linux/drivers/net/ethernet/qualcomm/emac/emac-mac.c
<<
>>
Prefs
   1/* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
   2 *
   3 * This program is free software; you can redistribute it and/or modify
   4 * it under the terms of the GNU General Public License version 2 and
   5 * only version 2 as published by the Free Software Foundation.
   6 *
   7 * This program is distributed in the hope that it will be useful,
   8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  10 * GNU General Public License for more details.
  11 */
  12
  13/* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
  14 */
  15
  16#include <linux/tcp.h>
  17#include <linux/ip.h>
  18#include <linux/ipv6.h>
  19#include <linux/crc32.h>
  20#include <linux/if_vlan.h>
  21#include <linux/jiffies.h>
  22#include <linux/phy.h>
  23#include <linux/of.h>
  24#include <net/ip6_checksum.h>
  25#include "emac.h"
  26#include "emac-sgmii.h"
  27
  28/* EMAC_MAC_CTRL */
  29#define SINGLE_PAUSE_MODE               0x10000000
  30#define DEBUG_MODE                      0x08000000
  31#define BROAD_EN                        0x04000000
  32#define MULTI_ALL                       0x02000000
  33#define RX_CHKSUM_EN                    0x01000000
  34#define HUGE                            0x00800000
  35#define SPEED(x)                        (((x) & 0x3) << 20)
  36#define SPEED_MASK                      SPEED(0x3)
  37#define SIMR                            0x00080000
  38#define TPAUSE                          0x00010000
  39#define PROM_MODE                       0x00008000
  40#define VLAN_STRIP                      0x00004000
  41#define PRLEN_BMSK                      0x00003c00
  42#define PRLEN_SHFT                      10
  43#define HUGEN                           0x00000200
  44#define FLCHK                           0x00000100
  45#define PCRCE                           0x00000080
  46#define CRCE                            0x00000040
  47#define FULLD                           0x00000020
  48#define MAC_LP_EN                       0x00000010
  49#define RXFC                            0x00000008
  50#define TXFC                            0x00000004
  51#define RXEN                            0x00000002
  52#define TXEN                            0x00000001
  53
  54/* EMAC_DESC_CTRL_3 */
  55#define RFD_RING_SIZE_BMSK                                       0xfff
  56
  57/* EMAC_DESC_CTRL_4 */
  58#define RX_BUFFER_SIZE_BMSK                                     0xffff
  59
  60/* EMAC_DESC_CTRL_6 */
  61#define RRD_RING_SIZE_BMSK                                       0xfff
  62
  63/* EMAC_DESC_CTRL_9 */
  64#define TPD_RING_SIZE_BMSK                                      0xffff
  65
  66/* EMAC_TXQ_CTRL_0 */
  67#define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
  68#define NUM_TXF_BURST_PREF_SHFT                                     16
  69#define LS_8023_SP                                                0x80
  70#define TXQ_MODE                                                  0x40
  71#define TXQ_EN                                                    0x20
  72#define IP_OP_SP                                                  0x10
  73#define NUM_TPD_BURST_PREF_BMSK                                    0xf
  74#define NUM_TPD_BURST_PREF_SHFT                                      0
  75
  76/* EMAC_TXQ_CTRL_1 */
  77#define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
  78
  79/* EMAC_TXQ_CTRL_2 */
  80#define TXF_HWM_BMSK                                         0xfff0000
  81#define TXF_LWM_BMSK                                             0xfff
  82
  83/* EMAC_RXQ_CTRL_0 */
  84#define RXQ_EN                                                 BIT(31)
  85#define CUT_THRU_EN                                            BIT(30)
  86#define RSS_HASH_EN                                            BIT(29)
  87#define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
  88#define NUM_RFD_BURST_PREF_SHFT                                     20
  89#define IDT_TABLE_SIZE_BMSK                                    0x1ff00
  90#define IDT_TABLE_SIZE_SHFT                                          8
  91#define SP_IPV6                                                   0x80
  92
  93/* EMAC_RXQ_CTRL_1 */
  94#define JUMBO_1KAH_BMSK                                         0xf000
  95#define JUMBO_1KAH_SHFT                                             12
  96#define RFD_PREF_LOW_TH                                           0x10
  97#define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
  98#define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
  99#define RFD_PREF_UP_TH                                            0x10
 100#define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
 101#define RFD_PREF_UP_THRESHOLD_SHFT                                   0
 102
 103/* EMAC_RXQ_CTRL_2 */
 104#define RXF_DOF_THRESFHOLD                                       0x1a0
 105#define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
 106#define RXF_DOF_THRESHOLD_SHFT                                      16
 107#define RXF_UOF_THRESFHOLD                                        0xbe
 108#define RXF_UOF_THRESHOLD_BMSK                                   0xfff
 109#define RXF_UOF_THRESHOLD_SHFT                                       0
 110
 111/* EMAC_RXQ_CTRL_3 */
 112#define RXD_TIMER_BMSK                                      0xffff0000
 113#define RXD_THRESHOLD_BMSK                                       0xfff
 114#define RXD_THRESHOLD_SHFT                                           0
 115
 116/* EMAC_DMA_CTRL */
 117#define DMAW_DLY_CNT_BMSK                                      0xf0000
 118#define DMAW_DLY_CNT_SHFT                                           16
 119#define DMAR_DLY_CNT_BMSK                                       0xf800
 120#define DMAR_DLY_CNT_SHFT                                           11
 121#define DMAR_REQ_PRI                                             0x400
 122#define REGWRBLEN_BMSK                                           0x380
 123#define REGWRBLEN_SHFT                                               7
 124#define REGRDBLEN_BMSK                                            0x70
 125#define REGRDBLEN_SHFT                                               4
 126#define OUT_ORDER_MODE                                             0x4
 127#define ENH_ORDER_MODE                                             0x2
