linux/drivers/net/ethernet/chelsio/cxgb3/l2t.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
  32#include <linux/skbuff.h>
  33#include <linux/netdevice.h>
  34#include <linux/if.h>
  35#include <linux/if_vlan.h>
  36#include <linux/jhash.h>
  37#include <linux/slab.h>
  38#include <linux/export.h>
  39#include <net/neighbour.h>
  40#include "common.h"
  41#include "t3cdev.h"
  42#include "cxgb3_defs.h"
  43#include "l2t.h"
  44#include "t3_cpl.h"
  45#include "firmware_exports.h"
  46
  47#define VLAN_NONE 0xfff
  48
  49/*
  50 * Module locking notes:  There is a RW lock protecting the L2 table as a
  51 * whole plus a spinlock per L2T entry.  Entry lookups and allocations happen
  52 * under the protection of the table lock, individual entry changes happen
  53 * while holding that entry's spinlock.  The table lock nests outside the
  54 * entry locks.  Allocations of new entries take the table lock as writers so
  55 * no other lookups can happen while allocating new entries.  Entry updates
  56 * take the table lock as readers so multiple entries can be updated in
  57 * parallel.  An L2T entry can be dropped by decrementing its reference count
  58 * and therefore can happen in parallel with entry allocation but no entry
  59 * can change state or increment its ref count during allocation as both of
  60 * these perform lookups.
  61 */
  62
  63static inline unsigned int vlan_prio(const struct l2t_entry *e)
  64{
  65        return e->vlan >> 13;
  66}
  67
  68static inline unsigned int arp_hash(u32 key, int ifindex,
  69                                    const struct l2t_data *d)
  70{
  71        return jhash_2words(key, ifindex, 0) & (d->nentries - 1);
  72}
  73
  74static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n)
  75{
  76        neigh_hold(n);
  77        if (e->neigh)
  78                neigh_release(e->neigh);
  79        e->neigh = n;
  80}
  81
  82/*
  83 * Set up an L2T entry and send any packets waiting in the arp queue.  The
  84 * supplied skb is used for the CPL_L2T_WRITE_REQ.  Must be called with the
  85 * entry locked.
  86 */
  87static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb,
  88                                  struct l2t_entry *e)
  89{
  90        struct cpl_l2t_write_req *req;
  91        struct sk_buff *tmp;
  92
  93        if (!skb) {
  94                skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
  95                if (!skb)
  96                        return -ENOMEM;
  97        }
  98
  99        req = __skb_put(skb, sizeof(*req));
 100        req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
 101        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx));
 102        req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) |
 103                            V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) |
 104                            V_L2T_W_PRIO(vlan_prio(e)));
 105        memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
 106        memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
 107        skb->priority = CPL_PRIORITY_CONTROL;
 108        cxgb3_ofld_send(dev, skb);
 109
 110        skb_queue_walk_safe(&e->arpq, skb, tmp) {
 111                __skb_unlink(skb, &e->arpq);
 112                cxgb3_ofld_send(dev, skb);
 113        }
 114        e->state = L2T_STATE_VALID;
 115
 116        return 0;
 117}
 118
 119/*
 120 * Add a packet to the an L2T entry's queue of packets awaiting resolution.
 121 * Must be called with the entry's lock held.
 122 */
 123static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
 124{
 125        __skb_queue_tail(&e->arpq, skb);
 126}
 127
 128int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb,
 129                     struct l2t_entry *e)
 130{
 131again:
 132        switch (e->state) {
 133        case L2T_STATE_STALE:   /* entry is stale, kick off revalidation */
 134                neigh_event_send(e->neigh, NULL);
 135                spin_lock_bh(&e->lock);
 136                if (e->state == L2T_STATE_STALE)
 137                        e->state = L2T_STATE_VALID;
 138                spin_unlock_bh(&e->lock);
 139        case L2T_STATE_VALID:   /* fast-path, send the packet on */
 140                return cxgb3_ofld_send(dev, skb);
 141        case L2T_STATE_RESOLVING:
 142                spin_lock_bh(&e->lock);
 143                if (e->state != L2T_STATE_RESOLVING) {
 144                        /* ARP already completed */
 145                        spin_unlock_bh(&e->lock);
 146                        goto again;
 147                }
 148                arpq_enqueue(e, skb);
 149                spin_unlock_bh(&e->lock);
 150
 151                /*
 152                 * Only the first packet added to the arpq should kick off
 153                 * resolution.  However, because the alloc_skb below can fail,
 154                 * we allow each packet added to the arpq to retry resolution
 155                 * as a way of recovering from transient memory exhaustion.
