linux/drivers/net/ethernet/intel/e1000e/phy.c
<<
>>
Prefs
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22#include "e1000.h"
  23
  24static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  25static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  26                                          u16 *data, bool read, bool page_set);
  27static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  28static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  29                                          u16 *data, bool read);
  30
  31/* Cable length tables */
  32static const u16 e1000_m88_cable_length_table[] = {
  33        0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  34};
  35
  36#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  37                ARRAY_SIZE(e1000_m88_cable_length_table)
  38
  39static const u16 e1000_igp_2_cable_length_table[] = {
  40        0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  41        6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  42        26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  43        44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  44        66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  45        87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  46        100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  47        124
  48};
  49
  50#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  51                ARRAY_SIZE(e1000_igp_2_cable_length_table)
  52
  53/**
  54 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  55 *  @hw: pointer to the HW structure
  56 *
  57 *  Read the PHY management control register and check whether a PHY reset
  58 *  is blocked.  If a reset is not blocked return 0, otherwise
  59 *  return E1000_BLK_PHY_RESET (12).
  60 **/
  61s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  62{
  63        u32 manc;
  64
  65        manc = er32(MANC);
  66
  67        return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  68}
  69
  70/**
  71 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  72 *  @hw: pointer to the HW structure
  73 *
  74 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  75 *  revision in the hardware structure.
  76 **/
  77s32 e1000e_get_phy_id(struct e1000_hw *hw)
  78{
  79        struct e1000_phy_info *phy = &hw->phy;
  80        s32 ret_val = 0;
  81        u16 phy_id;
  82        u16 retry_count = 0;
  83
  84        if (!phy->ops.read_reg)
  85                return 0;
  86
  87        while (retry_count < 2) {
  88                ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  89                if (ret_val)
  90                        return ret_val;
  91
  92                phy->id = (u32)(phy_id << 16);
  93                usleep_range(20, 40);
  94                ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  95                if (ret_val)
  96                        return ret_val;
  97
  98                phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  99                phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 100
 101                if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 102                        return 0;
 103
 104                retry_count++;
 105        }
 106
 107        return 0;
 108}
 109
 110/**
 111 *  e1000e_phy_reset_dsp - Reset PHY DSP
 112 *  @hw: pointer to the HW structure
 113 *
 114 *  Reset the digital signal processor.
 115 **/
 116s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 117{
 118        s32 ret_val;
 119
 120        ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 121        if (ret_val)
 122                return ret_val;
 123
 124        return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 125}
 126
 127/**
 128 *  e1000e_read_phy_reg_mdic - Read MDI control register
 129 *  @hw: pointer to the HW structure
 130 *  @offset: register offset to be read
 131 *  @data: pointer to the read data
 132 *
 133 *  Reads the MDI control register in the PHY at offset and stores the
 134 *  information read to data.
 135 **/
 136s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 137{
 138        struct e1000_phy_info *phy = &hw->phy;
 139        u32 i, mdic = 0;
 140
 141        if (offset > MAX_PHY_REG_ADDRESS) {
 142                e_dbg("PHY Address %d is out of range\n", offset);
 143                return -E1000_ERR_PARAM;
 144        }
 145
 146        /* Set up Op-code, Phy Address, and register offset in the MDI
 147         * Control register.  The MAC will take care of interfacing with the
 148         * PHY to retrieve the desired data.
 149         */
 150        mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 151                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 152                (E1000_MDIC_OP_READ));
 153
 154        ew32(MDIC, mdic);
 155
 156        /* Poll the ready bit to see if the MDI read completed
 157         * Increasing the time out as testing showed failures with
 158         * the lower time out
 159         */
 160        for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 161                udelay(50);
 162                mdic = er32(MDIC);
 163                if (mdic & E1000_MDIC_READY)
 164                        break;
 165        }
 166        if (!(mdic & E1000_MDIC_READY)) {
 167                e_dbg("MDI Read did not complete\n");
 168                return -E1000_ERR_PHY;
 169        }
 170        if (mdic & E1000_MDIC_ERROR) {
 171                e_dbg("MDI Error\n");
 172                return -E1000_ERR_PHY;
 173        }
 174        if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 175                e_dbg("MDI Read offset error - requested %d, returned %d\n",
 176                      offset,
 177                      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 178                return -E1000_ERR_PHY;
 179        }
 180        *data = (u16)mdic;
 181
 182        /* Allow some time after each MDIC transaction to avoid
 183         * reading duplicate data in the next MDIC transaction.
 184         */
 185        if (hw->mac.type == e1000_pch2lan)
 186                udelay(100);
 187
 188        return 0;
 189}
 190
 191/**
 192 *  e1000e_write_phy_reg_mdic - Write MDI control register
 193 *  @hw: pointer to the HW structure
 194 *  @offset: register offset to write to
 195 *  @data: data to write to register at offset
 196 *
 197 *  Writes data to MDI control register in the PHY at offset.
 198 **/
 199s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 200{
 201        struct e1000_phy_info *phy = &hw->phy;
 202        u32 i, mdic = 0;
 203
 204        if (offset > MAX_PHY_REG_ADDRESS) {
 205                e_dbg("PHY Address %d is out of range\n", offset);
 206                return -E1000_ERR_PARAM;
 207        }
 208
 209        /* Set up Op-code, Phy Address, and register offset in the MDI
 210         * Control register.  The MAC will take care of interfacing with the
 211         * PHY to retrieve the desired data.
 212         */
 213        mdic = (((u32)data) |
 214                (offset << E1000_MDIC_REG_SHIFT) |
 215                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 216                (E1000_MDIC_OP_WRITE));
 217
 218        ew32(MDIC, mdic);
 219
 220        /* Poll the ready bit to see if the MDI read completed
 221         * Increasing the time out as testing showed failures with
 222         * the lower time out
 223         */
 224        for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 225                udelay(50);
 226                mdic = er32(MDIC);
 227                if (mdic & E1000_MDIC_READY)
 228                        break;
 229        }
 230        if (!(mdic & E1000_MDIC_READY)) {
 231                e_dbg("MDI Write did not complete\n");
 232                return -E1000_ERR_PHY;
 233        }
 234        if (mdic & E1000_MDIC_ERROR) {
 235                e_dbg("MDI Error\n");
 236                return -E1000_ERR_PHY;
 237        }
 238        if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 239                e_dbg("MDI Write offset error - requested %d, returned %d\n",
 240                      offset,
 241                      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 242                return -E1000_ERR_PHY;
 243        }
 244
 245        /* Allow some time after each MDIC transaction to avoid
 246         * reading duplicate data in the next MDIC transaction.
 247         */
 248        if (hw->mac.type == e1000_pch2lan)
 249                udelay(100);
 250
 251        return 0;
 252}
 253
 254/**
 255 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 256 *  @hw: pointer to the HW structure
 257 *  @offset: register offset to be read
 258 *  @data: pointer to the read data
 259 *
 260 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 261 *  and storing the retrieved information in data.  Release any acquired
 262 *  semaphores before exiting.
 263 **/
 264s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 265{
 266        s32 ret_val;
 267
 268        ret_val = hw->phy.ops.acquire(hw);
 269        if (ret_val)
 270                return ret_val;
 271
 272        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 273                                           data);
 274
 275        hw->phy.ops.release(hw);
 276
 277        return ret_val;
 278}
 279
 280/**
 281 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 282 *  @hw: pointer to the HW structure
 283 *  @offset: register offset to write to
 284 *  @data: data to write at register offset
 285 *
 286 *  Acquires semaphore, if necessary, then writes the data to PHY register
 287 *  at the offset.  Release any acquired semaphores before exiting.
 288 **/
 289s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 290{
 291        s32 ret_val;
 292
 293        ret_val = hw->phy.ops.acquire(hw);
 294        if (ret_val)
 295                return ret_val;
 296
 297        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 298                                            data);
 299
 300        hw->phy.ops.release(hw);
 301
 302        return ret_val;
 303}
 304
 305/**
 306 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 307 *  @hw: pointer to the HW structure
 308 *  @page: page to set (shifted left when necessary)
 309 *
 310 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 311 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 312 *  must set it appropriately (if necessary) after this function returns.
 313 **/
 314s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 315{
 316        e_dbg("Setting page 0x%x\n", page);
 317
 318        hw->phy.addr = 1;
 319
 320        return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 321}
 322
 323/**
 324 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 325 *  @hw: pointer to the HW structure
 326 *  @offset: register offset to be read
 327 *  @data: pointer to the read data
 328 *  @locked: semaphore has already been acquired or not
 329 *
 330 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 331 *  and stores the retrieved information in data.  Release any acquired
 332 *  semaphores before exiting.
 333 **/
 334static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 335                                     bool locked)
 336{
 337        s32 ret_val = 0;
 338
 339        if (!locked) {
 340                if (!hw->phy.ops.acquire)
 341                        return 0;
 342
 343                ret_val = hw->phy.ops.acquire(hw);
 344                if (ret_val)
 345                        return ret_val;
 346        }
 347
 348        if (offset > MAX_PHY_MULTI_PAGE_REG)
 349                ret_val = e1000e_write_phy_reg_mdic(hw,
 350                                                    IGP01E1000_PHY_PAGE_SELECT,
 351                                                    (u16)offset);
 352        if (!ret_val)
 353                ret_val = e1000e_read_phy_reg_mdic(hw,
 354                                                   MAX_PHY_REG_ADDRESS & offset,
 355                                                   data);
 356        if (!locked)
 357                hw->phy.ops.release(hw);
 358
 359        return ret_val;
 360}
 361
 362/**
 363 *  e1000e_read_phy_reg_igp - Read igp PHY register
 364 *  @hw: pointer to the HW structure
 365 *  @offset: register offset to be read
 366 *  @data: pointer to the read data
 367 *
 368 *  Acquires semaphore then reads the PHY register at offset and stores the
 369 *  retrieved information in data.
 370 *  Release the acquired semaphore before exiting.
 371 **/
 372s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 373{
 374        return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 375}
 376
 377/**
 378 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 379 *  @hw: pointer to the HW structure
 380 *  @offset: register offset to be read
 381 *  @data: pointer to the read data
 382 *
 383 *  Reads the PHY register at offset and stores the retrieved information
 384 *  in data.  Assumes semaphore already acquired.
 385 **/
 386s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 387{
 388        return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 389}
 390
 391/**
 392 *  e1000e_write_phy_reg_igp - Write igp PHY register
 393 *  @hw: pointer to the HW structure
 394 *  @offset: register offset to write to
 395 *  @data: data to write at register offset
 396 *  @locked: semaphore has already been acquired or not
 397 *
 398 *  Acquires semaphore, if necessary, then writes the data to PHY register
 399 *  at the offset.  Release any acquired semaphores before exiting.
 400 **/
 401static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 402                                      bool locked)
 403{
 404        s32 ret_val = 0;
 405
 406        if (!locked) {
 407                if (!hw->phy.ops.acquire)
 408                        return 0;
 409
 410                ret_val = hw->phy.ops.acquire(hw);
 411                if (ret_val)
 412                        return ret_val;
 413        }
 414
 415        if (offset > MAX_PHY_MULTI_PAGE_REG)
 416                ret_val = e1000e_write_phy_reg_mdic(hw,
 417                                                    IGP01E1000_PHY_PAGE_SELECT,
 418                                                    (u16)offset);
 419        if (!ret_val)
 420                ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 421                                                    offset, data);
 422        if (!locked)
 423                hw->phy.ops.release(hw);
 424
 425        return ret_val;
 426}
 427
 428/**
 429 *  e1000e_write_phy_reg_igp - Write igp PHY register
 430 *  @hw: pointer to the HW structure
 431 *  @offset: register offset to write to
 432 *  @data: data to write at register offset
 433 *
 434 *  Acquires semaphore then writes the data to PHY register
 435 *  at the offset.  Release any acquired semaphores before exiting.
