linux/drivers/mtd/nand/brcmnand/brcmnand.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2010-2015 Broadcom Corporation
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11 * GNU General Public License for more details.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/version.h>
  16#include <linux/module.h>
  17#include <linux/init.h>
  18#include <linux/delay.h>
  19#include <linux/device.h>
  20#include <linux/platform_device.h>
  21#include <linux/err.h>
  22#include <linux/completion.h>
  23#include <linux/interrupt.h>
  24#include <linux/spinlock.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/ioport.h>
  27#include <linux/bug.h>
  28#include <linux/kernel.h>
  29#include <linux/bitops.h>
  30#include <linux/mm.h>
  31#include <linux/mtd/mtd.h>
  32#include <linux/mtd/rawnand.h>
  33#include <linux/mtd/partitions.h>
  34#include <linux/of.h>
  35#include <linux/of_platform.h>
  36#include <linux/slab.h>
  37#include <linux/list.h>
  38#include <linux/log2.h>
  39
  40#include "brcmnand.h"
  41
  42/*
  43 * This flag controls if WP stays on between erase/write commands to mitigate
  44 * flash corruption due to power glitches. Values:
  45 * 0: NAND_WP is not used or not available
  46 * 1: NAND_WP is set by default, cleared for erase/write operations
  47 * 2: NAND_WP is always cleared
  48 */
  49static int wp_on = 1;
  50module_param(wp_on, int, 0444);
  51
  52/***********************************************************************
  53 * Definitions
  54 ***********************************************************************/
  55
  56#define DRV_NAME                        "brcmnand"
  57
  58#define CMD_NULL                        0x00
  59#define CMD_PAGE_READ                   0x01
  60#define CMD_SPARE_AREA_READ             0x02
  61#define CMD_STATUS_READ                 0x03
  62#define CMD_PROGRAM_PAGE                0x04
  63#define CMD_PROGRAM_SPARE_AREA          0x05
  64#define CMD_COPY_BACK                   0x06
  65#define CMD_DEVICE_ID_READ              0x07
  66#define CMD_BLOCK_ERASE                 0x08
  67#define CMD_FLASH_RESET                 0x09
  68#define CMD_BLOCKS_LOCK                 0x0a
  69#define CMD_BLOCKS_LOCK_DOWN            0x0b
  70#define CMD_BLOCKS_UNLOCK               0x0c
  71#define CMD_READ_BLOCKS_LOCK_STATUS     0x0d
  72#define CMD_PARAMETER_READ              0x0e
  73#define CMD_PARAMETER_CHANGE_COL        0x0f
  74#define CMD_LOW_LEVEL_OP                0x10
  75
  76struct brcm_nand_dma_desc {
  77        u32 next_desc;
  78        u32 next_desc_ext;
  79        u32 cmd_irq;
  80        u32 dram_addr;
  81        u32 dram_addr_ext;
  82        u32 tfr_len;
  83        u32 total_len;
  84        u32 flash_addr;
  85        u32 flash_addr_ext;
  86        u32 cs;
  87        u32 pad2[5];
  88        u32 status_valid;
  89} __packed;
  90
  91/* Bitfields for brcm_nand_dma_desc::status_valid */
  92#define FLASH_DMA_ECC_ERROR     (1 << 8)
  93#define FLASH_DMA_CORR_ERROR    (1 << 9)
  94
  95/* 512B flash cache in the NAND controller HW */
  96#define FC_SHIFT                9U
  97#define FC_BYTES                512U
  98#define FC_WORDS                (FC_BYTES >> 2)
  99
 100#define BRCMNAND_MIN_PAGESIZE   512
 101#define BRCMNAND_MIN_BLOCKSIZE  (8 * 1024)
 102#define BRCMNAND_MIN_DEVSIZE    (4ULL * 1024 * 1024)
 103
 104#define NAND_CTRL_RDY                   (INTFC_CTLR_READY | INTFC_FLASH_READY)
 105#define NAND_POLL_STATUS_TIMEOUT_MS     100
 106
 107/* Controller feature flags */
 108enum {
 109        BRCMNAND_HAS_1K_SECTORS                 = BIT(0),
 110        BRCMNAND_HAS_PREFETCH                   = BIT(1),
 111        BRCMNAND_HAS_CACHE_MODE                 = BIT(2),
 112        BRCMNAND_HAS_WP                         = BIT(3),
 113};
 114
 115struct brcmnand_controller {
 116        struct device           *dev;
 117        struct nand_hw_control  controller;
 118        void __iomem            *nand_base;
 119        void __iomem            *nand_fc; /* flash cache */
 120        void __iomem            *flash_dma_base;
 121        unsigned int            irq;
 122        unsigned int            dma_irq;
 123        int                     nand_version;
 124
 125        /* Some SoCs provide custom interrupt status register(s) */
 126        struct brcmnand_soc     *soc;
 127
 128        /* Some SoCs have a gateable clock for the controller */
 129        struct clk              *clk;
 130
 131        int                     cmd_pending;
 132        bool                    dma_pending;
 133        struct completion       done;
 134        struct completion       dma_done;
 135
 136        /* List of NAND hosts (one for each chip-select) */
 137        struct list_head host_list;
 138
 139        struct brcm_nand_dma_desc *dma_desc;
 140        dma_addr_t              dma_pa;
 141
 142        /* in-memory cache of the FLASH_CACHE, used only for some commands */
 143        u8                      flash_cache[FC_BYTES];
 144
 145        /* Controller revision details */
 146        const u16               *reg_offsets;
 147        unsigned int            reg_spacing; /* between CS1, CS2, ... regs */
 148        const u8                *cs_offsets; /* within each chip-select */
 149        const u8                *cs0_offsets; /* within CS0, if different */
 150        unsigned int            max_block_size;
 151        const unsigned int      *block_sizes;
 152        unsigned int            max_page_size;
 153        const unsigned int      *page_sizes;
 154        unsigned int            max_oob;
 155        u32                     features;
 156
 157        /* for low-power standby/resume only */
 158        u32                     nand_cs_nand_select;
 159        u32                     nand_cs_nand_xor;
 160        u32                     corr_stat_threshold;
 161        u32                     flash_dma_mode;
 162};
 163
 164struct brcmnand_cfg {
 165        u64                     device_size;
 166        unsigned int            block_size;
 167        unsigned int            page_size;
 168        unsigned int            spare_area_size;
 169        unsigned int            device_width;
 170        unsigned int            col_adr_bytes;
 171        unsigned int            blk_adr_bytes;
 172        unsigned int            ful_adr_bytes;
 173        unsigned int            sector_size_1k;
 174        unsigned int            ecc_level;
 175        /* use for low-power standby/resume only */
 176        u32                     acc_control;
 177        u32                     config;
 178        u32                     config_ext;
 179        u32                     timing_1;
 180        u32                     timing_2;
 181};
 182
 183struct brcmnand_host {
 184        struct list_head        node;
 185
 186        struct nand_chip        chip;
 187        struct platform_device  *pdev;
 188        int                     cs;
 189
 190        unsigned int            last_cmd;
 191        unsigned int            last_byte;
 192        u64                     last_addr;
 193        struct brcmnand_cfg     hwcfg;
 194        struct brcmnand_controller *ctrl;
 195};
 196
 197enum brcmnand_reg {
 198        BRCMNAND_CMD_START = 0,
 199        BRCMNAND_CMD_EXT_ADDRESS,
 200        BRCMNAND_CMD_ADDRESS,
 201        BRCMNAND_INTFC_STATUS,
 202        BRCMNAND_CS_SELECT,
 203        BRCMNAND_CS_XOR,
 204        BRCMNAND_LL_OP,
 205        BRCMNAND_CS0_BASE,
 206        BRCMNAND_CS1_BASE,              /* CS1 regs, if non-contiguous */
 207        BRCMNAND_CORR_THRESHOLD,
 208        BRCMNAND_CORR_THRESHOLD_EXT,
 209        BRCMNAND_UNCORR_COUNT,
 210        BRCMNAND_CORR_COUNT,
 211        BRCMNAND_CORR_EXT_ADDR,
 212        BRCMNAND_CORR_ADDR,
 213        BRCMNAND_UNCORR_EXT_ADDR,
 214        BRCMNAND_UNCORR_ADDR,
 215        BRCMNAND_SEMAPHORE,
 216        BRCMNAND_ID,
 217        BRCMNAND_ID_EXT,
 218        BRCMNAND_LL_RDATA,
 219        BRCMNAND_OOB_READ_BASE,
 220        BRCMNAND_OOB_READ_10_BASE,      /* offset 0x10, if non-contiguous */
 221        BRCMNAND_OOB_WRITE_BASE,
 222        BRCMNAND_OOB_WRITE_10_BASE,     /* offset 0x10, if non-contiguous */
 223        BRCMNAND_FC_BASE,
 224};
 225
 226/* BRCMNAND v4.0 */
 227static const u16 brcmnand_regs_v40[] = {
 228        [BRCMNAND_CMD_START]            =  0x04,
 229        [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
 230        [BRCMNAND_CMD_ADDRESS]          =  0x0c,
 231        [BRCMNAND_INTFC_STATUS]         =  0x6c,
 232        [BRCMNAND_CS_SELECT]            =  0x14,
 233        [BRCMNAND_CS_XOR]               =  0x18,
 234        [BRCMNAND_LL_OP]                = 0x178,
 235        [BRCMNAND_CS0_BASE]             =  0x40,
 236        [BRCMNAND_CS1_BASE]             =  0xd0,
 237        [BRCMNAND_CORR_THRESHOLD]       =  0x84,
 238        [BRCMNAND_CORR_THRESHOLD_EXT]   =     0,
 239        [BRCMNAND_UNCORR_COUNT]         =     0,
 240        [BRCMNAND_CORR_COUNT]           =     0,
 241        [BRCMNAND_CORR_EXT_ADDR]        =  0x70,
 242        [BRCMNAND_CORR_ADDR]            =  0x74,
 243        [BRCMNAND_UNCORR_EXT_ADDR]      =  0x78,
 244        [BRCMNAND_UNCORR_ADDR]          =  0x7c,
 245        [BRCMNAND_SEMAPHORE]            =  0x58,
 246        [BRCMNAND_ID]                   =  0x60,
 247        [BRCMNAND_ID_EXT]               =  0x64,
 248        [BRCMNAND_LL_RDATA]             = 0x17c,
 249        [BRCMNAND_OOB_READ_BASE]        =  0x20,
 250        [BRCMNAND_OOB_READ_10_BASE]     = 0x130,
 251        [BRCMNAND_OOB_WRITE_BASE]       =  0x30,
 252        [BRCMNAND_OOB_WRITE_10_BASE]    =     0,
 253        [BRCMNAND_FC_BASE]              = 0x200,
 254};
 255
 256/* BRCMNAND v5.0 */
 257static const u16 brcmnand_regs_v50[] = {
 258        [BRCMNAND_CMD_START]            =  0x04,
 259        [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
 260        [BRCMNAND_CMD_ADDRESS]          =  0x0c,
 261        [BRCMNAND_INTFC_STATUS]         =  0x6c,
 262        [BRCMNAND_CS_SELECT]            =  0x14,
 263        [BRCMNAND_CS_XOR]               =  0x18,
 264        [BRCMNAND_LL_OP]                = 0x178,
 265        [BRCMNAND_CS0_BASE]             =  0x40,
 266        [BRCMNAND_CS1_BASE]             =  0xd0,
 267        [BRCMNAND_CORR_THRESHOLD]       =  0x84,
 268        [BRCMNAND_CORR_THRESHOLD_EXT]   =     0,
 269        [BRCMNAND_UNCORR_COUNT]         =     0,
 270        [BRCMNAND_CORR_COUNT]           =     0,
 271        [BRCMNAND_CORR_EXT_ADDR]        =  0x70,
 272        [BRCMNAND_CORR_ADDR]            =  0x74,
 273        [BRCMNAND_UNCORR_EXT_ADDR]      =  0x78,
 274        [BRCMNAND_UNCORR_ADDR]          =  0x7c,
 275        [BRCMNAND_SEMAPHORE]            =  0x58,
 276        [BRCMNAND_ID]                   =  0x60,
 277        [BRCMNAND_ID_EXT]               =  0x64,
 278        [BRCMNAND_LL_RDATA]             = 0x17c,
 279        [BRCMNAND_OOB_READ_BASE]        =  0x20,
