linux/drivers/mtd/devices/docg3.c
<<
>>
Prefs
   1/*
   2 * Handles the M-Systems DiskOnChip G3 chip
   3 *
   4 * Copyright (C) 2011 Robert Jarzmik
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  19 *
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/of.h>
  26#include <linux/platform_device.h>
  27#include <linux/string.h>
  28#include <linux/slab.h>
  29#include <linux/io.h>
  30#include <linux/delay.h>
  31#include <linux/mtd/mtd.h>
  32#include <linux/mtd/partitions.h>
  33#include <linux/bitmap.h>
  34#include <linux/bitrev.h>
  35#include <linux/bch.h>
  36
  37#include <linux/debugfs.h>
  38#include <linux/seq_file.h>
  39
  40#define CREATE_TRACE_POINTS
  41#include "docg3.h"
  42
  43/*
  44 * This driver handles the DiskOnChip G3 flash memory.
  45 *
  46 * As no specification is available from M-Systems/Sandisk, this drivers lacks
  47 * several functions available on the chip, as :
  48 *  - IPL write
  49 *
  50 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
  51 * the driver assumes a 16bits data bus.
  52 *
  53 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
  54 *  - a 1 byte Hamming code stored in the OOB for each page
  55 *  - a 7 bytes BCH code stored in the OOB for each page
  56 * The BCH ECC is :
  57 *  - BCH is in GF(2^14)
  58 *  - BCH is over data of 520 bytes (512 page + 7 page_info bytes
  59 *                                   + 1 hamming byte)
  60 *  - BCH can correct up to 4 bits (t = 4)
  61 *  - BCH syndroms are calculated in hardware, and checked in hardware as well
  62 *
  63 */
  64
  65static unsigned int reliable_mode;
  66module_param(reliable_mode, uint, 0);
  67MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
  68                 "2=reliable) : MLC normal operations are in normal mode");
  69
  70static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section,
  71                               struct mtd_oob_region *oobregion)
  72{
  73        if (section)
  74                return -ERANGE;
  75
  76        /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */
  77        oobregion->offset = 7;
  78        oobregion->length = 8;
  79
  80        return 0;
  81}
  82
  83static int docg3_ooblayout_free(struct mtd_info *mtd, int section,
  84                                struct mtd_oob_region *oobregion)
  85{
  86        if (section > 1)
  87                return -ERANGE;
  88
  89        /* free bytes: byte 0 until byte 6, byte 15 */
  90        if (!section) {
  91                oobregion->offset = 0;
  92                oobregion->length = 7;
  93        } else {
  94                oobregion->offset = 15;
  95                oobregion->length = 1;
  96        }
  97
  98        return 0;
  99}
 100
 101static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = {
 102        .ecc = docg3_ooblayout_ecc,
 103        .free = docg3_ooblayout_free,
 104};
 105
 106static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
 107{
 108        u8 val = readb(docg3->cascade->base + reg);
 109
 110        trace_docg3_io(0, 8, reg, (int)val);
 111        return val;
 112}
 113
 114static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
 115{
 116        u16 val = readw(docg3->cascade->base + reg);
 117
 118        trace_docg3_io(0, 16, reg, (int)val);
 119        return val;
 120}
 121
 122static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
 123{
 124        writeb(val, docg3->cascade->base + reg);
 125        trace_docg3_io(1, 8, reg, val);
 126}
 127
 128static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
 129{
 130        writew(val, docg3->cascade->base + reg);
 131        trace_docg3_io(1, 16, reg, val);
 132}
 133
 134static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
 135{
 136        doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
 137}
 138
 139static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
 140{
 141        doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
 142}
 143
 144static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
 145{
 146        doc_writeb(docg3, addr, DOC_FLASHADDRESS);
 147}
 148
 149static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
 150
 151static int doc_register_readb(struct docg3 *docg3, int reg)
 152{
 153        u8 val;
 154
 155        doc_writew(docg3, reg, DOC_READADDRESS);
 156        val = doc_readb(docg3, reg);
 157        doc_vdbg("Read register %04x : %02x\n", reg, val);
 158        return val;
 159}
 160
 161static int doc_register_readw(struct docg3 *docg3, int reg)
 162{
 163        u16 val;
 164
 165        doc_writew(docg3, reg, DOC_READADDRESS);
 166        val = doc_readw(docg3, reg);
 167        doc_vdbg("Read register %04x : %04x\n", reg, val);
 168        return val;
 169}
 170
 171/**
 172 * doc_delay - delay docg3 operations
 173 * @docg3: the device
 174 * @nbNOPs: the number of NOPs to issue
 175 *
 176 * As no specification is available, the right timings between chip commands are
 177 * unknown. The only available piece of information are the observed nops on a
 178 * working docg3 chip.
 179 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
 180 * friendlier msleep() functions or blocking mdelay().
 181 */
 182static void doc_delay(struct docg3 *docg3, int nbNOPs)
 183{
 184        int i;
 185
 186        doc_vdbg("NOP x %d\n", nbNOPs);
 187        for (i = 0; i < nbNOPs; i++)
 188                doc_writeb(docg3, 0, DOC_NOP);
 189}
 190
 191static int is_prot_seq_error(struct docg3 *docg3)
 192{
 193        int ctrl;
 194
 195        ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 196        return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
 197}
 198
 199static int doc_is_ready(struct docg3 *docg3)
 200{
 201        int ctrl;
 202
 203        ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 204        return ctrl & DOC_CTRL_FLASHREADY;
 205}
 206
 207static int doc_wait_ready(struct docg3 *docg3)
 208{
 209        int maxWaitCycles = 100;
 210
 211        do {
 212                doc_delay(docg3, 4);
 213                cpu_relax();
 214        } while (!doc_is_ready(docg3) && maxWaitCycles--);
 215        doc_delay(docg3, 2);
 216        if (maxWaitCycles > 0)
 217                return 0;
 218        else
 219                return -EIO;
 220}
 221
 222static int doc_reset_seq(struct docg3 *docg3)
 223{
 224        int ret;
 225
 226        doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
 227        doc_flash_sequence(docg3, DOC_SEQ_RESET);
 228        doc_flash_command(docg3, DOC_CMD_RESET);
 229        doc_delay(docg3, 2);
 230        ret = doc_wait_ready(docg3);
 231
 232        doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
 233        return ret;
 234}
 235
 236/**
 237 * doc_read_data_area - Read data from data area
 238 * @docg3: the device
 239 * @buf: the buffer to fill in (might be NULL is dummy reads)
 240 * @len: the length to read
 241 * @first: first time read, DOC_READADDRESS should be set
 242 *
 243 * Reads bytes from flash data. Handles the single byte / even bytes reads.
 244 */
 245static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
 246                               int first)
 247{
 248        int i, cdr, len4;
 249        u16 data16, *dst16;
 250        u8 data8, *dst8;
 251
 252        doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
 253        cdr = len & 0x1;
 254        len4 = len - cdr;
 255
 256        if (first)
 257                doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
 258        dst16 = buf;
 259        for (i = 0; i < len4; i += 2) {
 260                data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
 261                if (dst16) {
 262                        *dst16 = data16;
 263                        dst16++;
 264                }
 265        }
 266
 267        if (cdr) {
 268                doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
 269                           DOC_READADDRESS);
 270                doc_delay(docg3, 1);
 271                dst8 = (u8 *)dst16;
 272                for (i = 0; i < cdr; i++) {
 273                        data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
 274                        if (dst8) {
 275                                *dst8 = data8;
 276                                dst8++;
 277                        }
 278                }
 279        }
 280}
 281
 282/**
 283 * doc_write_data_area - Write data into data area
 284 * @docg3: the device
 285 * @buf: the buffer to get input bytes from
 286 * @len: the length to write
 287 *
 288 * Writes bytes into flash data. Handles the single byte / even bytes writes.