 436 **/
 437s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 438{
 439        return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 440}
 441
 442/**
 443 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 444 *  @hw: pointer to the HW structure
 445 *  @offset: register offset to write to
 446 *  @data: data to write at register offset
 447 *
 448 *  Writes the data to PHY register at the offset.
 449 *  Assumes semaphore already acquired.
 450 **/
 451s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 452{
 453        return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 454}
 455
 456/**
 457 *  __e1000_read_kmrn_reg - Read kumeran register
 458 *  @hw: pointer to the HW structure
 459 *  @offset: register offset to be read
 460 *  @data: pointer to the read data
 461 *  @locked: semaphore has already been acquired or not
 462 *
 463 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 464 *  using the kumeran interface.  The information retrieved is stored in data.
 465 *  Release any acquired semaphores before exiting.
 466 **/
 467static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 468                                 bool locked)
 469{
 470        u32 kmrnctrlsta;
 471
 472        if (!locked) {
 473                s32 ret_val = 0;
 474
 475                if (!hw->phy.ops.acquire)
 476                        return 0;
 477
 478                ret_val = hw->phy.ops.acquire(hw);
 479                if (ret_val)
 480                        return ret_val;
 481        }
 482
 483        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 484                       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 485        ew32(KMRNCTRLSTA, kmrnctrlsta);
 486        e1e_flush();
 487
 488        udelay(2);
 489
 490        kmrnctrlsta = er32(KMRNCTRLSTA);
 491        *data = (u16)kmrnctrlsta;
 492
 493        if (!locked)
 494                hw->phy.ops.release(hw);
 495
 496        return 0;
 497}
 498
 499/**
 500 *  e1000e_read_kmrn_reg -  Read kumeran register
 501 *  @hw: pointer to the HW structure
 502 *  @offset: register offset to be read
 503 *  @data: pointer to the read data
 504 *
 505 *  Acquires semaphore then reads the PHY register at offset using the
 506 *  kumeran interface.  The information retrieved is stored in data.
 507 *  Release the acquired semaphore before exiting.
 508 **/
 509s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 510{
 511        return __e1000_read_kmrn_reg(hw, offset, data, false);
 512}
 513
 514/**
 515 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 516 *  @hw: pointer to the HW structure
 517 *  @offset: register offset to be read
 518 *  @data: pointer to the read data
 519 *
 520 *  Reads the PHY register at offset using the kumeran interface.  The
 521 *  information retrieved is stored in data.
 522 *  Assumes semaphore already acquired.
 523 **/
 524s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 525{
 526        return __e1000_read_kmrn_reg(hw, offset, data, true);
 527}
 528
 529/**
 530 *  __e1000_write_kmrn_reg - Write kumeran register
 531 *  @hw: pointer to the HW structure
 532 *  @offset: register offset to write to
 533 *  @data: data to write at register offset
 534 *  @locked: semaphore has already been acquired or not
 535 *
 536 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 537 *  at the offset using the kumeran interface.  Release any acquired semaphores
 538 *  before exiting.
 539 **/
 540static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 541                                  bool locked)
 542{
 543        u32 kmrnctrlsta;
 544
 545        if (!locked) {
 546                s32 ret_val = 0;
 547
 548                if (!hw->phy.ops.acquire)
 549                        return 0;
 550
 551                ret_val = hw->phy.ops.acquire(hw);
 552                if (ret_val)
 553                        return ret_val;
 554        }
 555
 556        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 557                       E1000_KMRNCTRLSTA_OFFSET) | data;
 558        ew32(KMRNCTRLSTA, kmrnctrlsta);
 559        e1e_flush();
 560
 561        udelay(2);
 562
 563        if (!locked)
 564                hw->phy.ops.release(hw);
 565
 566        return 0;
 567}
 568
 569/**
 570 *  e1000e_write_kmrn_reg -  Write kumeran register
 571 *  @hw: pointer to the HW structure
 572 *  @offset: register offset to write to
 573 *  @data: data to write at register offset
 574 *
 575 *  Acquires semaphore then writes the data to the PHY register at the offset
 576 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 577 **/
 578s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 579{
 580        return __e1000_write_kmrn_reg(hw, offset, data, false);
 581}
 582
 583/**
 584 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 585 *  @hw: pointer to the HW structure
 586 *  @offset: register offset to write to
 587 *  @data: data to write at register offset
 588 *
 589 *  Write the data to PHY register at the offset using the kumeran interface.
 590 *  Assumes semaphore already acquired.
 591 **/
 592s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 593{
 594        return __e1000_write_kmrn_reg(hw, offset, data, true);
 595}
 596
 597/**
 598 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 599 *  @hw: pointer to the HW structure
 600 *
 601 *  Sets up Master/slave mode
 602 **/
 603static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 604{
 605        s32 ret_val;
 606        u16 phy_data;
 607
 608        /* Resolve Master/Slave mode */
 609        ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 610        if (ret_val)
 611                return ret_val;
 612
 613        /* load defaults for future use */
 614        hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 615            ((phy_data & CTL1000_AS_MASTER) ?
 616             e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 617
 618        switch (hw->phy.ms_type) {
 619        case e1000_ms_force_master:
 620                phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 621                break;
 622        case e1000_ms_force_slave:
 623                phy_data |= CTL1000_ENABLE_MASTER;
 624                phy_data &= ~(CTL1000_AS_MASTER);
 625                break;
 626        case e1000_ms_auto:
 627                phy_data &= ~CTL1000_ENABLE_MASTER;
 628                /* fall-through */
 629        default:
 630                break;
 631        }
 632
 633        return e1e_wphy(hw, MII_CTRL1000, phy_data);
 634}
 635
 636/**
 637 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 638 *  @hw: pointer to the HW structure
 639 *
 640 *  Sets up Carrier-sense on Transmit and downshift values.
 641 **/
 642s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 643{
 644        s32 ret_val;
 645        u16 phy_data;
 646
 647        /* Enable CRS on Tx. This must be set for half-duplex operation. */
 648        ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 649        if (ret_val)
 650                return ret_val;
 651
 652        phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 653
 654        /* Enable downshift */
 655        phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 656
 657        ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 658        if (ret_val)
 659                return ret_val;
 660
 661        /* Set MDI/MDIX mode */
 662        ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 663        if (ret_val)
 664                return ret_val;
 665        phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 666        /* Options:
 667         *   0 - Auto (default)
 668         *   1 - MDI mode
 669         *   2 - MDI-X mode
 670         */
 671        switch (hw->phy.mdix) {
 672        case 1:
 673                break;
 674        case 2:
 675                phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 676                break;
 677        case 0:
 678        default:
 679                phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 680                break;
 681        }
 682        ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 683        if (ret_val)
 684                return ret_val;
 685
 686        return e1000_set_master_slave_mode(hw);
 687}
 688
 689/**
 690 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 691 *  @hw: pointer to the HW structure
 692 *
 693 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 694 *  and downshift values are set also.
 695 **/
 696s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 697{
 698        struct e1000_phy_info *phy = &hw->phy;
 699        s32 ret_val;
 700        u16 phy_data;
 701
 702        /* Enable CRS on Tx. This must be set for half-duplex operation. */
 703        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 704        if (ret_val)
 705                return ret_val;
 706
 707        /* For BM PHY this bit is downshift enable */
 708        if (phy->type != e1000_phy_bm)
 709                phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 710
 711        /* Options:
 712         *   MDI/MDI-X = 0 (default)
 713         *   0 - Auto for all speeds
 714         *   1 - MDI mode
 715         *   2 - MDI-X mode
 716         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 717         */
 718        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 719
 720        switch (phy->mdix) {
 721        case 1:
 722                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 723                break;
 724        case 2:
 725                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 726                break;
 727        case 3:
 728                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 729                break;
 730        case 0:
 731        default:
 732                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 733                break;
 734        }
 735
 736        /* Options:
 737         *   disable_polarity_correction = 0 (default)
 738         *       Automatic Correction for Reversed Cable Polarity
 739         *   0 - Disabled
 740         *   1 - Enabled
 741         */
 742        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 743        if (phy->disable_polarity_correction)
 744                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 745
 746        /* Enable downshift on BM (disabled by default) */
 747        if (phy->type == e1000_phy_bm) {
 748                /* For 82574/82583, first disable then enable downshift */
 749                if (phy->id == BME1000_E_PHY_ID_R2) {
 750                        phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 751                        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 752                                           phy_data);
 753                        if (ret_val)
 754                                return ret_val;
 755                        /* Commit the changes. */
 756                        ret_val = phy->ops.commit(hw);
 757                        if (ret_val) {
 758                                e_dbg("Error committing the PHY changes\n");
 759                                return ret_val;
 760                        }
 761                }
 762
 763                phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 764        }
 765
 766        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 767        if (ret_val)
 768                return ret_val;
 769
 770        if ((phy->type == e1000_phy_m88) &&
 771            (phy->revision < E1000_REVISION_4) &&
 772            (phy->id != BME1000_E_PHY_ID_R2)) {
 773                /* Force TX_CLK in the Extended PHY Specific Control Register
 774                 * to 25MHz clock.
 775                 */
 776                ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 777                if (ret_val)
 778                        return ret_val;
 779
 780                phy_data |= M88E1000_EPSCR_TX_CLK_25;
 781
 782                if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 783                        /* 82573L PHY - set the downshift counter to 5x. */
 784                        phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 785                        phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 786                } else {
 787                        /* Configure Master and Slave downshift values */
 788                        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 789                                      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 790                        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 791                                     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 792                }
 793                ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 794                if (ret_val)
 795                        return ret_val;
 796        }
 797
 798        if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 799                /* Set PHY page 0, register 29 to 0x0003 */
 800                ret_val = e1e_wphy(hw, 29, 0x0003);
 801                if (ret_val)
 802                        return ret_val;
 803
 804                /* Set PHY page 0, register 30 to 0x0000 */
 805                ret_val = e1e_wphy(hw, 30, 0x0000);
 806                if (ret_val)
 807                        return ret_val;
 808        }
 809
 810        /* Commit the changes. */
 811        if (phy->ops.commit) {
 812                ret_val = phy->ops.commit(hw);
 813                if (ret_val) {
 814                        e_dbg("Error committing the PHY changes\n");
 815                        return ret_val;
 816                }
 817        }
 818
 819        if (phy->type == e1000_phy_82578) {
 820                ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 821                if (ret_val)
 822                        return ret_val;
 823
 824                /* 82578 PHY - set the downshift count to 1x. */
 825                phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 826                phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 827                ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 828                if (ret_val)
 829                        return ret_val;
 830        }
 831
 832        return 0;
 833}
 834
 835/**
 836 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 837 *  @hw: pointer to the HW structure
 838 *
 839 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 840 *  igp PHY's.
 841 **/
 842s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 843{
 844        struct e1000_phy_info *phy = &hw->phy;
 845        s32 ret_val;
 846        u16 data;
 847
 848        ret_val = e1000_phy_hw_reset(hw);
 849        if (ret_val) {
 850                e_dbg("Error resetting the PHY.\n");
 851                return ret_val;
 852        }
 853
 854        /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 855         * timeout issues when LFS is enabled.