 280        [BRCMNAND_OOB_READ_10_BASE]     = 0x130,
 281        [BRCMNAND_OOB_WRITE_BASE]       =  0x30,
 282        [BRCMNAND_OOB_WRITE_10_BASE]    = 0x140,
 283        [BRCMNAND_FC_BASE]              = 0x200,
 284};
 285
 286/* BRCMNAND v6.0 - v7.1 */
 287static const u16 brcmnand_regs_v60[] = {
 288        [BRCMNAND_CMD_START]            =  0x04,
 289        [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
 290        [BRCMNAND_CMD_ADDRESS]          =  0x0c,
 291        [BRCMNAND_INTFC_STATUS]         =  0x14,
 292        [BRCMNAND_CS_SELECT]            =  0x18,
 293        [BRCMNAND_CS_XOR]               =  0x1c,
 294        [BRCMNAND_LL_OP]                =  0x20,
 295        [BRCMNAND_CS0_BASE]             =  0x50,
 296        [BRCMNAND_CS1_BASE]             =     0,
 297        [BRCMNAND_CORR_THRESHOLD]       =  0xc0,
 298        [BRCMNAND_CORR_THRESHOLD_EXT]   =  0xc4,
 299        [BRCMNAND_UNCORR_COUNT]         =  0xfc,
 300        [BRCMNAND_CORR_COUNT]           = 0x100,
 301        [BRCMNAND_CORR_EXT_ADDR]        = 0x10c,
 302        [BRCMNAND_CORR_ADDR]            = 0x110,
 303        [BRCMNAND_UNCORR_EXT_ADDR]      = 0x114,
 304        [BRCMNAND_UNCORR_ADDR]          = 0x118,
 305        [BRCMNAND_SEMAPHORE]            = 0x150,
 306        [BRCMNAND_ID]                   = 0x194,
 307        [BRCMNAND_ID_EXT]               = 0x198,
 308        [BRCMNAND_LL_RDATA]             = 0x19c,
 309        [BRCMNAND_OOB_READ_BASE]        = 0x200,
 310        [BRCMNAND_OOB_READ_10_BASE]     =     0,
 311        [BRCMNAND_OOB_WRITE_BASE]       = 0x280,
 312        [BRCMNAND_OOB_WRITE_10_BASE]    =     0,
 313        [BRCMNAND_FC_BASE]              = 0x400,
 314};
 315
 316/* BRCMNAND v7.1 */
 317static const u16 brcmnand_regs_v71[] = {
 318        [BRCMNAND_CMD_START]            =  0x04,
 319        [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
 320        [BRCMNAND_CMD_ADDRESS]          =  0x0c,
 321        [BRCMNAND_INTFC_STATUS]         =  0x14,
 322        [BRCMNAND_CS_SELECT]            =  0x18,
 323        [BRCMNAND_CS_XOR]               =  0x1c,
 324        [BRCMNAND_LL_OP]                =  0x20,
 325        [BRCMNAND_CS0_BASE]             =  0x50,
 326        [BRCMNAND_CS1_BASE]             =     0,
 327        [BRCMNAND_CORR_THRESHOLD]       =  0xdc,
 328        [BRCMNAND_CORR_THRESHOLD_EXT]   =  0xe0,
 329        [BRCMNAND_UNCORR_COUNT]         =  0xfc,
 330        [BRCMNAND_CORR_COUNT]           = 0x100,
 331        [BRCMNAND_CORR_EXT_ADDR]        = 0x10c,
 332        [BRCMNAND_CORR_ADDR]            = 0x110,
 333        [BRCMNAND_UNCORR_EXT_ADDR]      = 0x114,
 334        [BRCMNAND_UNCORR_ADDR]          = 0x118,
 335        [BRCMNAND_SEMAPHORE]            = 0x150,
 336        [BRCMNAND_ID]                   = 0x194,
 337        [BRCMNAND_ID_EXT]               = 0x198,
 338        [BRCMNAND_LL_RDATA]             = 0x19c,
 339        [BRCMNAND_OOB_READ_BASE]        = 0x200,
 340        [BRCMNAND_OOB_READ_10_BASE]     =     0,
 341        [BRCMNAND_OOB_WRITE_BASE]       = 0x280,
 342        [BRCMNAND_OOB_WRITE_10_BASE]    =     0,
 343        [BRCMNAND_FC_BASE]              = 0x400,
 344};
 345
 346/* BRCMNAND v7.2 */
 347static const u16 brcmnand_regs_v72[] = {
 348        [BRCMNAND_CMD_START]            =  0x04,
 349        [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
 350        [BRCMNAND_CMD_ADDRESS]          =  0x0c,
 351        [BRCMNAND_INTFC_STATUS]         =  0x14,
 352        [BRCMNAND_CS_SELECT]            =  0x18,
 353        [BRCMNAND_CS_XOR]               =  0x1c,
 354        [BRCMNAND_LL_OP]                =  0x20,
 355        [BRCMNAND_CS0_BASE]             =  0x50,
 356        [BRCMNAND_CS1_BASE]             =     0,
 357        [BRCMNAND_CORR_THRESHOLD]       =  0xdc,
 358        [BRCMNAND_CORR_THRESHOLD_EXT]   =  0xe0,
 359        [BRCMNAND_UNCORR_COUNT]         =  0xfc,
 360        [BRCMNAND_CORR_COUNT]           = 0x100,
 361        [BRCMNAND_CORR_EXT_ADDR]        = 0x10c,
 362        [BRCMNAND_CORR_ADDR]            = 0x110,
 363        [BRCMNAND_UNCORR_EXT_ADDR]      = 0x114,
 364        [BRCMNAND_UNCORR_ADDR]          = 0x118,
 365        [BRCMNAND_SEMAPHORE]            = 0x150,
 366        [BRCMNAND_ID]                   = 0x194,
 367        [BRCMNAND_ID_EXT]               = 0x198,
 368        [BRCMNAND_LL_RDATA]             = 0x19c,
 369        [BRCMNAND_OOB_READ_BASE]        = 0x200,
 370        [BRCMNAND_OOB_READ_10_BASE]     =     0,
 371        [BRCMNAND_OOB_WRITE_BASE]       = 0x400,
 372        [BRCMNAND_OOB_WRITE_10_BASE]    =     0,
 373        [BRCMNAND_FC_BASE]              = 0x600,
 374};
 375
 376enum brcmnand_cs_reg {
 377        BRCMNAND_CS_CFG_EXT = 0,
 378        BRCMNAND_CS_CFG,
 379        BRCMNAND_CS_ACC_CONTROL,
 380        BRCMNAND_CS_TIMING1,
 381        BRCMNAND_CS_TIMING2,
 382};
 383
 384/* Per chip-select offsets for v7.1 */
 385static const u8 brcmnand_cs_offsets_v71[] = {
 386        [BRCMNAND_CS_ACC_CONTROL]       = 0x00,
 387        [BRCMNAND_CS_CFG_EXT]           = 0x04,
 388        [BRCMNAND_CS_CFG]               = 0x08,
 389        [BRCMNAND_CS_TIMING1]           = 0x0c,
 390        [BRCMNAND_CS_TIMING2]           = 0x10,
 391};
 392
 393/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
 394static const u8 brcmnand_cs_offsets[] = {
 395        [BRCMNAND_CS_ACC_CONTROL]       = 0x00,
 396        [BRCMNAND_CS_CFG_EXT]           = 0x04,
 397        [BRCMNAND_CS_CFG]               = 0x04,
 398        [BRCMNAND_CS_TIMING1]           = 0x08,
 399        [BRCMNAND_CS_TIMING2]           = 0x0c,
 400};
 401
 402/* Per chip-select offset for <= v5.0 on CS0 only */
 403static const u8 brcmnand_cs_offsets_cs0[] = {
 404        [BRCMNAND_CS_ACC_CONTROL]       = 0x00,
 405        [BRCMNAND_CS_CFG_EXT]           = 0x08,
 406        [BRCMNAND_CS_CFG]               = 0x08,
 407        [BRCMNAND_CS_TIMING1]           = 0x10,
 408        [BRCMNAND_CS_TIMING2]           = 0x14,
 409};
 410
 411/*
 412 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
 413 * one config register, but once the bitfields overflowed, newer controllers
 414 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
 415 */
 416enum {
 417        CFG_BLK_ADR_BYTES_SHIFT         = 8,
 418        CFG_COL_ADR_BYTES_SHIFT         = 12,
 419        CFG_FUL_ADR_BYTES_SHIFT         = 16,
 420        CFG_BUS_WIDTH_SHIFT             = 23,
 421        CFG_BUS_WIDTH                   = BIT(CFG_BUS_WIDTH_SHIFT),
 422        CFG_DEVICE_SIZE_SHIFT           = 24,
 423
 424        /* Only for pre-v7.1 (with no CFG_EXT register) */
 425        CFG_PAGE_SIZE_SHIFT             = 20,
 426        CFG_BLK_SIZE_SHIFT              = 28,
 427
 428        /* Only for v7.1+ (with CFG_EXT register) */
 429        CFG_EXT_PAGE_SIZE_SHIFT         = 0,
 430        CFG_EXT_BLK_SIZE_SHIFT          = 4,
 431};
 432
 433/* BRCMNAND_INTFC_STATUS */
 434enum {
 435        INTFC_FLASH_STATUS              = GENMASK(7, 0),
 436
 437        INTFC_ERASED                    = BIT(27),
 438        INTFC_OOB_VALID                 = BIT(28),
 439        INTFC_CACHE_VALID               = BIT(29),
 440        INTFC_FLASH_READY               = BIT(30),
 441        INTFC_CTLR_READY                = BIT(31),
 442};
 443
 444static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
 445{
 446        return brcmnand_readl(ctrl->nand_base + offs);
 447}
 448
 449static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
 450                                 u32 val)
 451{
 452        brcmnand_writel(val, ctrl->nand_base + offs);
 453}
 454
 455static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
 456{
 457        static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
 458        static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
 459        static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
 460
 461        ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
 462
 463        /* Only support v4.0+? */
 464        if (ctrl->nand_version < 0x0400) {
 465                dev_err(ctrl->dev, "version %#x not supported\n",
 466                        ctrl->nand_version);
 467                return -ENODEV;
 468        }
 469
 470        /* Register offsets */
 471        if (ctrl->nand_version >= 0x0702)
 472                ctrl->reg_offsets = brcmnand_regs_v72;
 473        else if (ctrl->nand_version >= 0x0701)
 474                ctrl->reg_offsets = brcmnand_regs_v71;
 475        else if (ctrl->nand_version >= 0x0600)
 476                ctrl->reg_offsets = brcmnand_regs_v60;
 477        else if (ctrl->nand_version >= 0x0500)
 478                ctrl->reg_offsets = brcmnand_regs_v50;
 479        else if (ctrl->nand_version >= 0x0400)
 480                ctrl->reg_offsets = brcmnand_regs_v40;
 481
 482        /* Chip-select stride */
 483        if (ctrl->nand_version >= 0x0701)
 484                ctrl->reg_spacing = 0x14;
 485        else
 486                ctrl->reg_spacing = 0x10;
 487
 488        /* Per chip-select registers */
 489        if (ctrl->nand_version >= 0x0701) {
 490                ctrl->cs_offsets = brcmnand_cs_offsets_v71;
 491        } else {
 492                ctrl->cs_offsets = brcmnand_cs_offsets;
 493
 494                /* v5.0 and earlier has a different CS0 offset layout */
 495                if (ctrl->nand_version <= 0x0500)
 496                        ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
 497        }
 498
 499        /* Page / block sizes */
 500        if (ctrl->nand_version >= 0x0701) {
 501                /* >= v7.1 use nice power-of-2 values! */
 502                ctrl->max_page_size = 16 * 1024;
 503                ctrl->max_block_size = 2 * 1024 * 1024;
 504        } else {
 505                ctrl->page_sizes = page_sizes;
 506                if (ctrl->nand_version >= 0x0600)
 507                        ctrl->block_sizes = block_sizes_v6;
 508                else
 509                        ctrl->block_sizes = block_sizes_v4;
 510
 511                if (ctrl->nand_version < 0x0400) {
 512                        ctrl->max_page_size = 4096;
 513                        ctrl->max_block_size = 512 * 1024;
 514                }
 515        }
 516
 517        /* Maximum spare area sector size (per 512B) */
 518        if (ctrl->nand_version >= 0x0702)
 519                ctrl->max_oob = 128;
 520        else if (ctrl->nand_version >= 0x0600)
 521                ctrl->max_oob = 64;
 522        else if (ctrl->nand_version >= 0x0500)
 523                ctrl->max_oob = 32;
 524        else
 525                ctrl->max_oob = 16;
 526
 527        /* v6.0 and newer (except v6.1) have prefetch support */
 528        if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
 529                ctrl->features |= BRCMNAND_HAS_PREFETCH;
 530
 531        /*
 532         * v6.x has cache mode, but it's implemented differently. Ignore it for
 533         * now.