 289 */
 290static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
 291{
 292        int i, cdr, len4;
 293        u16 *src16;
 294        u8 *src8;
 295
 296        doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
 297        cdr = len & 0x3;
 298        len4 = len - cdr;
 299
 300        doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
 301        src16 = (u16 *)buf;
 302        for (i = 0; i < len4; i += 2) {
 303                doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
 304                src16++;
 305        }
 306
 307        src8 = (u8 *)src16;
 308        for (i = 0; i < cdr; i++) {
 309                doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
 310                           DOC_READADDRESS);
 311                doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
 312                src8++;
 313        }
 314}
 315
 316/**
 317 * doc_set_data_mode - Sets the flash to normal or reliable data mode
 318 * @docg3: the device
 319 *
 320 * The reliable data mode is a bit slower than the fast mode, but less errors
 321 * occur.  Entering the reliable mode cannot be done without entering the fast
 322 * mode first.
 323 *
 324 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
 325 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
 326 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
 327 * result, which is a logical and between bytes from page 0 and page 1 (which is
 328 * consistent with the fact that writing to a page is _clearing_ bits of that
 329 * page).
 330 */
 331static void doc_set_reliable_mode(struct docg3 *docg3)
 332{
 333        static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
 334
 335        doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
 336        switch (docg3->reliable) {
 337        case 0:
 338                break;
 339        case 1:
 340                doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
 341                doc_flash_command(docg3, DOC_CMD_FAST_MODE);
 342                break;
 343        case 2:
 344                doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
 345                doc_flash_command(docg3, DOC_CMD_FAST_MODE);
 346                doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
 347                break;
 348        default:
 349                doc_err("doc_set_reliable_mode(): invalid mode\n");
 350                break;
 351        }
 352        doc_delay(docg3, 2);
 353}
 354
 355/**
 356 * doc_set_asic_mode - Set the ASIC mode
 357 * @docg3: the device
 358 * @mode: the mode
 359 *
 360 * The ASIC can work in 3 modes :
 361 *  - RESET: all registers are zeroed
 362 *  - NORMAL: receives and handles commands
 363 *  - POWERDOWN: minimal poweruse, flash parts shut off
 364 */
 365static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
 366{
 367        int i;
 368
 369        for (i = 0; i < 12; i++)
 370                doc_readb(docg3, DOC_IOSPACE_IPL);
 371
 372        mode |= DOC_ASICMODE_MDWREN;
 373        doc_dbg("doc_set_asic_mode(%02x)\n", mode);
 374        doc_writeb(docg3, mode, DOC_ASICMODE);
 375        doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
 376        doc_delay(docg3, 1);
 377}
 378
 379/**
 380 * doc_set_device_id - Sets the devices id for cascaded G3 chips
 381 * @docg3: the device
 382 * @id: the chip to select (amongst 0, 1, 2, 3)
 383 *
 384 * There can be 4 cascaded G3 chips. This function selects the one which will
 385 * should be the active one.
 386 */
 387static void doc_set_device_id(struct docg3 *docg3, int id)
 388{
 389        u8 ctrl;
 390
 391        doc_dbg("doc_set_device_id(%d)\n", id);
 392        doc_writeb(docg3, id, DOC_DEVICESELECT);
 393        ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 394
 395        ctrl &= ~DOC_CTRL_VIOLATION;
 396        ctrl |= DOC_CTRL_CE;
 397        doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
 398}
 399
 400/**
 401 * doc_set_extra_page_mode - Change flash page layout
 402 * @docg3: the device
 403 *
 404 * Normally, the flash page is split into the data (512 bytes) and the out of
 405 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
 406 * leveling counters are stored.  To access this last area of 4 bytes, a special
 407 * mode must be input to the flash ASIC.
 408 *
 409 * Returns 0 if no error occurred, -EIO else.
 410 */
 411static int doc_set_extra_page_mode(struct docg3 *docg3)
 412{
 413        int fctrl;
 414
 415        doc_dbg("doc_set_extra_page_mode()\n");
 416        doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
 417        doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
 418        doc_delay(docg3, 2);
 419
 420        fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 421        if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
 422                return -EIO;
 423        else
 424                return 0;
 425}
 426
 427/**
 428 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
 429 * @docg3: the device
 430 * @sector: the sector
 431 */
 432static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
 433{
 434        doc_delay(docg3, 1);
 435        doc_flash_address(docg3, sector & 0xff);
 436        doc_flash_address(docg3, (sector >> 8) & 0xff);
 437        doc_flash_address(docg3, (sector >> 16) & 0xff);
 438        doc_delay(docg3, 1);
 439}
 440
 441/**
 442 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
 443 * @docg3: the device
 444 * @sector: the sector
 445 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
 446 */
 447static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
 448{
 449        ofs = ofs >> 2;
 450        doc_delay(docg3, 1);
 451        doc_flash_address(docg3, ofs & 0xff);
 452        doc_flash_address(docg3, sector & 0xff);
 453        doc_flash_address(docg3, (sector >> 8) & 0xff);
 454        doc_flash_address(docg3, (sector >> 16) & 0xff);
 455        doc_delay(docg3, 1);
 456}
 457
 458/**
 459 * doc_seek - Set both flash planes to the specified block, page for reading
 460 * @docg3: the device
 461 * @block0: the first plane block index
 462 * @block1: the second plane block index
 463 * @page: the page index within the block
 464 * @wear: if true, read will occur on the 4 extra bytes of the wear area
 465 * @ofs: offset in page to read
 466 *
 467 * Programs the flash even and odd planes to the specific block and page.
 468 * Alternatively, programs the flash to the wear area of the specified page.
 469 */
 470static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
 471                         int wear, int ofs)
 472{
 473        int sector, ret = 0;
 474
 475        doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
 476                block0, block1, page, ofs, wear);
 477
 478        if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
 479                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
 480                doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
 481                doc_delay(docg3, 2);
 482        } else {
 483                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
 484                doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
 485                doc_delay(docg3, 2);
 486        }
 487
 488        doc_set_reliable_mode(docg3);
 489        if (wear)
 490                ret = doc_set_extra_page_mode(docg3);
 491        if (ret)
 492                goto out;
 493
 494        doc_flash_sequence(docg3, DOC_SEQ_READ);
 495        sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 496        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
 497        doc_setup_addr_sector(docg3, sector);
 498
 499        sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 500        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
 501        doc_setup_addr_sector(docg3, sector);
 502        doc_delay(docg3, 1);
 503
 504out:
 505        return ret;
 506}
 507
 508/**
 509 * doc_write_seek - Set both flash planes to the specified block, page for writing
 510 * @docg3: the device
 511 * @block0: the first plane block index
 512 * @block1: the second plane block index
 513 * @page: the page index within the block
 514 * @ofs: offset in page to write
 515 *
 516 * Programs the flash even and odd planes to the specific block and page.
 517 * Alternatively, programs the flash to the wear area of the specified page.
 518 */
 519static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
 520                         int ofs)
 521{
 522        int ret = 0, sector;
 523
 524        doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
 525                block0, block1, page, ofs);
 526
 527        doc_set_reliable_mode(docg3);
 528
 529        if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
 530                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
 531                doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
 532                doc_delay(docg3, 2);
 533        } else {
 534                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
 535                doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
 536                doc_delay(docg3, 2);
 537        }
 538
 539        doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
 540        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
 541
 542        sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 543        doc_setup_writeaddr_sector(docg3, sector, ofs);
 544
 545        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
 546        doc_delay(docg3, 2);
 547        ret = doc_wait_ready(docg3);
 548        if (ret)
 549                goto out;
 550
 551        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
 552        sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 553        doc_setup_writeaddr_sector(docg3, sector, ofs);
 554        doc_delay(docg3, 1);
 555
 556out:
 557        return ret;
 558}
 559
 560
 561/**
 562 * doc_read_page_ecc_init - Initialize hardware ECC engine
 563 * @docg3: the device
 564 * @len: the number of bytes covered by the ECC (BCH covered)
 565 *
 566 * The function does initialize the hardware ECC engine to compute the Hamming
 567 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
 568 *
 569 * Return 0 if succeeded, -EIO on error
 570 */
 571static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
 572{
 573        doc_writew(docg3, DOC_ECCCONF0_READ_MODE
 574                   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
 575                   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
 576                   DOC_ECCCONF0);
 577        doc_delay(docg3, 4);
 578        doc_register_readb(docg3, DOC_FLASHCONTROL);
 579        return doc_wait_ready(docg3);
 580}
 581
 582/**
 583 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
 584 * @docg3: the device
 585 * @len: the number of bytes covered by the ECC (BCH covered)
 586 *
 587 * The function does initialize the hardware ECC engine to compute the Hamming
 588 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
 589 *
 590 * Return 0 if succeeded, -EIO on error
 591 */
 592static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
 593{
 594        doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
 595                   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
 596                   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
 597                   DOC_ECCCONF0);
 598        doc_delay(docg3, 4);
 599        doc_register_readb(docg3, DOC_FLASHCONTROL);
 600        return doc_wait_ready(docg3);
 601}
 602
 603/**
 604 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
 605 * @docg3: the device
 606 *
 607 * Disables the hardware ECC generator and checker, for unchecked reads (as when
 608 * reading OOB only or write status byte).