 128#define IN_ORDER_MODE                                              0x1
 129
 130/* EMAC_MAILBOX_13 */
 131#define RFD3_PROC_IDX_BMSK                                   0xfff0000
 132#define RFD3_PROC_IDX_SHFT                                          16
 133#define RFD3_PROD_IDX_BMSK                                       0xfff
 134#define RFD3_PROD_IDX_SHFT                                           0
 135
 136/* EMAC_MAILBOX_2 */
 137#define NTPD_CONS_IDX_BMSK                                  0xffff0000
 138#define NTPD_CONS_IDX_SHFT                                          16
 139
 140/* EMAC_MAILBOX_3 */
 141#define RFD0_CONS_IDX_BMSK                                       0xfff
 142#define RFD0_CONS_IDX_SHFT                                           0
 143
 144/* EMAC_MAILBOX_11 */
 145#define H3TPD_PROD_IDX_BMSK                                 0xffff0000
 146#define H3TPD_PROD_IDX_SHFT                                         16
 147
 148/* EMAC_AXI_MAST_CTRL */
 149#define DATA_BYTE_SWAP                                             0x8
 150#define MAX_BOUND                                                  0x2
 151#define MAX_BTYPE                                                  0x1
 152
 153/* EMAC_MAILBOX_12 */
 154#define H3TPD_CONS_IDX_BMSK                                 0xffff0000
 155#define H3TPD_CONS_IDX_SHFT                                         16
 156
 157/* EMAC_MAILBOX_9 */
 158#define H2TPD_PROD_IDX_BMSK                                     0xffff
 159#define H2TPD_PROD_IDX_SHFT                                          0
 160
 161/* EMAC_MAILBOX_10 */
 162#define H1TPD_CONS_IDX_BMSK                                 0xffff0000
 163#define H1TPD_CONS_IDX_SHFT                                         16
 164#define H2TPD_CONS_IDX_BMSK                                     0xffff
 165#define H2TPD_CONS_IDX_SHFT                                          0
 166
 167/* EMAC_ATHR_HEADER_CTRL */
 168#define HEADER_CNT_EN                                              0x2
 169#define HEADER_ENABLE                                              0x1
 170
 171/* EMAC_MAILBOX_0 */
 172#define RFD0_PROC_IDX_BMSK                                   0xfff0000
 173#define RFD0_PROC_IDX_SHFT                                          16
 174#define RFD0_PROD_IDX_BMSK                                       0xfff
 175#define RFD0_PROD_IDX_SHFT                                           0
 176
 177/* EMAC_MAILBOX_5 */
 178#define RFD1_PROC_IDX_BMSK                                   0xfff0000
 179#define RFD1_PROC_IDX_SHFT                                          16
 180#define RFD1_PROD_IDX_BMSK                                       0xfff
 181#define RFD1_PROD_IDX_SHFT                                           0
 182
 183/* EMAC_MISC_CTRL */
 184#define RX_UNCPL_INT_EN                                            0x1
 185
 186/* EMAC_MAILBOX_7 */
 187#define RFD2_CONS_IDX_BMSK                                   0xfff0000
 188#define RFD2_CONS_IDX_SHFT                                          16
 189#define RFD1_CONS_IDX_BMSK                                       0xfff
 190#define RFD1_CONS_IDX_SHFT                                           0
 191
 192/* EMAC_MAILBOX_8 */
 193#define RFD3_CONS_IDX_BMSK                                       0xfff
 194#define RFD3_CONS_IDX_SHFT                                           0
 195
 196/* EMAC_MAILBOX_15 */
 197#define NTPD_PROD_IDX_BMSK                                      0xffff
 198#define NTPD_PROD_IDX_SHFT                                           0
 199
 200/* EMAC_MAILBOX_16 */
 201#define H1TPD_PROD_IDX_BMSK                                     0xffff
 202#define H1TPD_PROD_IDX_SHFT                                          0
 203
 204#define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
 205#define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
 206#define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
 207#define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
 208
 209/* EMAC_EMAC_WRAPPER_TX_TS_INX */
 210#define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
 211#define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
 212
 213struct emac_skb_cb {
 214        u32           tpd_idx;
 215        unsigned long jiffies;
 216};
 217
 218#define EMAC_SKB_CB(skb)        ((struct emac_skb_cb *)(skb)->cb)
 219#define EMAC_RSS_IDT_SIZE       256
 220#define JUMBO_1KAH              0x4
 221#define RXD_TH                  0x100
 222#define EMAC_TPD_LAST_FRAGMENT  0x80000000
 223#define EMAC_TPD_TSTAMP_SAVE    0x80000000
 224
 225/* EMAC Errors in emac_rrd.word[3] */
 226#define EMAC_RRD_L4F            BIT(14)
 227#define EMAC_RRD_IPF            BIT(15)
 228#define EMAC_RRD_CRC            BIT(21)
 229#define EMAC_RRD_FAE            BIT(22)
 230#define EMAC_RRD_TRN            BIT(23)
 231#define EMAC_RRD_RNT            BIT(24)
 232#define EMAC_RRD_INC            BIT(25)
 233#define EMAC_RRD_FOV            BIT(29)
 234#define EMAC_RRD_LEN            BIT(30)
 235
 236/* Error bits that will result in a received frame being discarded */
 237#define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
 238                        EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
 239                        EMAC_RRD_FOV | EMAC_RRD_LEN)
 240#define EMAC_RRD_STATS_DW_IDX 3
 241
 242#define EMAC_RRD(RXQ, SIZE, IDX)        ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
 243#define EMAC_RFD(RXQ, SIZE, IDX)        ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
 244#define EMAC_TPD(TXQ, SIZE, IDX)        ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
 245
 246#define GET_RFD_BUFFER(RXQ, IDX)        (&((RXQ)->rfd.rfbuff[(IDX)]))
 247#define GET_TPD_BUFFER(RTQ, IDX)        (&((RTQ)->tpd.tpbuff[(IDX)]))
 248
 249#define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD       8
 250
 251#define ISR_RX_PKT      (\
 252        RX_PKT_INT0     |\
 253        RX_PKT_INT1     |\
 254        RX_PKT_INT2     |\
 255        RX_PKT_INT3)
 256
 257void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
 258{
 259        u32 crc32, bit, reg, mta;
 260
 261        /* Calculate the CRC of the MAC address */
 262        crc32 = ether_crc(ETH_ALEN, addr);
 263
 264        /* The HASH Table is an array of 2 32-bit registers. It is
 265         * treated like an array of 64 bits (BitArray[hash_value]).