 156                 * A better way would be to use a work request to retry L2T
 157                 * entries when there's no memory.
 158                 */
 159                if (!neigh_event_send(e->neigh, NULL)) {
 160                        skb = alloc_skb(sizeof(struct cpl_l2t_write_req),
 161                                        GFP_ATOMIC);
 162                        if (!skb)
 163                                break;
 164
 165                        spin_lock_bh(&e->lock);
 166                        if (!skb_queue_empty(&e->arpq))
 167                                setup_l2e_send_pending(dev, skb, e);
 168                        else    /* we lost the race */
 169                                __kfree_skb(skb);
 170                        spin_unlock_bh(&e->lock);
 171                }
 172        }
 173        return 0;
 174}
 175
 176EXPORT_SYMBOL(t3_l2t_send_slow);
 177
 178void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e)
 179{
 180again:
 181        switch (e->state) {
 182        case L2T_STATE_STALE:   /* entry is stale, kick off revalidation */
 183                neigh_event_send(e->neigh, NULL);
 184                spin_lock_bh(&e->lock);
 185                if (e->state == L2T_STATE_STALE) {
 186                        e->state = L2T_STATE_VALID;
 187                }
 188                spin_unlock_bh(&e->lock);
 189                return;
 190        case L2T_STATE_VALID:   /* fast-path, send the packet on */
 191                return;
 192        case L2T_STATE_RESOLVING:
 193                spin_lock_bh(&e->lock);
 194                if (e->state != L2T_STATE_RESOLVING) {
 195                        /* ARP already completed */
 196                        spin_unlock_bh(&e->lock);
 197                        goto again;
 198                }
 199                spin_unlock_bh(&e->lock);
 200
 201                /*
 202                 * Only the first packet added to the arpq should kick off
 203                 * resolution.  However, because the alloc_skb below can fail,
 204                 * we allow each packet added to the arpq to retry resolution
 205                 * as a way of recovering from transient memory exhaustion.
 206                 * A better way would be to use a work request to retry L2T
 207                 * entries when there's no memory.
 208                 */
 209                neigh_event_send(e->neigh, NULL);
 210        }
 211}
 212
 213EXPORT_SYMBOL(t3_l2t_send_event);
 214
 215/*
 216 * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
 217 */
 218static struct l2t_entry *alloc_l2e(struct l2t_data *d)
 219{
 220        struct l2t_entry *end, *e, **p;
 221
 222        if (!atomic_read(&d->nfree))
 223                return NULL;
 224
 225        /* there's definitely a free entry */
 226        for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e)
 227                if (atomic_read(&e->refcnt) == 0)
 228                        goto found;
 229
 230        for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ;
 231found:
 232        d->rover = e + 1;
 233        atomic_dec(&d->nfree);
 234
 235        /*
 236         * The entry we found may be an inactive entry that is
 237         * presently in the hash table.  We need to remove it.
 238         */
 239        if (e->state != L2T_STATE_UNUSED) {
 240                int hash = arp_hash(e->addr, e->ifindex, d);
 241
 242                for (p = &d->l2tab[hash].first; *p; p = &(*p)->next)
 243                        if (*p == e) {
 244                                *p = e->next;
 245                                break;
 246                        }
 247                e->state = L2T_STATE_UNUSED;
 248        }
 249        return e;
 250}
 251
 252/*
 253 * Called when an L2T entry has no more users.  The entry is left in the hash
 254 * table since it is likely to be reused but we also bump nfree to indicate
 255 * that the entry can be reallocated for a different neighbor.  We also drop
 256 * the existing neighbor reference in case the neighbor is going away and is
 257 * waiting on our reference.