 609 */
 610static void doc_ecc_disable(struct docg3 *docg3)
 611{
 612        doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
 613        doc_delay(docg3, 4);
 614}
 615
 616/**
 617 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
 618 * @docg3: the device
 619 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
 620 *
 621 * This function programs the ECC hardware to compute the hamming code on the
 622 * last provided N bytes to the hardware generator.
 623 */
 624static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
 625{
 626        u8 ecc_conf1;
 627
 628        ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
 629        ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
 630        ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
 631        doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
 632}
 633
 634/**
 635 * doc_ecc_bch_fix_data - Fix if need be read data from flash
 636 * @docg3: the device
 637 * @buf: the buffer of read data (512 + 7 + 1 bytes)
 638 * @hwecc: the hardware calculated ECC.
 639 *         It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
 640 *         area data, and calc_ecc the ECC calculated by the hardware generator.
 641 *
 642 * Checks if the received data matches the ECC, and if an error is detected,
 643 * tries to fix the bit flips (at most 4) in the buffer buf.  As the docg3
 644 * understands the (data, ecc, syndroms) in an inverted order in comparison to
 645 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
 646 * bit6 and bit 1, ...) for all ECC data.
 647 *
 648 * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
 649 * algorithm is used to decode this.  However the hw operates on page
 650 * data in a bit order that is the reverse of that of the bch alg,
 651 * requiring that the bits be reversed on the result.  Thanks to Ivan
 652 * Djelic for his analysis.
 653 *
 654 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
 655 * errors were detected and cannot be fixed.
 656 */
 657static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
 658{
 659        u8 ecc[DOC_ECC_BCH_SIZE];
 660        int errorpos[DOC_ECC_BCH_T], i, numerrs;
 661
 662        for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
 663                ecc[i] = bitrev8(hwecc[i]);
 664        numerrs = decode_bch(docg3->cascade->bch, NULL,
 665                             DOC_ECC_BCH_COVERED_BYTES,
 666                             NULL, ecc, NULL, errorpos);
 667        BUG_ON(numerrs == -EINVAL);
 668        if (numerrs < 0)
 669                goto out;
 670
 671        for (i = 0; i < numerrs; i++)
 672                errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
 673        for (i = 0; i < numerrs; i++)
 674                if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
 675                        /* error is located in data, correct it */
 676                        change_bit(errorpos[i], buf);
 677out:
 678        doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
 679        return numerrs;
 680}
 681
 682
 683/**
 684 * doc_read_page_prepare - Prepares reading data from a flash page
 685 * @docg3: the device
 686 * @block0: the first plane block index on flash memory
 687 * @block1: the second plane block index on flash memory
 688 * @page: the page index in the block
 689 * @offset: the offset in the page (must be a multiple of 4)
 690 *
 691 * Prepares the page to be read in the flash memory :
 692 *   - tell ASIC to map the flash pages
 693 *   - tell ASIC to be in read mode
 694 *
 695 * After a call to this method, a call to doc_read_page_finish is mandatory,
 696 * to end the read cycle of the flash.
 697 *
 698 * Read data from a flash page. The length to be read must be between 0 and
 699 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
 700 * the extra bytes reading is not implemented).
 701 *
 702 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
 703 * in two steps:
 704 *  - one read of 512 bytes at offset 0
 705 *  - one read of 512 bytes at offset 512 + 16
 706 *
 707 * Returns 0 if successful, -EIO if a read error occurred.
 708 */
 709static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
 710                                 int page, int offset)
 711{
 712        int wear_area = 0, ret = 0;
 713
 714        doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
 715                block0, block1, page, offset);
 716        if (offset >= DOC_LAYOUT_WEAR_OFFSET)
 717                wear_area = 1;
 718        if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
 719                return -EINVAL;
 720
 721        doc_set_device_id(docg3, docg3->device_id);
 722        ret = doc_reset_seq(docg3);
 723        if (ret)
 724                goto err;
 725
 726        /* Program the flash address block and page */
 727        ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
 728        if (ret)
 729                goto err;
 730
 731        doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
 732        doc_delay(docg3, 2);
 733        doc_wait_ready(docg3);
 734
 735        doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
 736        doc_delay(docg3, 1);
 737        if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
 738                offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
 739        doc_flash_address(docg3, offset >> 2);
 740        doc_delay(docg3, 1);
 741        doc_wait_ready(docg3);
 742
 743        doc_flash_command(docg3, DOC_CMD_READ_FLASH);
 744
 745        return 0;
 746err:
 747        doc_writeb(docg3, 0, DOC_DATAEND);
 748        doc_delay(docg3, 2);
 749        return -EIO;
 750}
 751
 752/**
 753 * doc_read_page_getbytes - Reads bytes from a prepared page
 754 * @docg3: the device
 755 * @len: the number of bytes to be read (must be a multiple of 4)
 756 * @buf: the buffer to be filled in (or NULL is forget bytes)
 757 * @first: 1 if first time read, DOC_READADDRESS should be set
 758 * @last_odd: 1 if last read ended up on an odd byte
 759 *
 760 * Reads bytes from a prepared page. There is a trickery here : if the last read
 761 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
 762 * planes, the first byte must be read apart. If a word (16bit) read was used,
 763 * the read would return the byte of plane 2 as low *and* high endian, which
 764 * will mess the read.
 765 *
 766 */
 767static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
 768                                  int first, int last_odd)
 769{
 770        if (last_odd && len > 0) {
 771                doc_read_data_area(docg3, buf, 1, first);
 772                doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
 773        } else {
 774                doc_read_data_area(docg3, buf, len, first);
 775        }
 776        doc_delay(docg3, 2);
 777        return len;
 778}
 779
 780/**
 781 * doc_write_page_putbytes - Writes bytes into a prepared page
 782 * @docg3: the device
 783 * @len: the number of bytes to be written
 784 * @buf: the buffer of input bytes
 785 *
 786 */
 787static void doc_write_page_putbytes(struct docg3 *docg3, int len,
 788                                    const u_char *buf)
 789{
 790        doc_write_data_area(docg3, buf, len);
 791        doc_delay(docg3, 2);
 792}
 793
 794/**
 795 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
 796 * @docg3: the device
 797 * @hwecc:  the array of 7 integers where the hardware ecc will be stored
 798 */
 799static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
 800{
 801        int i;
 802
 803        for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
 804                hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
 805}
 806
 807/**
 808 * doc_page_finish - Ends reading/writing of a flash page
 809 * @docg3: the device
 810 */
 811static void doc_page_finish(struct docg3 *docg3)
 812{
 813        doc_writeb(docg3, 0, DOC_DATAEND);
 814        doc_delay(docg3, 2);
 815}
 816
 817/**
 818 * doc_read_page_finish - Ends reading of a flash page
 819 * @docg3: the device
 820 *
 821 * As a side effect, resets the chip selector to 0. This ensures that after each
 822 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
 823 * reboot will boot on floor 0, where the IPL is.