 266         * Use the upper 6 bits of the above CRC as the hash value.
 267         */
 268        reg = (crc32 >> 31) & 0x1;
 269        bit = (crc32 >> 26) & 0x1F;
 270
 271        mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 272        mta |= BIT(bit);
 273        writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 274}
 275
 276void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
 277{
 278        writel(0, adpt->base + EMAC_HASH_TAB_REG0);
 279        writel(0, adpt->base + EMAC_HASH_TAB_REG1);
 280}
 281
 282/* definitions for RSS */
 283#define EMAC_RSS_KEY(_i, _type) \
 284                (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
 285#define EMAC_RSS_TBL(_i, _type) \
 286                (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
 287
 288/* Config MAC modes */
 289void emac_mac_mode_config(struct emac_adapter *adpt)
 290{
 291        struct net_device *netdev = adpt->netdev;
 292        u32 mac;
 293
 294        mac = readl(adpt->base + EMAC_MAC_CTRL);
 295        mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
 296
 297        if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
 298                mac |= VLAN_STRIP;
 299
 300        if (netdev->flags & IFF_PROMISC)
 301                mac |= PROM_MODE;
 302
 303        if (netdev->flags & IFF_ALLMULTI)
 304                mac |= MULTI_ALL;
 305
 306        writel(mac, adpt->base + EMAC_MAC_CTRL);
 307}
 308
 309/* Config descriptor rings */
 310static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
 311{
 312        static const unsigned short tpd_q_offset[] = {
 313                EMAC_DESC_CTRL_8,        EMAC_H1TPD_BASE_ADDR_LO,
 314                EMAC_H2TPD_BASE_ADDR_LO, EMAC_H3TPD_BASE_ADDR_LO};
 315        static const unsigned short rfd_q_offset[] = {
 316                EMAC_DESC_CTRL_2,        EMAC_DESC_CTRL_10,
 317                EMAC_DESC_CTRL_12,       EMAC_DESC_CTRL_13};
 318        static const unsigned short rrd_q_offset[] = {
 319                EMAC_DESC_CTRL_5,        EMAC_DESC_CTRL_14,
 320                EMAC_DESC_CTRL_15,       EMAC_DESC_CTRL_16};
 321
 322        /* TPD (Transmit Packet Descriptor) */
 323        writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
 324               adpt->base + EMAC_DESC_CTRL_1);
 325
 326        writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
 327               adpt->base + tpd_q_offset[0]);
 328
 329        writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
 330               adpt->base + EMAC_DESC_CTRL_9);
 331
 332        /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
 333        writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
 334               adpt->base + EMAC_DESC_CTRL_0);
 335
 336        writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
 337               adpt->base + rfd_q_offset[0]);
 338        writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
 339               adpt->base + rrd_q_offset[0]);
 340
 341        writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
 342               adpt->base + EMAC_DESC_CTRL_3);
 343        writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
 344               adpt->base + EMAC_DESC_CTRL_6);
 345
 346        writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
 347               adpt->base + EMAC_DESC_CTRL_4);
 348
 349        writel(0, adpt->base + EMAC_DESC_CTRL_11);
 350
 351        /* Load all of the base addresses above and ensure that triggering HW to
 352         * read ring pointers is flushed
 353         */
 354        writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
 355}
 356
 357/* Config transmit parameters */
 358static void emac_mac_tx_config(struct emac_adapter *adpt)
 359{
 360        u32 val;
 361
 362        writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
 363               JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
 364
 365        val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
 366               NUM_TPD_BURST_PREF_BMSK;
 367
 368        val |= TXQ_MODE | LS_8023_SP;
 369        val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
 370                NUM_TXF_BURST_PREF_BMSK;
 371
 372        writel(val, adpt->base + EMAC_TXQ_CTRL_0);
 373        emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
 374                          (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
 375}
 376
 377/* Config receive parameters */
 378static void emac_mac_rx_config(struct emac_adapter *adpt)
 379{
 380        u32 val;
 381
 382        val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
 383               NUM_RFD_BURST_PREF_BMSK;
 384        val |= (SP_IPV6 | CUT_THRU_EN);
 385
 386        writel(val, adpt->base + EMAC_RXQ_CTRL_0);
 387
 388        val = readl(adpt->base + EMAC_RXQ_CTRL_1);
 389        val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
 390                 RFD_PREF_UP_THRESHOLD_BMSK);
 391        val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
 392                (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
 393                (RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
 394        writel(val, adpt->base + EMAC_RXQ_CTRL_1);
 395
 396        val = readl(adpt->base + EMAC_RXQ_CTRL_2);
 397        val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
 398        val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
 399                (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
 400        writel(val, adpt->base + EMAC_RXQ_CTRL_2);
 401
 402        val = readl(adpt->base + EMAC_RXQ_CTRL_3);
 403        val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
 404        val |= RXD_TH << RXD_THRESHOLD_SHFT;
 405        writel(val, adpt->base + EMAC_RXQ_CTRL_3);
 406}
 407
 408/* Config dma */
 409static void emac_mac_dma_config(struct emac_adapter *adpt)
 410{
 411        u32 dma_ctrl = DMAR_REQ_PRI;
 412
 413        switch (adpt->dma_order) {
 414        case emac_dma_ord_in:
 415                dma_ctrl |= IN_ORDER_MODE;
 416                break;
 417        case emac_dma_ord_enh:
 418                dma_ctrl |= ENH_ORDER_MODE;
 419                break;
 420        case emac_dma_ord_out:
 421                dma_ctrl |= OUT_ORDER_MODE;
 422                break;
 423        default:
 424                break;
 425        }
 426
 427        dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
 428                                                REGRDBLEN_BMSK;
 429        dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
 430                                                REGWRBLEN_BMSK;
 431        dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
 432                                                DMAR_DLY_CNT_BMSK;
 433        dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
 434                                                DMAW_DLY_CNT_BMSK;
 435
 436        /* config DMA and ensure that configuration is flushed to HW */
 437        writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
 438}
 439
 440/* set MAC address */
 441static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
 442{
 443        u32 sta;
 444
 445        /* for example: 00-A0-C6-11-22-33
 446         * 0<-->C6112233, 1<-->00A0.
