)
3445{
3446        /* Calculate the number of sectors-per-device that will
3447         * actually be used, and set conf->dev_sectors and
3448         * conf->stride
3449         */
3450
3451        size = size >> conf->geo.chunk_shift;
3452        sector_div(size, conf->geo.far_copies);
3453        size = size * conf->geo.raid_disks;
3454        sector_div(size, conf->geo.near_copies);
3455        /* 'size' is now the number of chunks in the array */
3456        /* calculate "used chunks per device" */
3457        size = size * conf->copies;
3458
3459        /* We need to round up when dividing by raid_disks to
3460         * get the stride size.
3461         */
3462        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3463
3464        conf->dev_sectors = size << conf->geo.chunk_shift;
3465
3466        if (conf->geo.far_offset)
3467                conf->geo.stride = 1 << conf->geo.chunk_shift;
3468        else {
3469                sector_div(size, conf->geo.far_copies);
3470                conf->geo.stride = size << conf->geo.chunk_shift;
3471        }
3472}
3473
3474enum geo_type {geo_new, geo_old, geo_start};
3475static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3476{
3477        int nc, fc, fo;
3478        int layout, chunk, disks;
3479        switch (new) {
3480        case geo_old:
3481                layout = mddev->layout;
3482                chunk = mddev->chunk_sectors;
3483                disks = mddev->raid_disks - mddev->delta_disks;
3484                break;
3485        case geo_new:
3486                layout = mddev->new_layout;
3487                chunk = mddev->new_chunk_sectors;
3488                disks = mddev->raid_disks;
3489                break;
3490        default: /* avoid 'may be unused' warnings */
3491        case geo_start: /* new when starting reshape - raid_disks not
3492                         * updated yet. */
3493                layout = mddev->new_layout;
3494                chunk = mddev->new_chunk_sectors;
3495                disks = mddev->raid_disks + mddev->delta_disks;
3496                break;
3497        }
3498        if (layout >> 19)
3499                return -1;
3500        if (chunk < (PAGE_SIZE >> 9) ||
3501            !is_power_of_2(chunk))
3502                return -2;
3503        nc = layout & 255;
3504        fc = (layout >> 8) & 255;
3505        fo = layout & (1<<16);
3506        geo->raid_disks = disks;
3507        geo->near_copies = nc;
3508        geo->far_copies = fc;
3509        geo->far_offset = fo;
3510        switch (layout >> 17) {
3511        case 0: /* original layout.  simple but not always optimal */
3512                geo->far_set_size = disks;
3513                break;
3514        case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3515                 * actually using this, but leave code here just in case.*/
3516                geo->far_set_size = disks/fc;
3517                WARN(geo->far_set_size < fc,
3518                     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3519                break;
3520        case 2: /* "improved" layout fixed to match documentation */
3521                geo->far_set_size = fc * nc;
3522                break;
3523        default: /* Not a valid layout */
3524                return -1;
3525        }
3526        geo->chunk_mask = chunk - 1;
3527        geo->chunk_shift = ffz(~chunk);
3528        return nc*fc;
3529}
3530
3531static struct r10conf *setup_conf(struct mddev *mddev)
3532{
3533        struct r10conf *conf = NULL;
3534        int err = -EINVAL;
3535        struct geom geo;
3536        int copies;
3537
3538        copies = setup_geo(&geo, mddev, geo_new);
3539
3540        if (copies == -2) {
3541                pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3542                        mdname(mddev), PAGE_SIZE);
3543                goto out;
3544        }
3545
3546        if (copies < 2 || copies > mddev->raid_disks) {
3547                pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3548                        mdname(mddev), mddev->new_layout);
3549                goto out;
3550        }
3551
3552        err = -ENOMEM;
3553        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3554        if (!conf)
3555                goto out;
3556
3557        /* FIXME calc properly */
3558        conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3559                                                            max(0,-mddev->delta_disks)),
3560                                GFP_KERNEL);
3561        if (!conf->mirrors)
3562                goto out;
3563
3564        conf->tmppage = alloc_page(GFP_KERNEL);
3565        if (!conf->tmppage)
3566                goto out;
3567
3568        conf->geo = geo;
3569        conf->copies = copies;
3570        conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3571                                           r10bio_pool_free, conf);
3572        if (!conf->r10bio_pool)
3573                goto out;
3574
3575        conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3576        if (!conf->bio_split)
3577                goto out;
3578
3579        calc_sectors(conf, mddev->dev_sectors);
3580        if (mddev->reshape_position == MaxSector) {
3581                conf->prev = conf->geo;
3582                conf->reshape_progress = MaxSector;
3583        } else {
3584                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3585                        err = -EINVAL;
3586                        goto out;
3587                }
3588                conf->reshape_progress = mddev->reshape_position;
3589                if (conf->prev.far_offset)
3590                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3591                else
3592                        /* far_copies must be 1 */
3593                        conf->prev.stride = conf->dev_sectors;
3594        }
3595        conf->reshape_safe = conf->reshape_progress;
3596        spin_lock_init(&conf->device_lock);
3597        INIT_LIST_HEAD(&conf->retry_list);
3598        INIT_LIST_HEAD(&conf->bio_end_io_list);
3599
3600        spin_lock_init(&conf->resync_lock);
3601        init_waitqueue_head(&conf->wait_barrier);
3602        atomic_set(&conf->nr_pending, 0);
3603
3604        conf->thread = md_register_thread(raid10d, mddev, "raid10");
3605        if (!conf->thread)
3606                goto out;
3607
3608        conf->mddev = mddev;
3609        return conf;
3610
3611 out:
3612        if (conf) {
3613                mempool_destroy(conf->r10bio_pool);
3614                kfree(conf->mirrors);
3615                safe_put_page(conf->tmppage);
3616                if (conf->bio_split)