 824 */
 825static void doc_read_page_finish(struct docg3 *docg3)
 826{
 827        doc_page_finish(docg3);
 828        doc_set_device_id(docg3, 0);
 829}
 830
 831/**
 832 * calc_block_sector - Calculate blocks, pages and ofs.
 833
 834 * @from: offset in flash
 835 * @block0: first plane block index calculated
 836 * @block1: second plane block index calculated
 837 * @page: page calculated
 838 * @ofs: offset in page
 839 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
 840 * reliable mode.
 841 *
 842 * The calculation is based on the reliable/normal mode. In normal mode, the 64
 843 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
 844 * clones, only 32 pages per block are available.
 845 */
 846static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
 847                              int *ofs, int reliable)
 848{
 849        uint sector, pages_biblock;
 850
 851        pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
 852        if (reliable == 1 || reliable == 2)
 853                pages_biblock /= 2;
 854
 855        sector = from / DOC_LAYOUT_PAGE_SIZE;
 856        *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
 857        *block1 = *block0 + 1;
 858        *page = sector % pages_biblock;
 859        *page /= DOC_LAYOUT_NBPLANES;
 860        if (reliable == 1 || reliable == 2)
 861                *page *= 2;
 862        if (sector % 2)
 863                *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
 864        else
 865                *ofs = 0;
 866}
 867
 868/**
 869 * doc_read_oob - Read out of band bytes from flash
 870 * @mtd: the device
 871 * @from: the offset from first block and first page, in bytes, aligned on page
 872 *        size
 873 * @ops: the mtd oob structure
 874 *
 875 * Reads flash memory OOB area of pages.
 876 *
 877 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
 878 */
 879static int doc_read_oob(struct mtd_info *mtd, loff_t from,
 880                        struct mtd_oob_ops *ops)
 881{
 882        struct docg3 *docg3 = mtd->priv;
 883        int block0, block1, page, ret, skip, ofs = 0;
 884        u8 *oobbuf = ops->oobbuf;
 885        u8 *buf = ops->datbuf;
 886        size_t len, ooblen, nbdata, nboob;
 887        u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
 888        int max_bitflips = 0;
 889
 890        if (buf)
 891                len = ops->len;
 892        else
 893                len = 0;
 894        if (oobbuf)
 895                ooblen = ops->ooblen;
 896        else
 897                ooblen = 0;
 898
 899        if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
 900                oobbuf += ops->ooboffs;
 901
 902        doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
 903                from, ops->mode, buf, len, oobbuf, ooblen);
 904        if (ooblen % DOC_LAYOUT_OOB_SIZE)
 905                return -EINVAL;
 906
 907        if (from + len > mtd->size)
 908                return -EINVAL;
 909
 910        ops->oobretlen = 0;
 911        ops->retlen = 0;
 912        ret = 0;
 913        skip = from % DOC_LAYOUT_PAGE_SIZE;
 914        mutex_lock(&docg3->cascade->lock);
 915        while (ret >= 0 && (len > 0 || ooblen > 0)) {
 916                calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
 917                        docg3->reliable);
 918                nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
 919                nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
 920                ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
 921                if (ret < 0)
 922                        goto out;
 923                ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
 924                if (ret < 0)
 925                        goto err_in_read;
 926                ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
 927                if (ret < skip)
 928                        goto err_in_read;
 929                ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
 930                if (ret < nbdata)
 931                        goto err_in_read;
 932                doc_read_page_getbytes(docg3,
 933                                       DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
 934                                       NULL, 0, (skip + nbdata) % 2);
 935                ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
 936                if (ret < nboob)
 937                        goto err_in_read;
 938                doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
 939                                       NULL, 0, nboob % 2);
 940
 941                doc_get_bch_hw_ecc(docg3, hwecc);
 942                eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
 943
 944                if (nboob >= DOC_LAYOUT_OOB_SIZE) {
 945                        doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
 946                        doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
 947                        doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
 948                        doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
 949                }
 950                doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
 951                doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
 952
 953                ret = -EIO;
 954                if (is_prot_seq_error(docg3))
 955                        goto err_in_read;
 956                ret = 0;
 957                if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
 958                    (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
 959                    (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
 960                    (ops->mode != MTD_OPS_RAW) &&
 961                    (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
 962                        ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
 963                        if (ret < 0) {
 964                                mtd->ecc_stats.failed++;
 965                                ret = -EBADMSG;
 966                        }
 967                        if (ret > 0) {
 968                                mtd->ecc_stats.corrected += ret;
 969                                max_bitflips = max(max_bitflips, ret);
 970                                ret = max_bitflips;
 971                        }
 972                }
 973
 974                doc_read_page_finish(docg3);
 975                ops->retlen += nbdata;
 976                ops->oobretlen += nboob;
 977                buf += nbdata;
 978                oobbuf += nboob;
 979                len -= nbdata;
 980                ooblen -= nboob;
 981                from += DOC_LAYOUT_PAGE_SIZE;
 982                skip = 0;
 983        }
 984
 985out:
 986        mutex_unlock(&docg3->cascade->lock);
 987        return ret;
 988err_in_read:
 989        doc_read_page_finish(docg3);
 990        goto out;
 991}
 992
 993/**
 994 * doc_read - Read bytes from flash
 995 * @mtd: the device
 996 * @from: the offset from first block and first page, in bytes, aligned on page
 997 *        size
 998 * @len: the number of bytes to read (must be a multiple of 4)
 999 * @retlen: the number of bytes actually read
1000 * @buf: the filled in buffer
1001 *
1002 * Reads flash memory pages. This function does not read the OOB chunk, but only
1003 * the page data.
1004 *
1005 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
1006 */
1007static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
1008             size_t *retlen, u_char *buf)
1009{
1010        struct mtd_oob_ops ops;
1011        size_t ret;
1012
1013        memset(&ops, 0, sizeof(ops));
1014        ops.datbuf = buf;
1015        ops.len = len;
1016        ops.mode = MTD_OPS_AUTO_OOB;
1017
1018        ret = doc_read_oob(mtd, from, &ops);
1019        *retlen = ops.retlen;
1020        return ret;
1021}
1022
1023static int doc_reload_bbt(struct docg3 *docg3)
1024{
1025        int block = DOC_LAYOUT_BLOCK_BBT;
1026        int ret = 0, nbpages, page;
1027        u_char *buf = docg3->bbt;
1028
1029        nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
1030        for (page = 0; !ret && (page < nbpages); page++) {
1031                ret = doc_read_page_prepare(docg3, block, block + 1,
1032                                            page + DOC_LAYOUT_PAGE_BBT, 0);
1033                if (!ret)
1034                        ret = doc_read_page_ecc_init(docg3,
1035                                                     DOC_LAYOUT_PAGE_SIZE);
1036                if (!ret)
1037                        doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1038                                               buf, 1, 0);
1039                buf += DOC_LAYOUT_PAGE_SIZE;
1040        }
1041        doc_read_page_finish(docg3);
1042        return ret;
1043}
1044
1045/**
1046 * doc_block_isbad - Checks whether a block is good or not
1047 * @mtd: the device
1048 * @from: the offset to find the correct block
1049 *
1050 * Returns 1 if block is bad, 0 if block is good
1051 */
1052static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1053{
1054        struct docg3 *docg3 = mtd->priv;
1055        int block0, block1, page, ofs, is_good;
1056
1057        calc_block_sector(from, &block0, &block1, &page, &ofs,
1058                docg3->reliable);
1059        doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1060                from, block0, block1, page, ofs);
1061
1062        if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1063                return 0;
1064        if (block1 > docg3->max_block)
1065                return -EINVAL;
1066
1067        is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1068        return !is_good;
1069}
1070
1071#if 0
1072/**
1073 * doc_get_erase_count - Get block erase count
1074 * @docg3: the device
1075 * @from: the offset in which the block is.
1076 *
1077 * Get the number of times a block was erased. The number is the maximum of
1078 * erase times between first and second plane (which should be equal normally).