 447         */
 448
 449        /* low 32bit word */
 450        sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
 451              (((u32)addr[4]) << 8)  | (((u32)addr[5]));
 452        writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
 453
 454        /* hight 32bit word */
 455        sta = (((u32)addr[0]) << 8) | (u32)addr[1];
 456        writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
 457}
 458
 459static void emac_mac_config(struct emac_adapter *adpt)
 460{
 461        struct net_device *netdev = adpt->netdev;
 462        unsigned int max_frame;
 463        u32 val;
 464
 465        emac_set_mac_address(adpt, netdev->dev_addr);
 466
 467        max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 468        adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
 469                ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
 470
 471        emac_mac_dma_rings_config(adpt);
 472
 473        writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
 474               adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
 475
 476        emac_mac_tx_config(adpt);
 477        emac_mac_rx_config(adpt);
 478        emac_mac_dma_config(adpt);
 479
 480        val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
 481        val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
 482        val |= MAX_BTYPE;
 483        writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
 484        writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
 485        writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
 486}
 487
 488void emac_mac_reset(struct emac_adapter *adpt)
 489{
 490        emac_mac_stop(adpt);
 491
 492        emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
 493        usleep_range(100, 150); /* reset may take up to 100usec */
 494
 495        /* interrupt clear-on-read */
 496        emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
 497}
 498
 499static void emac_mac_start(struct emac_adapter *adpt)
 500{
 501        struct phy_device *phydev = adpt->phydev;
 502        u32 mac, csr1;
 503
 504        /* enable tx queue */
 505        emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
 506
 507        /* enable rx queue */
 508        emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
 509
 510        /* enable mac control */
 511        mac = readl(adpt->base + EMAC_MAC_CTRL);
 512        csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 513
 514        mac |= TXEN | RXEN;     /* enable RX/TX */
 515
 516        /* Configure MAC flow control. If set to automatic, then match
 517         * whatever the PHY does. Otherwise, enable or disable it, depending
 518         * on what the user configured via ethtool.
 519         */
 520        mac &= ~(RXFC | TXFC);
 521
 522        if (adpt->automatic) {
 523                /* If it's set to automatic, then update our local values */
 524                adpt->rx_flow_control = phydev->pause;
 525                adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
 526        }
 527        mac |= adpt->rx_flow_control ? RXFC : 0;
 528        mac |= adpt->tx_flow_control ? TXFC : 0;
 529
 530        /* setup link speed */
 531        mac &= ~SPEED_MASK;
 532        if (phydev->speed == SPEED_1000) {
 533                mac |= SPEED(2);
 534                csr1 |= FREQ_MODE;
 535        } else {
 536                mac |= SPEED(1);
 537                csr1 &= ~FREQ_MODE;
 538        }
 539
 540        if (phydev->duplex == DUPLEX_FULL)
 541                mac |= FULLD;
 542        else
 543                mac &= ~FULLD;
 544
 545        /* other parameters */
 546        mac |= (CRCE | PCRCE);
 547        mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
 548        mac |= BROAD_EN;
 549        mac |= FLCHK;
 550        mac &= ~RX_CHKSUM_EN;
 551        mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
 552                 DEBUG_MODE | SINGLE_PAUSE_MODE);
 553
 554        /* Enable single-pause-frame mode if requested.
 555         *
 556         * If enabled, the EMAC will send a single pause frame when the RX
 557         * queue is full.  This normally leads to packet loss because
 558         * the pause frame disables the remote MAC only for 33ms (the quanta),
 559         * and then the remote MAC continues sending packets even though
 560         * the RX queue is still full.
 561         *
 562         * If disabled, the EMAC sends a pause frame every 31ms until the RX
 563         * queue is no longer full.  Normally, this is the preferred
 564         * method of operation.  However, when the system is hung (e.g.
 565         * cores are halted), the EMAC interrupt handler is never called
 566         * and so the RX queue fills up quickly and stays full.  The resuling
 567         * non-stop "flood" of pause frames sometimes has the effect of
 568         * disabling nearby switches.  In some cases, other nearby switches
 569         * are also affected, shutting down the entire network.
 570         *
 571         * The user can enable or disable single-pause-frame mode
 572         * via ethtool.
 573         */
 574        mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
 575
 576        writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 577
 578        writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
 579
 580        /* enable interrupt read clear, low power sleep mode and
 581         * the irq moderators
 582         */
 583
 584        writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
 585        writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
 586                        IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
 587
 588        emac_mac_mode_config(adpt);
 589
 590        emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
 591                          (HEADER_ENABLE | HEADER_CNT_EN), 0);
 592}
 593
 594void emac_mac_stop(struct emac_adapter *adpt)
 595{
 596        emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
 597        emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
 598        emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
 599        usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
 600}
 601
 602/* Free all descriptors of given transmit queue */
 603static void emac_tx_q_descs_free(struct emac_adapter *adpt)
 604{
 605        struct emac_tx_queue *tx_q = &adpt->tx_q;