3617                        bioset_free(conf->bio_split);
3618                kfree(conf);
3619        }
3620        return ERR_PTR(err);
3621}
3622
3623static int raid10_run(struct mddev *mddev)
3624{
3625        struct r10conf *conf;
3626        int i, disk_idx, chunk_size;
3627        struct raid10_info *disk;
3628        struct md_rdev *rdev;
3629        sector_t size;
3630        sector_t min_offset_diff = 0;
3631        int first = 1;
3632        bool discard_supported = false;
3633
3634        if (mddev_init_writes_pending(mddev) < 0)
3635                return -ENOMEM;
3636
3637        if (mddev->private == NULL) {
3638                conf = setup_conf(mddev);
3639                if (IS_ERR(conf))
3640                        return PTR_ERR(conf);
3641                mddev->private = conf;
3642        }
3643        conf = mddev->private;
3644        if (!conf)
3645                goto out;
3646
3647        mddev->thread = conf->thread;
3648        conf->thread = NULL;
3649
3650        chunk_size = mddev->chunk_sectors << 9;
3651        if (mddev->queue) {
3652                blk_queue_max_discard_sectors(mddev->queue,
3653                                              mddev->chunk_sectors);
3654                blk_queue_max_write_same_sectors(mddev->queue, 0);
3655                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3656                blk_queue_io_min(mddev->queue, chunk_size);
3657                if (conf->geo.raid_disks % conf->geo.near_copies)
3658                        blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3659                else
3660                        blk_queue_io_opt(mddev->queue, chunk_size *
3661                                         (conf->geo.raid_disks / conf->geo.near_copies));
3662        }
3663
3664        rdev_for_each(rdev, mddev) {
3665                long long diff;
3666
3667                disk_idx = rdev->raid_disk;
3668                if (disk_idx < 0)
3669                        continue;
3670                if (disk_idx >= conf->geo.raid_disks &&
3671                    disk_idx >= conf->prev.raid_disks)
3672                        continue;
3673                disk = conf->mirrors + disk_idx;
3674
3675                if (test_bit(Replacement, &rdev->flags)) {
3676                        if (disk->replacement)
3677                                goto out_free_conf;
3678                        disk->replacement = rdev;
3679                } else {
3680                        if (disk->rdev)
3681                                goto out_free_conf;
3682                        disk->rdev = rdev;
3683                }
3684                diff = (rdev->new_data_offset - rdev->data_offset);
3685                if (!mddev->reshape_backwards)
3686                        diff = -diff;
3687                if (diff < 0)
3688                        diff = 0;
3689                if (first || diff < min_offset_diff)
3690                        min_offset_diff = diff;
3691
3692                if (mddev->gendisk)
3693                        disk_stack_limits(mddev->gendisk, rdev->bdev,
3694                                          rdev->data_offset << 9);
3695
3696                disk->head_position = 0;
3697
3698                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3699                        discard_supported = true;
3700                first = 0;
3701        }
3702
3703        if (mddev->queue) {
3704                if (discard_supported)
3705                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3706                                                mddev->queue);
3707                else
3708                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3709                                                  mddev->queue);
3710        }
3711        /* need to check that every block has at least one working mirror */
3712        if (!enough(conf, -1)) {
3713                pr_err("md/raid10:%s: not enough operational mirrors.\n",
3714                       mdname(mddev));
3715                goto out_free_conf;
3716        }
3717
3718        if (conf->reshape_progress != MaxSector) {
3719                /* must ensure that shape change is supported */
3720                if (conf->geo.far_copies != 1 &&
3721                    conf->geo.far_offset == 0)
3722                        goto out_free_conf;
3723                if (conf->prev.far_copies != 1 &&
3724                    conf->prev.far_offset == 0)
3725                        goto out_free_conf;
3726        }
3727
3728        mddev->degraded = 0;
3729        for (i = 0;
3730             i < conf->geo.raid_disks
3731                     || i < conf->prev.raid_disks;
3732             i++) {
3733
3734                disk = conf->mirrors + i;
3735
3736                if (!disk->rdev && disk->replacement) {
3737                        /* The replacement is all we have - use it */
3738                        disk->rdev = disk->replacement;
3739                        disk->replacement = NULL;
3740                        clear_bit(Replacement, &disk->rdev->flags);
3741                }
3742
3743                if (!disk->rdev ||
3744                    !test_bit(In_sync, &disk->rdev->flags)) {
3745                        disk->head_position = 0;
3746                        mddev->degraded++;
3747                        if (disk->rdev &&
3748                            disk->rdev->saved_raid_disk < 0)
3749                                conf->fullsync = 1;
3750                }
3751                disk->recovery_disabled = mddev->recovery_disabled - 1;
3752        }
3753
3754        if (mddev->recovery_cp != MaxSector)
3755                pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3756                          mdname(mddev));
3757        pr_info("md/raid10:%s: active with %d out of %d devices\n",
3758                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3759                conf->geo.raid_disks);
3760        /*
3761         * Ok, everything is just fine now
3762         */
3763        mddev->dev_sectors = conf->dev_sectors;
3764        size = raid10_size(mddev, 0, 0);
3765        md_set_array_sectors(mddev, size);
3766        mddev->resync_max_sectors = size;
3767        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3768
3769        if (mddev->queue) {
3770                int stripe = conf->geo.raid_disks *
3771                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3772
3773                /* Calculate max read-ahead size.
3774                 * We need to readahead at least twice a whole stripe....
3775                 * maybe...