1079 *
1080 * Returns The number of erases, or -EINVAL or -EIO on error.
1081 */
1082static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1083{
1084        u8 buf[DOC_LAYOUT_WEAR_SIZE];
1085        int ret, plane1_erase_count, plane2_erase_count;
1086        int block0, block1, page, ofs;
1087
1088        doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1089        if (from % DOC_LAYOUT_PAGE_SIZE)
1090                return -EINVAL;
1091        calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1092        if (block1 > docg3->max_block)
1093                return -EINVAL;
1094
1095        ret = doc_reset_seq(docg3);
1096        if (!ret)
1097                ret = doc_read_page_prepare(docg3, block0, block1, page,
1098                                            ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1099        if (!ret)
1100                ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1101                                             buf, 1, 0);
1102        doc_read_page_finish(docg3);
1103
1104        if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1105                return -EIO;
1106        plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1107                | ((u8)(~buf[5]) << 16);
1108        plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1109                | ((u8)(~buf[7]) << 16);
1110
1111        return max(plane1_erase_count, plane2_erase_count);
1112}
1113#endif
1114
1115/**
1116 * doc_get_op_status - get erase/write operation status
1117 * @docg3: the device
1118 *
1119 * Queries the status from the chip, and returns it
1120 *
1121 * Returns the status (bits DOC_PLANES_STATUS_*)
1122 */
1123static int doc_get_op_status(struct docg3 *docg3)
1124{
1125        u8 status;
1126
1127        doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1128        doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1129        doc_delay(docg3, 5);
1130
1131        doc_ecc_disable(docg3);
1132        doc_read_data_area(docg3, &status, 1, 1);
1133        return status;
1134}
1135
1136/**
1137 * doc_write_erase_wait_status - wait for write or erase completion
1138 * @docg3: the device
1139 *
1140 * Wait for the chip to be ready again after erase or write operation, and check
1141 * erase/write status.
1142 *
1143 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1144 * timeout
1145 */
1146static int doc_write_erase_wait_status(struct docg3 *docg3)
1147{
1148        int i, status, ret = 0;
1149
1150        for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1151                msleep(20);
1152        if (!doc_is_ready(docg3)) {
1153                doc_dbg("Timeout reached and the chip is still not ready\n");
1154                ret = -EAGAIN;
1155                goto out;
1156        }
1157
1158        status = doc_get_op_status(docg3);
1159        if (status & DOC_PLANES_STATUS_FAIL) {
1160                doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1161                        status);
1162                ret = -EIO;
1163        }
1164
1165out:
1166        doc_page_finish(docg3);
1167        return ret;
1168}
1169
1170/**
1171 * doc_erase_block - Erase a couple of blocks
1172 * @docg3: the device
1173 * @block0: the first block to erase (leftmost plane)
1174 * @block1: the second block to erase (rightmost plane)
1175 *
1176 * Erase both blocks, and return operation status
1177 *
1178 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1179 * ready for too long
1180 */
1181static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1182{
1183        int ret, sector;
1184
1185        doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1186        ret = doc_reset_seq(docg3);
1187        if (ret)
1188                return -EIO;
1189
1190        doc_set_reliable_mode(docg3);
1191        doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1192
1193        sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1194        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1195        doc_setup_addr_sector(docg3, sector);
1196        sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1197        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1198        doc_setup_addr_sector(docg3, sector);
1199        doc_delay(docg3, 1);
1200
1201        doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1202        doc_delay(docg3, 2);
1203
1204        if (is_prot_seq_error(docg3)) {
1205                doc_err("Erase blocks %d,%d error\n", block0, block1);
1206                return -EIO;
1207        }
1208
1209        return doc_write_erase_wait_status(docg3);
1210}
1211
1212/**
1213 * doc_erase - Erase a portion of the chip
1214 * @mtd: the device
1215 * @info: the erase info
1216 *
1217 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1218 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1219 *
1220 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1221 * issue
1222 */
1223static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1224{
1225        struct docg3 *docg3 = mtd->priv;
1226        uint64_t len;
1227        int block0, block1, page, ret, ofs = 0;
1228
1229        doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1230
1231        info->state = MTD_ERASE_PENDING;
1232        calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1233                          &ofs, docg3->reliable);
1234        ret = -EINVAL;
1235        if (info->addr + info->len > mtd->size || page || ofs)
1236                goto reset_err;
1237
1238        ret = 0;
1239        calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1240                          docg3->reliable);
1241        mutex_lock(&docg3->cascade->lock);
1242        doc_set_device_id(docg3, docg3->device_id);
1243        doc_set_reliable_mode(docg3);
1244        for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1245                info->state = MTD_ERASING;
1246                ret = doc_erase_block(docg3, block0, block1);
1247                block0 += 2;
1248                block1 += 2;
1249        }
1250        mutex_unlock(&docg3->cascade->lock);
1251
1252        if (ret)
1253                goto reset_err;
1254
1255        info->state = MTD_ERASE_DONE;
1256        return 0;
1257
1258reset_err:
1259        info->state = MTD_ERASE_FAILED;
1260        return ret;
1261}
1262
1263/**
1264 * doc_write_page - Write a single page to the chip
1265 * @docg3: the device
1266 * @to: the offset from first block and first page, in bytes, aligned on page
1267 *      size
1268 * @buf: buffer to get bytes from
1269 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1270 *       written)
1271 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1272 *           BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1273 *           remaining ones are filled with hardware Hamming and BCH
1274 *           computations. Its value is not meaningfull is oob == NULL.
1275 *
1276 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1277 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1278 * BCH generator if autoecc is not null.
1279 *
1280 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1281 */
1282static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1283                          const u_char *oob, int autoecc)
1284{
1285        int block0, block1, page, ret, ofs = 0;
1286        u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1287
1288        doc_dbg("doc_write_page(to=%lld)\n", to);
1289        calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1290
1291        doc_set_device_id(docg3, docg3->device_id);
1292        ret = doc_reset_seq(docg3);
1293        if (ret)
1294                goto err;
1295
1296        /* Program the flash address block and page */
1297        ret = doc_write_seek(docg3, block0, block1, page, ofs);
1298        if (ret)
1299                goto err;
1300
1301        doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1302        doc_delay(docg3, 2);
1303        doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1304
1305        if (oob && autoecc) {
1306                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1307                doc_delay(docg3, 2);
1308                oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1309
1310                hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1311                doc_delay(docg3, 2);
1312                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1313                                        &hamming);
1314                doc_delay(docg3, 2);
1315
1316                doc_get_bch_hw_ecc(docg3, hwecc);
1317                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1318                doc_delay(docg3, 2);
1319
1320                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1321        }
1322        if (oob && !autoecc)
1323                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1324
1325        doc_delay(docg3, 2);
1326        doc_page_finish(docg3);
1327        doc_delay(docg3, 2);
1328        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1329        doc_delay(docg3, 2);
1330
1331        /*
1332         * The wait status will perform another doc_page_finish() call, but that
1333         * seems to please the docg3, so leave it.
1334         */
1335        ret = doc_write_erase_wait_status(docg3);
1336        return ret;
1337err:
1338        doc_read_page_finish(docg3);
1339        return ret;
1340}
1341
1342/**
1343 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1344 * @ops: the oob operations
1345 *
1346 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1347 */
1348static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1349{
1350        int autoecc;
1351
1352        switch (ops->mode) {
1353        case MTD_OPS_PLACE_OOB:
1354        case MTD_OPS_AUTO_OOB:
1355                autoecc = 1;
1356                break;
1357        case MTD_OPS_RAW:
1358                autoecc = 0;
1359                break;
1360        default:
1361                autoecc = -EINVAL;
1362        }
1363        return autoecc;
1364}
1365
1366/**
1367 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1368 * @dst: the target 16 bytes OOB buffer
1369 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1370 *
1371 */
1372static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1373{
1374        memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1375        dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1376}
1377
1378/**
1379 * doc_backup_oob - Backup OOB into docg3 structure
1380 * @docg3: the device
1381 * @to: the page offset in the chip
1382 * @ops: the OOB size and buffer
1383 *
1384 * As the docg3 should write a page with its OOB in one pass, and some userland
1385 * applications do write_oob() to setup the OOB and then write(), store the OOB
1386 * into a temporary storage. This is very dangerous, as 2 concurrent
1387 * applications could store an OOB, and then write their pages (which will
1388 * result into one having its OOB corrupted).