 534         */
 535        if (ctrl->nand_version >= 0x0700)
 536                ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
 537
 538        if (ctrl->nand_version >= 0x0500)
 539                ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
 540
 541        if (ctrl->nand_version >= 0x0700)
 542                ctrl->features |= BRCMNAND_HAS_WP;
 543        else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
 544                ctrl->features |= BRCMNAND_HAS_WP;
 545
 546        return 0;
 547}
 548
 549static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
 550                enum brcmnand_reg reg)
 551{
 552        u16 offs = ctrl->reg_offsets[reg];
 553
 554        if (offs)
 555                return nand_readreg(ctrl, offs);
 556        else
 557                return 0;
 558}
 559
 560static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
 561                                      enum brcmnand_reg reg, u32 val)
 562{
 563        u16 offs = ctrl->reg_offsets[reg];
 564
 565        if (offs)
 566                nand_writereg(ctrl, offs, val);
 567}
 568
 569static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
 570                                    enum brcmnand_reg reg, u32 mask, unsigned
 571                                    int shift, u32 val)
 572{
 573        u32 tmp = brcmnand_read_reg(ctrl, reg);
 574
 575        tmp &= ~mask;
 576        tmp |= val << shift;
 577        brcmnand_write_reg(ctrl, reg, tmp);
 578}
 579
 580static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
 581{
 582        return __raw_readl(ctrl->nand_fc + word * 4);
 583}
 584
 585static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
 586                                     int word, u32 val)
 587{
 588        __raw_writel(val, ctrl->nand_fc + word * 4);
 589}
 590
 591static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
 592                                     enum brcmnand_cs_reg reg)
 593{
 594        u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
 595        u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
 596        u8 cs_offs;
 597
 598        if (cs == 0 && ctrl->cs0_offsets)
 599                cs_offs = ctrl->cs0_offsets[reg];
 600        else
 601                cs_offs = ctrl->cs_offsets[reg];
 602
 603        if (cs && offs_cs1)
 604                return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
 605
 606        return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
 607}
 608
 609static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
 610{
 611        if (ctrl->nand_version < 0x0600)
 612                return 1;
 613        return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
 614}
 615
 616static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
 617{
 618        struct brcmnand_controller *ctrl = host->ctrl;
 619        unsigned int shift = 0, bits;
 620        enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
 621        int cs = host->cs;
 622
 623        if (ctrl->nand_version >= 0x0702)
 624                bits = 7;
 625        else if (ctrl->nand_version >= 0x0600)
 626                bits = 6;
 627        else if (ctrl->nand_version >= 0x0500)
 628                bits = 5;
 629        else
 630                bits = 4;
 631
 632        if (ctrl->nand_version >= 0x0702) {
 633                if (cs >= 4)
 634                        reg = BRCMNAND_CORR_THRESHOLD_EXT;
 635                shift = (cs % 4) * bits;
 636        } else if (ctrl->nand_version >= 0x0600) {
 637                if (cs >= 5)
 638                        reg = BRCMNAND_CORR_THRESHOLD_EXT;
 639                shift = (cs % 5) * bits;
 640        }
 641        brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
 642}
 643
 644static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
 645{
 646        if (ctrl->nand_version < 0x0602)
 647                return 24;
 648        return 0;
 649}
 650
 651/***********************************************************************
 652 * NAND ACC CONTROL bitfield
 653 *
 654 * Some bits have remained constant throughout hardware revision, while
 655 * others have shifted around.
 656 ***********************************************************************/
 657
 658/* Constant for all versions (where supported) */
 659enum {
 660        /* See BRCMNAND_HAS_CACHE_MODE */
 661        ACC_CONTROL_CACHE_MODE                          = BIT(22),
 662
 663        /* See BRCMNAND_HAS_PREFETCH */
 664        ACC_CONTROL_PREFETCH                            = BIT(23),
 665
 666        ACC_CONTROL_PAGE_HIT                            = BIT(24),
 667        ACC_CONTROL_WR_PREEMPT                          = BIT(25),
 668        ACC_CONTROL_PARTIAL_PAGE                        = BIT(26),
 669        ACC_CONTROL_RD_ERASED                           = BIT(27),
 670        ACC_CONTROL_FAST_PGM_RDIN                       = BIT(28),
 671        ACC_CONTROL_WR_ECC                              = BIT(30),
 672        ACC_CONTROL_RD_ECC                              = BIT(31),
 673};
 674
 675static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
 676{
 677        if (ctrl->nand_version >= 0x0702)
 678                return GENMASK(7, 0);
 679        else if (ctrl->nand_version >= 0x0600)
 680                return GENMASK(6, 0);
 681        else
 682                return GENMASK(5, 0);
 683}
 684
 685#define NAND_ACC_CONTROL_ECC_SHIFT      16
 686#define NAND_ACC_CONTROL_ECC_EXT_SHIFT  13
 687
 688static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
 689{
 690        u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
 691
 692        mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
 693
 694        /* v7.2 includes additional ECC levels */
 695        if (ctrl->nand_version >= 0x0702)
 696                mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
 697
 698        return mask;
 699}
 700
 701static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
 702{
 703        struct brcmnand_controller *ctrl = host->ctrl;
 704        u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
 705        u32 acc_control = nand_readreg(ctrl, offs);
 706        u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
 707
 708        if (en) {
 709                acc_control |= ecc_flags; /* enable RD/WR ECC */
 710                acc_control |= host->hwcfg.ecc_level
 711                               << NAND_ACC_CONTROL_ECC_SHIFT;
 712        } else {
 713                acc_control &= ~ecc_flags; /* disable RD/WR ECC */
 714                acc_control &= ~brcmnand_ecc_level_mask(ctrl);
 715        }
 716
 717        nand_writereg(ctrl, offs, acc_control);
 718}
 719
 720static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
 721{
 722        if (ctrl->nand_version >= 0x0702)
 723                return 9;
 724        else if (ctrl->nand_version >= 0x0600)
 725                return 7;
 726        else if (ctrl->nand_version >= 0x0500)
 727                return 6;
 728        else
 729                return -1;
 730}
 731
 732static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
 733{
 734        struct brcmnand_controller *ctrl = host->ctrl;
 735        int shift = brcmnand_sector_1k_shift(ctrl);
 736        u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
 737                                                  BRCMNAND_CS_ACC_CONTROL);
 738
 739        if (shift < 0)
 740                return 0;
 741
 742        return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
 743}
 744
 745static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
 746{
 747        struct brcmnand_controller *ctrl = host->ctrl;
 748        int shift = brcmnand_sector_1k_shift(ctrl);
 749        u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
 750                                                  BRCMNAND_CS_ACC_CONTROL);
 751        u32 tmp;
 752
 753        if (shift < 0)
 754                return;
 755
 756        tmp = nand_readreg(ctrl, acc_control_offs);
 757        tmp &= ~(1 << shift);
 758        tmp |= (!!val) << shift;
 759        nand_writereg(ctrl, acc_control_offs, tmp);
 760}
 761
 762/***********************************************************************
 763 * CS_NAND_SELECT
 764 ***********************************************************************/
 765
 766enum {
 767        CS_SELECT_NAND_WP                       = BIT(29),
 768        CS_SELECT_AUTO_DEVICE_ID_CFG            = BIT(30),
 769};
 770
 771static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
 772                                    u32 mask, u32 expected_val,
 773                                    unsigned long timeout_ms)
 774{
 775        unsigned long limit;
 776        u32 val;
 777
 778        if (!timeout_ms)
 779                timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
 780
 781        limit = jiffies + msecs_to_jiffies(timeout_ms);
 782        do {
 783                val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
 784                if ((val & mask) == expected_val)
 785                        return 0;
 786
 787                cpu_relax();
 788        } while (time_after(limit, jiffies));
 789
 790        dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
 791                 expected_val, val & mask);
 792
 793        return -ETIMEDOUT;
 794}
 795
 796static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
 797{
 798        u32 val = en ? CS_SELECT_NAND_WP : 0;
 799
 800        brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
 801}
 802
 803/***********************************************************************
 804 * Flash DMA
 805 ***********************************************************************/
 806
 807enum flash_dma_reg {
 808        FLASH_DMA_REVISION              = 0x00,
 809        FLASH_DMA_FIRST_DESC            = 0x04,
 810        FLASH_DMA_FIRST_DESC_EXT        = 0x08,
 811        FLASH_DMA_CTRL                  = 0x0c,
 812        FLASH_DMA_MODE                  = 0x10,
 813        FLASH_DMA_STATUS                = 0x14,
 814        FLASH_DMA_INTERRUPT_DESC        = 0x18,
 815        FLASH_DMA_INTERRUPT_DESC_EXT    = 0x1c,
 816        FLASH_DMA_ERROR_STATUS          = 0x20,
 817        FLASH_DMA_CURRENT_DESC          = 0x24,
 818        FLASH_DMA_CURRENT_DESC_EXT      = 0x28,
 819};
 820
 821static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
 822{
 823        return ctrl->flash_dma_base;
 824}
 825
 826static inline bool flash_dma_buf_ok(const void *buf)
 827{
 828        return buf && !is_vmalloc_addr(buf) &&
 829                likely(IS_ALIGNED((uintptr_t)buf, 4));
 830}
 831
 832static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
 833                                    u32 val)
 834{
 835        brcmnand_writel(val, ctrl->flash_dma_base + offs);
 836}
 837
 838static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
 839{
 840        return brcmnand_readl(ctrl->flash_dma_base + offs);
 841}
 842
 843/* Low-level operation types: command, address, write, or read */
 844enum brcmnand_llop_type {
 845        LL_OP_CMD,
 846        LL_OP_ADDR,
 847        LL_OP_WR,
 848        LL_OP_RD,
 849};
 850
 851/***********************************************************************
 852 * Internal support functions
 853 ***********************************************************************/
 854
 855static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
 856                                  struct brcmnand_cfg *cfg)
 857{
 858        if (ctrl->nand_version <= 0x0701)
 859                return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
 860                        cfg->ecc_level == 15;
 861        else
 862                return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
 863                        cfg->ecc_level == 15) ||
 864                        (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
 865}
 866
 867/*
 868 * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
 869 * the layout/configuration.