3776                 */
3777                stripe /= conf->geo.near_copies;
3778                if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3779                        mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3780        }
3781
3782        if (md_integrity_register(mddev))
3783                goto out_free_conf;
3784
3785        if (conf->reshape_progress != MaxSector) {
3786                unsigned long before_length, after_length;
3787
3788                before_length = ((1 << conf->prev.chunk_shift) *
3789                                 conf->prev.far_copies);
3790                after_length = ((1 << conf->geo.chunk_shift) *
3791                                conf->geo.far_copies);
3792
3793                if (max(before_length, after_length) > min_offset_diff) {
3794                        /* This cannot work */
3795                        pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3796                        goto out_free_conf;
3797                }
3798                conf->offset_diff = min_offset_diff;
3799
3800                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3801                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3802                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3803                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3804                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3805                                                        "reshape");
3806        }
3807
3808        return 0;
3809
3810out_free_conf:
3811        md_unregister_thread(&mddev->thread);
3812        mempool_destroy(conf->r10bio_pool);
3813        safe_put_page(conf->tmppage);
3814        kfree(conf->mirrors);
3815        kfree(conf);
3816        mddev->private = NULL;
3817out:
3818        return -EIO;
3819}
3820
3821static void raid10_free(struct mddev *mddev, void *priv)
3822{
3823        struct r10conf *conf = priv;
3824
3825        mempool_destroy(conf->r10bio_pool);
3826        safe_put_page(conf->tmppage);
3827        kfree(conf->mirrors);
3828        kfree(conf->mirrors_old);
3829        kfree(conf->mirrors_new);
3830        if (conf->bio_split)
3831                bioset_free(conf->bio_split);
3832        kfree(conf);
3833}
3834
3835static void raid10_quiesce(struct mddev *mddev, int state)
3836{
3837        struct r10conf *conf = mddev->private;
3838
3839        switch(state) {
3840        case 1:
3841                raise_barrier(conf, 0);
3842                break;
3843        case 0:
3844                lower_barrier(conf);
3845                break;
3846        }
3847}
3848
3849static int raid10_resize(struct mddev *mddev, sector_t sectors)
3850{
3851        /* Resize of 'far' arrays is not supported.
3852         * For 'near' and 'offset' arrays we can set the
3853         * number of sectors used to be an appropriate multiple
3854         * of the chunk size.
3855         * For 'offset', this is far_copies*chunksize.
3856         * For 'near' the multiplier is the LCM of
3857         * near_copies and raid_disks.
3858         * So if far_copies > 1 && !far_offset, fail.
3859         * Else find LCM(raid_disks, near_copy)*far_copies and
3860         * multiply by chunk_size.  Then round to this number.
3861         * This is mostly done by raid10_size()
3862         */
3863        struct r10conf *conf = mddev->private;
3864        sector_t oldsize, size;
3865
3866        if (mddev->reshape_position != MaxSector)
3867                return -EBUSY;
3868
3869        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3870                return -EINVAL;
3871
3872        oldsize = raid10_size(mddev, 0, 0);
3873        size = raid10_size(mddev, sectors, 0);
3874        if (mddev->external_size &&
3875            mddev->array_sectors > size)
3876                return -EINVAL;
3877        if (mddev->bitmap) {
3878                int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3879                if (ret)
3880                        return ret;
3881        }
3882        md_set_array_sectors(mddev, size);
3883        if (sectors > mddev->dev_sectors &&
3884            mddev->recovery_cp > oldsize) {
3885                mddev->recovery_cp = oldsize;
3886                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3887        }
3888        calc_sectors(conf, sectors);
3889        mddev->dev_sectors = conf->dev_sectors;
3890        mddev->resync_max_sectors = size;
3891        return 0;
3892}
3893
3894static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3895{
3896        struct md_rdev *rdev;
3897        struct r10conf *conf;
3898
3899        if (mddev->degraded > 0) {
3900                pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3901                        mdname(mddev));
3902                return ERR_PTR(-EINVAL);
3903        }
3904        sector_div(size, devs);
3905
3906        /* Set new parameters */
3907        mddev->new_level = 10;
3908        /* new layout: far_copies = 1, near_copies = 2 */
3909        mddev->new_layout = (1<<8) + 2;
3910        mddev->new_chunk_sectors = mddev->chunk_sectors;
3911        mddev->delta_disks = mddev->raid_disks;
3912        mddev->raid_disks *= 2;
3913        /* make sure it will be not marked as dirty */
3914        mddev->recovery_cp = MaxSector;
3915        mddev->dev_sectors = size;
3916
3917        conf = setup_conf(mddev);
3918        if (!IS_ERR(conf)) {
3919                rdev_for_each(rdev, mddev)
3920                        if (rdev->raid_disk >= 0) {
3921                                rdev->new_raid_disk = rdev->raid_disk * 2;
3922                                rdev->sectors = size;
3923                        }
3924                conf->barrier = 1;
3925        }
3926
3927        return conf;
3928}
3929
3930static void *raid10_takeover(struct mddev *mddev)
3931{
3932        struct r0conf *raid0_conf;
3933
3934        /* raid10 can take over:
3935         *  raid0 - providing it has only two drives
3936         */
3937        if (mddev->level == 0) {
3938                /* for raid0 takeover only one zone is supported */
3939                raid0_conf = mddev->private;
3940                if (raid0_conf->nr_strip_zones > 1) {
3941                        pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3942                                mdname(mddev));
3943                        return ERR_PTR(-EINVAL);
3944                }
3945                return raid10_takeover_raid0(mddev,
3946                        raid0_conf->strip_zone->zone_end,
3947                        raid0_conf->strip_zone->nb_dev);
3948        }
3949        return ERR_PTR(-EINVAL);
3950}
3951
3952static int raid10_check_reshape(struct mddev *mddev)
3953{
3954        /* Called when there is a request to change
3955         * - layout (to ->new_layout)
3956         * - chunk size (to ->new_chunk_sectors)
3957         * - raid_disks (by delta_disks)
3958         * or when trying to restart a reshape that was ongoing.