1389 *
1390 * The only reliable way would be for userland to call doc_write_oob() with both
1391 * the page data _and_ the OOB area.
1392 *
1393 * Returns 0 if success, -EINVAL if ops content invalid
1394 */
1395static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1396                          struct mtd_oob_ops *ops)
1397{
1398        int ooblen = ops->ooblen, autoecc;
1399
1400        if (ooblen != DOC_LAYOUT_OOB_SIZE)
1401                return -EINVAL;
1402        autoecc = doc_guess_autoecc(ops);
1403        if (autoecc < 0)
1404                return autoecc;
1405
1406        docg3->oob_write_ofs = to;
1407        docg3->oob_autoecc = autoecc;
1408        if (ops->mode == MTD_OPS_AUTO_OOB) {
1409                doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1410                ops->oobretlen = 8;
1411        } else {
1412                memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1413                ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1414        }
1415        return 0;
1416}
1417
1418/**
1419 * doc_write_oob - Write out of band bytes to flash
1420 * @mtd: the device
1421 * @ofs: the offset from first block and first page, in bytes, aligned on page
1422 *       size
1423 * @ops: the mtd oob structure
1424 *
1425 * Either write OOB data into a temporary buffer, for the subsequent write
1426 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1427 * as well, issue the page write.
1428 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1429 * still be filled in if asked for).
1430 *
1431 * Returns 0 is successful, EINVAL if length is not 14 bytes
1432 */
1433static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1434                         struct mtd_oob_ops *ops)
1435{
1436        struct docg3 *docg3 = mtd->priv;
1437        int ret, autoecc, oobdelta;
1438        u8 *oobbuf = ops->oobbuf;
1439        u8 *buf = ops->datbuf;
1440        size_t len, ooblen;
1441        u8 oob[DOC_LAYOUT_OOB_SIZE];
1442
1443        if (buf)
1444                len = ops->len;
1445        else
1446                len = 0;
1447        if (oobbuf)
1448                ooblen = ops->ooblen;
1449        else
1450                ooblen = 0;
1451
1452        if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1453                oobbuf += ops->ooboffs;
1454
1455        doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1456                ofs, ops->mode, buf, len, oobbuf, ooblen);
1457        switch (ops->mode) {
1458        case MTD_OPS_PLACE_OOB:
1459        case MTD_OPS_RAW:
1460                oobdelta = mtd->oobsize;
1461                break;
1462        case MTD_OPS_AUTO_OOB:
1463                oobdelta = mtd->oobavail;
1464                break;
1465        default:
1466                return -EINVAL;
1467        }
1468        if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1469            (ofs % DOC_LAYOUT_PAGE_SIZE))
1470                return -EINVAL;
1471        if (len && ooblen &&
1472            (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1473                return -EINVAL;
1474        if (ofs + len > mtd->size)
1475                return -EINVAL;
1476
1477        ops->oobretlen = 0;
1478        ops->retlen = 0;
1479        ret = 0;
1480        if (len == 0 && ooblen == 0)
1481                return -EINVAL;
1482        if (len == 0 && ooblen > 0)
1483                return doc_backup_oob(docg3, ofs, ops);
1484
1485        autoecc = doc_guess_autoecc(ops);
1486        if (autoecc < 0)
1487                return autoecc;
1488
1489        mutex_lock(&docg3->cascade->lock);
1490        while (!ret && len > 0) {
1491                memset(oob, 0, sizeof(oob));
1492                if (ofs == docg3->oob_write_ofs)
1493                        memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1494                else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1495                        doc_fill_autooob(oob, oobbuf);
1496                else if (ooblen > 0)
1497                        memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1498                ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1499
1500                ofs += DOC_LAYOUT_PAGE_SIZE;
1501                len -= DOC_LAYOUT_PAGE_SIZE;
1502                buf += DOC_LAYOUT_PAGE_SIZE;
1503                if (ooblen) {
1504                        oobbuf += oobdelta;
1505                        ooblen -= oobdelta;
1506                        ops->oobretlen += oobdelta;
1507                }
1508                ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1509        }
1510
1511        doc_set_device_id(docg3, 0);
1512        mutex_unlock(&docg3->cascade->lock);
1513        return ret;
1514}
1515
1516/**
1517 * doc_write - Write a buffer to the chip
1518 * @mtd: the device
1519 * @to: the offset from first block and first page, in bytes, aligned on page
1520 *      size
1521 * @len: the number of bytes to write (must be a full page size, ie. 512)
1522 * @retlen: the number of bytes actually written (0 or 512)
1523 * @buf: the buffer to get bytes from
1524 *
1525 * Writes data to the chip.
1526 *
1527 * Returns 0 if write successful, -EIO if write error
1528 */
1529static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1530                     size_t *retlen, const u_char *buf)
1531{
1532        struct docg3 *docg3 = mtd->priv;
1533        int ret;
1534        struct mtd_oob_ops ops;
1535
1536        doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1537        ops.datbuf = (char *)buf;
1538        ops.len = len;
1539        ops.mode = MTD_OPS_PLACE_OOB;
1540        ops.oobbuf = NULL;
1541        ops.ooblen = 0;
1542        ops.ooboffs = 0;
1543
1544        ret = doc_write_oob(mtd, to, &ops);
1545        *retlen = ops.retlen;
1546        return ret;
1547}
1548
1549static struct docg3 *sysfs_dev2docg3(struct device *dev,
1550                                     struct device_attribute *attr)
1551{
1552        int floor;
1553        struct platform_device *pdev = to_platform_device(dev);
1554        struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1555
1556        floor = attr->attr.name[1] - '0';
1557        if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1558                return NULL;
1559        else
1560                return docg3_floors[floor]->priv;
1561}
1562
1563static ssize_t dps0_is_key_locked(struct device *dev,
1564                                  struct device_attribute *attr, char *buf)
1565{
1566        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1567        int dps0;
1568
1569        mutex_lock(&docg3->cascade->lock);
1570        doc_set_device_id(docg3, docg3->device_id);
1571        dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1572        doc_set_device_id(docg3, 0);
1573        mutex_unlock(&docg3->cascade->lock);
1574
1575        return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1576}
1577
1578static ssize_t dps1_is_key_locked(struct device *dev,
1579                                  struct device_attribute *attr, char *buf)
1580{
1581        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1582        int dps1;
1583
1584        mutex_lock(&docg3->cascade->lock);
1585        doc_set_device_id(docg3, docg3->device_id);
1586        dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1587        doc_set_device_id(docg3, 0);
1588        mutex_unlock(&docg3->cascade->lock);
1589
1590        return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1591}
1592
1593static ssize_t dps0_insert_key(struct device *dev,
1594                               struct device_attribute *attr,
1595                               const char *buf, size_t count)
1596{
1597        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1598        int i;
1599
1600        if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1601                return -EINVAL;
1602
1603        mutex_lock(&docg3->cascade->lock);
1604        doc_set_device_id(docg3, docg3->device_id);
1605        for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1606                doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1607        doc_set_device_id(docg3, 0);
1608        mutex_unlock(&docg3->cascade->lock);
1609        return count;
1610}
1611
1612static ssize_t dps1_insert_key(struct device *dev,
1613                               struct device_attribute *attr,
1614                               const char *buf, size_t count)
1615{
1616        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1617        int i;
1618
1619        if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1620                return -EINVAL;
1621
1622        mutex_lock(&docg3->cascade->lock);
1623        doc_set_device_id(docg3, docg3->device_id);
1624        for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1625                doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1626        doc_set_device_id(docg3, 0);
1627        mutex_unlock(&docg3->cascade->lock);
1628        return count;
1629}
1630
1631#define FLOOR_SYSFS(id) { \
1632        __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1633        __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1634        __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1635        __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1636}
1637
1638static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1639        FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1640};
1641
1642static int doc_register_sysfs(struct platform_device *pdev,
1643                              struct docg3_cascade *cascade)
1644{
1645        struct device *dev = &pdev->dev;
1646        int floor;