 856         */
 857        msleep(100);
 858
 859        /* disable lplu d0 during driver init */
 860        if (hw->phy.ops.set_d0_lplu_state) {
 861                ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 862                if (ret_val) {
 863                        e_dbg("Error Disabling LPLU D0\n");
 864                        return ret_val;
 865                }
 866        }
 867        /* Configure mdi-mdix settings */
 868        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 869        if (ret_val)
 870                return ret_val;
 871
 872        data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 873
 874        switch (phy->mdix) {
 875        case 1:
 876                data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 877                break;
 878        case 2:
 879                data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 880                break;
 881        case 0:
 882        default:
 883                data |= IGP01E1000_PSCR_AUTO_MDIX;
 884                break;
 885        }
 886        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 887        if (ret_val)
 888                return ret_val;
 889
 890        /* set auto-master slave resolution settings */
 891        if (hw->mac.autoneg) {
 892                /* when autonegotiation advertisement is only 1000Mbps then we
 893                 * should disable SmartSpeed and enable Auto MasterSlave
 894                 * resolution as hardware default.
 895                 */
 896                if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 897                        /* Disable SmartSpeed */
 898                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 899                                           &data);
 900                        if (ret_val)
 901                                return ret_val;
 902
 903                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 904                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 905                                           data);
 906                        if (ret_val)
 907                                return ret_val;
 908
 909                        /* Set auto Master/Slave resolution process */
 910                        ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 911                        if (ret_val)
 912                                return ret_val;
 913
 914                        data &= ~CTL1000_ENABLE_MASTER;
 915                        ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 916                        if (ret_val)
 917                                return ret_val;
 918                }
 919
 920                ret_val = e1000_set_master_slave_mode(hw);
 921        }
 922
 923        return ret_val;
 924}
 925
 926/**
 927 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 928 *  @hw: pointer to the HW structure
 929 *
 930 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 931 *  register and if the PHY is already setup for auto-negotiation, then
 932 *  return successful.  Otherwise, setup advertisement and flow control to
 933 *  the appropriate values for the wanted auto-negotiation.
 934 **/
 935static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 936{
 937        struct e1000_phy_info *phy = &hw->phy;
 938        s32 ret_val;
 939        u16 mii_autoneg_adv_reg;
 940        u16 mii_1000t_ctrl_reg = 0;
 941
 942        phy->autoneg_advertised &= phy->autoneg_mask;
 943
 944        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
 945        ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 946        if (ret_val)
 947                return ret_val;
 948
 949        if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 950                /* Read the MII 1000Base-T Control Register (Address 9). */
 951                ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 952                if (ret_val)
 953                        return ret_val;
 954        }
 955
 956        /* Need to parse both autoneg_advertised and fc and set up
 957         * the appropriate PHY registers.  First we will parse for
 958         * autoneg_advertised software override.  Since we can advertise
 959         * a plethora of combinations, we need to check each bit
 960         * individually.
 961         */
 962
 963        /* First we clear all the 10/100 mb speed bits in the Auto-Neg
 964         * Advertisement Register (Address 4) and the 1000 mb speed bits in
 965         * the  1000Base-T Control Register (Address 9).
 966         */
 967        mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 968                                 ADVERTISE_100HALF |
 969                                 ADVERTISE_10FULL | ADVERTISE_10HALF);
 970        mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 971
 972        e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 973
 974        /* Do we want to advertise 10 Mb Half Duplex? */
 975        if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 976                e_dbg("Advertise 10mb Half duplex\n");
 977                mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 978        }
 979
 980        /* Do we want to advertise 10 Mb Full Duplex? */
 981        if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 982                e_dbg("Advertise 10mb Full duplex\n");
 983                mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 984        }
 985
 986        /* Do we want to advertise 100 Mb Half Duplex? */
 987        if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 988                e_dbg("Advertise 100mb Half duplex\n");
 989                mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 990        }
 991
 992        /* Do we want to advertise 100 Mb Full Duplex? */
 993        if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 994                e_dbg("Advertise 100mb Full duplex\n");
 995                mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 996        }
 997
 998        /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 999        if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1000                e_dbg("Advertise 1000mb Half duplex request denied!\n");
1001
1002        /* Do we want to advertise 1000 Mb Full Duplex? */
1003        if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1004                e_dbg("Advertise 1000mb Full duplex\n");
1005                mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1006        }
1007
1008        /* Check for a software override of the flow control settings, and
1009         * setup the PHY advertisement registers accordingly.  If
1010         * auto-negotiation is enabled, then software will have to set the
1011         * "PAUSE" bits to the correct value in the Auto-Negotiation
1012         * Advertisement Register (MII_ADVERTISE) and re-start auto-
1013         * negotiation.
1014         *
1015         * The possible values of the "fc" parameter are:
1016         *      0:  Flow control is completely disabled
1017         *      1:  Rx flow control is enabled (we can receive pause frames
1018         *          but not send pause frames).
1019         *      2:  Tx flow control is enabled (we can send pause frames
1020         *          but we do not support receiving pause frames).
1021         *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1022         *  other:  No software override.  The flow control configuration
1023         *          in the EEPROM is used.
1024         */
1025        switch (hw->fc.current_mode) {
1026        case e1000_fc_none:
1027                /* Flow control (Rx & Tx) is completely disabled by a
1028                 * software over-ride.
1029                 */
1030                mii_autoneg_adv_reg &=
1031                    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1032                break;
1033        case e1000_fc_rx_pause:
1034                /* Rx Flow control is enabled, and Tx Flow control is
1035                 * disabled, by a software over-ride.
1036                 *
1037                 * Since there really isn't a way to advertise that we are
1038                 * capable of Rx Pause ONLY, we will advertise that we
1039                 * support both symmetric and asymmetric Rx PAUSE.  Later
1040                 * (in e1000e_config_fc_after_link_up) we will disable the
1041                 * hw's ability to send PAUSE frames.
1042                 */
1043                mii_autoneg_adv_reg |=
1044                    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1045                break;
1046        case e1000_fc_tx_pause:
1047                /* Tx Flow control is enabled, and Rx Flow control is
1048                 * disabled, by a software over-ride.
1049                 */
1050                mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1051                mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1052                break;
1053        case e1000_fc_full:
1054                /* Flow control (both Rx and Tx) is enabled by a software
1055                 * over-ride.
1056                 */
1057                mii_autoneg_adv_reg |=
1058                    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1059                break;
1060        default:
1061                e_dbg("Flow control param set incorrectly\n");
1062                return -E1000_ERR_CONFIG;
1063        }
1064
1065        ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1066        if (ret_val)
1067                return ret_val;
1068
1069        e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1070
1071        if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1072                ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1073
1074        return ret_val;
1075}
1076
1077/**
1078 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1079 *  @hw: pointer to the HW structure
1080 *
1081 *  Performs initial bounds checking on autoneg advertisement parameter, then
1082 *  configure to advertise the full capability.  Setup the PHY to autoneg
1083 *  and restart the negotiation process between the link partner.  If
1084 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1085 **/
1086static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1087{
1088        struct e1000_phy_info *phy = &hw->phy;
1089        s32 ret_val;
1090        u16 phy_ctrl;
1091
1092        /* Perform some bounds checking on the autoneg advertisement
1093         * parameter.
1094         */
1095        phy->autoneg_advertised &= phy->autoneg_mask;
1096
1097        /* If autoneg_advertised is zero, we assume it was not defaulted
1098         * by the calling code so we set to advertise full capability.
1099         */
1100        if (!phy->autoneg_advertised)
1101                phy->autoneg_advertised = phy->autoneg_mask;
1102
1103        e_dbg("Reconfiguring auto-neg advertisement params\n");
1104        ret_val = e1000_phy_setup_autoneg(hw);
1105        if (ret_val) {
1106                e_dbg("Error Setting up Auto-Negotiation\n");
1107                return ret_val;
1108        }
1109        e_dbg("Restarting Auto-Neg\n");
1110
1111        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1112         * the Auto Neg Restart bit in the PHY control register.
1113         */
1114        ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1115        if (ret_val)
1116                return ret_val;
1117
1118        phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1119        ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1120        if (ret_val)
1121                return ret_val;
1122
1123        /* Does the user want to wait for Auto-Neg to complete here, or
1124         * check at a later time (for example, callback routine).
1125         */
1126        if (phy->autoneg_wait_to_complete) {
1127                ret_val = e1000_wait_autoneg(hw);
1128                if (ret_val) {
1129                        e_dbg("Error while waiting for autoneg to complete\n");
1130                        return ret_val;
1131                }
1132        }
1133
1134        hw->mac.get_link_status = true;
1135
1136        return ret_val;
1137}
1138
1139/**
1140 *  e1000e_setup_copper_link - Configure copper link settings
1141 *  @hw: pointer to the HW structure
1142 *
1143 *  Calls the appropriate function to configure the link for auto-neg or forced
1144 *  speed and duplex.  Then we check for link, once link is established calls
1145 *  to configure collision distance and flow control are called.  If link is
1146 *  not established, we return -E1000_ERR_PHY (-2).
1147 **/
1148s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1149{
1150        s32 ret_val;
1151        bool link;
1152
1153        if (hw->mac.autoneg) {
1154                /* Setup autoneg and flow control advertisement and perform
1155                 * autonegotiation.
1156                 */
1157                ret_val = e1000_copper_link_autoneg(hw);
1158                if (ret_val)
1159                        return ret_val;
1160        } else {
1161                /* PHY will be set to 10H, 10F, 100H or 100F
1162                 * depending on user settings.
1163                 */
1164                e_dbg("Forcing Speed and Duplex\n");
1165                ret_val = hw->phy.ops.force_speed_duplex(hw);
1166                if (ret_val) {
1167                        e_dbg("Error Forcing Speed and Duplex\n");
1168                        return ret_val;
1169                }
1170        }
1171
1172        /* Check link status. Wait up to 100 microseconds for link to become
1173         * valid.
1174         */
1175        ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1176                                              &link);
1177        if (ret_val)
1178                return ret_val;
1179
1180        if (link) {
1181                e_dbg("Valid link established!!!\n");
1182                hw->mac.ops.config_collision_dist(hw);
1183                ret_val = e1000e_config_fc_after_link_up(hw);
1184        } else {
1185                e_dbg("Unable to establish link!!!\n");
1186        }
1187
1188        return ret_val;
1189}
1190
1191/**
1192 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1193 *  @hw: pointer to the HW structure
1194 *
1195 *  Calls the PHY setup function to force speed and duplex.  Clears the
1196 *  auto-crossover to force MDI manually.  Waits for link and returns
1197 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1198 **/
1199s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1200{
1201        struct e1000_phy_info *phy = &hw->phy;
1202        s32 ret_val;
1203        u16 phy_data;
1204        bool link;
1205
1206        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1207        if (ret_val)
1208                return ret_val;
1209
1210        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1211
1212        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1213        if (ret_val)
1214                return ret_val;
1215
1216        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1217         * forced whenever speed and duplex are forced.
1218         */
1219        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1220        if (ret_val)
1221                return ret_val;
1222
1223        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1224        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1225
1226        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1227        if (ret_val)
1228                return ret_val;
1229
1230        e_dbg("IGP PSCR: %X\n", phy_data);
1231
1232        udelay(1);
1233
1234        if (phy->autoneg_wait_to_complete) {
1235                e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1236
1237                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1238                                                      100000, &link);
1239                if (ret_val)
1240                        return ret_val;
1241
1242                if (!link)
1243                        e_dbg("Link taking longer than expected.\n");
1244
1245                /* Try once more */
1246                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1247                                                      100000, &link);
1248        }
1249
1250        return ret_val;
1251}
1252
1253/**
1254 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1255 *  @hw: pointer to the HW structure
1256 *
1257 *  Calls the PHY setup function to force speed and duplex.  Clears the
1258 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1259 *  changes.  If time expires while waiting for link up, we reset the DSP.