 258 *
 259 * Because entries can be reallocated to other neighbors once their ref count
 260 * drops to 0 we need to take the entry's lock to avoid races with a new
 261 * incarnation.
 262 */
 263void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e)
 264{
 265        spin_lock_bh(&e->lock);
 266        if (atomic_read(&e->refcnt) == 0) {     /* hasn't been recycled */
 267                if (e->neigh) {
 268                        neigh_release(e->neigh);
 269                        e->neigh = NULL;
 270                }
 271        }
 272        spin_unlock_bh(&e->lock);
 273        atomic_inc(&d->nfree);
 274}
 275
 276EXPORT_SYMBOL(t3_l2e_free);
 277
 278/*
 279 * Update an L2T entry that was previously used for the same next hop as neigh.
 280 * Must be called with softirqs disabled.
 281 */
 282static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
 283{
 284        unsigned int nud_state;
 285
 286        spin_lock(&e->lock);    /* avoid race with t3_l2t_free */
 287
 288        if (neigh != e->neigh)
 289                neigh_replace(e, neigh);
 290        nud_state = neigh->nud_state;
 291        if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
 292            !(nud_state & NUD_VALID))
 293                e->state = L2T_STATE_RESOLVING;
 294        else if (nud_state & NUD_CONNECTED)
 295                e->state = L2T_STATE_VALID;
 296        else
 297                e->state = L2T_STATE_STALE;
 298        spin_unlock(&e->lock);
 299}
 300
 301struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct dst_entry *dst,
 302                             struct net_device *dev, const void *daddr)
 303{
 304        struct l2t_entry *e = NULL;
 305        struct neighbour *neigh;
 306        struct port_info *p;
 307        struct l2t_data *d;
 308        int hash;
 309        u32 addr;
 310        int ifidx;
 311        int smt_idx;
 312
 313        rcu_read_lock();
 314        neigh = dst_neigh_lookup(dst, daddr);
 315        if (!neigh)
 316                goto done_rcu;
 317
 318        addr = *(u32 *) neigh->primary_key;
 319        ifidx = neigh->dev->ifindex;
 320
 321        if (!dev)
 322                dev = neigh->dev;
 323        p = netdev_priv(dev);
 324        smt_idx = p->port_id;
 325
 326        d = L2DATA(cdev);
 327        if (!d)
 328                goto done_rcu;
 329
 330        hash = arp_hash(addr, ifidx, d);
 331
 332        write_lock_bh(&d->lock);
 333        for (e = d->l2tab[hash].first; e; e = e->next)
 334                if (e->addr == addr && e->ifindex == ifidx &&
 335                    e->smt_idx == smt_idx) {
 336                        l2t_hold(d, e);
 337                        if (atomic_read(&e->refcnt) == 1)
 338                                reuse_entry(e, neigh);
 339                        goto done_unlock;
 340                }
 341
 342        /* Need to allocate a new entry */
 343        e = alloc_l2e(d);
 344        if (e) {
 345                spin_lock(&e->lock);    /* avoid race with t3_l2t_free */
 346                e->next = d->l2tab[hash].first;
 347                d->l2tab[hash].first = e;
 348                e->state = L2T_STATE_RESOLVING;
 349                e->addr = addr;
 350                e->ifindex = ifidx;
 351                e->smt_idx = smt_idx;
 352                atomic_set(&e->refcnt, 1);
 353                neigh_replace(e, neigh);
 354                if (is_vlan_dev(neigh->dev))
 355                        e->vlan = vlan_dev_vlan_id(neigh->dev);
 356                else
 357                        e->vlan = VLAN_NONE;
 358                spin_unlock(&e->lock);
 359        }
 360done_unlock:
 361        write_unlock_bh(&d->lock);
 362done_rcu:
 363        if (neigh)
 364                neigh_release(neigh);
 365        rcu_read_unlock();
 366        return e;
 367}
 368
 369EXPORT_SYMBOL(t3_l2t_get);
 370
 371/*
 372 * Called when address resolution fails for an L2T entry to handle packets
 373 * on the arpq head.  If a packet specifies a failure handler it is invoked,
 374 * otherwise the packets is sent to the offload device.