1647        int ret;
1648        int i;
1649
1650        for (floor = 0;
1651             floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1652             floor++) {
1653                for (i = 0; i < 4; i++) {
1654                        ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1655                        if (ret)
1656                                goto remove_files;
1657                }
1658        }
1659
1660        return 0;
1661
1662remove_files:
1663        do {
1664                while (--i >= 0)
1665                        device_remove_file(dev, &doc_sys_attrs[floor][i]);
1666                i = 4;
1667        } while (--floor >= 0);
1668
1669        return ret;
1670}
1671
1672static void doc_unregister_sysfs(struct platform_device *pdev,
1673                                 struct docg3_cascade *cascade)
1674{
1675        struct device *dev = &pdev->dev;
1676        int floor, i;
1677
1678        for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1679             floor++)
1680                for (i = 0; i < 4; i++)
1681                        device_remove_file(dev, &doc_sys_attrs[floor][i]);
1682}
1683
1684/*
1685 * Debug sysfs entries
1686 */
1687static int dbg_flashctrl_show(struct seq_file *s, void *p)
1688{
1689        struct docg3 *docg3 = (struct docg3 *)s->private;
1690
1691        u8 fctrl;
1692
1693        mutex_lock(&docg3->cascade->lock);
1694        fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1695        mutex_unlock(&docg3->cascade->lock);
1696
1697        seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1698                   fctrl,
1699                   fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1700                   fctrl & DOC_CTRL_CE ? "active" : "inactive",
1701                   fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1702                   fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1703                   fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1704
1705        return 0;
1706}
1707DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1708
1709static int dbg_asicmode_show(struct seq_file *s, void *p)
1710{
1711        struct docg3 *docg3 = (struct docg3 *)s->private;
1712
1713        int pctrl, mode;
1714
1715        mutex_lock(&docg3->cascade->lock);
1716        pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1717        mode = pctrl & 0x03;
1718        mutex_unlock(&docg3->cascade->lock);
1719
1720        seq_printf(s,
1721                   "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1722                   pctrl,
1723                   pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1724                   pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1725                   pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1726                   pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1727                   pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1728                   mode >> 1, mode & 0x1);
1729
1730        switch (mode) {
1731        case DOC_ASICMODE_RESET:
1732                seq_puts(s, "reset");
1733                break;
1734        case DOC_ASICMODE_NORMAL:
1735                seq_puts(s, "normal");
1736                break;
1737        case DOC_ASICMODE_POWERDOWN:
1738                seq_puts(s, "powerdown");
1739                break;
1740        }
1741        seq_puts(s, ")\n");
1742        return 0;
1743}
1744DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1745
1746static int dbg_device_id_show(struct seq_file *s, void *p)
1747{
1748        struct docg3 *docg3 = (struct docg3 *)s->private;
1749        int id;
1750
1751        mutex_lock(&docg3->cascade->lock);
1752        id = doc_register_readb(docg3, DOC_DEVICESELECT);
1753        mutex_unlock(&docg3->cascade->lock);
1754
1755        seq_printf(s, "DeviceId = %d\n", id);
1756        return 0;
1757}
1758DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1759
1760static int dbg_protection_show(struct seq_file *s, void *p)
1761{
1762        struct docg3 *docg3 = (struct docg3 *)s->private;
1763        int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1764
1765        mutex_lock(&docg3->cascade->lock);
1766        protect = doc_register_readb(docg3, DOC_PROTECTION);
1767        dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1768        dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1769        dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1770        dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1771        dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1772        dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1773        mutex_unlock(&docg3->cascade->lock);
1774
1775        seq_printf(s, "Protection = 0x%02x (", protect);
1776        if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1777                seq_puts(s, "FOUNDRY_OTP_LOCK,");
1778        if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1779                seq_puts(s, "CUSTOMER_OTP_LOCK,");
1780        if (protect & DOC_PROTECT_LOCK_INPUT)
1781                seq_puts(s, "LOCK_INPUT,");
1782        if (protect & DOC_PROTECT_STICKY_LOCK)
1783                seq_puts(s, "STICKY_LOCK,");
1784        if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1785                seq_puts(s, "PROTECTION ON,");
1786        if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1787                seq_puts(s, "IPL_DOWNLOAD_LOCK,");
1788        if (protect & DOC_PROTECT_PROTECTION_ERROR)
1789                seq_puts(s, "PROTECT_ERR,");
1790        else
1791                seq_puts(s, "NO_PROTECT_ERR");
1792        seq_puts(s, ")\n");
1793
1794        seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1795                   dps0, dps0_low, dps0_high,
1796                   !!(dps0 & DOC_DPS_OTP_PROTECTED),
1797                   !!(dps0 & DOC_DPS_READ_PROTECTED),
1798                   !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1799                   !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1800                   !!(dps0 & DOC_DPS_KEY_OK));
1801        seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1802                   dps1, dps1_low, dps1_high,
1803                   !!(dps1 & DOC_DPS_OTP_PROTECTED),
1804                   !!(dps1 & DOC_DPS_READ_PROTECTED),
1805                   !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1806                   !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1807                   !!(dps1 & DOC_DPS_KEY_OK));
1808        return 0;
1809}
1810DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1811
1812static void __init doc_dbg_register(struct mtd_info *floor)
1813{
1814        struct dentry *root = floor->dbg.dfs_dir;
1815        struct docg3 *docg3 = floor->priv;
1816
1817        if (IS_ERR_OR_NULL(root))
1818                return;
1819
1820        debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3,
1821                            &flashcontrol_fops);
1822        debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3,
1823                            &asic_mode_fops);
1824        debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3,
1825                            &device_id_fops);
1826        debugfs_create_file("docg3_protection", S_IRUSR, root, docg3,
1827                            &protection_fops);
1828}
1829
1830/**
1831 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1832 * @chip_id: The chip ID of the supported chip
1833 * @mtd: The structure to fill
1834 */
1835static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1836{
1837        struct docg3 *docg3 = mtd->priv;
1838        int cfg;
1839
1840        cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1841        docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1842        docg3->reliable = reliable_mode;
1843
1844        switch (chip_id) {
1845        case DOC_CHIPID_G3:
1846                mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1847                                      docg3->device_id);
1848                if (!mtd->name)
1849                        return -ENOMEM;
1850                docg3->max_block = 2047;
1851                break;
1852        }
1853        mtd->type = MTD_NANDFLASH;
1854        mtd->flags = MTD_CAP_NANDFLASH;
1855        mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1856        if (docg3->reliable == 2)
1857                mtd->size /= 2;
1858        mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1859        if (docg3->reliable == 2)
1860                mtd->erasesize /= 2;
1861        mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1862        mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1863        mtd->_erase = doc_erase;
1864        mtd->_read = doc_read;
1865        mtd->_write = doc_write;
1866        mtd->_read_oob = doc_read_oob;
1867        mtd->_write_oob = doc_write_oob;
1868        mtd->_block_isbad = doc_block_isbad;
1869        mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops);
1870        mtd->oobavail = 8;
1871        mtd->ecc_strength = DOC_ECC_BCH_T;
1872
1873        return 0;
1874}
1875
1876/**
1877 * doc_probe_device - Check if a device is available
1878 * @base: the io space where the device is probed
1879 * @floor: the floor of the probed device
1880 * @dev: the device
1881 * @cascade: the cascade of chips this devices will belong to
1882 *
1883 * Checks whether a device at the specified IO range, and floor is available.
1884 *
1885 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1886 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1887 * launched.