 606        unsigned int i;
 607        size_t size;
 608
 609        /* ring already cleared, nothing to do */
 610        if (!tx_q->tpd.tpbuff)
 611                return;
 612
 613        for (i = 0; i < tx_q->tpd.count; i++) {
 614                struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
 615
 616                if (tpbuf->dma_addr) {
 617                        dma_unmap_single(adpt->netdev->dev.parent,
 618                                         tpbuf->dma_addr, tpbuf->length,
 619                                         DMA_TO_DEVICE);
 620                        tpbuf->dma_addr = 0;
 621                }
 622                if (tpbuf->skb) {
 623                        dev_kfree_skb_any(tpbuf->skb);
 624                        tpbuf->skb = NULL;
 625                }
 626        }
 627
 628        size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 629        memset(tx_q->tpd.tpbuff, 0, size);
 630
 631        /* clear the descriptor ring */
 632        memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
 633
 634        tx_q->tpd.consume_idx = 0;
 635        tx_q->tpd.produce_idx = 0;
 636}
 637
 638/* Free all descriptors of given receive queue */
 639static void emac_rx_q_free_descs(struct emac_adapter *adpt)
 640{
 641        struct device *dev = adpt->netdev->dev.parent;
 642        struct emac_rx_queue *rx_q = &adpt->rx_q;
 643        unsigned int i;
 644        size_t size;
 645
 646        /* ring already cleared, nothing to do */
 647        if (!rx_q->rfd.rfbuff)
 648                return;
 649
 650        for (i = 0; i < rx_q->rfd.count; i++) {
 651                struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
 652
 653                if (rfbuf->dma_addr) {
 654                        dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
 655                                         DMA_FROM_DEVICE);
 656                        rfbuf->dma_addr = 0;
 657                }
 658                if (rfbuf->skb) {
 659                        dev_kfree_skb(rfbuf->skb);
 660                        rfbuf->skb = NULL;
 661                }
 662        }
 663
 664        size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
 665        memset(rx_q->rfd.rfbuff, 0, size);
 666
 667        /* clear the descriptor rings */
 668        memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
 669        rx_q->rrd.produce_idx = 0;
 670        rx_q->rrd.consume_idx = 0;
 671
 672        memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
 673        rx_q->rfd.produce_idx = 0;
 674        rx_q->rfd.consume_idx = 0;
 675}
 676
 677/* Free all buffers associated with given transmit queue */
 678static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
 679{
 680        struct emac_tx_queue *tx_q = &adpt->tx_q;
 681
 682        emac_tx_q_descs_free(adpt);
 683
 684        kfree(tx_q->tpd.tpbuff);
 685        tx_q->tpd.tpbuff = NULL;
 686        tx_q->tpd.v_addr = NULL;
 687        tx_q->tpd.dma_addr = 0;
 688        tx_q->tpd.size = 0;
 689}
 690
 691/* Allocate TX descriptor ring for the given transmit queue */
 692static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
 693                                struct emac_tx_queue *tx_q)
 694{
 695        struct emac_ring_header *ring_header = &adpt->ring_header;
 696        size_t size;
 697
 698        size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 699        tx_q->tpd.tpbuff = kzalloc(size, GFP_KERNEL);
 700        if (!tx_q->tpd.tpbuff)
 701                return -ENOMEM;
 702
 703        tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
 704        tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
 705        tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
 706        ring_header->used += ALIGN(tx_q->tpd.size, 8);
 707        tx_q->tpd.produce_idx = 0;
 708        tx_q->tpd.consume_idx = 0;
 709
 710        return 0;
 711}
 712
 713/* Free all buffers associated with given transmit queue */
 714static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
 715{
 716        struct emac_rx_queue *rx_q = &adpt->rx_q;
 717
 718        emac_rx_q_free_descs(adpt);
 719
 720        kfree(rx_q->rfd.rfbuff);
 721        rx_q->rfd.rfbuff   = NULL;
 722
 723        rx_q->rfd.v_addr   = NULL;
 724        rx_q->rfd.dma_addr = 0;
 725        rx_q->rfd.size     = 0;
 726
 727        rx_q->rrd.v_addr   = NULL;
 728        rx_q->rrd.dma_addr = 0;
 729        rx_q->rrd.size     = 0;
 730}
 731
 732/* Allocate RX descriptor rings for the given receive queue */
 733static int emac_rx_descs_alloc(struct emac_adapter *adpt)
 734{
 735        struct emac_ring_header *ring_header = &adpt->ring_header;
 736        struct emac_rx_queue *rx_q = &adpt->rx_q;
 737        size_t size;
 738
 739        size = sizeof(struct emac_buffer) * rx_q->rfd.count;
 740        rx_q->rfd.rfbuff = kzalloc(size, GFP_KERNEL);
 741        if (!rx_q->rfd.rfbuff)
 742                return -ENOMEM;
 743
 744        rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
 745        rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
 746
 747        rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
 748        rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
 749        ring_header->used += ALIGN(rx_q->rrd.size, 8);
 750
 751        rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
 752        rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
 753        ring_header->used += ALIGN(rx_q->rfd.size, 8);
 754
 755        rx_q->rrd.produce_idx = 0;
 756        rx_q->rrd.consume_idx = 0;
 757
 758        rx_q->rfd.produce_idx = 0;
 759        rx_q->rfd.consume_idx = 0;
 760
 761        return 0;
 762}
 763
 764/* Allocate all TX and RX descriptor rings */
 765int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
 766{
 767        struct emac_ring_header *ring_header = &adpt->ring_header;
 768        struct device *dev = adpt->netdev->dev.parent;
 769        unsigned int num_tx_descs = adpt->tx_desc_cnt;
 770        unsigned int num_rx_descs = adpt->rx_desc_cnt;
 771        int ret;
 772
 773        adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
 774
 775        adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
 776        adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
 777
 778        /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
 779         * hence the additional padding bytes are allocated.