 870 * Returns -ERRCODE on failure.
 871 */
 872static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
 873                                          struct mtd_oob_region *oobregion)
 874{
 875        struct nand_chip *chip = mtd_to_nand(mtd);
 876        struct brcmnand_host *host = nand_get_controller_data(chip);
 877        struct brcmnand_cfg *cfg = &host->hwcfg;
 878        int sas = cfg->spare_area_size << cfg->sector_size_1k;
 879        int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
 880
 881        if (section >= sectors)
 882                return -ERANGE;
 883
 884        oobregion->offset = (section * sas) + 6;
 885        oobregion->length = 3;
 886
 887        return 0;
 888}
 889
 890static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
 891                                           struct mtd_oob_region *oobregion)
 892{
 893        struct nand_chip *chip = mtd_to_nand(mtd);
 894        struct brcmnand_host *host = nand_get_controller_data(chip);
 895        struct brcmnand_cfg *cfg = &host->hwcfg;
 896        int sas = cfg->spare_area_size << cfg->sector_size_1k;
 897        int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
 898
 899        if (section >= sectors * 2)
 900                return -ERANGE;
 901
 902        oobregion->offset = (section / 2) * sas;
 903
 904        if (section & 1) {
 905                oobregion->offset += 9;
 906                oobregion->length = 7;
 907        } else {
 908                oobregion->length = 6;
 909
 910                /* First sector of each page may have BBI */
 911                if (!section) {
 912                        /*
 913                         * Small-page NAND use byte 6 for BBI while large-page
 914                         * NAND use byte 0.
 915                         */
 916                        if (cfg->page_size > 512)
 917                                oobregion->offset++;
 918                        oobregion->length--;
 919                }
 920        }
 921
 922        return 0;
 923}
 924
 925static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
 926        .ecc = brcmnand_hamming_ooblayout_ecc,
 927        .free = brcmnand_hamming_ooblayout_free,
 928};
 929
 930static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
 931                                      struct mtd_oob_region *oobregion)
 932{
 933        struct nand_chip *chip = mtd_to_nand(mtd);
 934        struct brcmnand_host *host = nand_get_controller_data(chip);
 935        struct brcmnand_cfg *cfg = &host->hwcfg;
 936        int sas = cfg->spare_area_size << cfg->sector_size_1k;
 937        int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
 938
 939        if (section >= sectors)
 940                return -ERANGE;
 941
 942        oobregion->offset = (section * (sas + 1)) - chip->ecc.bytes;
 943        oobregion->length = chip->ecc.bytes;
 944
 945        return 0;
 946}
 947
 948static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
 949                                          struct mtd_oob_region *oobregion)
 950{
 951        struct nand_chip *chip = mtd_to_nand(mtd);
 952        struct brcmnand_host *host = nand_get_controller_data(chip);
 953        struct brcmnand_cfg *cfg = &host->hwcfg;
 954        int sas = cfg->spare_area_size << cfg->sector_size_1k;
 955        int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
 956
 957        if (section >= sectors)
 958                return -ERANGE;
 959
 960        if (sas <= chip->ecc.bytes)
 961                return 0;
 962
 963        oobregion->offset = section * sas;
 964        oobregion->length = sas - chip->ecc.bytes;
 965
 966        if (!section) {
 967                oobregion->offset++;
 968                oobregion->length--;
 969        }
 970
 971        return 0;
 972}
 973
 974static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
 975                                          struct mtd_oob_region *oobregion)
 976{
 977        struct nand_chip *chip = mtd_to_nand(mtd);
 978        struct brcmnand_host *host = nand_get_controller_data(chip);
 979        struct brcmnand_cfg *cfg = &host->hwcfg;
 980        int sas = cfg->spare_area_size << cfg->sector_size_1k;
 981
 982        if (section > 1 || sas - chip->ecc.bytes < 6 ||
 983            (section && sas - chip->ecc.bytes == 6))
 984                return -ERANGE;
 985
 986        if (!section) {
 987                oobregion->offset = 0;
 988                oobregion->length = 5;
 989        } else {
 990                oobregion->offset = 6;
 991                oobregion->length = sas - chip->ecc.bytes - 6;
 992        }
 993
 994        return 0;
 995}
 996
 997static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
 998        .ecc = brcmnand_bch_ooblayout_ecc,
 999        .free = brcmnand_bch_ooblayout_free_lp,
1000};
1001
1002static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1003        .ecc = brcmnand_bch_ooblayout_ecc,
1004        .free = brcmnand_bch_ooblayout_free_sp,
1005};
1006
1007static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1008{
1009        struct brcmnand_cfg *p = &host->hwcfg;
1010        struct mtd_info *mtd = nand_to_mtd(&host->chip);
1011        struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1012        unsigned int ecc_level = p->ecc_level;
1013        int sas = p->spare_area_size << p->sector_size_1k;
1014        int sectors = p->page_size / (512 << p->sector_size_1k);
1015
1016        if (p->sector_size_1k)
1017                ecc_level <<= 1;
1018
1019        if (is_hamming_ecc(host->ctrl, p)) {
1020                ecc->bytes = 3 * sectors;
1021                mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1022                return 0;
1023        }
1024
1025        /*
1026         * CONTROLLER_VERSION:
1027         *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1028         *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1029         * But we will just be conservative.
1030         */
1031        ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1032        if (p->page_size == 512)
1033                mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1034        else
1035                mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1036
1037        if (ecc->bytes >= sas) {
1038                dev_err(&host->pdev->dev,
1039                        "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1040                        ecc->bytes, sas);
1041                return -EINVAL;
1042        }
1043
1044        return 0;
1045}
1046
1047static void brcmnand_wp(struct mtd_info *mtd, int wp)
1048{
1049        struct nand_chip *chip = mtd_to_nand(mtd);
1050        struct brcmnand_host *host = nand_get_controller_data(chip);
1051        struct brcmnand_controller *ctrl = host->ctrl;
1052
1053        if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1054                static int old_wp = -1;
1055                int ret;
1056
1057                if (old_wp != wp) {
1058                        dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1059                        old_wp = wp;
1060                }
1061
1062                /*
1063                 * make sure ctrl/flash ready before and after
1064                 * changing state of #WP pin
1065                 */
1066                ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1067                                               NAND_STATUS_READY,
1068                                               NAND_CTRL_RDY |
1069                                               NAND_STATUS_READY, 0);
1070                if (ret)
1071                        return;
1072
1073                brcmnand_set_wp(ctrl, wp);
1074                chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1075                /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1076                ret = bcmnand_ctrl_poll_status(ctrl,
1077                                               NAND_CTRL_RDY |
1078                                               NAND_STATUS_READY |
1079                                               NAND_STATUS_WP,
1080                                               NAND_CTRL_RDY |
1081                                               NAND_STATUS_READY |
1082                                               (wp ? 0 : NAND_STATUS_WP), 0);
1083
1084                if (ret)
1085                        dev_err_ratelimited(&host->pdev->dev,
1086                                            "nand #WP expected %s\n",
1087                                            wp ? "on" : "off");
1088        }
1089}
1090
1091/* Helper functions for reading and writing OOB registers */
1092static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1093{
1094        u16 offset0, offset10, reg_offs;
1095
1096        offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1097        offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1098
1099        if (offs >= ctrl->max_oob)
1100                return 0x77;
1101
1102        if (offs >= 16 && offset10)
1103                reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1104        else
1105                reg_offs = offset0 + (offs & ~0x03);
1106
1107        return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1108}
1109
1110static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1111                                 u32 data)
1112{
1113        u16 offset0, offset10, reg_offs;
1114
1115        offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1116        offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1117
1118        if (offs >= ctrl->max_oob)
1119                return;
1120
1121        if (offs >= 16 && offset10)
1122                reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1123        else
1124                reg_offs = offset0 + (offs & ~0x03);
1125
1126        nand_writereg(ctrl, reg_offs, data);
1127}
1128
1129/*
1130 * read_oob_from_regs - read data from OOB registers
1131 * @ctrl: NAND controller
1132 * @i: sub-page sector index
1133 * @oob: buffer to read to
1134 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1135 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1136 */
1137static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1138                              int sas, int sector_1k)
1139{
1140        int tbytes = sas << sector_1k;
1141        int j;
1142
1143        /* Adjust OOB values for 1K sector size */
1144        if (sector_1k && (i & 0x01))
1145                tbytes = max(0, tbytes - (int)ctrl->max_oob);
1146        tbytes = min_t(int, tbytes, ctrl->max_oob);
1147
1148        for (j = 0; j < tbytes; j++)
1149                oob[j] = oob_reg_read(ctrl, j);
1150        return tbytes;
1151}
1152
1153/*
1154 * write_oob_to_regs - write data to OOB registers
1155 * @i: sub-page sector index
1156 * @oob: buffer to write from
1157 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1158 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1159 */
1160static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1161                             const u8 *oob, int sas, int sector_1k)
1162{
1163        int tbytes = sas << sector_1k;
1164        int j;
1165
1166        /* Adjust OOB values for 1K sector size */
1167        if (sector_1k && (i & 0x01))
1168                tbytes = max(0, tbytes - (int)ctrl->max_oob);
1169        tbytes = min_t(int, tbytes, ctrl->max_oob);
1170
1171        for (j = 0; j < tbytes; j += 4)
1172                oob_reg_write(ctrl, j,
1173                                (oob[j + 0] << 24) |
1174                                (oob[j + 1] << 16) |
1175                                (oob[j + 2] <<  8) |
1176                                (oob[j + 3] <<  0));
1177        return tbytes;
1178}
1179
1180static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1181{
1182        struct brcmnand_controller *ctrl = data;
1183
1184        /* Discard all NAND_CTLRDY interrupts during DMA */
1185        if (ctrl->dma_pending)
1186                return IRQ_HANDLED;
1187
1188        complete(&ctrl->done);
1189        return IRQ_HANDLED;
1190}
1191
1192/* Handle SoC-specific interrupt hardware */
1193static irqreturn_t brcmnand_irq(int irq, void *data)
1194{
1195        struct brcmnand_controller *ctrl = data;