1260 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1261 *  successful completion, else return corresponding error code.
1262 **/
1263s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1264{
1265        struct e1000_phy_info *phy = &hw->phy;
1266        s32 ret_val;
1267        u16 phy_data;
1268        bool link;
1269
1270        /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1271         * forced whenever speed and duplex are forced.
1272         */
1273        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1274        if (ret_val)
1275                return ret_val;
1276
1277        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1278        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279        if (ret_val)
1280                return ret_val;
1281
1282        e_dbg("M88E1000 PSCR: %X\n", phy_data);
1283
1284        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1285        if (ret_val)
1286                return ret_val;
1287
1288        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1289
1290        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1291        if (ret_val)
1292                return ret_val;
1293
1294        /* Reset the phy to commit changes. */
1295        if (hw->phy.ops.commit) {
1296                ret_val = hw->phy.ops.commit(hw);
1297                if (ret_val)
1298                        return ret_val;
1299        }
1300
1301        if (phy->autoneg_wait_to_complete) {
1302                e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1303
1304                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1305                                                      100000, &link);
1306                if (ret_val)
1307                        return ret_val;
1308
1309                if (!link) {
1310                        if (hw->phy.type != e1000_phy_m88) {
1311                                e_dbg("Link taking longer than expected.\n");
1312                        } else {
1313                                /* We didn't get link.
1314                                 * Reset the DSP and cross our fingers.
1315                                 */
1316                                ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1317                                                   0x001d);
1318                                if (ret_val)
1319                                        return ret_val;
1320                                ret_val = e1000e_phy_reset_dsp(hw);
1321                                if (ret_val)
1322                                        return ret_val;
1323                        }
1324                }
1325
1326                /* Try once more */
1327                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1328                                                      100000, &link);
1329                if (ret_val)
1330                        return ret_val;
1331        }
1332
1333        if (hw->phy.type != e1000_phy_m88)
1334                return 0;
1335
1336        ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1337        if (ret_val)
1338                return ret_val;
1339
1340        /* Resetting the phy means we need to re-force TX_CLK in the
1341         * Extended PHY Specific Control Register to 25MHz clock from
1342         * the reset value of 2.5MHz.
1343         */
1344        phy_data |= M88E1000_EPSCR_TX_CLK_25;
1345        ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1346        if (ret_val)
1347                return ret_val;
1348
1349        /* In addition, we must re-enable CRS on Tx for both half and full
1350         * duplex.
1351         */
1352        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1353        if (ret_val)
1354                return ret_val;
1355
1356        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1357        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1358
1359        return ret_val;
1360}
1361
1362/**
1363 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1364 *  @hw: pointer to the HW structure
1365 *
1366 *  Forces the speed and duplex settings of the PHY.
1367 *  This is a function pointer entry point only called by
1368 *  PHY setup routines.
1369 **/
1370s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1371{
1372        struct e1000_phy_info *phy = &hw->phy;
1373        s32 ret_val;
1374        u16 data;
1375        bool link;
1376
1377        ret_val = e1e_rphy(hw, MII_BMCR, &data);
1378        if (ret_val)
1379                return ret_val;
1380
1381        e1000e_phy_force_speed_duplex_setup(hw, &data);
1382
1383        ret_val = e1e_wphy(hw, MII_BMCR, data);
1384        if (ret_val)
1385                return ret_val;
1386
1387        /* Disable MDI-X support for 10/100 */
1388        ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1389        if (ret_val)
1390                return ret_val;
1391
1392        data &= ~IFE_PMC_AUTO_MDIX;
1393        data &= ~IFE_PMC_FORCE_MDIX;
1394
1395        ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1396        if (ret_val)
1397                return ret_val;
1398
1399        e_dbg("IFE PMC: %X\n", data);
1400
1401        udelay(1);
1402
1403        if (phy->autoneg_wait_to_complete) {
1404                e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1405
1406                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1407                                                      100000, &link);
1408                if (ret_val)
1409                        return ret_val;
1410
1411                if (!link)
1412                        e_dbg("Link taking longer than expected.\n");
1413
1414                /* Try once more */
1415                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1416                                                      100000, &link);
1417                if (ret_val)
1418                        return ret_val;
1419        }
1420
1421        return 0;
1422}
1423
1424/**
1425 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1426 *  @hw: pointer to the HW structure
1427 *  @phy_ctrl: pointer to current value of MII_BMCR
1428 *
1429 *  Forces speed and duplex on the PHY by doing the following: disable flow
1430 *  control, force speed/duplex on the MAC, disable auto speed detection,
1431 *  disable auto-negotiation, configure duplex, configure speed, configure
1432 *  the collision distance, write configuration to CTRL register.  The
1433 *  caller must write to the MII_BMCR register for these settings to
1434 *  take affect.
1435 **/
1436void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1437{
1438        struct e1000_mac_info *mac = &hw->mac;
1439        u32 ctrl;
1440
1441        /* Turn off flow control when forcing speed/duplex */
1442        hw->fc.current_mode = e1000_fc_none;
1443
1444        /* Force speed/duplex on the mac */
1445        ctrl = er32(CTRL);
1446        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1447        ctrl &= ~E1000_CTRL_SPD_SEL;
1448
1449        /* Disable Auto Speed Detection */
1450        ctrl &= ~E1000_CTRL_ASDE;
1451
1452        /* Disable autoneg on the phy */
1453        *phy_ctrl &= ~BMCR_ANENABLE;
1454
1455        /* Forcing Full or Half Duplex? */
1456        if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1457                ctrl &= ~E1000_CTRL_FD;
1458                *phy_ctrl &= ~BMCR_FULLDPLX;
1459                e_dbg("Half Duplex\n");
1460        } else {
1461                ctrl |= E1000_CTRL_FD;
1462                *phy_ctrl |= BMCR_FULLDPLX;
1463                e_dbg("Full Duplex\n");
1464        }
1465
1466        /* Forcing 10mb or 100mb? */
1467        if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1468                ctrl |= E1000_CTRL_SPD_100;
1469                *phy_ctrl |= BMCR_SPEED100;
1470                *phy_ctrl &= ~BMCR_SPEED1000;
1471                e_dbg("Forcing 100mb\n");
1472        } else {
1473                ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1474                *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1475                e_dbg("Forcing 10mb\n");
1476        }
1477
1478        hw->mac.ops.config_collision_dist(hw);
1479
1480        ew32(CTRL, ctrl);
1481}
1482
1483/**
1484 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1485 *  @hw: pointer to the HW structure
1486 *  @active: boolean used to enable/disable lplu
1487 *
1488 *  Success returns 0, Failure returns 1
1489 *
1490 *  The low power link up (lplu) state is set to the power management level D3
1491 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1492 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1493 *  is used during Dx states where the power conservation is most important.
1494 *  During driver activity, SmartSpeed should be enabled so performance is
1495 *  maintained.
1496 **/
1497s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1498{
1499        struct e1000_phy_info *phy = &hw->phy;
1500        s32 ret_val;
1501        u16 data;
1502
1503        ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1504        if (ret_val)
1505                return ret_val;
1506
1507        if (!active) {
1508                data &= ~IGP02E1000_PM_D3_LPLU;
1509                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1510                if (ret_val)
1511                        return ret_val;
1512                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1513                 * during Dx states where the power conservation is most
1514                 * important.  During driver activity we should enable
1515                 * SmartSpeed, so performance is maintained.
1516                 */
1517                if (phy->smart_speed == e1000_smart_speed_on) {
1518                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1519                                           &data);
1520                        if (ret_val)
1521                                return ret_val;
1522
1523                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1524                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1525                                           data);
1526                        if (ret_val)
1527                                return ret_val;
1528                } else if (phy->smart_speed == e1000_smart_speed_off) {
1529                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1530                                           &data);
1531                        if (ret_val)
1532                                return ret_val;
1533
1534                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1535                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1536                                           data);
1537                        if (ret_val)
1538                                return ret_val;
1539                }
1540        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1541                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1542                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1543                data |= IGP02E1000_PM_D3_LPLU;
1544                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1545                if (ret_val)
1546                        return ret_val;
1547
1548                /* When LPLU is enabled, we should disable SmartSpeed */
1549                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1550                if (ret_val)
1551                        return ret_val;
1552
1553                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1554                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1555        }
1556
1557        return ret_val;
1558}
1559
1560/**
1561 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1562 *  @hw: pointer to the HW structure
1563 *
1564 *  Success returns 0, Failure returns 1
1565 *
1566 *  A downshift is detected by querying the PHY link health.
1567 **/
1568s32 e1000e_check_downshift(struct e1000_hw *hw)
1569{
1570        struct e1000_phy_info *phy = &hw->phy;
1571        s32 ret_val;
1572        u16 phy_data, offset, mask;
1573
1574        switch (phy->type) {
1575        case e1000_phy_m88:
1576        case e1000_phy_gg82563:
1577        case e1000_phy_bm:
1578        case e1000_phy_82578:
1579                offset = M88E1000_PHY_SPEC_STATUS;
1580                mask = M88E1000_PSSR_DOWNSHIFT;
1581                break;
1582        case e1000_phy_igp_2:
1583        case e1000_phy_igp_3:
1584                offset = IGP01E1000_PHY_LINK_HEALTH;
1585                mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1586                break;
1587        default:
1588                /* speed downshift not supported */
1589                phy->speed_downgraded = false;
1590                return 0;
1591        }
1592
1593        ret_val = e1e_rphy(hw, offset, &phy_data);
1594
1595        if (!ret_val)
1596                phy->speed_downgraded = !!(phy_data & mask);
1597
1598        return ret_val;
1599}
1600
1601/**
1602 *  e1000_check_polarity_m88 - Checks the polarity.
1603 *  @hw: pointer to the HW structure
1604 *
1605 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1606 *
1607 *  Polarity is determined based on the PHY specific status register.
1608 **/
1609s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1610{
1611        struct e1000_phy_info *phy = &hw->phy;
1612        s32 ret_val;
1613        u16 data;
1614
1615        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1616
1617        if (!ret_val)
1618                phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1619                                       ? e1000_rev_polarity_reversed
1620                                       : e1000_rev_polarity_normal);
1621
1622        return ret_val;
1623}
1624
1625/**
1626 *  e1000_check_polarity_igp - Checks the polarity.
1627 *  @hw: pointer to the HW structure
1628 *
1629 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1630 *
1631 *  Polarity is determined based on the PHY port status register, and the
1632 *  current speed (since there is no polarity at 100Mbps).
1633 **/
1634s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1635{
1636        struct e1000_phy_info *phy = &hw->phy;
1637        s32 ret_val;
1638        u16 data, offset, mask;
1639
1640        /* Polarity is determined based on the speed of
1641         * our connection.
1642         */
1643        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1644        if (ret_val)
1645                return ret_val;
1646
1647        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1648            IGP01E1000_PSSR_SPEED_1000MBPS) {
1649                offset = IGP01E1000_PHY_PCS_INIT_REG;
1650                mask = IGP01E1000_PHY_POLARITY_MASK;
1651        } else {
1652                /* This really only applies to 10Mbps since
1653                 * there is no polarity for 100Mbps (always 0).