 780         */
 781        ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
 782                            num_rx_descs * (adpt->rfd_size * 4) +
 783                            num_rx_descs * (adpt->rrd_size * 4) +
 784                            8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
 785
 786        ring_header->used = 0;
 787        ring_header->v_addr = dma_zalloc_coherent(dev, ring_header->size,
 788                                                 &ring_header->dma_addr,
 789                                                 GFP_KERNEL);
 790        if (!ring_header->v_addr)
 791                return -ENOMEM;
 792
 793        ring_header->used = ALIGN(ring_header->dma_addr, 8) -
 794                                                        ring_header->dma_addr;
 795
 796        ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
 797        if (ret) {
 798                netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
 799                goto err_alloc_tx;
 800        }
 801
 802        ret = emac_rx_descs_alloc(adpt);
 803        if (ret) {
 804                netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
 805                goto err_alloc_rx;
 806        }
 807
 808        return 0;
 809
 810err_alloc_rx:
 811        emac_tx_q_bufs_free(adpt);
 812err_alloc_tx:
 813        dma_free_coherent(dev, ring_header->size,
 814                          ring_header->v_addr, ring_header->dma_addr);
 815
 816        ring_header->v_addr   = NULL;
 817        ring_header->dma_addr = 0;
 818        ring_header->size     = 0;
 819        ring_header->used     = 0;
 820
 821        return ret;
 822}
 823
 824/* Free all TX and RX descriptor rings */
 825void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
 826{
 827        struct emac_ring_header *ring_header = &adpt->ring_header;
 828        struct device *dev = adpt->netdev->dev.parent;
 829
 830        emac_tx_q_bufs_free(adpt);
 831        emac_rx_q_bufs_free(adpt);
 832
 833        dma_free_coherent(dev, ring_header->size,
 834                          ring_header->v_addr, ring_header->dma_addr);
 835
 836        ring_header->v_addr   = NULL;
 837        ring_header->dma_addr = 0;
 838        ring_header->size     = 0;
 839        ring_header->used     = 0;
 840}
 841
 842/* Initialize descriptor rings */
 843static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
 844{
 845        unsigned int i;
 846
 847        adpt->tx_q.tpd.produce_idx = 0;
 848        adpt->tx_q.tpd.consume_idx = 0;
 849        for (i = 0; i < adpt->tx_q.tpd.count; i++)
 850                adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
 851
 852        adpt->rx_q.rrd.produce_idx = 0;
 853        adpt->rx_q.rrd.consume_idx = 0;
 854        adpt->rx_q.rfd.produce_idx = 0;
 855        adpt->rx_q.rfd.consume_idx = 0;
 856        for (i = 0; i < adpt->rx_q.rfd.count; i++)
 857                adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
 858}
 859
 860/* Produce new receive free descriptor */
 861static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
 862                                   struct emac_rx_queue *rx_q,
 863                                   dma_addr_t addr)
 864{
 865        u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
 866
 867        *(hw_rfd++) = lower_32_bits(addr);
 868        *hw_rfd = upper_32_bits(addr);
 869
 870        if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
 871                rx_q->rfd.produce_idx = 0;
 872}
 873
 874/* Fill up receive queue's RFD with preallocated receive buffers */
 875static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
 876                                    struct emac_rx_queue *rx_q)
 877{
 878        struct emac_buffer *curr_rxbuf;
 879        struct emac_buffer *next_rxbuf;
 880        unsigned int count = 0;
 881        u32 next_produce_idx;
 882
 883        next_produce_idx = rx_q->rfd.produce_idx + 1;
 884        if (next_produce_idx == rx_q->rfd.count)
 885                next_produce_idx = 0;
 886
 887        curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 888        next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 889
 890        /* this always has a blank rx_buffer*/
 891        while (!next_rxbuf->dma_addr) {
 892                struct sk_buff *skb;
 893                int ret;
 894
 895                skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
 896                if (!skb)
 897                        break;
 898
 899                curr_rxbuf->dma_addr =
 900                        dma_map_single(adpt->netdev->dev.parent, skb->data,
 901                                       adpt->rxbuf_size, DMA_FROM_DEVICE);
 902
 903                ret = dma_mapping_error(adpt->netdev->dev.parent,
 904                                        curr_rxbuf->dma_addr);
 905                if (ret) {
 906                        dev_kfree_skb(skb);
 907                        break;
 908                }
 909                curr_rxbuf->skb = skb;
 910                curr_rxbuf->length = adpt->rxbuf_size;
 911
 912                emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
 913                next_produce_idx = rx_q->rfd.produce_idx + 1;
 914                if (next_produce_idx == rx_q->rfd.count)
 915                        next_produce_idx = 0;
 916
 917                curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 918                next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 919                count++;
 920        }
 921
 922        if (count) {
 923                u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
 924                                rx_q->produce_mask;
 925                emac_reg_update32(adpt->base + rx_q->produce_reg,
 926                                  rx_q->produce_mask, prod_idx);
 927        }
 928}
 929
 930static void emac_adjust_link(struct net_device *netdev)
 931{
 932        struct emac_adapter *adpt = netdev_priv(netdev);
 933        struct emac_sgmii *sgmii = &adpt->phy;
 934        struct phy_device *phydev = netdev->phydev;
 935
 936        if (phydev->link) {
 937                emac_mac_start(adpt);
 938                sgmii->link_up(adpt);
 939        } else {
 940                sgmii->link_down(adpt);
 941                emac_mac_stop(adpt);
 942        }
 943
 944        phy_print_status(phydev);
 945}
 946
 947/* Bringup the interface/HW */
 948int emac_mac_up(struct emac_adapter *adpt)
 949{
 950        struct net_device *netdev = adpt->netdev;
 951        int ret;
 952
 953        emac_mac_rx_tx_ring_reset_all(adpt);
 954        emac_mac_config(adpt);
 955        emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
 956
 957        adpt->phydev->irq = PHY_POLL;
 958        ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
 959                                 PHY_INTERFACE_MODE_SGMII);
 960        if (ret) {
 961                netdev_err(adpt->netdev, "could not connect phy\n");
 962                return ret;
 963        }
 964
 965        phy_attached_print(adpt->phydev, NULL);
 966
 967        /* enable mac irq */
 968        writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
 969        writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
 970
 971        phy_start(adpt->phydev);
 972
 973        napi_enable(&adpt->rx_q.napi);
 974        netif_start_queue(netdev);
 975
 976        return 0;
 977}
 978
 979/* Bring down the interface/HW */
 980void emac_mac_down(struct emac_adapter *adpt)
 981{
 982        struct net_device *netdev = adpt->netdev;
 983
 984        netif_stop_queue(netdev);
 985        napi_disable(&adpt->rx_q.napi);
 986
 987        phy_stop(adpt->phydev);
 988
 989        /* Interrupts must be disabled before the PHY is disconnected, to
 990         * avoid a race condition where adjust_link is null when we get
 991         * an interrupt.