1196
1197        if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1198                return brcmnand_ctlrdy_irq(irq, data);
1199
1200        return IRQ_NONE;
1201}
1202
1203static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1204{
1205        struct brcmnand_controller *ctrl = data;
1206
1207        complete(&ctrl->dma_done);
1208
1209        return IRQ_HANDLED;
1210}
1211
1212static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1213{
1214        struct brcmnand_controller *ctrl = host->ctrl;
1215        int ret;
1216
1217        dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
1218                brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
1219        BUG_ON(ctrl->cmd_pending != 0);
1220        ctrl->cmd_pending = cmd;
1221
1222        ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1223        WARN_ON(ret);
1224
1225        mb(); /* flush previous writes */
1226        brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1227                           cmd << brcmnand_cmd_shift(ctrl));
1228}
1229
1230/***********************************************************************
1231 * NAND MTD API: read/program/erase
1232 ***********************************************************************/
1233
1234static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
1235        unsigned int ctrl)
1236{
1237        /* intentionally left blank */
1238}
1239
1240static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
1241{
1242        struct nand_chip *chip = mtd_to_nand(mtd);
1243        struct brcmnand_host *host = nand_get_controller_data(chip);
1244        struct brcmnand_controller *ctrl = host->ctrl;
1245        unsigned long timeo = msecs_to_jiffies(100);
1246
1247        dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1248        if (ctrl->cmd_pending &&
1249                        wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
1250                u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1251                                        >> brcmnand_cmd_shift(ctrl);
1252
1253                dev_err_ratelimited(ctrl->dev,
1254                        "timeout waiting for command %#02x\n", cmd);
1255                dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1256                        brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1257        }
1258        ctrl->cmd_pending = 0;
1259        return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1260                                 INTFC_FLASH_STATUS;
1261}
1262
1263enum {
1264        LLOP_RE                         = BIT(16),
1265        LLOP_WE                         = BIT(17),
1266        LLOP_ALE                        = BIT(18),
1267        LLOP_CLE                        = BIT(19),
1268        LLOP_RETURN_IDLE                = BIT(31),
1269
1270        LLOP_DATA_MASK                  = GENMASK(15, 0),
1271};
1272
1273static int brcmnand_low_level_op(struct brcmnand_host *host,
1274                                 enum brcmnand_llop_type type, u32 data,
1275                                 bool last_op)
1276{
1277        struct mtd_info *mtd = nand_to_mtd(&host->chip);
1278        struct nand_chip *chip = &host->chip;
1279        struct brcmnand_controller *ctrl = host->ctrl;
1280        u32 tmp;
1281
1282        tmp = data & LLOP_DATA_MASK;
1283        switch (type) {
1284        case LL_OP_CMD:
1285                tmp |= LLOP_WE | LLOP_CLE;
1286                break;
1287        case LL_OP_ADDR:
1288                /* WE | ALE */
1289                tmp |= LLOP_WE | LLOP_ALE;
1290                break;
1291        case LL_OP_WR:
1292                /* WE */
1293                tmp |= LLOP_WE;
1294                break;
1295        case LL_OP_RD:
1296                /* RE */
1297                tmp |= LLOP_RE;
1298                break;
1299        }
1300        if (last_op)
1301                /* RETURN_IDLE */
1302                tmp |= LLOP_RETURN_IDLE;
1303
1304        dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1305
1306        brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1307        (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1308
1309        brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1310        return brcmnand_waitfunc(mtd, chip);
1311}
1312
1313static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
1314                             int column, int page_addr)
1315{
1316        struct nand_chip *chip = mtd_to_nand(mtd);
1317        struct brcmnand_host *host = nand_get_controller_data(chip);
1318        struct brcmnand_controller *ctrl = host->ctrl;
1319        u64 addr = (u64)page_addr << chip->page_shift;
1320        int native_cmd = 0;
1321
1322        if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1323                        command == NAND_CMD_RNDOUT)
1324                addr = (u64)column;
1325        /* Avoid propagating a negative, don't-care address */
1326        else if (page_addr < 0)
1327                addr = 0;
1328
1329        dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1330                (unsigned long long)addr);
1331
1332        host->last_cmd = command;
1333        host->last_byte = 0;
1334        host->last_addr = addr;
1335
1336        switch (command) {
1337        case NAND_CMD_RESET:
1338                native_cmd = CMD_FLASH_RESET;
1339                break;
1340        case NAND_CMD_STATUS:
1341                native_cmd = CMD_STATUS_READ;
1342                break;
1343        case NAND_CMD_READID:
1344                native_cmd = CMD_DEVICE_ID_READ;
1345                break;
1346        case NAND_CMD_READOOB:
1347                native_cmd = CMD_SPARE_AREA_READ;
1348                break;
1349        case NAND_CMD_ERASE1:
1350                native_cmd = CMD_BLOCK_ERASE;
1351                brcmnand_wp(mtd, 0);
1352                break;
1353        case NAND_CMD_PARAM:
1354                native_cmd = CMD_PARAMETER_READ;
1355                break;
1356        case NAND_CMD_SET_FEATURES:
1357        case NAND_CMD_GET_FEATURES:
1358                brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1359                brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1360                break;
1361        case NAND_CMD_RNDOUT:
1362                native_cmd = CMD_PARAMETER_CHANGE_COL;
1363                addr &= ~((u64)(FC_BYTES - 1));
1364                /*
1365                 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1366                 * NB: hwcfg.sector_size_1k may not be initialized yet
1367                 */
1368                if (brcmnand_get_sector_size_1k(host)) {
1369                        host->hwcfg.sector_size_1k =
1370                                brcmnand_get_sector_size_1k(host);
1371                        brcmnand_set_sector_size_1k(host, 0);
1372                }
1373                break;
1374        }
1375
1376        if (!native_cmd)
1377                return;
1378
1379        brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1380                (host->cs << 16) | ((addr >> 32) & 0xffff));
1381        (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1382        brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
1383        (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1384
1385        brcmnand_send_cmd(host, native_cmd);
1386        brcmnand_waitfunc(mtd, chip);
1387
1388        if (native_cmd == CMD_PARAMETER_READ ||
1389                        native_cmd == CMD_PARAMETER_CHANGE_COL) {
1390                /* Copy flash cache word-wise */
1391                u32 *flash_cache = (u32 *)ctrl->flash_cache;
1392                int i;
1393
1394                brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1395
1396                /*
1397                 * Must cache the FLASH_CACHE now, since changes in
1398                 * SECTOR_SIZE_1K may invalidate it
1399                 */
1400                for (i = 0; i < FC_WORDS; i++)
1401                        /*
1402                         * Flash cache is big endian for parameter pages, at
1403                         * least on STB SoCs
1404                         */
1405                        flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1406
1407                brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1408
1409                /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1410                if (host->hwcfg.sector_size_1k)
1411                        brcmnand_set_sector_size_1k(host,
1412                                                    host->hwcfg.sector_size_1k);
1413        }
1414
1415        /* Re-enable protection is necessary only after erase */
1416        if (command == NAND_CMD_ERASE1)
1417                brcmnand_wp(mtd, 1);
1418}
1419
1420static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
1421{
1422        struct nand_chip *chip = mtd_to_nand(mtd);
1423        struct brcmnand_host *host = nand_get_controller_data(chip);
1424        struct brcmnand_controller *ctrl = host->ctrl;
1425        uint8_t ret = 0;
1426        int addr, offs;
1427
1428        switch (host->last_cmd) {
1429        case NAND_CMD_READID:
1430                if (host->last_byte < 4)
1431                        ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1432                                (24 - (host->last_byte << 3));
1433                else if (host->last_byte < 8)
1434                        ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1435                                (56 - (host->last_byte << 3));
1436                break;
1437
1438        case NAND_CMD_READOOB:
1439                ret = oob_reg_read(ctrl, host->last_byte);
1440                break;
1441
1442        case NAND_CMD_STATUS:
1443                ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1444                                        INTFC_FLASH_STATUS;
1445                if (wp_on) /* hide WP status */
1446                        ret |= NAND_STATUS_WP;
1447                break;
1448
1449        case NAND_CMD_PARAM:
1450        case NAND_CMD_RNDOUT:
1451                addr = host->last_addr + host->last_byte;
1452                offs = addr & (FC_BYTES - 1);
1453
1454                /* At FC_BYTES boundary, switch to next column */
1455                if (host->last_byte > 0 && offs == 0)
1456                        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, addr, -1);
1457
1458                ret = ctrl->flash_cache[offs];
1459                break;
1460        case NAND_CMD_GET_FEATURES:
1461                if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1462                        ret = 0;
1463                } else {
1464                        bool last = host->last_byte ==
1465                                ONFI_SUBFEATURE_PARAM_LEN - 1;
1466                        brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1467                        ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1468                }
1469        }
1470
1471        dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1472        host->last_byte++;
1473
1474        return ret;
1475}
1476
1477static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1478{
1479        int i;
1480
1481        for (i = 0; i < len; i++, buf++)
1482                *buf = brcmnand_read_byte(mtd);
1483}
1484
1485static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1486                                   int len)
1487{
1488        int i;
1489        struct nand_chip *chip = mtd_to_nand(mtd);
1490        struct brcmnand_host *host = nand_get_controller_data(chip);
1491
1492        switch (host->last_cmd) {
1493        case NAND_CMD_SET_FEATURES:
1494                for (i = 0; i < len; i++)
1495                        brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1496                                                  (i + 1) == len);
1497                break;
1498        default:
1499                BUG();
1500                break;
1501        }
1502}
1503
1504/**
1505 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1506 * following ahead of time:
1507 *  - Is this descriptor the beginning or end of a linked list?
1508 *  - What is the (DMA) address of the next descriptor in the linked list?