3959         *
3960         * We need to validate the request and possibly allocate
3961         * space if that might be an issue later.
3962         *
3963         * Currently we reject any reshape of a 'far' mode array,
3964         * allow chunk size to change if new is generally acceptable,
3965         * allow raid_disks to increase, and allow
3966         * a switch between 'near' mode and 'offset' mode.
3967         */
3968        struct r10conf *conf = mddev->private;
3969        struct geom geo;
3970
3971        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3972                return -EINVAL;
3973
3974        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3975                /* mustn't change number of copies */
3976                return -EINVAL;
3977        if (geo.far_copies > 1 && !geo.far_offset)
3978                /* Cannot switch to 'far' mode */
3979                return -EINVAL;
3980
3981        if (mddev->array_sectors & geo.chunk_mask)
3982                        /* not factor of array size */
3983                        return -EINVAL;
3984
3985        if (!enough(conf, -1))
3986                return -EINVAL;
3987
3988        kfree(conf->mirrors_new);
3989        conf->mirrors_new = NULL;
3990        if (mddev->delta_disks > 0) {
3991                /* allocate new 'mirrors' list */
3992                conf->mirrors_new = kzalloc(
3993                        sizeof(struct raid10_info)
3994                        *(mddev->raid_disks +
3995                          mddev->delta_disks),
3996                        GFP_KERNEL);
3997                if (!conf->mirrors_new)
3998                        return -ENOMEM;
3999        }
4000        return 0;
4001}
4002
4003/*
4004 * Need to check if array has failed when deciding whether to:
4005 *  - start an array
4006 *  - remove non-faulty devices
4007 *  - add a spare
4008 *  - allow a reshape
4009 * This determination is simple when no reshape is happening.
4010 * However if there is a reshape, we need to carefully check
4011 * both the before and after sections.
4012 * This is because some failed devices may only affect one
4013 * of the two sections, and some non-in_sync devices may
4014 * be insync in the section most affected by failed devices.
4015 */
4016static int calc_degraded(struct r10conf *conf)
4017{
4018        int degraded, degraded2;
4019        int i;
4020
4021        rcu_read_lock();
4022        degraded = 0;
4023        /* 'prev' section first */
4024        for (i = 0; i < conf->prev.raid_disks; i++) {
4025                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4026                if (!rdev || test_bit(Faulty, &rdev->flags))
4027                        degraded++;
4028                else if (!test_bit(In_sync, &rdev->flags))
4029                        /* When we can reduce the number of devices in
4030                         * an array, this might not contribute to
4031                         * 'degraded'.  It does now.
4032                         */
4033                        degraded++;
4034        }
4035        rcu_read_unlock();
4036        if (conf->geo.raid_disks == conf->prev.raid_disks)
4037                return degraded;
4038        rcu_read_lock();
4039        degraded2 = 0;
4040        for (i = 0; i < conf->geo.raid_disks; i++) {
4041                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4042                if (!rdev || test_bit(Faulty, &rdev->flags))
4043                        degraded2++;
4044                else if (!test_bit(In_sync, &rdev->flags)) {
4045                        /* If reshape is increasing the number of devices,
4046                         * this section has already been recovered, so
4047                         * it doesn't contribute to degraded.
4048                         * else it does.
4049                         */
4050                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
4051                                degraded2++;
4052                }
4053        }
4054        rcu_read_unlock();
4055        if (degraded2 > degraded)
4056                return degraded2;
4057        return degraded;
4058}
4059
4060static int raid10_start_reshape(struct mddev *mddev)
4061{
4062        /* A 'reshape' has been requested. This commits
4063         * the various 'new' fields and sets MD_RECOVER_RESHAPE
4064         * This also checks if there are enough spares and adds them
4065         * to the array.
4066         * We currently require enough spares to make the final
4067         * array non-degraded.  We also require that the difference
4068         * between old and new data_offset - on each device - is
4069         * enough that we never risk over-writing.