 992         */
 993        writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
 994        writel(0, adpt->base + EMAC_INT_MASK);
 995        synchronize_irq(adpt->irq.irq);
 996
 997        phy_disconnect(adpt->phydev);
 998
 999        emac_mac_reset(adpt);
1000
1001        emac_tx_q_descs_free(adpt);
1002        netdev_reset_queue(adpt->netdev);
1003        emac_rx_q_free_descs(adpt);
1004}
1005
1006/* Consume next received packet descriptor */
1007static bool emac_rx_process_rrd(struct emac_adapter *adpt,
1008                                struct emac_rx_queue *rx_q,
1009                                struct emac_rrd *rrd)
1010{
1011        u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
1012
1013        rrd->word[3] = *(hw_rrd + 3);
1014
1015        if (!RRD_UPDT(rrd))
1016                return false;
1017
1018        rrd->word[4] = 0;
1019        rrd->word[5] = 0;
1020
1021        rrd->word[0] = *(hw_rrd++);
1022        rrd->word[1] = *(hw_rrd++);
1023        rrd->word[2] = *(hw_rrd++);
1024
1025        if (unlikely(RRD_NOR(rrd) != 1)) {
1026                netdev_err(adpt->netdev,
1027                           "error: multi-RFD not support yet! nor:%lu\n",
1028                           RRD_NOR(rrd));
1029        }
1030
1031        /* mark rrd as processed */
1032        RRD_UPDT_SET(rrd, 0);
1033        *hw_rrd = rrd->word[3];
1034
1035        if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1036                rx_q->rrd.consume_idx = 0;
1037
1038        return true;
1039}
1040
1041/* Produce new transmit descriptor */
1042static void emac_tx_tpd_create(struct emac_adapter *adpt,
1043                               struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1044{
1045        u32 *hw_tpd;
1046
1047        tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1048        hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1049
1050        if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1051                tx_q->tpd.produce_idx = 0;
1052
1053        *(hw_tpd++) = tpd->word[0];
1054        *(hw_tpd++) = tpd->word[1];
1055        *(hw_tpd++) = tpd->word[2];
1056        *hw_tpd = tpd->word[3];
1057}
1058
1059/* Mark the last transmit descriptor as such (for the transmit packet) */
1060static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1061                                  struct emac_tx_queue *tx_q)
1062{
1063        u32 *hw_tpd =
1064                EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1065        u32 tmp_tpd;
1066
1067        tmp_tpd = *(hw_tpd + 1);
1068        tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1069        *(hw_tpd + 1) = tmp_tpd;
1070}
1071
1072static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1073{
1074        struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1075        u32 consume_idx = RRD_SI(rrd);
1076        unsigned int i;
1077
1078        for (i = 0; i < RRD_NOR(rrd); i++) {
1079                rfbuf[consume_idx].skb = NULL;
1080                if (++consume_idx == rx_q->rfd.count)
1081                        consume_idx = 0;
1082        }
1083
1084        rx_q->rfd.consume_idx = consume_idx;
1085        rx_q->rfd.process_idx = consume_idx;
1086}
1087
1088/* Push the received skb to upper layers */
1089static void emac_receive_skb(struct emac_rx_queue *rx_q,
1090                             struct sk_buff *skb,
1091                             u16 vlan_tag, bool vlan_flag)
1092{
1093        if (vlan_flag) {
1094                u16 vlan;
1095
1096                EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1097                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1098        }
1099
1100        napi_gro_receive(&rx_q->napi, skb);
1101}
1102
1103/* Process receive event */
1104void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1105                         int *num_pkts, int max_pkts)
1106{
1107        u32 proc_idx, hw_consume_idx, num_consume_pkts;
1108        struct net_device *netdev  = adpt->netdev;
1109        struct emac_buffer *rfbuf;
1110        unsigned int count = 0;
1111        struct emac_rrd rrd;
1112        struct sk_buff *skb;
1113        u32 reg;
1114
1115        reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1116
1117        hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1118        num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1119                (hw_consume_idx -  rx_q->rrd.consume_idx) :
1120                (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1121
1122        do {
1123                if (!num_consume_pkts)
1124                        break;
1125
1126                if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1127                        break;
1128
1129                if (likely(RRD_NOR(&rrd) == 1)) {
1130                        /* good receive */
1131                        rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1132                        dma_unmap_single(adpt->netdev->dev.parent,
1133                                         rfbuf->dma_addr, rfbuf->length,
1134                                         DMA_FROM_DEVICE);
1135                        rfbuf->dma_addr = 0;
1136                        skb = rfbuf->skb;
1137                } else {
1138                        netdev_err(adpt->netdev,
1139                                   "error: multi-RFD not support yet!\n");
1140                        break;
1141                }
1142                emac_rx_rfd_clean(rx_q, &rrd);
1143                num_consume_pkts--;
1144                count++;
1145
1146                /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1147                 * with DF set are marked as error), drop packets based on the
1148                 * error mask rather than the summary bit (ignoring L4F errors)
1149                 */
1150                if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1151                        netif_dbg(adpt, rx_status, adpt->netdev,
1152                                  "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1153                                  rrd.word[0], rrd.word[1],
1154                                  rrd.word[2], rrd.word[3]);
1155
1156                        dev_kfree_skb(skb);
1157                        continue;
1158                }
1159
1160                skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1161                skb->dev = netdev;
1162                skb->protocol = eth_type_trans(skb, skb->dev);
1163                if (netdev->features & NETIF_F_RXCSUM)
1164                        skb->ip_summed = RRD_L4F(&rrd) ?
1165                                          CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1166                else
1167                        skb_checksum_none_assert(skb);
1168
1169                emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1170                                 (bool)RRD_CVTAG(&rrd));
1171
1172                (*num_pkts)++;
1173        } while (*num_pkts < max_pkts);
1174
1175        if (count) {
1176                proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1177                                rx_q->process_mask;
1178                emac_reg_update32(adpt->base + rx_q->process_reg,
1179                                  rx_q->process_mask, proc_idx);
1180                emac_mac_rx_descs_refill(adpt, rx_q);
1181        }
1182}
1183
1184/* get the number of free transmit descriptors */
1185static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1186{
1187        u32 produce_idx = tx_q->tpd.produce_idx;
1188        u32 consume_idx = tx_q->tpd.consume_idx;
1189
1190        return (consume_idx > produce_idx) ?