1654                 */
1655                offset = IGP01E1000_PHY_PORT_STATUS;
1656                mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1657        }
1658
1659        ret_val = e1e_rphy(hw, offset, &data);
1660
1661        if (!ret_val)
1662                phy->cable_polarity = ((data & mask)
1663                                       ? e1000_rev_polarity_reversed
1664                                       : e1000_rev_polarity_normal);
1665
1666        return ret_val;
1667}
1668
1669/**
1670 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1671 *  @hw: pointer to the HW structure
1672 *
1673 *  Polarity is determined on the polarity reversal feature being enabled.
1674 **/
1675s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1676{
1677        struct e1000_phy_info *phy = &hw->phy;
1678        s32 ret_val;
1679        u16 phy_data, offset, mask;
1680
1681        /* Polarity is determined based on the reversal feature being enabled.
1682         */
1683        if (phy->polarity_correction) {
1684                offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1685                mask = IFE_PESC_POLARITY_REVERSED;
1686        } else {
1687                offset = IFE_PHY_SPECIAL_CONTROL;
1688                mask = IFE_PSC_FORCE_POLARITY;
1689        }
1690
1691        ret_val = e1e_rphy(hw, offset, &phy_data);
1692
1693        if (!ret_val)
1694                phy->cable_polarity = ((phy_data & mask)
1695                                       ? e1000_rev_polarity_reversed
1696                                       : e1000_rev_polarity_normal);
1697
1698        return ret_val;
1699}
1700
1701/**
1702 *  e1000_wait_autoneg - Wait for auto-neg completion
1703 *  @hw: pointer to the HW structure
1704 *
1705 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1706 *  limit to expire, which ever happens first.
1707 **/
1708static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1709{
1710        s32 ret_val = 0;
1711        u16 i, phy_status;
1712
1713        /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1714        for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1715                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1716                if (ret_val)
1717                        break;
1718                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1719                if (ret_val)
1720                        break;
1721                if (phy_status & BMSR_ANEGCOMPLETE)
1722                        break;
1723                msleep(100);
1724        }
1725
1726        /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1727         * has completed.
1728         */
1729        return ret_val;
1730}
1731
1732/**
1733 *  e1000e_phy_has_link_generic - Polls PHY for link
1734 *  @hw: pointer to the HW structure
1735 *  @iterations: number of times to poll for link
1736 *  @usec_interval: delay between polling attempts
1737 *  @success: pointer to whether polling was successful or not
1738 *
1739 *  Polls the PHY status register for link, 'iterations' number of times.
1740 **/
1741s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1742                                u32 usec_interval, bool *success)
1743{
1744        s32 ret_val = 0;
1745        u16 i, phy_status;
1746
1747        for (i = 0; i < iterations; i++) {
1748                /* Some PHYs require the MII_BMSR register to be read
1749                 * twice due to the link bit being sticky.  No harm doing
1750                 * it across the board.
1751                 */
1752                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1753                if (ret_val) {
1754                        /* If the first read fails, another entity may have
1755                         * ownership of the resources, wait and try again to
1756                         * see if they have relinquished the resources yet.
1757                         */
1758                        if (usec_interval >= 1000)
1759                                msleep(usec_interval / 1000);
1760                        else
1761                                udelay(usec_interval);
1762                }
1763                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1764                if (ret_val)
1765                        break;
1766                if (phy_status & BMSR_LSTATUS)
1767                        break;
1768                if (usec_interval >= 1000)
1769                        msleep(usec_interval / 1000);
1770                else
1771                        udelay(usec_interval);
1772        }
1773
1774        *success = (i < iterations);
1775
1776        return ret_val;
1777}
1778
1779/**
1780 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1781 *  @hw: pointer to the HW structure
1782 *
1783 *  Reads the PHY specific status register to retrieve the cable length
1784 *  information.  The cable length is determined by averaging the minimum and
1785 *  maximum values to get the "average" cable length.  The m88 PHY has four
1786 *  possible cable length values, which are:
1787 *      Register Value          Cable Length
1788 *      0                       < 50 meters
1789 *      1                       50 - 80 meters
1790 *      2                       80 - 110 meters
1791 *      3                       110 - 140 meters
1792 *      4                       > 140 meters
1793 **/
1794s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1795{
1796        struct e1000_phy_info *phy = &hw->phy;
1797        s32 ret_val;
1798        u16 phy_data, index;
1799
1800        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1801        if (ret_val)
1802                return ret_val;
1803
1804        index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1805                 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1806
1807        if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1808                return -E1000_ERR_PHY;
1809
1810        phy->min_cable_length = e1000_m88_cable_length_table[index];
1811        phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1812
1813        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1814
1815        return 0;
1816}
1817
1818/**
1819 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1820 *  @hw: pointer to the HW structure
1821 *
1822 *  The automatic gain control (agc) normalizes the amplitude of the
1823 *  received signal, adjusting for the attenuation produced by the
1824 *  cable.  By reading the AGC registers, which represent the
1825 *  combination of coarse and fine gain value, the value can be put
1826 *  into a lookup table to obtain the approximate cable length
1827 *  for each channel.
1828 **/
1829s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1830{
1831        struct e1000_phy_info *phy = &hw->phy;
1832        s32 ret_val;
1833        u16 phy_data, i, agc_value = 0;
1834        u16 cur_agc_index, max_agc_index = 0;
1835        u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1836        static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1837                IGP02E1000_PHY_AGC_A,
1838                IGP02E1000_PHY_AGC_B,
1839                IGP02E1000_PHY_AGC_C,
1840                IGP02E1000_PHY_AGC_D
1841        };
1842
1843        /* Read the AGC registers for all channels */
1844        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1845                ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1846                if (ret_val)
1847                        return ret_val;
1848
1849                /* Getting bits 15:9, which represent the combination of
1850                 * coarse and fine gain values.  The result is a number
1851                 * that can be put into the lookup table to obtain the
1852                 * approximate cable length.
1853                 */
1854                cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1855                                 IGP02E1000_AGC_LENGTH_MASK);
1856
1857                /* Array index bound check. */
1858                if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1859                    (cur_agc_index == 0))
1860                        return -E1000_ERR_PHY;
1861
1862                /* Remove min & max AGC values from calculation. */
1863                if (e1000_igp_2_cable_length_table[min_agc_index] >
1864                    e1000_igp_2_cable_length_table[cur_agc_index])
1865                        min_agc_index = cur_agc_index;
1866                if (e1000_igp_2_cable_length_table[max_agc_index] <
1867                    e1000_igp_2_cable_length_table[cur_agc_index])
1868                        max_agc_index = cur_agc_index;
1869
1870                agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1871        }
1872
1873        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1874                      e1000_igp_2_cable_length_table[max_agc_index]);
1875        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1876
1877        /* Calculate cable length with the error range of +/- 10 meters. */
1878        phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1879                                 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1880        phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1881
1882        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1883
1884        return 0;
1885}
1886
1887/**
1888 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1889 *  @hw: pointer to the HW structure
1890 *
1891 *  Valid for only copper links.  Read the PHY status register (sticky read)
1892 *  to verify that link is up.  Read the PHY special control register to
1893 *  determine the polarity and 10base-T extended distance.  Read the PHY
1894 *  special status register to determine MDI/MDIx and current speed.  If
1895 *  speed is 1000, then determine cable length, local and remote receiver.
1896 **/
1897s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1898{
1899        struct e1000_phy_info *phy = &hw->phy;
1900        s32 ret_val;
1901        u16 phy_data;
1902        bool link;
1903
1904        if (phy->media_type != e1000_media_type_copper) {
1905                e_dbg("Phy info is only valid for copper media\n");
1906                return -E1000_ERR_CONFIG;
1907        }
1908
1909        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1910        if (ret_val)
1911                return ret_val;
1912
1913        if (!link) {
1914                e_dbg("Phy info is only valid if link is up\n");
1915                return -E1000_ERR_CONFIG;
1916        }
1917
1918        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1919        if (ret_val)
1920                return ret_val;
1921
1922        phy->polarity_correction = !!(phy_data &
1923                                      M88E1000_PSCR_POLARITY_REVERSAL);
1924
1925        ret_val = e1000_check_polarity_m88(hw);
1926        if (ret_val)
1927                return ret_val;
1928
1929        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1930        if (ret_val)
1931                return ret_val;
1932
1933        phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1934
1935        if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1936                ret_val = hw->phy.ops.get_cable_length(hw);
1937                if (ret_val)
1938                        return ret_val;
1939
1940                ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1941                if (ret_val)
1942                        return ret_val;
1943
1944                phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1945                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1946
1947                phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1948                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1949        } else {
1950                /* Set values to "undefined" */
1951                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1952                phy->local_rx = e1000_1000t_rx_status_undefined;
1953                phy->remote_rx = e1000_1000t_rx_status_undefined;
1954        }
1955
1956        return ret_val;
1957}
1958
1959/**
1960 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1961 *  @hw: pointer to the HW structure
1962 *
1963 *  Read PHY status to determine if link is up.  If link is up, then
1964 *  set/determine 10base-T extended distance and polarity correction.  Read
1965 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1966 *  determine on the cable length, local and remote receiver.
1967 **/
1968s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1969{
1970        struct e1000_phy_info *phy = &hw->phy;
1971        s32 ret_val;
1972        u16 data;
1973        bool link;
1974
1975        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1976        if (ret_val)
1977                return ret_val;
1978
1979        if (!link) {
1980                e_dbg("Phy info is only valid if link is up\n");
1981                return -E1000_ERR_CONFIG;
1982        }
1983
1984        phy->polarity_correction = true;
1985
1986        ret_val = e1000_check_polarity_igp(hw);
1987        if (ret_val)
1988                return ret_val;
1989
1990        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1991        if (ret_val)
1992                return ret_val;
1993
1994        phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1995
1996        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1997            IGP01E1000_PSSR_SPEED_1000MBPS) {
1998                ret_val = phy->ops.get_cable_length(hw);
1999                if (ret_val)
2000                        return ret_val;
2001
2002                ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2003                if (ret_val)
2004                        return ret_val;
2005
2006                phy->local_rx = (data & LPA_1000LOCALRXOK)
2007                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2008
2009                phy->remote_rx = (data & LPA_1000REMRXOK)
2010                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2011        } else {
2012                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2013                phy->local_rx = e1000_1000t_rx_status_undefined;
2014                phy->remote_rx = e1000_1000t_rx_status_undefined;
2015        }
2016
2017        return ret_val;
2018}
2019
2020/**
2021 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2022 *  @hw: pointer to the HW structure
2023 *
2024 *  Populates "phy" structure with various feature states.
2025 **/
2026s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2027{
2028        struct e1000_phy_info *phy = &hw->phy;
2029        s32 ret_val;
2030        u16 data;
2031        bool link;
2032
2033        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2034        if (ret_val)
2035                return ret_val;
2036
2037        if (!link) {
2038                e_dbg("Phy info is only valid if link is up\n");
2039                return -E1000_ERR_CONFIG;
2040        }
2041
2042        ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2043        if (ret_val)
2044                return ret_val;
2045        phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2046
2047        if (phy->polarity_correction) {
2048                ret_val = e1000_check_polarity_ife(hw);
2049                if (ret_val)
2050                        return ret_val;
2051        } else {
2052                /* Polarity is forced */
2053                phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2054                                       ? e1000_rev_polarity_reversed
2055                                       : e1000_rev_polarity_normal);
2056        }
2057
2058        ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2059        if (ret_val)
2060                return ret_val;
2061
2062        phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2063
2064        /* The following parameters are undefined for 10/100 operation. */
2065        phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2066        phy->local_rx = e1000_1000t_rx_status_undefined;
2067        phy->remote_rx = e1000_1000t_rx_status_undefined;
2068
2069        return 0;
2070}
2071
2072/**
2073 *  e1000e_phy_sw_reset - PHY software reset
2074 *  @hw: pointer to the HW structure
2075 *
2076 *  Does a software reset of the PHY by reading the PHY control register and
2077 *  setting/write the control register reset bit to the PHY.