4070         */
4071
4072        unsigned long before_length, after_length;
4073        sector_t min_offset_diff = 0;
4074        int first = 1;
4075        struct geom new;
4076        struct r10conf *conf = mddev->private;
4077        struct md_rdev *rdev;
4078        int spares = 0;
4079        int ret;
4080
4081        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4082                return -EBUSY;
4083
4084        if (setup_geo(&new, mddev, geo_start) != conf->copies)
4085                return -EINVAL;
4086
4087        before_length = ((1 << conf->prev.chunk_shift) *
4088                         conf->prev.far_copies);
4089        after_length = ((1 << conf->geo.chunk_shift) *
4090                        conf->geo.far_copies);
4091
4092        rdev_for_each(rdev, mddev) {
4093                if (!test_bit(In_sync, &rdev->flags)
4094                    && !test_bit(Faulty, &rdev->flags))
4095                        spares++;
4096                if (rdev->raid_disk >= 0) {
4097                        long long diff = (rdev->new_data_offset
4098                                          - rdev->data_offset);
4099                        if (!mddev->reshape_backwards)
4100                                diff = -diff;
4101                        if (diff < 0)
4102                                diff = 0;
4103                        if (first || diff < min_offset_diff)
4104                                min_offset_diff = diff;
4105                        first = 0;
4106                }
4107        }
4108
4109        if (max(before_length, after_length) > min_offset_diff)
4110                return -EINVAL;
4111
4112        if (spares < mddev->delta_disks)
4113                return -EINVAL;
4114
4115        conf->offset_diff = min_offset_diff;
4116        spin_lock_irq(&conf->device_lock);
4117        if (conf->mirrors_new) {
4118                memcpy(conf->mirrors_new, conf->mirrors,
4119                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4120                smp_mb();
4121                kfree(conf->mirrors_old);
4122                conf->mirrors_old = conf->mirrors;
4123                conf->mirrors = conf->mirrors_new;
4124                conf->mirrors_new = NULL;
4125        }
4126        setup_geo(&conf->geo, mddev, geo_start);
4127        smp_mb();
4128        if (mddev->reshape_backwards) {
4129                sector_t size = raid10_size(mddev, 0, 0);
4130                if (size < mddev->array_sectors) {
4131                        spin_unlock_irq(&conf->device_lock);
4132                        pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4133                                mdname(mddev));
4134                        return -EINVAL;
4135                }
4136                mddev->resync_max_sectors = size;
4137                conf->reshape_progress = size;
4138        } else
4139                conf->reshape_progress = 0;
4140        conf->reshape_safe = conf->reshape_progress;
4141        spin_unlock_irq(&conf->device_lock);
4142
4143        if (mddev->delta_disks && mddev->bitmap) {
4144                ret = bitmap_resize(mddev->bitmap,
4145                                    raid10_size(mddev, 0,
4146                                                conf->geo.raid_disks),
4147                                    0, 0);
4148                if (ret)
4149                        goto abort;
4150        }
4151        if (mddev->delta_disks > 0) {
4152                rdev_for_each(rdev, mddev)
4153                        if (rdev->raid_disk < 0 &&
4154                            !test_bit(Faulty, &rdev->flags)) {
4155                                if (raid10_add_disk(mddev, rdev) == 0) {
4156                                        if (rdev->raid_disk >=
4157                                            conf->prev.raid_disks)
4158                                                set_bit(In_sync, &rdev->flags);
4159                                        else
4160                                                rdev->recovery_offset = 0;
4161
4162                                        if (sysfs_link_rdev(mddev, rdev))
4163                                                /* Failure here  is OK */;
4164                                }
4165                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4166                                   && !test_bit(Faulty, &rdev->flags)) {
4167                                /* This is a spare that was manually added */
4168                                set_bit(In_sync, &rdev->flags);
4169                        }
4170        }
4171        /* When a reshape changes the number of devices,
4172         * ->degraded is measured against the larger of the
4173         * pre and  post numbers.
4174         */
4175        spin_lock_irq(&conf->device_lock);
4176        mddev->degraded = calc_degraded(conf);
4177        spin_unlock_irq(&conf->device_lock);
4178        mddev->raid_disks = conf->geo.raid_disks;
4179        mddev->reshape_position = conf->reshape_progress;
4180        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4181
4182        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4183        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4184        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4185        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4186        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4187
4188        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4189                                                "reshape");
4190        if (!mddev->sync_thread) {
4191                ret = -EAGAIN;
4192                goto abort;
4193        }
4194        conf->reshape_checkpoint = jiffies;
4195        md_wakeup_thread(mddev->sync_thread);
4196        md_new_event(mddev);
4197        return 0;
4198
4199abort:
4200        mddev->recovery = 0;
4201        spin_lock_irq(&conf->device_lock);
4202        conf->geo = conf->prev;
4203        mddev->raid_disks = conf->geo.raid_disks;
4204        rdev_for_each(rdev, mddev)
4205                rdev->new_data_offset = rdev->data_offset;
4206        smp_wmb();
4207        conf->reshape_progress = MaxSector;
4208        conf->reshape_safe = MaxSector;
4209        mddev->reshape_position = MaxSector;
4210        spin_unlock_irq(&conf->device_lock);
4211        return ret;
4212}
4213
4214/* Calculate the last device-address that could contain
4215 * any block from the chunk that includes the array-address 's'
4216 * and report the next address.
4217 * i.e. the address returned will be chunk-aligned and after
4218 * any data that is in the chunk containing 's'.
4219 */
4220static sector_t last_dev_address(sector_t s, struct geom *geo)
4221{
4222        s = (s | geo->chunk_mask) + 1;
4223        s >>= geo->chunk_shift;
4224        s *= geo->near_copies;
4225        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4226        s *= geo->far_copies;
4227        s <<= geo->chunk_shift;
4228        return s;
4229}
4230
4231/* Calculate the first device-address that could contain
4232 * any block from the chunk that includes the array-address 's'.
4233 * This too will be the start of a chunk
4234 */
4235static sector_t first_dev_address(sector_t s, struct geom *geo)
4236{
4237        s >>= geo->chunk_shift;
4238        s *= geo->near_copies;
4239        sector_div(s, geo->raid_disks);
4240        s *= geo->far_copies;
4241        s <<= geo->chunk_shift;
4242        return s;
4243}
4244
4245static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4246                                int *skipped)
4247{
4248        /* We simply copy at most one chunk (smallest of old and new)
4249         * at a time, possibly less if that exceeds RESYNC_PAGES,
4250         * or we hit a bad block or something.
4251         * This might mean we pause for normal IO in the middle of
4252         * a chunk, but that is not a problem as mddev->reshape_position
4253         * can record any location.
4254         *
4255         * If we will want to write to a location that isn't
4256         * yet recorded as 'safe' (i.e. in metadata on disk) then
4257         * we need to flush all reshape requests and update the metadata.
4258         *
4259         * When reshaping forwards (e.g. to more devices), we interpret
4260         * 'safe' as the earliest block which might not have been copied
4261         * down yet.  We divide this by previous stripe size and multiply
4262         * by previous stripe length to get lowest device offset that we
4263         * cannot write to yet.