 375 *
 376 * XXX: maybe we should abandon the latter behavior and just require a failure
 377 * handler.
 378 */
 379static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff_head *arpq)
 380{
 381        struct sk_buff *skb, *tmp;
 382
 383        skb_queue_walk_safe(arpq, skb, tmp) {
 384                struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
 385
 386                __skb_unlink(skb, arpq);
 387                if (cb->arp_failure_handler)
 388                        cb->arp_failure_handler(dev, skb);
 389                else
 390                        cxgb3_ofld_send(dev, skb);
 391        }
 392}
 393
 394/*
 395 * Called when the host's ARP layer makes a change to some entry that is
 396 * loaded into the HW L2 table.
 397 */
 398void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh)
 399{
 400        struct sk_buff_head arpq;
 401        struct l2t_entry *e;
 402        struct l2t_data *d = L2DATA(dev);
 403        u32 addr = *(u32 *) neigh->primary_key;
 404        int ifidx = neigh->dev->ifindex;
 405        int hash = arp_hash(addr, ifidx, d);
 406
 407        read_lock_bh(&d->lock);
 408        for (e = d->l2tab[hash].first; e; e = e->next)
 409                if (e->addr == addr && e->ifindex == ifidx) {
 410                        spin_lock(&e->lock);
 411                        goto found;
 412                }
 413        read_unlock_bh(&d->lock);
 414        return;
 415
 416found:
 417        __skb_queue_head_init(&arpq);
 418
 419        read_unlock(&d->lock);
 420        if (atomic_read(&e->refcnt)) {
 421                if (neigh != e->neigh)
 422                        neigh_replace(e, neigh);
 423
 424                if (e->state == L2T_STATE_RESOLVING) {
 425                        if (neigh->nud_state & NUD_FAILED) {
 426                                skb_queue_splice_init(&e->arpq, &arpq);
 427                        } else if (neigh->nud_state & (NUD_CONNECTED|NUD_STALE))
 428                                setup_l2e_send_pending(dev, NULL, e);
 429                } else {
 430                        e->state = neigh->nud_state & NUD_CONNECTED ?
 431                            L2T_STATE_VALID : L2T_STATE_STALE;
 432                        if (!ether_addr_equal(e->dmac, neigh->ha))
 433                                setup_l2e_send_pending(dev, NULL, e);
 434                }
 435        }
 436        spin_unlock_bh(&e->lock);
 437
 438        if (!skb_queue_empty(&arpq))
 439                handle_failed_resolution(dev, &arpq);
 440}
 441
 442struct l2t_data *t3_init_l2t(unsigned int l2t_capacity)
 443{
 444        struct l2t_data *d;
 445        int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry);
 446
 447        d = kvzalloc(size, GFP_KERNEL);
 448        if (!d)
 449                return NULL;
 450
 451        d->nentries = l2t_capacity;
 452        d->rover = &d->l2tab[1];        /* entry 0 is not used */
 453        atomic_set(&d->nfree, l2t_capacity - 1);
 454        rwlock_init(&d->lock);
 455
 456        for (i = 0; i < l2t_capacity; ++i) {
 457                d->l2tab[i].idx = i;
 458                d->l2tab[i].state = L2T_STATE_UNUSED;
 459                __skb_queue_head_init(&d->l2tab[i].arpq);
 460                spin_lock_init(&d->l2tab[i].lock);
 461                atomic_set(&d->l2tab[i].refcnt, 0);
 462        }
 463        return d;
 464}
 465