2078 **/
2079s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2080{
2081        s32 ret_val;
2082        u16 phy_ctrl;
2083
2084        ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2085        if (ret_val)
2086                return ret_val;
2087
2088        phy_ctrl |= BMCR_RESET;
2089        ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2090        if (ret_val)
2091                return ret_val;
2092
2093        udelay(1);
2094
2095        return ret_val;
2096}
2097
2098/**
2099 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2100 *  @hw: pointer to the HW structure
2101 *
2102 *  Verify the reset block is not blocking us from resetting.  Acquire
2103 *  semaphore (if necessary) and read/set/write the device control reset
2104 *  bit in the PHY.  Wait the appropriate delay time for the device to
2105 *  reset and release the semaphore (if necessary).
2106 **/
2107s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2108{
2109        struct e1000_phy_info *phy = &hw->phy;
2110        s32 ret_val;
2111        u32 ctrl;
2112
2113        if (phy->ops.check_reset_block) {
2114                ret_val = phy->ops.check_reset_block(hw);
2115                if (ret_val)
2116                        return 0;
2117        }
2118
2119        ret_val = phy->ops.acquire(hw);
2120        if (ret_val)
2121                return ret_val;
2122
2123        ctrl = er32(CTRL);
2124        ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2125        e1e_flush();
2126
2127        udelay(phy->reset_delay_us);
2128
2129        ew32(CTRL, ctrl);
2130        e1e_flush();
2131
2132        usleep_range(150, 300);
2133
2134        phy->ops.release(hw);
2135
2136        return phy->ops.get_cfg_done(hw);
2137}
2138
2139/**
2140 *  e1000e_get_cfg_done_generic - Generic configuration done
2141 *  @hw: pointer to the HW structure
2142 *
2143 *  Generic function to wait 10 milli-seconds for configuration to complete
2144 *  and return success.
2145 **/
2146s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2147{
2148        mdelay(10);
2149
2150        return 0;
2151}
2152
2153/**
2154 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2155 *  @hw: pointer to the HW structure
2156 *
2157 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2158 **/
2159s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2160{
2161        e_dbg("Running IGP 3 PHY init script\n");
2162
2163        /* PHY init IGP 3 */
2164        /* Enable rise/fall, 10-mode work in class-A */
2165        e1e_wphy(hw, 0x2F5B, 0x9018);
2166        /* Remove all caps from Replica path filter */
2167        e1e_wphy(hw, 0x2F52, 0x0000);
2168        /* Bias trimming for ADC, AFE and Driver (Default) */
2169        e1e_wphy(hw, 0x2FB1, 0x8B24);
2170        /* Increase Hybrid poly bias */
2171        e1e_wphy(hw, 0x2FB2, 0xF8F0);
2172        /* Add 4% to Tx amplitude in Gig mode */
2173        e1e_wphy(hw, 0x2010, 0x10B0);
2174        /* Disable trimming (TTT) */
2175        e1e_wphy(hw, 0x2011, 0x0000);
2176        /* Poly DC correction to 94.6% + 2% for all channels */
2177        e1e_wphy(hw, 0x20DD, 0x249A);
2178        /* ABS DC correction to 95.9% */
2179        e1e_wphy(hw, 0x20DE, 0x00D3);
2180        /* BG temp curve trim */
2181        e1e_wphy(hw, 0x28B4, 0x04CE);
2182        /* Increasing ADC OPAMP stage 1 currents to max */
2183        e1e_wphy(hw, 0x2F70, 0x29E4);
2184        /* Force 1000 ( required for enabling PHY regs configuration) */
2185        e1e_wphy(hw, 0x0000, 0x0140);
2186        /* Set upd_freq to 6 */
2187        e1e_wphy(hw, 0x1F30, 0x1606);
2188        /* Disable NPDFE */
2189        e1e_wphy(hw, 0x1F31, 0xB814);
2190        /* Disable adaptive fixed FFE (Default) */
2191        e1e_wphy(hw, 0x1F35, 0x002A);
2192        /* Enable FFE hysteresis */
2193        e1e_wphy(hw, 0x1F3E, 0x0067);
2194        /* Fixed FFE for short cable lengths */
2195        e1e_wphy(hw, 0x1F54, 0x0065);
2196        /* Fixed FFE for medium cable lengths */
2197        e1e_wphy(hw, 0x1F55, 0x002A);
2198        /* Fixed FFE for long cable lengths */
2199        e1e_wphy(hw, 0x1F56, 0x002A);
2200        /* Enable Adaptive Clip Threshold */
2201        e1e_wphy(hw, 0x1F72, 0x3FB0);
2202        /* AHT reset limit to 1 */
2203        e1e_wphy(hw, 0x1F76, 0xC0FF);
2204        /* Set AHT master delay to 127 msec */
2205        e1e_wphy(hw, 0x1F77, 0x1DEC);
2206        /* Set scan bits for AHT */
2207        e1e_wphy(hw, 0x1F78, 0xF9EF);
2208        /* Set AHT Preset bits */
2209        e1e_wphy(hw, 0x1F79, 0x0210);
2210        /* Change integ_factor of channel A to 3 */
2211        e1e_wphy(hw, 0x1895, 0x0003);
2212        /* Change prop_factor of channels BCD to 8 */
2213        e1e_wphy(hw, 0x1796, 0x0008);
2214        /* Change cg_icount + enable integbp for channels BCD */
2215        e1e_wphy(hw, 0x1798, 0xD008);
2216        /* Change cg_icount + enable integbp + change prop_factor_master
2217         * to 8 for channel A
2218         */
2219        e1e_wphy(hw, 0x1898, 0xD918);
2220        /* Disable AHT in Slave mode on channel A */
2221        e1e_wphy(hw, 0x187A, 0x0800);
2222        /* Enable LPLU and disable AN to 1000 in non-D0a states,
2223         * Enable SPD+B2B
2224         */
2225        e1e_wphy(hw, 0x0019, 0x008D);
2226        /* Enable restart AN on an1000_dis change */
2227        e1e_wphy(hw, 0x001B, 0x2080);
2228        /* Enable wh_fifo read clock in 10/100 modes */
2229        e1e_wphy(hw, 0x0014, 0x0045);
2230        /* Restart AN, Speed selection is 1000 */
2231        e1e_wphy(hw, 0x0000, 0x1340);
2232
2233        return 0;
2234}
2235
2236/**
2237 *  e1000e_get_phy_type_from_id - Get PHY type from id
2238 *  @phy_id: phy_id read from the phy
2239 *
2240 *  Returns the phy type from the id.
2241 **/
2242enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2243{
2244        enum e1000_phy_type phy_type = e1000_phy_unknown;
2245
2246        switch (phy_id) {
2247        case M88E1000_I_PHY_ID:
2248        case M88E1000_E_PHY_ID:
2249        case M88E1111_I_PHY_ID:
2250        case M88E1011_I_PHY_ID:
2251                phy_type = e1000_phy_m88;
2252                break;
2253        case IGP01E1000_I_PHY_ID:       /* IGP 1 & 2 share this */
2254                phy_type = e1000_phy_igp_2;
2255                break;
2256        case GG82563_E_PHY_ID:
2257                phy_type = e1000_phy_gg82563;
2258                break;
2259        case IGP03E1000_E_PHY_ID:
2260                phy_type = e1000_phy_igp_3;
2261                break;
2262        case IFE_E_PHY_ID:
2263        case IFE_PLUS_E_PHY_ID:
2264        case IFE_C_E_PHY_ID:
2265                phy_type = e1000_phy_ife;
2266                break;
2267        case BME1000_E_PHY_ID:
2268        case BME1000_E_PHY_ID_R2:
2269                phy_type = e1000_phy_bm;
2270                break;
2271        case I82578_E_PHY_ID:
2272                phy_type = e1000_phy_82578;
2273                break;
2274        case I82577_E_PHY_ID:
2275                phy_type = e1000_phy_82577;
2276                break;
2277        case I82579_E_PHY_ID:
2278                phy_type = e1000_phy_82579;
2279                break;
2280        case I217_E_PHY_ID:
2281                phy_type = e1000_phy_i217;
2282                break;
2283        default:
2284                phy_type = e1000_phy_unknown;
2285                break;
2286        }
2287        return phy_type;
2288}
2289
2290/**
2291 *  e1000e_determine_phy_address - Determines PHY address.
2292 *  @hw: pointer to the HW structure
2293 *
2294 *  This uses a trial and error method to loop through possible PHY
2295 *  addresses. It tests each by reading the PHY ID registers and
2296 *  checking for a match.
2297 **/
2298s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2299{
2300        u32 phy_addr = 0;
2301        u32 i;
2302        enum e1000_phy_type phy_type = e1000_phy_unknown;
2303
2304        hw->phy.id = phy_type;
2305
2306        for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2307                hw->phy.addr = phy_addr;
2308                i = 0;
2309
2310                do {
2311                        e1000e_get_phy_id(hw);
2312                        phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2313
2314                        /* If phy_type is valid, break - we found our
2315                         * PHY address
2316                         */
2317                        if (phy_type != e1000_phy_unknown)
2318                                return 0;
2319
2320                        usleep_range(1000, 2000);
2321                        i++;
2322                } while (i < 10);
2323        }
2324
2325        return -E1000_ERR_PHY_TYPE;
2326}
2327
2328/**
2329 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2330 *  @page: page to access
2331 *
2332 *  Returns the phy address for the page requested.
2333 **/
2334static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2335{
2336        u32 phy_addr = 2;
2337
2338        if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2339                phy_addr = 1;
2340
2341        return phy_addr;
2342}
2343
2344/**
2345 *  e1000e_write_phy_reg_bm - Write BM PHY register
2346 *  @hw: pointer to the HW structure
2347 *  @offset: register offset to write to
2348 *  @data: data to write at register offset
2349 *
2350 *  Acquires semaphore, if necessary, then writes the data to PHY register
2351 *  at the offset.  Release any acquired semaphores before exiting.
2352 **/
2353s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2354{
2355        s32 ret_val;
2356        u32 page = offset >> IGP_PAGE_SHIFT;
2357
2358        ret_val = hw->phy.ops.acquire(hw);
2359        if (ret_val)
2360                return ret_val;
2361
2362        /* Page 800 works differently than the rest so it has its own func */
2363        if (page == BM_WUC_PAGE) {
2364                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2365                                                         false, false);
2366                goto release;
2367        }
2368
2369        hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2370
2371        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2372                u32 page_shift, page_select;
2373
2374                /* Page select is register 31 for phy address 1 and 22 for
2375                 * phy address 2 and 3. Page select is shifted only for
2376                 * phy address 1.