1509 */
1510static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1511                                  struct brcm_nand_dma_desc *desc, u64 addr,
1512                                  dma_addr_t buf, u32 len, u8 dma_cmd,
1513                                  bool begin, bool end,
1514                                  dma_addr_t next_desc)
1515{
1516        memset(desc, 0, sizeof(*desc));
1517        /* Descriptors are written in native byte order (wordwise) */
1518        desc->next_desc = lower_32_bits(next_desc);
1519        desc->next_desc_ext = upper_32_bits(next_desc);
1520        desc->cmd_irq = (dma_cmd << 24) |
1521                (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1522                (!!begin) | ((!!end) << 1); /* head, tail */
1523#ifdef CONFIG_CPU_BIG_ENDIAN
1524        desc->cmd_irq |= 0x01 << 12;
1525#endif
1526        desc->dram_addr = lower_32_bits(buf);
1527        desc->dram_addr_ext = upper_32_bits(buf);
1528        desc->tfr_len = len;
1529        desc->total_len = len;
1530        desc->flash_addr = lower_32_bits(addr);
1531        desc->flash_addr_ext = upper_32_bits(addr);
1532        desc->cs = host->cs;
1533        desc->status_valid = 0x01;
1534        return 0;
1535}
1536
1537/**
1538 * Kick the FLASH_DMA engine, with a given DMA descriptor
1539 */
1540static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1541{
1542        struct brcmnand_controller *ctrl = host->ctrl;
1543        unsigned long timeo = msecs_to_jiffies(100);
1544
1545        flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1546        (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1547        flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
1548        (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1549
1550        /* Start FLASH_DMA engine */
1551        ctrl->dma_pending = true;
1552        mb(); /* flush previous writes */
1553        flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1554
1555        if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1556                dev_err(ctrl->dev,
1557                                "timeout waiting for DMA; status %#x, error status %#x\n",
1558                                flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1559                                flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1560        }
1561        ctrl->dma_pending = false;
1562        flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1563}
1564
1565static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1566                              u32 len, u8 dma_cmd)
1567{
1568        struct brcmnand_controller *ctrl = host->ctrl;
1569        dma_addr_t buf_pa;
1570        int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1571
1572        buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1573        if (dma_mapping_error(ctrl->dev, buf_pa)) {
1574                dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1575                return -ENOMEM;
1576        }
1577
1578        brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1579                                   dma_cmd, true, true, 0);
1580
1581        brcmnand_dma_run(host, ctrl->dma_pa);
1582
1583        dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1584
1585        if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1586                return -EBADMSG;
1587        else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1588                return -EUCLEAN;
1589
1590        return 0;
1591}
1592
1593/*
1594 * Assumes proper CS is already set
1595 */
1596static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1597                                u64 addr, unsigned int trans, u32 *buf,
1598                                u8 *oob, u64 *err_addr)
1599{
1600        struct brcmnand_host *host = nand_get_controller_data(chip);
1601        struct brcmnand_controller *ctrl = host->ctrl;
1602        int i, j, ret = 0;
1603
1604        /* Clear error addresses */
1605        brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
1606        brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
1607        brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
1608        brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
1609
1610        brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1611                        (host->cs << 16) | ((addr >> 32) & 0xffff));
1612        (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1613
1614        for (i = 0; i < trans; i++, addr += FC_BYTES) {
1615                brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1616                                   lower_32_bits(addr));
1617                (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1618                /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1619                brcmnand_send_cmd(host, CMD_PAGE_READ);
1620                brcmnand_waitfunc(mtd, chip);
1621
1622                if (likely(buf)) {
1623                        brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1624
1625                        for (j = 0; j < FC_WORDS; j++, buf++)
1626                                *buf = brcmnand_read_fc(ctrl, j);
1627
1628                        brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1629                }
1630
1631                if (oob)
1632                        oob += read_oob_from_regs(ctrl, i, oob,
1633                                        mtd->oobsize / trans,
1634                                        host->hwcfg.sector_size_1k);
1635
1636                if (!ret) {
1637                        *err_addr = brcmnand_read_reg(ctrl,
1638                                        BRCMNAND_UNCORR_ADDR) |
1639                                ((u64)(brcmnand_read_reg(ctrl,
1640                                                BRCMNAND_UNCORR_EXT_ADDR)
1641                                        & 0xffff) << 32);
1642                        if (*err_addr)
1643                                ret = -EBADMSG;
1644                }
1645
1646                if (!ret) {
1647                        *err_addr = brcmnand_read_reg(ctrl,
1648                                        BRCMNAND_CORR_ADDR) |
1649                                ((u64)(brcmnand_read_reg(ctrl,
1650                                                BRCMNAND_CORR_EXT_ADDR)
1651                                        & 0xffff) << 32);
1652                        if (*err_addr)
1653                                ret = -EUCLEAN;
1654                }
1655        }
1656
1657        return ret;
1658}
1659
1660/*
1661 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
1662 * error
1663 *
1664 * Because the HW ECC signals an ECC error if an erase paged has even a single
1665 * bitflip, we must check each ECC error to see if it is actually an erased
1666 * page with bitflips, not a truly corrupted page.
1667 *
1668 * On a real error, return a negative error code (-EBADMSG for ECC error), and
1669 * buf will contain raw data.
1670 * Otherwise, buf gets filled with 0xffs and return the maximum number of
1671 * bitflips-per-ECC-sector to the caller.
1672 *
1673 */
1674static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
1675                  struct nand_chip *chip, void *buf, u64 addr)
1676{
1677        int i, sas;
1678        void *oob = chip->oob_poi;
1679        int bitflips = 0;
1680        int page = addr >> chip->page_shift;
1681        int ret;
1682
1683        if (!buf) {
1684                buf = chip->buffers->databuf;
1685                /* Invalidate page cache */
1686                chip->pagebuf = -1;
1687        }
1688
1689        sas = mtd->oobsize / chip->ecc.steps;
1690
1691        /* read without ecc for verification */
1692        chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1693        ret = chip->ecc.read_page_raw(mtd, chip, buf, true, page);
1694        if (ret)
1695                return ret;
1696
1697        for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
1698                ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
1699                                                  oob, sas, NULL, 0,
1700                                                  chip->ecc.strength);
1701                if (ret < 0)
1702                        return ret;
1703
1704                bitflips = max(bitflips, ret);
1705        }
1706
1707        return bitflips;
1708}
1709
1710static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
1711                         u64 addr, unsigned int trans, u32 *buf, u8 *oob)
1712{
1713        struct brcmnand_host *host = nand_get_controller_data(chip);
1714        struct brcmnand_controller *ctrl = host->ctrl;
1715        u64 err_addr = 0;
1716        int err;
1717        bool retry = true;
1718
1719        dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
1720
1721try_dmaread:
1722        brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
1723
1724        if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1725                err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
1726                                             CMD_PAGE_READ);
1727                if (err) {
1728                        if (mtd_is_bitflip_or_eccerr(err))
1729                                err_addr = addr;
1730                        else
1731                                return -EIO;
1732                }
1733        } else {
1734                if (oob)
1735                        memset(oob, 0x99, mtd->oobsize);
1736
1737                err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1738                                               oob, &err_addr);
1739        }
1740
1741        if (mtd_is_eccerr(err)) {
1742                /*
1743                 * On controller version and 7.0, 7.1 , DMA read after a
1744                 * prior PIO read that reported uncorrectable error,
1745                 * the DMA engine captures this error following DMA read
1746                 * cleared only on subsequent DMA read, so just retry once
1747                 * to clear a possible false error reported for current DMA
1748                 * read
1749                 */
1750                if ((ctrl->nand_version == 0x0700) ||
1751                    (ctrl->nand_version == 0x0701)) {
1752                        if (retry) {
1753                                retry = false;
1754                                goto try_dmaread;
1755                        }
1756                }
1757
1758                /*
1759                 * Controller version 7.2 has hw encoder to detect erased page
1760                 * bitflips, apply sw verification for older controllers only
1761                 */
1762                if (ctrl->nand_version < 0x0702) {
1763                        err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
1764                                                              addr);
1765                        /* erased page bitflips corrected */
1766                        if (err > 0)
1767                                return err;
1768                }
1769
1770                dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
1771                        (unsigned long long)err_addr);
1772                mtd->ecc_stats.failed++;
1773                /* NAND layer expects zero on ECC errors */
1774                return 0;
1775        }
1776
1777        if (mtd_is_bitflip(err)) {
1778                unsigned int corrected = brcmnand_count_corrected(ctrl);
1779
1780                dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
1781                        (unsigned long long)err_addr);
1782                mtd->ecc_stats.corrected += corrected;
1783                /* Always exceed the software-imposed threshold */
1784                return max(mtd->bitflip_threshold, corrected);
1785        }
1786
1787        return 0;
1788}
1789
1790static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1791                              uint8_t *buf, int oob_required, int page)
1792{
1793        struct brcmnand_host *host = nand_get_controller_data(chip);
1794        u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1795
1796        return brcmnand_read(mtd, chip, host->last_addr,
1797                        mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1798}
1799
1800static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1801                                  uint8_t *buf, int oob_required, int page)
1802{
1803        struct brcmnand_host *host = nand_get_controller_data(chip);
1804        u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1805        int ret;
1806
1807        brcmnand_set_ecc_enabled(host, 0);
1808        ret = brcmnand_read(mtd, chip, host->last_addr,
1809                        mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1810        brcmnand_set_ecc_enabled(host, 1);
1811        return ret;
1812}
1813
1814static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1815                             int page)
1816{
1817        return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1818                        mtd->writesize >> FC_SHIFT,
1819                        NULL, (u8 *)chip->oob_poi);
1820}
1821
1822static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1823                                 int page)
1824{
1825        struct brcmnand_host *host = nand_get_controller_data(chip);
1826
1827        brcmnand_set_ecc_enabled(host, 0);
1828        brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1829                mtd->writesize >> FC_SHIFT,
1830                NULL, (u8 *)chip->oob_poi);
1831        brcmnand_set_ecc_enabled(host, 1);
1832        return 0;
1833}
1834
1835static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
1836                          u64 addr, const u32 *buf, u8 *oob)
1837{
1838        struct brcmnand_host *host = nand_get_controller_data(chip);
1839        struct brcmnand_controller *ctrl = host->ctrl;
1840        unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
1841        int status, ret = 0;
1842
1843        dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
1844
1845        if (unlikely((unsigned long)buf & 0x03)) {
1846                dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
1847                buf = (u32 *)((unsigned long)buf & ~0x03);
1848        }
1849
1850        brcmnand_wp(mtd, 0);
1851
1852        for (i = 0; i < ctrl->max_oob; i += 4)
1853                oob_reg_write(ctrl, i, 0xffffffff);
1854
1855        if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1856                if (brcmnand_dma_trans(host, addr, (u32 *)buf,
1857                                        mtd->writesize, CMD_PROGRAM_PAGE))
1858                        ret = -EIO;
1859                goto out;
1860        }
1861
1862        brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1863                        (host->cs << 16) | ((addr >> 32) & 0xffff));
1864        (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1865
1866        for (i = 0; i < trans; i++, addr += FC_BYTES) {
1867                /* full address MUST be set before populating FC */
1868                brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1869                                   lower_32_bits(addr));
1870                (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1871
1872                if (buf) {
1873                        brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1874
1875                        for (j = 0; j < FC_WORDS; j++, buf++)
1876                                brcmnand_write_fc(ctrl, j, *buf);
1877
1878                        brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1879                } else if (oob) {
1880                        for (j = 0; j < FC_WORDS; j++)
1881                                brcmnand_write_fc(ctrl, j, 0xffffffff);