4264         * We interpret 'sector_nr' as an address that we want to write to.
4265         * From this we use last_device_address() to find where we might
4266         * write to, and first_device_address on the  'safe' position.
4267         * If this 'next' write position is after the 'safe' position,
4268         * we must update the metadata to increase the 'safe' position.
4269         *
4270         * When reshaping backwards, we round in the opposite direction
4271         * and perform the reverse test:  next write position must not be
4272         * less than current safe position.
4273         *
4274         * In all this the minimum difference in data offsets
4275         * (conf->offset_diff - always positive) allows a bit of slack,
4276         * so next can be after 'safe', but not by more than offset_diff
4277         *
4278         * We need to prepare all the bios here before we start any IO
4279         * to ensure the size we choose is acceptable to all devices.
4280         * The means one for each copy for write-out and an extra one for
4281         * read-in.
4282         * We store the read-in bio in ->master_bio and the others in
4283         * ->devs[x].bio and ->devs[x].repl_bio.
4284         */
4285        struct r10conf *conf = mddev->private;
4286        struct r10bio *r10_bio;
4287        sector_t next, safe, last;
4288        int max_sectors;
4289        int nr_sectors;
4290        int s;
4291        struct md_rdev *rdev;
4292        int need_flush = 0;
4293        struct bio *blist;
4294        struct bio *bio, *read_bio;
4295        int sectors_done = 0;
4296        struct page **pages;
4297
4298        if (sector_nr == 0) {
4299                /* If restarting in the middle, skip the initial sectors */
4300                if (mddev->reshape_backwards &&
4301                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4302                        sector_nr = (raid10_size(mddev, 0, 0)
4303                                     - conf->reshape_progress);
4304                } else if (!mddev->reshape_backwards &&
4305                           conf->reshape_progress > 0)
4306                        sector_nr = conf->reshape_progress;
4307                if (sector_nr) {
4308                        mddev->curr_resync_completed = sector_nr;
4309                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4310                        *skipped = 1;
4311                        return sector_nr;
4312                }
4313        }
4314
4315        /* We don't use sector_nr to track where we are up to
4316         * as that doesn't work well for ->reshape_backwards.
4317         * So just use ->reshape_progress.
4318         */
4319        if (mddev->reshape_backwards) {
4320                /* 'next' is the earliest device address that we might
4321                 * write to for this chunk in the new layout
4322                 */
4323                next = first_dev_address(conf->reshape_progress - 1,
4324                                         &conf->geo);
4325
4326                /* 'safe' is the last device address that we might read from
4327                 * in the old layout after a restart
4328                 */
4329                safe = last_dev_address(conf->reshape_safe - 1,
4330                                        &conf->prev);
4331
4332                if (next + conf->offset_diff < safe)
4333                        need_flush = 1;
4334
4335                last = conf->reshape_progress - 1;
4336                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4337                                               & conf->prev.chunk_mask);
4338                if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4339                        sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4340        } else {
4341                /* 'next' is after the last device address that we
4342                 * might write to for this chunk in the new layout
4343                 */
4344                next = last_dev_address(conf->reshape_progress, &conf->geo);
4345
4346                /* 'safe' is the earliest device address that we might
4347                 * read from in the old layout after a restart
4348                 */
4349                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4350
4351                /* Need to update metadata if 'next' might be beyond 'safe'
4352                 * as that would possibly corrupt data
4353                 */
4354                if (next > safe + conf->offset_diff)
4355                        need_flush = 1;
4356
4357                sector_nr = conf->reshape_progress;
4358                last  = sector_nr | (conf->geo.chunk_mask
4359                                     & conf->prev.chunk_mask);
4360
4361                if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4362                        last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4363        }
4364
4365        if (need_flush ||
4366            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4367                /* Need to update reshape_position in metadata */
4368                wait_barrier(conf);
4369                mddev->reshape_position = conf->reshape_progress;
4370                if (mddev->reshape_backwards)
4371                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4372                                - conf->reshape_progress;
4373                else
4374                        mddev->curr_resync_completed = conf->reshape_progress;
4375                conf->reshape_checkpoint = jiffies;
4376                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4377                md_wakeup_thread(mddev->thread);
4378                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4379                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4380                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4381                        allow_barrier(conf);
4382                        return sectors_done;
4383                }
4384                conf->reshape_safe = mddev->reshape_position;
4385                allow_barrier(conf);
4386        }
4387
4388read_more:
4389        /* Now schedule reads for blocks from sector_nr to last */
4390        r10_bio = raid10_alloc_init_r10buf(conf);
4391        r10_bio->state = 0;
4392        raise_barrier(conf, sectors_done != 0);
4393        atomic_set(&r10_bio->remaining, 0);
4394        r10_bio->mddev = mddev;
4395        r10_bio->sector = sector_nr;
4396        set_bit(R10BIO_IsReshape, &r10_bio->state);
4397        r10_bio->sectors = last - sector_nr + 1;
4398        rdev = read_balance(conf, r10_bio, &max_sectors);
4399        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4400
4401        if (!rdev) {
4402                /* Cannot read from here, so need to record bad blocks
4403                 * on all the target devices.