2377                 */
2378                if (hw->phy.addr == 1) {
2379                        page_shift = IGP_PAGE_SHIFT;
2380                        page_select = IGP01E1000_PHY_PAGE_SELECT;
2381                } else {
2382                        page_shift = 0;
2383                        page_select = BM_PHY_PAGE_SELECT;
2384                }
2385
2386                /* Page is shifted left, PHY expects (page x 32) */
2387                ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2388                                                    (page << page_shift));
2389                if (ret_val)
2390                        goto release;
2391        }
2392
2393        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2394                                            data);
2395
2396release:
2397        hw->phy.ops.release(hw);
2398        return ret_val;
2399}
2400
2401/**
2402 *  e1000e_read_phy_reg_bm - Read BM PHY register
2403 *  @hw: pointer to the HW structure
2404 *  @offset: register offset to be read
2405 *  @data: pointer to the read data
2406 *
2407 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2408 *  and storing the retrieved information in data.  Release any acquired
2409 *  semaphores before exiting.
2410 **/
2411s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2412{
2413        s32 ret_val;
2414        u32 page = offset >> IGP_PAGE_SHIFT;
2415
2416        ret_val = hw->phy.ops.acquire(hw);
2417        if (ret_val)
2418                return ret_val;
2419
2420        /* Page 800 works differently than the rest so it has its own func */
2421        if (page == BM_WUC_PAGE) {
2422                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2423                                                         true, false);
2424                goto release;
2425        }
2426
2427        hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2428
2429        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2430                u32 page_shift, page_select;
2431
2432                /* Page select is register 31 for phy address 1 and 22 for
2433                 * phy address 2 and 3. Page select is shifted only for
2434                 * phy address 1.
2435                 */
2436                if (hw->phy.addr == 1) {
2437                        page_shift = IGP_PAGE_SHIFT;
2438                        page_select = IGP01E1000_PHY_PAGE_SELECT;
2439                } else {
2440                        page_shift = 0;
2441                        page_select = BM_PHY_PAGE_SELECT;
2442                }
2443
2444                /* Page is shifted left, PHY expects (page x 32) */
2445                ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2446                                                    (page << page_shift));
2447                if (ret_val)
2448                        goto release;
2449        }
2450
2451        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2452                                           data);
2453release:
2454        hw->phy.ops.release(hw);
2455        return ret_val;
2456}
2457
2458/**
2459 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2460 *  @hw: pointer to the HW structure
2461 *  @offset: register offset to be read
2462 *  @data: pointer to the read data
2463 *
2464 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2465 *  and storing the retrieved information in data.  Release any acquired
2466 *  semaphores before exiting.
2467 **/
2468s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2469{
2470        s32 ret_val;
2471        u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2472
2473        ret_val = hw->phy.ops.acquire(hw);
2474        if (ret_val)
2475                return ret_val;
2476
2477        /* Page 800 works differently than the rest so it has its own func */
2478        if (page == BM_WUC_PAGE) {
2479                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2480                                                         true, false);
2481                goto release;
2482        }
2483
2484        hw->phy.addr = 1;
2485
2486        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2487                /* Page is shifted left, PHY expects (page x 32) */
2488                ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2489                                                    page);
2490
2491                if (ret_val)
2492                        goto release;
2493        }
2494
2495        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2496                                           data);
2497release:
2498        hw->phy.ops.release(hw);
2499        return ret_val;
2500}
2501
2502/**
2503 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2504 *  @hw: pointer to the HW structure
2505 *  @offset: register offset to write to
2506 *  @data: data to write at register offset
2507 *
2508 *  Acquires semaphore, if necessary, then writes the data to PHY register
2509 *  at the offset.  Release any acquired semaphores before exiting.
2510 **/
2511s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2512{
2513        s32 ret_val;
2514        u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2515
2516        ret_val = hw->phy.ops.acquire(hw);
2517        if (ret_val)
2518                return ret_val;
2519
2520        /* Page 800 works differently than the rest so it has its own func */
2521        if (page == BM_WUC_PAGE) {
2522                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2523                                                         false, false);
2524                goto release;
2525        }
2526
2527        hw->phy.addr = 1;
2528
2529        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2530                /* Page is shifted left, PHY expects (page x 32) */
2531                ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2532                                                    page);
2533
2534                if (ret_val)
2535                        goto release;
2536        }
2537
2538        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2539                                            data);
2540
2541release:
2542        hw->phy.ops.release(hw);
2543        return ret_val;
2544}
2545
2546/**
2547 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2548 *  @hw: pointer to the HW structure
2549 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2550 *
2551 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2552 *  address to store contents of the BM_WUC_ENABLE_REG register.
2553 **/
2554s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2555{
2556        s32 ret_val;
2557        u16 temp;
2558
2559        /* All page select, port ctrl and wakeup registers use phy address 1 */
2560        hw->phy.addr = 1;
2561
2562        /* Select Port Control Registers page */
2563        ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2564        if (ret_val) {
2565                e_dbg("Could not set Port Control page\n");
2566                return ret_val;
2567        }
2568
2569        ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2570        if (ret_val) {
2571                e_dbg("Could not read PHY register %d.%d\n",
2572                      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2573                return ret_val;
2574        }
2575
2576        /* Enable both PHY wakeup mode and Wakeup register page writes.
2577         * Prevent a power state change by disabling ME and Host PHY wakeup.
2578         */
2579        temp = *phy_reg;
2580        temp |= BM_WUC_ENABLE_BIT;
2581        temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2582
2583        ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2584        if (ret_val) {
2585                e_dbg("Could not write PHY register %d.%d\n",
2586                      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2587                return ret_val;
2588        }
2589
2590        /* Select Host Wakeup Registers page - caller now able to write
2591         * registers on the Wakeup registers page
2592         */
2593        return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2594}
2595
2596/**
2597 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2598 *  @hw: pointer to the HW structure
2599 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2600 *
2601 *  Restore BM_WUC_ENABLE_REG to its original value.
2602 *
2603 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2604 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2605 *  caller.
2606 **/
2607s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2608{
2609        s32 ret_val;
2610
2611        /* Select Port Control Registers page */
2612        ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2613        if (ret_val) {
2614                e_dbg("Could not set Port Control page\n");
2615                return ret_val;
2616        }
2617
2618        /* Restore 769.17 to its original value */
2619        ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2620        if (ret_val)
2621                e_dbg("Could not restore PHY register %d.%d\n",
2622                      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2623
2624        return ret_val;
2625}
2626
2627/**
2628 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2629 *  @hw: pointer to the HW structure
2630 *  @offset: register offset to be read or written
2631 *  @data: pointer to the data to read or write
2632 *  @read: determines if operation is read or write
2633 *  @page_set: BM_WUC_PAGE already set and access enabled
2634 *
2635 *  Read the PHY register at offset and store the retrieved information in
2636 *  data, or write data to PHY register at offset.  Note the procedure to
2637 *  access the PHY wakeup registers is different than reading the other PHY
2638 *  registers. It works as such:
2639 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2640 *  2) Set page to 800 for host (801 if we were manageability)
2641 *  3) Write the address using the address opcode (0x11)
2642 *  4) Read or write the data using the data opcode (0x12)
2643 *  5) Restore 769.17.2 to its original value
2644 *
2645 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2646 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2647 *
2648 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2649 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2650 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2651 **/
2652static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2653                                          u16 *data, bool read, bool page_set)
2654{
2655        s32 ret_val;
2656        u16 reg = BM_PHY_REG_NUM(offset);
2657        u16 page = BM_PHY_REG_PAGE(offset);
2658        u16 phy_reg = 0;
2659
2660        /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2661        if ((hw->mac.type == e1000_pchlan) &&
2662            (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2663                e_dbg("Attempting to access page %d while gig enabled.\n",
2664                      page);
2665
2666        if (!page_set) {
2667                /* Enable access to PHY wakeup registers */
2668                ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2669                if (ret_val) {
2670                        e_dbg("Could not enable PHY wakeup reg access\n");
2671                        return ret_val;
2672                }
2673        }
2674
2675        e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2676
2677        /* Write the Wakeup register page offset value using opcode 0x11 */
2678        ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2679        if (ret_val) {
2680                e_dbg("Could not write address opcode to page %d\n", page);
2681                return ret_val;
2682        }
2683
2684        if (read) {
2685                /* Read the Wakeup register page value using opcode 0x12 */
2686                ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2687                                                   data);
2688        } else {
2689                /* Write the Wakeup register page value using opcode 0x12 */
2690                ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2691                                                    *data);
2692        }
2693
2694        if (ret_val) {
2695                e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2696                return ret_val;
2697        }
2698
2699        if (!page_set)
2700                ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2701
2702        return ret_val;
2703}
2704
2705/**
2706 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2707 * @hw: pointer to the HW structure
2708 *
2709 * In the case of a PHY power down to save power, or to turn off link during a
2710 * driver unload, or wake on lan is not enabled, restore the link to previous
2711 * settings.
2712 **/
2713void e1000_power_up_phy_copper(struct e1000_hw *hw)
2714{
2715        u16 mii_reg = 0;
2716
2717        /* The PHY will retain its settings across a power down/up cycle */
2718        e1e_rphy(hw, MII_BMCR, &mii_reg);
2719        mii_reg &= ~BMCR_PDOWN;
2720        e1e_wphy(hw, MII_BMCR, mii_reg);
2721}
2722
2723/**
2724 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2725 * @hw: pointer to the HW structure
2726 *
2727 * In the case of a PHY power down to save power, or to turn off link during a
2728 * driver unload, or wake on lan is not enabled, restore the link to previous
2729 * settings.
2730 **/
2731void e1000_power_down_phy_copper(struct e1000_hw *hw)
2732{
2733        u16 mii_reg = 0;
2734
2735        /* The PHY will retain its settings across a power down/up cycle */
2736        e1e_rphy(hw, MII_BMCR, &mii_reg);
2737        mii_reg |= BMCR_PDOWN;
2738        e1e_wphy(hw, MII_BMCR, mii_reg);
2739        usleep_range(1000, 2000);
2740}
2741
2742/**
2743 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2744 *  @hw: pointer to the HW structure
2745 *  @offset: register offset to be read
2746 *  @data: pointer to the read data
2747 *  @locked: semaphore has already been acquired or not
2748 *
2749 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2750 *  and stores the retrieved information in data.  Release any acquired
2751 *  semaphore before exiting.
2752 **/
2753static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2754                                   bool locked, bool page_set)
2755{
2756        s32 ret_val;
2757        u16 page = BM_PHY_REG_PAGE(offset);
2758        u16 reg = BM_PHY_REG_NUM(offset);
2759        u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2760
2761        if (!locked) {
2762                ret_val = hw->phy.ops.acquire(hw);
2763                if (ret_val)
2764                        return ret_val;
2765        }
2766
2767        /* Page 800 works differently than the rest so it has its own func */
2768        if (page == BM_WUC_PAGE) {
2769                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2770                                                         true, page_set);
2771                goto out;
2772        }
2773
2774        if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2775                ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2776                                                         data, true);
2777                goto out;
2778        }
2779
2780        if (!page_set) {
2781                if (page == HV_INTC_FC_PAGE_START)
2782                        page = 0;
2783
2784                if (reg > MAX_PHY_MULTI_PAGE_REG) {
2785                        /* Page is shifted left, PHY expects (page x 32) */
2786                        ret_val = e1000_set_page_igp(hw,
2787                                                     (page << IGP_PAGE_SHIFT));
2788
2789                        hw->phy.addr = phy_addr;
2790
2791                        if (ret_val)
2792                                goto out;
2793                }
2794        }
2795
2796        e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2797              page << IGP_PAGE_SHIFT, reg);
2798
2799        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2800out:
2801        if (!locked)
2802                hw->phy.ops.release(hw);
2803
2804        return ret_val;
2805}
2806
2807/**
2808 *  e1000_read_phy_reg_hv -  Read HV PHY register
2809 *  @hw: pointer to the HW structure
2810 *  @offset: register offset to be read
2811 *  @data: pointer to the read data
2812 *
2813 *  Acquires semaphore then reads the PHY register at offset and stores
2814 *  the retrieved information in data.  Release the acquired semaphore
2815 *  before exiting.