1882                }
1883
1884                if (oob) {
1885                        oob += write_oob_to_regs(ctrl, i, oob,
1886                                        mtd->oobsize / trans,
1887                                        host->hwcfg.sector_size_1k);
1888                }
1889
1890                /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
1891                brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
1892                status = brcmnand_waitfunc(mtd, chip);
1893
1894                if (status & NAND_STATUS_FAIL) {
1895                        dev_info(ctrl->dev, "program failed at %llx\n",
1896                                (unsigned long long)addr);
1897                        ret = -EIO;
1898                        goto out;
1899                }
1900        }
1901out:
1902        brcmnand_wp(mtd, 1);
1903        return ret;
1904}
1905
1906static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1907                               const uint8_t *buf, int oob_required, int page)
1908{
1909        struct brcmnand_host *host = nand_get_controller_data(chip);
1910        void *oob = oob_required ? chip->oob_poi : NULL;
1911
1912        brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1913        return 0;
1914}
1915
1916static int brcmnand_write_page_raw(struct mtd_info *mtd,
1917                                   struct nand_chip *chip, const uint8_t *buf,
1918                                   int oob_required, int page)
1919{
1920        struct brcmnand_host *host = nand_get_controller_data(chip);
1921        void *oob = oob_required ? chip->oob_poi : NULL;
1922
1923        brcmnand_set_ecc_enabled(host, 0);
1924        brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1925        brcmnand_set_ecc_enabled(host, 1);
1926        return 0;
1927}
1928
1929static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1930                                  int page)
1931{
1932        return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
1933                                  NULL, chip->oob_poi);
1934}
1935
1936static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1937                                  int page)
1938{
1939        struct brcmnand_host *host = nand_get_controller_data(chip);
1940        int ret;
1941
1942        brcmnand_set_ecc_enabled(host, 0);
1943        ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
1944                                 (u8 *)chip->oob_poi);
1945        brcmnand_set_ecc_enabled(host, 1);
1946
1947        return ret;
1948}
1949
1950/***********************************************************************
1951 * Per-CS setup (1 NAND device)
1952 ***********************************************************************/
1953
1954static int brcmnand_set_cfg(struct brcmnand_host *host,
1955                            struct brcmnand_cfg *cfg)
1956{
1957        struct brcmnand_controller *ctrl = host->ctrl;
1958        struct nand_chip *chip = &host->chip;
1959        u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
1960        u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
1961                        BRCMNAND_CS_CFG_EXT);
1962        u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1963                        BRCMNAND_CS_ACC_CONTROL);
1964        u8 block_size = 0, page_size = 0, device_size = 0;
1965        u32 tmp;
1966
1967        if (ctrl->block_sizes) {
1968                int i, found;
1969
1970                for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
1971                        if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
1972                                block_size = i;
1973                                found = 1;
1974                        }
1975                if (!found) {
1976                        dev_warn(ctrl->dev, "invalid block size %u\n",
1977                                        cfg->block_size);
1978                        return -EINVAL;
1979                }
1980        } else {
1981                block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
1982        }
1983
1984        if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
1985                                cfg->block_size > ctrl->max_block_size)) {
1986                dev_warn(ctrl->dev, "invalid block size %u\n",
1987                                cfg->block_size);
1988                block_size = 0;
1989        }
1990
1991        if (ctrl->page_sizes) {
1992                int i, found;
1993
1994                for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
1995                        if (ctrl->page_sizes[i] == cfg->page_size) {
1996                                page_size = i;
1997                                found = 1;
1998                        }
1999                if (!found) {
2000                        dev_warn(ctrl->dev, "invalid page size %u\n",
2001                                        cfg->page_size);
2002                        return -EINVAL;
2003                }
2004        } else {
2005                page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2006        }
2007
2008        if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2009                                cfg->page_size > ctrl->max_page_size)) {
2010                dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2011                return -EINVAL;
2012        }
2013
2014        if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2015                dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2016                        (unsigned long long)cfg->device_size);
2017                return -EINVAL;
2018        }
2019        device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2020
2021        tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2022                (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2023                (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2024                (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2025                (device_size << CFG_DEVICE_SIZE_SHIFT);
2026        if (cfg_offs == cfg_ext_offs) {
2027                tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
2028                       (block_size << CFG_BLK_SIZE_SHIFT);
2029                nand_writereg(ctrl, cfg_offs, tmp);
2030        } else {
2031                nand_writereg(ctrl, cfg_offs, tmp);
2032                tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2033                      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2034                nand_writereg(ctrl, cfg_ext_offs, tmp);
2035        }
2036
2037        tmp = nand_readreg(ctrl, acc_control_offs);
2038        tmp &= ~brcmnand_ecc_level_mask(ctrl);
2039        tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2040        tmp &= ~brcmnand_spare_area_mask(ctrl);
2041        tmp |= cfg->spare_area_size;
2042        nand_writereg(ctrl, acc_control_offs, tmp);
2043
2044        brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2045
2046        /* threshold = ceil(BCH-level * 0.75) */
2047        brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2048
2049        return 0;
2050}
2051
2052static void brcmnand_print_cfg(struct brcmnand_host *host,
2053                               char *buf, struct brcmnand_cfg *cfg)
2054{
2055        buf += sprintf(buf,
2056                "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2057                (unsigned long long)cfg->device_size >> 20,
2058                cfg->block_size >> 10,
2059                cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2060                cfg->page_size >= 1024 ? "KiB" : "B",
2061                cfg->spare_area_size, cfg->device_width);
2062
2063        /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2064        if (is_hamming_ecc(host->ctrl, cfg))
2065                sprintf(buf, ", Hamming ECC");
2066        else if (cfg->sector_size_1k)
2067                sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2068        else
2069                sprintf(buf, ", BCH-%u", cfg->ecc_level);
2070}
2071
2072/*
2073 * Minimum number of bytes to address a page. Calculated as:
2074 *     roundup(log2(size / page-size) / 8)
2075 *
2076 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2077 *     OK because many other things will break if 'size' is irregular...
2078 */
2079static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2080{
2081        return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2082}
2083
2084static int brcmnand_setup_dev(struct brcmnand_host *host)
2085{
2086        struct mtd_info *mtd = nand_to_mtd(&host->chip);
2087        struct nand_chip *chip = &host->chip;
2088        struct brcmnand_controller *ctrl = host->ctrl;
2089        struct brcmnand_cfg *cfg = &host->hwcfg;
2090        char msg[128];
2091        u32 offs, tmp, oob_sector;
2092        int ret;
2093
2094        memset(cfg, 0, sizeof(*cfg));
2095
2096        ret = of_property_read_u32(nand_get_flash_node(chip),
2097                                   "brcm,nand-oob-sector-size",
2098                                   &oob_sector);
2099        if (ret) {
2100                /* Use detected size */
2101                cfg->spare_area_size = mtd->oobsize /
2102                                        (mtd->writesize >> FC_SHIFT);
2103        } else {
2104                cfg->spare_area_size = oob_sector;
2105        }
2106        if (cfg->spare_area_size > ctrl->max_oob)
2107                cfg->spare_area_size = ctrl->max_oob;
2108        /*
2109         * Set oobsize to be consistent with controller's spare_area_size, as
2110         * the rest is inaccessible.
2111         */
2112        mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2113
2114        cfg->device_size = mtd->size;
2115        cfg->block_size = mtd->erasesize;
2116        cfg->page_size = mtd->writesize;
2117        cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2118        cfg->col_adr_bytes = 2;
2119        cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2120
2121        if (chip->ecc.mode != NAND_ECC_HW) {
2122                dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2123                        chip->ecc.mode);
2124                return -EINVAL;
2125        }
2126
2127        if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
2128                if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2129                        /* Default to Hamming for 1-bit ECC, if unspecified */
2130                        chip->ecc.algo = NAND_ECC_HAMMING;
2131                else
2132                        /* Otherwise, BCH */
2133                        chip->ecc.algo = NAND_ECC_BCH;
2134        }
2135
2136        if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
2137                                                   chip->ecc.size != 512)) {
2138                dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2139                        chip->ecc.strength, chip->ecc.size);
2140                return -EINVAL;
2141        }
2142
2143        switch (chip->ecc.size) {
2144        case 512:
2145                if (chip->ecc.algo == NAND_ECC_HAMMING)
2146                        cfg->ecc_level = 15;
2147                else
2148                        cfg->ecc_level = chip->ecc.strength;
2149                cfg->sector_size_1k = 0;
2150                break;
2151        case 1024:
2152                if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2153                        dev_err(ctrl->dev, "1KB sectors not supported\n");
2154                        return -EINVAL;
2155                }
2156                if (chip->ecc.strength & 0x1) {
2157                        dev_err(ctrl->dev,
2158                                "odd ECC not supported with 1KB sectors\n");
2159                        return -EINVAL;
2160                }
2161
2162                cfg->ecc_level = chip->ecc.strength >> 1;
2163                cfg->sector_size_1k = 1;
2164                break;
2165        default:
2166                dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2167                        chip->ecc.size);
2168                return -EINVAL;
2169        }
2170
2171        cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2172        if (mtd->writesize > 512)
2173                cfg->ful_adr_bytes += cfg->col_adr_bytes;
2174        else
2175                cfg->ful_adr_bytes += 1;
2176
2177        ret = brcmnand_set_cfg(host, cfg);
2178        if (ret)
2179                return ret;
2180
2181        brcmnand_set_ecc_enabled(host, 1);
2182
2183        brcmnand_print_cfg(host, msg, cfg);
2184        dev_info(ctrl->dev, "detected %s\n", msg);
2185
2186        /* Configure ACC_CONTROL */
2187        offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2188        tmp = nand_readreg(ctrl, offs);
2189        tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2190        tmp &= ~ACC_CONTROL_RD_ERASED;
2191
2192        /* We need to turn on Read from erased paged protected by ECC */
2193        if (ctrl->nand_version >= 0x0702)
2194                tmp |= ACC_CONTROL_RD_ERASED;
2195        tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2196        if (ctrl->features & BRCMNAND_HAS_PREFETCH) {
2197                /*
2198                 * FIXME: Flash DMA + prefetch may see spurious erased-page ECC
2199                 * errors
2200                 */
2201                if (has_flash_dma(ctrl))
2202                        tmp &= ~ACC_CONTROL_PREFETCH;
2203                else
2204                        tmp |= ACC_CONTROL_PREFETCH;
2205        }
2206        nand_writereg(ctrl, offs, tmp);
2207
2208        return 0;
2209}
2210
2211static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2212{
2213        struct brcmnand_controller *ctrl = host->ctrl;
2214        struct platform_device *pdev = host->pdev;
2215        struct mtd_info *mtd;
2216        struct nand_chip *chip;
2217        int ret;
2218        u16 cfg_offs;
2219
2220        ret = of_property_read_u32(dn, "reg", &host->cs);
2221        if (ret) {
2222                dev_err(&pdev->dev, "can't get chip-select\n");
2223                return -ENXIO;
2224        }
2225
2226        mtd = nand_to_mtd(&host->chip);
2227        chip = &host->chip;
2228
2229        nand_set_flash_node(chip, dn);
2230        nand_set_controller_data(chip, host);
2231        mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2232                                   host->cs);
2233        mtd->owner = THIS_MODULE;
2234        mtd->dev.parent = &pdev->dev;
2235
2236        chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
2237        chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;
2238
2239        chip->cmd_ctrl = brcmnand_cmd_ctrl;
2240        chip->cmdfunc = brcmnand_cmdfunc;
2241        chip->waitfunc = brcmnand_waitfunc;
2242        chip->read_byte = brcmnand_read_byte;
2243        chip->read_buf = brcmnand_read_buf;
2244        chip->write_buf = brcmnand_write_buf;
2245
2246        chip->ecc.mode = NAND_ECC_HW;
2247        chip->ecc.read_page = brcmnand_read_page;
2248        chip->ecc.write_page = brcmnand_write_page;
2249        chip->ecc.read_page_raw = brcmnand_read_page_raw;
2250        chip->ecc.write_page_raw = brcmnand_write_page_raw;
2251        chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2252        chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2253        chip->ecc.read_oob = brcmnand_read_oob;
2254        chip->ecc.write_oob = brcmnand_write_oob;
2255
2256        chip->controller = &ctrl->controller;
2257
2258        /*
2259         * The bootloader might have configured 16bit mode but
2260         * NAND READID command only works in 8bit mode. We force
2261         * 8bit mode here to ensure that NAND READID commands works.