4404                 */
4405                // FIXME
4406                mempool_free(r10_bio, conf->r10buf_pool);
4407                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4408                return sectors_done;
4409        }
4410
4411        read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4412
4413        bio_set_dev(read_bio, rdev->bdev);
4414        read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4415                               + rdev->data_offset);
4416        read_bio->bi_private = r10_bio;
4417        read_bio->bi_end_io = end_reshape_read;
4418        bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4419        read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4420        read_bio->bi_status = 0;
4421        read_bio->bi_vcnt = 0;
4422        read_bio->bi_iter.bi_size = 0;
4423        r10_bio->master_bio = read_bio;
4424        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4425
4426        /* Now find the locations in the new layout */
4427        __raid10_find_phys(&conf->geo, r10_bio);
4428
4429        blist = read_bio;
4430        read_bio->bi_next = NULL;
4431
4432        rcu_read_lock();
4433        for (s = 0; s < conf->copies*2; s++) {
4434                struct bio *b;
4435                int d = r10_bio->devs[s/2].devnum;
4436                struct md_rdev *rdev2;
4437                if (s&1) {
4438                        rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4439                        b = r10_bio->devs[s/2].repl_bio;
4440                } else {
4441                        rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4442                        b = r10_bio->devs[s/2].bio;
4443                }
4444                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4445                        continue;
4446
4447                bio_set_dev(b, rdev2->bdev);
4448                b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4449                        rdev2->new_data_offset;
4450                b->bi_end_io = end_reshape_write;
4451                bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4452                b->bi_next = blist;
4453                blist = b;
4454        }
4455
4456        /* Now add as many pages as possible to all of these bios. */
4457
4458        nr_sectors = 0;
4459        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4460        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4461                struct page *page = pages[s / (PAGE_SIZE >> 9)];
4462                int len = (max_sectors - s) << 9;
4463                if (len > PAGE_SIZE)
4464                        len = PAGE_SIZE;
4465                for (bio = blist; bio ; bio = bio->bi_next) {
4466                        /*
4467                         * won't fail because the vec table is big enough
4468                         * to hold all these pages
4469                         */
4470                        bio_add_page(bio, page, len, 0);
4471                }
4472                sector_nr += len >> 9;
4473                nr_sectors += len >> 9;
4474        }
4475        rcu_read_unlock();
4476        r10_bio->sectors = nr_sectors;
4477
4478        /* Now submit the read */
4479        md_sync_acct_bio(read_bio, r10_bio->sectors);
4480        atomic_inc(&r10_bio->remaining);
4481        read_bio->bi_next = NULL;
4482        generic_make_request(read_bio);
4483        sector_nr += nr_sectors;
4484        sectors_done += nr_sectors;
4485        if (sector_nr <= last)
4486                goto read_more;
4487
4488        /* Now that we have done the whole section we can
4489         * update reshape_progress
4490         */
4491        if (mddev->reshape_backwards)
4492                conf->reshape_progress -= sectors_done;
4493        else
4494                conf->reshape_progress += sectors_done;
4495
4496        return sectors_done;
4497}
4498
4499static void end_reshape_request(struct r10bio *r10_bio);
4500static int handle_reshape_read_error(struct mddev *mddev,
4501                                     struct r10bio *r10_bio);
4502static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4503{
4504        /* Reshape read completed.  Hopefully we have a block
4505         * to write out.
4506         * If we got a read error then we do sync 1-page reads from
4507         * elsewhere until we find the data - or give up.
4508         */
4509        struct r10conf *conf = mddev->private;
4510        int s;
4511
4512        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4513                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4514                        /* Reshape has been aborted */
4515                        md_done_sync(mddev, r10_bio->sectors, 0);
4516                        return;
4517                }
4518
4519        /* We definitely have the data in the pages, schedule the
4520         * writes.
4521         */
4522        atomic_set(&r10_bio->remaining, 1);
4523        for (s = 0; s < conf->copies*2; s++) {
4524                struct bio *b;
4525                int d = r10_bio->devs[s/2].devnum;
4526                struct md_rdev *rdev;
4527                rcu_read_lock();
4528                if (s&1) {
4529                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4530                        b = r10_bio->devs[s/2].repl_bio;
4531                } else {
4532                        rdev = rcu_dereference(conf->mirrors[d].rdev);
4533                        b = r10_bio->devs[s/2].bio;
4534                }
4535                if (!rdev || test_bit(Faulty, &rdev->flags)) {
4536                        rcu_read_unlock();
4537                        continue;
4538                }
4539                atomic_inc(&rdev->nr_pending);
4540                rcu_read_unlock();
4541                md_sync_acct_bio(b, r10_bio->sectors);
4542                atomic_inc(&r10_bio->remaining);
4543                b->bi_next = NULL;
4544                generic_make_request(b);
4545        }
4546        end_reshape_request(r10_bio);
4547}
4548
4549static void end_reshape(struct r10conf *conf)
4550{
4551        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4552                return;
4553
4554        spin_lock_irq(&conf->device_lock);
4555        conf->prev = conf->geo;
4556        md_finish_reshape(conf->mddev);
4557        smp_wmb();
4558        conf->reshape_progress = MaxSector;
4559        conf->reshape_safe = MaxSector;
4560        spin_unlock_irq(&conf->device_lock);
4561
4562        /* read-ahead size must cover two whole stripes, which is
4563         * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4564         */
4565        if (conf->mddev->queue) {
4566                int stripe = conf->geo.raid_disks *
4567                        ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4568                stripe /= conf->geo.near_copies;
4569                if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4570                        conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4571        }
4572        conf->fullsync = 0;
4573}
4574
4575static int handle_reshape_read_error(struct mddev *mddev,
4576                                     struct r10bio *r10_bio)
4577{