2816 **/
2817s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2818{
2819        return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2820}
2821
2822/**
2823 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2824 *  @hw: pointer to the HW structure
2825 *  @offset: register offset to be read
2826 *  @data: pointer to the read data
2827 *
2828 *  Reads the PHY register at offset and stores the retrieved information
2829 *  in data.  Assumes semaphore already acquired.
2830 **/
2831s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2832{
2833        return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2834}
2835
2836/**
2837 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2838 *  @hw: pointer to the HW structure
2839 *  @offset: register offset to write to
2840 *  @data: data to write at register offset
2841 *
2842 *  Reads the PHY register at offset and stores the retrieved information
2843 *  in data.  Assumes semaphore already acquired and page already set.
2844 **/
2845s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2846{
2847        return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2848}
2849
2850/**
2851 *  __e1000_write_phy_reg_hv - Write HV PHY register
2852 *  @hw: pointer to the HW structure
2853 *  @offset: register offset to write to
2854 *  @data: data to write at register offset
2855 *  @locked: semaphore has already been acquired or not
2856 *
2857 *  Acquires semaphore, if necessary, then writes the data to PHY register
2858 *  at the offset.  Release any acquired semaphores before exiting.
2859 **/
2860static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2861                                    bool locked, bool page_set)
2862{
2863        s32 ret_val;
2864        u16 page = BM_PHY_REG_PAGE(offset);
2865        u16 reg = BM_PHY_REG_NUM(offset);
2866        u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2867
2868        if (!locked) {
2869                ret_val = hw->phy.ops.acquire(hw);
2870                if (ret_val)
2871                        return ret_val;
2872        }
2873
2874        /* Page 800 works differently than the rest so it has its own func */
2875        if (page == BM_WUC_PAGE) {
2876                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2877                                                         false, page_set);
2878                goto out;
2879        }
2880
2881        if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2882                ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2883                                                         &data, false);
2884                goto out;
2885        }
2886
2887        if (!page_set) {
2888                if (page == HV_INTC_FC_PAGE_START)
2889                        page = 0;
2890
2891                /* Workaround MDIO accesses being disabled after entering IEEE
2892                 * Power Down (when bit 11 of the PHY Control register is set)
2893                 */
2894                if ((hw->phy.type == e1000_phy_82578) &&
2895                    (hw->phy.revision >= 1) &&
2896                    (hw->phy.addr == 2) &&
2897                    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2898                        u16 data2 = 0x7EFF;
2899
2900                        ret_val = e1000_access_phy_debug_regs_hv(hw,
2901                                                                 BIT(6) | 0x3,
2902                                                                 &data2, false);
2903                        if (ret_val)
2904                                goto out;
2905                }
2906
2907                if (reg > MAX_PHY_MULTI_PAGE_REG) {
2908                        /* Page is shifted left, PHY expects (page x 32) */
2909                        ret_val = e1000_set_page_igp(hw,
2910                                                     (page << IGP_PAGE_SHIFT));
2911
2912                        hw->phy.addr = phy_addr;
2913
2914                        if (ret_val)
2915                                goto out;
2916                }
2917        }
2918
2919        e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2920              page << IGP_PAGE_SHIFT, reg);
2921
2922        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2923                                            data);
2924
2925out:
2926        if (!locked)
2927                hw->phy.ops.release(hw);
2928
2929        return ret_val;
2930}
2931
2932/**
2933 *  e1000_write_phy_reg_hv - Write HV PHY register
2934 *  @hw: pointer to the HW structure
2935 *  @offset: register offset to write to
2936 *  @data: data to write at register offset
2937 *
2938 *  Acquires semaphore then writes the data to PHY register at the offset.
2939 *  Release the acquired semaphores before exiting.
2940 **/
2941s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2942{
2943        return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2944}
2945
2946/**
2947 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2948 *  @hw: pointer to the HW structure
2949 *  @offset: register offset to write to
2950 *  @data: data to write at register offset
2951 *
2952 *  Writes the data to PHY register at the offset.  Assumes semaphore
2953 *  already acquired.
2954 **/
2955s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2956{
2957        return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2958}
2959
2960/**
2961 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2962 *  @hw: pointer to the HW structure
2963 *  @offset: register offset to write to
2964 *  @data: data to write at register offset
2965 *
2966 *  Writes the data to PHY register at the offset.  Assumes semaphore
2967 *  already acquired and page already set.
2968 **/
2969s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2970{
2971        return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2972}
2973
2974/**
2975 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2976 *  @page: page to be accessed
2977 **/
2978static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2979{
2980        u32 phy_addr = 2;
2981
2982        if (page >= HV_INTC_FC_PAGE_START)
2983                phy_addr = 1;
2984
2985        return phy_addr;
2986}
2987
2988/**
2989 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2990 *  @hw: pointer to the HW structure
2991 *  @offset: register offset to be read or written
2992 *  @data: pointer to the data to be read or written
2993 *  @read: determines if operation is read or write
2994 *
2995 *  Reads the PHY register at offset and stores the retreived information
2996 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2997 *  to access these regs uses the address port and data port to read/write.
2998 *  These accesses done with PHY address 2 and without using pages.
2999 **/
3000static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3001                                          u16 *data, bool read)
3002{
3003        s32 ret_val;
3004        u32 addr_reg;
3005        u32 data_reg;
3006
3007        /* This takes care of the difference with desktop vs mobile phy */
3008        addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3009                    I82578_ADDR_REG : I82577_ADDR_REG);
3010        data_reg = addr_reg + 1;
3011
3012        /* All operations in this function are phy address 2 */
3013        hw->phy.addr = 2;
3014
3015        /* masking with 0x3F to remove the page from offset */
3016        ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3017        if (ret_val) {
3018                e_dbg("Could not write the Address Offset port register\n");
3019                return ret_val;
3020        }
3021
3022        /* Read or write the data value next */
3023        if (read)
3024                ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3025        else
3026                ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3027
3028        if (ret_val)
3029                e_dbg("Could not access the Data port register\n");
3030
3031        return ret_val;
3032}
3033
3034/**
3035 *  e1000_link_stall_workaround_hv - Si workaround
3036 *  @hw: pointer to the HW structure
3037 *
3038 *  This function works around a Si bug where the link partner can get
3039 *  a link up indication before the PHY does.  If small packets are sent
3040 *  by the link partner they can be placed in the packet buffer without
3041 *  being properly accounted for by the PHY and will stall preventing
3042 *  further packets from being received.  The workaround is to clear the
3043 *  packet buffer after the PHY detects link up.
3044 **/
3045s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3046{
3047        s32 ret_val = 0;
3048        u16 data;
3049
3050        if (hw->phy.type != e1000_phy_82578)
3051                return 0;
3052
3053        /* Do not apply workaround if in PHY loopback bit 14 set */
3054        e1e_rphy(hw, MII_BMCR, &data);
3055        if (data & BMCR_LOOPBACK)
3056                return 0;
3057
3058        /* check if link is up and at 1Gbps */
3059        ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3060        if (ret_val)
3061                return ret_val;
3062
3063        data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3064                 BM_CS_STATUS_SPEED_MASK);
3065
3066        if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3067                     BM_CS_STATUS_SPEED_1000))
3068                return 0;
3069
3070        msleep(200);
3071
3072        /* flush the packets in the fifo buffer */
3073        ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3074                           (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3075                            HV_MUX_DATA_CTRL_FORCE_SPEED));
3076        if (ret_val)
3077                return ret_val;
3078
3079        return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3080}
3081
3082/**
3083 *  e1000_check_polarity_82577 - Checks the polarity.
3084 *  @hw: pointer to the HW structure
3085 *
3086 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3087 *
3088 *  Polarity is determined based on the PHY specific status register.
3089 **/
3090s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3091{
3092        struct e1000_phy_info *phy = &hw->phy;
3093        s32 ret_val;
3094        u16 data;
3095
3096        ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3097
3098        if (!ret_val)
3099                phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3100                                       ? e1000_rev_polarity_reversed
3101                                       : e1000_rev_polarity_normal);
3102
3103        return ret_val;
3104}
3105
3106/**
3107 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3108 *  @hw: pointer to the HW structure
3109 *
3110 *  Calls the PHY setup function to force speed and duplex.
3111 **/
3112s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3113{
3114        struct e1000_phy_info *phy = &hw->phy;
3115        s32 ret_val;
3116        u16 phy_data;
3117        bool link;
3118
3119        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3120        if (ret_val)
3121                return ret_val;
3122
3123        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3124
3125        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3126        if (ret_val)
3127                return ret_val;
3128
3129        udelay(1);
3130
3131        if (phy->autoneg_wait_to_complete) {
3132                e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3133
3134                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3135                                                      100000, &link);
3136                if (ret_val)
3137                        return ret_val;
3138
3139                if (!link)
3140                        e_dbg("Link taking longer than expected.\n");
3141
3142                /* Try once more */
3143                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3144                                                      100000, &link);
3145        }
3146
3147        return ret_val;
3148}
3149
3150/**
3151 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3152 *  @hw: pointer to the HW structure
3153 *
3154 *  Read PHY status to determine if link is up.  If link is up, then
3155 *  set/determine 10base-T extended distance and polarity correction.  Read
3156 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3157 *  determine on the cable length, local and remote receiver.
3158 **/
3159s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3160{
3161        struct e1000_phy_info *phy = &hw->phy;
3162        s32 ret_val;
3163        u16 data;
3164        bool link;
3165
3166        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3167        if (ret_val)
3168                return ret_val;
3169
3170        if (!link) {
3171                e_dbg("Phy info is only valid if link is up\n");
3172                return -E1000_ERR_CONFIG;
3173        }
3174
3175        phy->polarity_correction = true;
3176
3177        ret_val = e1000_check_polarity_82577(hw);
3178        if (ret_val)
3179                return ret_val;
3180
3181        ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3182        if (ret_val)
3183                return ret_val;
3184
3185        phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3186
3187        if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3188            I82577_PHY_STATUS2_SPEED_1000MBPS) {
3189                ret_val = hw->phy.ops.get_cable_length(hw);
3190                if (ret_val)
3191                        return ret_val;
3192
3193                ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3194                if (ret_val)
3195                        return ret_val;
3196
3197                phy->local_rx = (data & LPA_1000LOCALRXOK)
3198                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3199
3200                phy->remote_rx = (data & LPA_1000REMRXOK)
3201                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3202        } else {
3203                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3204                phy->local_rx = e1000_1000t_rx_status_undefined;
3205                phy->remote_rx = e1000_1000t_rx_status_undefined;
3206        }
3207
3208        return 0;
3209}
3210
3211/**
3212 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3213 *  @hw: pointer to the HW structure
3214 *
3215 * Reads the diagnostic status register and verifies result is valid before
3216 * placing it in the phy_cable_length field.
3217 **/
3218s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3219{
3220        struct e1000_phy_info *phy = &hw->phy;
3221        s32 ret_val;
3222        u16 phy_data, length;
3223
3224        ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3225        if (ret_val)
3226                return ret_val;
3227
3228        length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3229                  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3230
3231        if (length == E1000_CABLE_LENGTH_UNDEFINED)
3232                return -E1000_ERR_PHY;
3233
3234        phy->cable_length = length;
3235
3236        return 0;
3237}
3238