2262         */
2263        cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2264        nand_writereg(ctrl, cfg_offs,
2265                      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2266
2267        ret = nand_scan_ident(mtd, 1, NULL);
2268        if (ret)
2269                return ret;
2270
2271        chip->options |= NAND_NO_SUBPAGE_WRITE;
2272        /*
2273         * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2274         * to/from, and have nand_base pass us a bounce buffer instead, as
2275         * needed.
2276         */
2277        chip->options |= NAND_USE_BOUNCE_BUFFER;
2278
2279        if (chip->bbt_options & NAND_BBT_USE_FLASH)
2280                chip->bbt_options |= NAND_BBT_NO_OOB;
2281
2282        if (brcmnand_setup_dev(host))
2283                return -ENXIO;
2284
2285        chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2286        /* only use our internal HW threshold */
2287        mtd->bitflip_threshold = 1;
2288
2289        ret = brcmstb_choose_ecc_layout(host);
2290        if (ret)
2291                return ret;
2292
2293        ret = nand_scan_tail(mtd);
2294        if (ret)
2295                return ret;
2296
2297        return mtd_device_register(mtd, NULL, 0);
2298}
2299
2300static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2301                                            int restore)
2302{
2303        struct brcmnand_controller *ctrl = host->ctrl;
2304        u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2305        u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2306                        BRCMNAND_CS_CFG_EXT);
2307        u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2308                        BRCMNAND_CS_ACC_CONTROL);
2309        u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2310        u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2311
2312        if (restore) {
2313                nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2314                if (cfg_offs != cfg_ext_offs)
2315                        nand_writereg(ctrl, cfg_ext_offs,
2316                                      host->hwcfg.config_ext);
2317                nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2318                nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2319                nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2320        } else {
2321                host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2322                if (cfg_offs != cfg_ext_offs)
2323                        host->hwcfg.config_ext =
2324                                nand_readreg(ctrl, cfg_ext_offs);
2325                host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2326                host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2327                host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2328        }
2329}
2330
2331static int brcmnand_suspend(struct device *dev)
2332{
2333        struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2334        struct brcmnand_host *host;
2335
2336        list_for_each_entry(host, &ctrl->host_list, node)
2337                brcmnand_save_restore_cs_config(host, 0);
2338
2339        ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2340        ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2341        ctrl->corr_stat_threshold =
2342                brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2343
2344        if (has_flash_dma(ctrl))
2345                ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2346
2347        return 0;
2348}
2349
2350static int brcmnand_resume(struct device *dev)
2351{
2352        struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2353        struct brcmnand_host *host;
2354
2355        if (has_flash_dma(ctrl)) {
2356                flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2357                flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2358        }
2359
2360        brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2361        brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2362        brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2363                        ctrl->corr_stat_threshold);
2364        if (ctrl->soc) {
2365                /* Clear/re-enable interrupt */
2366                ctrl->soc->ctlrdy_ack(ctrl->soc);
2367                ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2368        }
2369
2370        list_for_each_entry(host, &ctrl->host_list, node) {
2371                struct nand_chip *chip = &host->chip;
2372                struct mtd_info *mtd = nand_to_mtd(chip);
2373
2374                brcmnand_save_restore_cs_config(host, 1);
2375
2376                /* Reset the chip, required by some chips after power-up */
2377                chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2378        }
2379
2380        return 0;
2381}
2382
2383const struct dev_pm_ops brcmnand_pm_ops = {
2384        .suspend                = brcmnand_suspend,
2385        .resume                 = brcmnand_resume,
2386};
2387EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2388
2389static const struct of_device_id brcmnand_of_match[] = {
2390        { .compatible = "brcm,brcmnand-v4.0" },
2391        { .compatible = "brcm,brcmnand-v5.0" },
2392        { .compatible = "brcm,brcmnand-v6.0" },
2393        { .compatible = "brcm,brcmnand-v6.1" },
2394        { .compatible = "brcm,brcmnand-v6.2" },
2395        { .compatible = "brcm,brcmnand-v7.0" },
2396        { .compatible = "brcm,brcmnand-v7.1" },
2397        { .compatible = "brcm,brcmnand-v7.2" },
2398        {},
2399};
2400MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2401
2402/***********************************************************************
2403 * Platform driver setup (per controller)
2404 ***********************************************************************/
2405
2406int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2407{
2408        struct device *dev = &pdev->dev;
2409        struct device_node *dn = dev->of_node, *child;
2410        struct brcmnand_controller *ctrl;
2411        struct resource *res;
2412        int ret;
2413
2414        /* We only support device-tree instantiation */
2415        if (!dn)
2416                return -ENODEV;
2417
2418        if (!of_match_node(brcmnand_of_match, dn))
2419                return -ENODEV;
2420
2421        ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2422        if (!ctrl)
2423                return -ENOMEM;
2424
2425        dev_set_drvdata(dev, ctrl);
2426        ctrl->dev = dev;
2427
2428        init_completion(&ctrl->done);
2429        init_completion(&ctrl->dma_done);
2430        nand_hw_control_init(&ctrl->controller);
2431        INIT_LIST_HEAD(&ctrl->host_list);
2432
2433        /* NAND register range */
2434        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2435        ctrl->nand_base = devm_ioremap_resource(dev, res);
2436        if (IS_ERR(ctrl->nand_base))
2437                return PTR_ERR(ctrl->nand_base);
2438
2439        /* Enable clock before using NAND registers */
2440        ctrl->clk = devm_clk_get(dev, "nand");
2441        if (!IS_ERR(ctrl->clk)) {
2442                ret = clk_prepare_enable(ctrl->clk);
2443                if (ret)
2444                        return ret;
2445        } else {
2446                ret = PTR_ERR(ctrl->clk);
2447                if (ret == -EPROBE_DEFER)
2448                        return ret;
2449
2450                ctrl->clk = NULL;
2451        }
2452
2453        /* Initialize NAND revision */
2454        ret = brcmnand_revision_init(ctrl);
2455        if (ret)
2456                goto err;
2457
2458        /*
2459         * Most chips have this cache at a fixed offset within 'nand' block.
2460         * Some must specify this region separately.
2461         */
2462        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2463        if (res) {
2464                ctrl->nand_fc = devm_ioremap_resource(dev, res);
2465                if (IS_ERR(ctrl->nand_fc)) {
2466                        ret = PTR_ERR(ctrl->nand_fc);
2467                        goto err;
2468                }
2469        } else {
2470                ctrl->nand_fc = ctrl->nand_base +
2471                                ctrl->reg_offsets[BRCMNAND_FC_BASE];
2472        }
2473
2474        /* FLASH_DMA */
2475        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2476        if (res) {
2477                ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2478                if (IS_ERR(ctrl->flash_dma_base)) {
2479                        ret = PTR_ERR(ctrl->flash_dma_base);
2480                        goto err;
2481                }
2482
2483                flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
2484                flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2485
2486                /* Allocate descriptor(s) */
2487                ctrl->dma_desc = dmam_alloc_coherent(dev,
2488                                                     sizeof(*ctrl->dma_desc),
2489                                                     &ctrl->dma_pa, GFP_KERNEL);
2490                if (!ctrl->dma_desc) {
2491                        ret = -ENOMEM;
2492                        goto err;
2493                }
2494
2495                ctrl->dma_irq = platform_get_irq(pdev, 1);
2496                if ((int)ctrl->dma_irq < 0) {
2497                        dev_err(dev, "missing FLASH_DMA IRQ\n");
2498                        ret = -ENODEV;
2499                        goto err;
2500                }
2501
2502                ret = devm_request_irq(dev, ctrl->dma_irq,
2503                                brcmnand_dma_irq, 0, DRV_NAME,
2504                                ctrl);
2505                if (ret < 0) {
2506                        dev_err(dev, "can't allocate IRQ %d: error %d\n",
2507                                        ctrl->dma_irq, ret);
2508                        goto err;
2509                }
2510
2511                dev_info(dev, "enabling FLASH_DMA\n");
2512        }
2513
2514        /* Disable automatic device ID config, direct addressing */
2515        brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2516                         CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2517        /* Disable XOR addressing */
2518        brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2519
2520        if (ctrl->features & BRCMNAND_HAS_WP) {
2521                /* Permanently disable write protection */
2522                if (wp_on == 2)
2523                        brcmnand_set_wp(ctrl, false);
2524        } else {
2525                wp_on = 0;
2526        }
2527
2528        /* IRQ */
2529        ctrl->irq = platform_get_irq(pdev, 0);
2530        if ((int)ctrl->irq < 0) {
2531                dev_err(dev, "no IRQ defined\n");
2532                ret = -ENODEV;
2533                goto err;
2534        }
2535
2536        /*
2537         * Some SoCs integrate this controller (e.g., its interrupt bits) in
2538         * interesting ways
2539         */
2540        if (soc) {
2541                ctrl->soc = soc;
2542
2543                ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2544                                       DRV_NAME, ctrl);
2545
2546                /* Enable interrupt */
2547                ctrl->soc->ctlrdy_ack(ctrl->soc);
2548                ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2549        } else {
2550                /* Use standard interrupt infrastructure */
2551                ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2552                                       DRV_NAME, ctrl);
2553        }
2554        if (ret < 0) {
2555                dev_err(dev, "can't allocate IRQ %d: error %d\n",
2556                        ctrl->irq, ret);
2557                goto err;
2558        }
2559
2560        for_each_available_child_of_node(dn, child) {
2561                if (of_device_is_compatible(child, "brcm,nandcs")) {
2562                        struct brcmnand_host *host;
2563
2564                        host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2565                        if (!host) {
2566                                of_node_put(child);
2567                                ret = -ENOMEM;
2568                                goto err;
2569                        }
2570                        host->pdev = pdev;
2571                        host->ctrl = ctrl;
2572
2573                        ret = brcmnand_init_cs(host, child);
2574                        if (ret) {
2575                                devm_kfree(dev, host);
2576                                continue; /* Try all chip-selects */
2577                        }
2578
2579                        list_add_tail(&host->node, &ctrl->host_list);
2580                }
2581        }
2582
2583        /* No chip-selects could initialize properly */
2584        if (list_empty(&ctrl->host_list)) {
2585                ret = -ENODEV;
2586                goto err;
2587        }
2588
2589        return 0;
2590
2591err:
2592        clk_disable_unprepare(ctrl->clk);
2593        return ret;
2594
2595}
2596EXPORT_SYMBOL_GPL(brcmnand_probe);
2597
2598int brcmnand_remove(struct platform_device *pdev)
2599{
2600        struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2601        struct brcmnand_host *host;
2602
2603        list_for_each_entry(host, &ctrl->host_list, node)
2604                nand_release(nand_to_mtd(&host->chip));
2605
2606        clk_disable_unprepare(ctrl->clk);
2607
2608        dev_set_drvdata(&pdev->dev, NULL);
2609
2610        return 0;
2611}
2612EXPORT_SYMBOL_GPL(brcmnand_remove);
2613
2614MODULE_LICENSE("GPL v2");
2615MODULE_AUTHOR("Kevin Cernekee");
2616MODULE_AUTHOR("Brian Norris");
2617MODULE_DESCRIPTION("NAND driver for Broadcom chips");
2618MODULE_ALIAS("platform:brcmnand");
2619