4578        /* Use sync reads to get the blocks from somewhere else */
4579        int sectors = r10_bio->sectors;
4580        struct r10conf *conf = mddev->private;
4581        struct {
4582                struct r10bio r10_bio;
4583                struct r10dev devs[conf->copies];
4584        } on_stack;
4585        struct r10bio *r10b = &on_stack.r10_bio;
4586        int slot = 0;
4587        int idx = 0;
4588        struct page **pages;
4589
4590        /* reshape IOs share pages from .devs[0].bio */
4591        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4592
4593        r10b->sector = r10_bio->sector;
4594        __raid10_find_phys(&conf->prev, r10b);
4595
4596        while (sectors) {
4597                int s = sectors;
4598                int success = 0;
4599                int first_slot = slot;
4600
4601                if (s > (PAGE_SIZE >> 9))
4602                        s = PAGE_SIZE >> 9;
4603
4604                rcu_read_lock();
4605                while (!success) {
4606                        int d = r10b->devs[slot].devnum;
4607                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4608                        sector_t addr;
4609                        if (rdev == NULL ||
4610                            test_bit(Faulty, &rdev->flags) ||
4611                            !test_bit(In_sync, &rdev->flags))
4612                                goto failed;
4613
4614                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4615                        atomic_inc(&rdev->nr_pending);
4616                        rcu_read_unlock();
4617                        success = sync_page_io(rdev,
4618                                               addr,
4619                                               s << 9,
4620                                               pages[idx],
4621                                               REQ_OP_READ, 0, false);
4622                        rdev_dec_pending(rdev, mddev);
4623                        rcu_read_lock();
4624                        if (success)
4625                                break;
4626                failed:
4627                        slot++;
4628                        if (slot >= conf->copies)
4629                                slot = 0;
4630                        if (slot == first_slot)
4631                                break;
4632                }
4633                rcu_read_unlock();
4634                if (!success) {
4635                        /* couldn't read this block, must give up */
4636                        set_bit(MD_RECOVERY_INTR,
4637                                &mddev->recovery);
4638                        return -EIO;
4639                }
4640                sectors -= s;
4641                idx++;
4642        }
4643        return 0;
4644}
4645
4646static void end_reshape_write(struct bio *bio)
4647{
4648        struct r10bio *r10_bio = get_resync_r10bio(bio);
4649        struct mddev *mddev = r10_bio->mddev;
4650        struct r10conf *conf = mddev->private;
4651        int d;
4652        int slot;
4653        int repl;
4654        struct md_rdev *rdev = NULL;
4655
4656        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4657        if (repl)
4658                rdev = conf->mirrors[d].replacement;
4659        if (!rdev) {
4660                smp_mb();
4661                rdev = conf->mirrors[d].rdev;
4662        }
4663
4664        if (bio->bi_status) {
4665                /* FIXME should record badblock */
4666                md_error(mddev, rdev);
4667        }
4668
4669        rdev_dec_pending(rdev, mddev);
4670        end_reshape_request(r10_bio);
4671}
4672
4673static void end_reshape_request(struct r10bio *r10_bio)
4674{
4675        if (!atomic_dec_and_test(&r10_bio->remaining))
4676                return;
4677        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4678        bio_put(r10_bio->master_bio);
4679        put_buf(r10_bio);
4680}
4681
4682static void raid10_finish_reshape(struct mddev *mddev)
4683{
4684        struct r10conf *conf = mddev->private;
4685
4686        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4687                return;
4688
4689        if (mddev->delta_disks > 0) {
4690                sector_t size = raid10_size(mddev, 0, 0);
4691                md_set_array_sectors(mddev, size);
4692                if (mddev->recovery_cp > mddev->resync_max_sectors) {
4693                        mddev->recovery_cp = mddev->resync_max_sectors;
4694                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4695                }
4696                mddev->resync_max_sectors = size;
4697                if (mddev->queue) {
4698                        set_capacity(mddev->gendisk, mddev->array_sectors);
4699                        revalidate_disk(mddev->gendisk);
4700                }
4701        } else {
4702                int d;
4703                rcu_read_lock();
4704                for (d = conf->geo.raid_disks ;
4705                     d < conf->geo.raid_disks - mddev->delta_disks;
4706                     d++) {
4707                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4708                        if (rdev)
4709                                clear_bit(In_sync, &rdev->flags);
4710                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4711                        if (rdev)
4712                                clear_bit(In_sync, &rdev->flags);
4713                }
4714                rcu_read_unlock();
4715        }
4716        mddev->layout = mddev->new_layout;
4717        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4718        mddev->reshape_position = MaxSector;
4719        mddev->delta_disks = 0;
4720        mddev->reshape_backwards = 0;
4721}
4722
4723static struct md_personality raid10_personality =
4724{
4725        .name           = "raid10",
4726        .level          = 10,
4727        .owner          = THIS_MODULE,
4728        .make_request   = raid10_make_request,
4729        .run            = raid10_run,
4730        .free           = raid10_free,
4731        .status         = raid10_status,
4732        .error_handler  = raid10_error,
4733        .hot_add_disk   = raid10_add_disk,
4734        .hot_remove_disk= raid10_remove_disk,
4735        .spare_active   = raid10_spare_active,
4736        .sync_request   = raid10_sync_request,
4737        .quiesce        = raid10_quiesce,
4738        .size           = raid10_size,
4739        .resize         = raid10_resize,
4740        .takeover       = raid10_takeover,
4741        .check_reshape  = raid10_check_reshape,
4742        .start_reshape  = raid10_start_reshape,
4743        .finish_reshape = raid10_finish_reshape,
4744        .congested      = raid10_congested,
4745};
4746
4747static int __init raid_init(void)
4748{
4749        return register_md_personality(&raid10_personality);
4750}
4751
4752static void raid_exit(void)
4753{
4754        unregister_md_personality(&raid10_personality);
4755}
4756
4757module_init(raid_init);
4758module_exit(raid_exit);
4759MODULE_LICENSE("GPL");
4760MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4761MODULE_ALIAS("md-personality-9"); /* RAID10 */
4762MODULE_ALIAS("md-raid10");
4763MODULE_ALIAS("md-level-10");
4764
4765module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4766