1888 */
1889static struct mtd_info * __init
1890doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1891{
1892        int ret, bbt_nbpages;
1893        u16 chip_id, chip_id_inv;
1894        struct docg3 *docg3;
1895        struct mtd_info *mtd;
1896
1897        ret = -ENOMEM;
1898        docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1899        if (!docg3)
1900                goto nomem1;
1901        mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1902        if (!mtd)
1903                goto nomem2;
1904        mtd->priv = docg3;
1905        mtd->dev.parent = dev;
1906        bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1907                                   8 * DOC_LAYOUT_PAGE_SIZE);
1908        docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1909        if (!docg3->bbt)
1910                goto nomem3;
1911
1912        docg3->dev = dev;
1913        docg3->device_id = floor;
1914        docg3->cascade = cascade;
1915        doc_set_device_id(docg3, docg3->device_id);
1916        if (!floor)
1917                doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1918        doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1919
1920        chip_id = doc_register_readw(docg3, DOC_CHIPID);
1921        chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1922
1923        ret = 0;
1924        if (chip_id != (u16)(~chip_id_inv)) {
1925                goto nomem4;
1926        }
1927
1928        switch (chip_id) {
1929        case DOC_CHIPID_G3:
1930                doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1931                         docg3->cascade->base, floor);
1932                break;
1933        default:
1934                doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1935                goto nomem4;
1936        }
1937
1938        ret = doc_set_driver_info(chip_id, mtd);
1939        if (ret)
1940                goto nomem4;
1941
1942        doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1943        doc_reload_bbt(docg3);
1944        return mtd;
1945
1946nomem4:
1947        kfree(docg3->bbt);
1948nomem3:
1949        kfree(mtd);
1950nomem2:
1951        kfree(docg3);
1952nomem1:
1953        return ERR_PTR(ret);
1954}
1955
1956/**
1957 * doc_release_device - Release a docg3 floor
1958 * @mtd: the device
1959 */
1960static void doc_release_device(struct mtd_info *mtd)
1961{
1962        struct docg3 *docg3 = mtd->priv;
1963
1964        mtd_device_unregister(mtd);
1965        kfree(docg3->bbt);
1966        kfree(docg3);
1967        kfree(mtd->name);
1968        kfree(mtd);
1969}
1970
1971/**
1972 * docg3_resume - Awakens docg3 floor
1973 * @pdev: platfrom device
1974 *
1975 * Returns 0 (always successful)
1976 */
1977static int docg3_resume(struct platform_device *pdev)
1978{
1979        int i;
1980        struct docg3_cascade *cascade;
1981        struct mtd_info **docg3_floors, *mtd;
1982        struct docg3 *docg3;
1983
1984        cascade = platform_get_drvdata(pdev);
1985        docg3_floors = cascade->floors;
1986        mtd = docg3_floors[0];
1987        docg3 = mtd->priv;
1988
1989        doc_dbg("docg3_resume()\n");
1990        for (i = 0; i < 12; i++)
1991                doc_readb(docg3, DOC_IOSPACE_IPL);
1992        return 0;
1993}
1994
1995/**
1996 * docg3_suspend - Put in low power mode the docg3 floor
1997 * @pdev: platform device
1998 * @state: power state
1999 *
2000 * Shuts off most of docg3 circuitery to lower power consumption.
2001 *
2002 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
2003 */
2004static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
2005{
2006        int floor, i;
2007        struct docg3_cascade *cascade;
2008        struct mtd_info **docg3_floors, *mtd;
2009        struct docg3 *docg3;
2010        u8 ctrl, pwr_down;
2011
2012        cascade = platform_get_drvdata(pdev);
2013        docg3_floors = cascade->floors;
2014        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2015                mtd = docg3_floors[floor];
2016                if (!mtd)
2017                        continue;
2018                docg3 = mtd->priv;
2019
2020                doc_writeb(docg3, floor, DOC_DEVICESELECT);
2021                ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
2022                ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
2023                doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
2024
2025                for (i = 0; i < 10; i++) {
2026                        usleep_range(3000, 4000);
2027                        pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
2028                        if (pwr_down & DOC_POWERDOWN_READY)
2029                                break;
2030                }
2031                if (pwr_down & DOC_POWERDOWN_READY) {
2032                        doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2033                                floor);
2034                } else {
2035                        doc_err("docg3_suspend(): floor %d powerdown failed\n",
2036                                floor);
2037                        return -EIO;
2038                }
2039        }
2040
2041        mtd = docg3_floors[0];
2042        docg3 = mtd->priv;
2043        doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
2044        return 0;
2045}
2046
2047/**
2048 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2049 * @pdev: platform device
2050 *
2051 * Probes for a G3 chip at the specified IO space in the platform data
2052 * ressources. The floor 0 must be available.
2053 *
2054 * Returns 0 on success, -ENOMEM, -ENXIO on error
2055 */
2056static int __init docg3_probe(struct platform_device *pdev)
2057{
2058        struct device *dev = &pdev->dev;
2059        struct mtd_info *mtd;
2060        struct resource *ress;
2061        void __iomem *base;
2062        int ret, floor;
2063        struct docg3_cascade *cascade;
2064
2065        ret = -ENXIO;
2066        ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2067        if (!ress) {
2068                dev_err(dev, "No I/O memory resource defined\n");
2069                return ret;
2070        }
2071        base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
2072
2073        ret = -ENOMEM;
2074        cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS,
2075                               GFP_KERNEL);
2076        if (!cascade)
2077                return ret;
2078        cascade->base = base;
2079        mutex_init(&cascade->lock);
2080        cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2081                             DOC_ECC_BCH_PRIMPOLY);
2082        if (!cascade->bch)
2083                return ret;
2084
2085        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2086                mtd = doc_probe_device(cascade, floor, dev);
2087                if (IS_ERR(mtd)) {
2088                        ret = PTR_ERR(mtd);
2089                        goto err_probe;
2090                }
2091                if (!mtd) {
2092                        if (floor == 0)
2093                                goto notfound;
2094                        else
2095                                continue;
2096                }
2097                cascade->floors[floor] = mtd;
2098                ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2099                                                0);
2100                if (ret)
2101                        goto err_probe;
2102
2103                doc_dbg_register(cascade->floors[floor]);
2104        }
2105
2106        ret = doc_register_sysfs(pdev, cascade);
2107        if (ret)
2108                goto err_probe;
2109
2110        platform_set_drvdata(pdev, cascade);
2111        return 0;
2112
2113notfound:
2114        ret = -ENODEV;
2115        dev_info(dev, "No supported DiskOnChip found\n");
2116err_probe:
2117        free_bch(cascade->bch);
2118        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2119                if (cascade->floors[floor])
2120                        doc_release_device(cascade->floors[floor]);
2121        return ret;
2122}
2123
2124/**
2125 * docg3_release - Release the driver
2126 * @pdev: the platform device
2127 *
2128 * Returns 0
2129 */
2130static int docg3_release(struct platform_device *pdev)
2131{
2132        struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2133        struct docg3 *docg3 = cascade->floors[0]->priv;
2134        int floor;
2135
2136        doc_unregister_sysfs(pdev, cascade);
2137        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2138                if (cascade->floors[floor])
2139                        doc_release_device(cascade->floors[floor]);
2140
2141        free_bch(docg3->cascade->bch);
2142        return 0;
2143}
2144
2145#ifdef CONFIG_OF
2146static const struct of_device_id docg3_dt_ids[] = {
2147        { .compatible = "m-systems,diskonchip-g3" },
2148        {}
2149};
2150MODULE_DEVICE_TABLE(of, docg3_dt_ids);
2151#endif
2152
2153static struct platform_driver g3_driver = {
2154        .driver         = {
2155                .name   = "docg3",
2156                .of_match_table = of_match_ptr(docg3_dt_ids),
2157        },
2158        .suspend        = docg3_suspend,
2159        .resume         = docg3_resume,
2160        .remove         = docg3_release,
2161};
2162
2163module_platform_driver_probe(g3_driver, docg3_probe);
2164
2165MODULE_LICENSE("GPL");
2166MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2167MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2168