1191                (consume_idx - produce_idx - 1) :
1192                (tx_q->tpd.count + consume_idx - produce_idx - 1);
1193}
1194
1195/* Process transmit event */
1196void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1197{
1198        u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1199        u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1200        struct emac_buffer *tpbuf;
1201
1202        hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1203
1204        while (tx_q->tpd.consume_idx != hw_consume_idx) {
1205                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1206                if (tpbuf->dma_addr) {
1207                        dma_unmap_single(adpt->netdev->dev.parent,
1208                                         tpbuf->dma_addr, tpbuf->length,
1209                                         DMA_TO_DEVICE);
1210                        tpbuf->dma_addr = 0;
1211                }
1212
1213                if (tpbuf->skb) {
1214                        pkts_compl++;
1215                        bytes_compl += tpbuf->skb->len;
1216                        dev_kfree_skb_irq(tpbuf->skb);
1217                        tpbuf->skb = NULL;
1218                }
1219
1220                if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1221                        tx_q->tpd.consume_idx = 0;
1222        }
1223
1224        netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1225
1226        if (netif_queue_stopped(adpt->netdev))
1227                if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1228                        netif_wake_queue(adpt->netdev);
1229}
1230
1231/* Initialize all queue data structures */
1232void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1233                                  struct emac_adapter *adpt)
1234{
1235        adpt->rx_q.netdev = adpt->netdev;
1236
1237        adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1238        adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1239        adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1240
1241        adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1242        adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1243        adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1244
1245        adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1246        adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1247        adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1248
1249        adpt->rx_q.irq          = &adpt->irq;
1250        adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1251
1252        adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1253        adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1254        adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1255
1256        adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1257        adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1258        adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1259}
1260
1261/* Fill up transmit descriptors with TSO and Checksum offload information */
1262static int emac_tso_csum(struct emac_adapter *adpt,
1263                         struct emac_tx_queue *tx_q,
1264                         struct sk_buff *skb,
1265                         struct emac_tpd *tpd)
1266{
1267        unsigned int hdr_len;
1268        int ret;
1269
1270        if (skb_is_gso(skb)) {
1271                if (skb_header_cloned(skb)) {
1272                        ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1273                        if (unlikely(ret))
1274                                return ret;
1275                }
1276
1277                if (skb->protocol == htons(ETH_P_IP)) {
1278                        u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1279                                       + ntohs(ip_hdr(skb)->tot_len);
1280                        if (skb->len > pkt_len)
1281                                pskb_trim(skb, pkt_len);
1282                }
1283
1284                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1285                if (unlikely(skb->len == hdr_len)) {
1286                        /* we only need to do csum */
1287                        netif_warn(adpt, tx_err, adpt->netdev,
1288                                   "tso not needed for packet with 0 data\n");
1289                        goto do_csum;
1290                }
1291
1292                if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1293                        ip_hdr(skb)->check = 0;
1294                        tcp_hdr(skb)->check =
1295                                ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1296                                                   ip_hdr(skb)->daddr,
1297                                                   0, IPPROTO_TCP, 0);
1298                        TPD_IPV4_SET(tpd, 1);
1299                }
1300
1301                if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1302                        /* ipv6 tso need an extra tpd */
1303                        struct emac_tpd extra_tpd;
1304
1305                        memset(tpd, 0, sizeof(*tpd));
1306                        memset(&extra_tpd, 0, sizeof(extra_tpd));
1307
1308                        ipv6_hdr(skb)->payload_len = 0;
1309                        tcp_hdr(skb)->check =
1310                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1311                                                 &ipv6_hdr(skb)->daddr,
1312                                                 0, IPPROTO_TCP, 0);
1313                        TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1314                        TPD_LSO_SET(&extra_tpd, 1);
1315                        TPD_LSOV_SET(&extra_tpd, 1);
1316                        emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1317                        TPD_LSOV_SET(tpd, 1);
1318                }
1319
1320                TPD_LSO_SET(tpd, 1);
1321                TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1322                TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1323                return 0;
1324        }
1325
1326do_csum:
1327        if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1328                unsigned int css, cso;
1329
1330                cso = skb_transport_offset(skb);
1331                if (unlikely(cso & 0x1)) {
1332                        netdev_err(adpt->netdev,
1333                                   "error: payload offset should be even\n");
1334                        return -EINVAL;
1335                }
1336                css = cso + skb->csum_offset;
1337
1338                TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1339                TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1340                TPD_CSX_SET(tpd, 1);
1341        }
1342
1343        return 0;
1344}
1345
1346/* Fill up transmit descriptors */
1347static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1348                             struct emac_tx_queue *tx_q, struct sk_buff *skb,
1349                             struct emac_tpd *tpd)
1350{
1351        unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1352        unsigned int first = tx_q->tpd.produce_idx;
1353        unsigned int len = skb_headlen(skb);
1354        struct emac_buffer *tpbuf = NULL;
1355        unsigned int mapped_len = 0;
1356        unsigned int i;
1357        int count = 0;
1358        int ret;
1359
1360        /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1361        if (TPD_LSO(tpd)) {
1362                mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1363
1364                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1365                tpbuf->length = mapped_len;
1366                tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1367                                                 skb->data, tpbuf->length,
1368                                                 DMA_TO_DEVICE);
1369                ret = dma_mapping_error(adpt->netdev->dev.parent,
1370                                        tpbuf->dma_addr);
1371                if (ret)
1372                        goto error;
1373
1374                TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1375                TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1376                TPD_BUF_LEN_SET(tpd, tpbuf->length);
1377                emac_tx_tpd_create(adpt, tx_q, tpd);
1378                count++;
1379        }
1380
1381        if (mapped_len < len) {
1382                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1383                tpbuf->length = len - mapped_len;
1384                tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1385                                                 skb->data + mapped_len,
1386                                                 tpbuf->length, DMA_TO_DEVICE);
1387                ret = dma_mapping_error(adpt->netdev->dev.parent,
1388                                        tpbuf->dma_addr);
1389                if (ret)
1390                        goto error;
1391
1392                TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1393                TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1394                TPD_BUF_LEN_SET(tpd, tpbuf->length);
1395                emac_tx_tpd_create(adpt, tx_q, tpd);
1396                count++;
1397        }
1398
1399        for (i = 0; i < nr_frags; i++) {
1400                struct skb_frag_struct *frag;
1401
1402                frag = &skb_shinfo(skb)->frags[i];
1403
1404                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1405                tpbuf->length = frag->size;
1406                tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1407                                               frag->page.p, frag->page_offset,
1408                                               tpbuf->length, DMA_TO_DEVICE);
1409                ret = dma_mapping_error(adpt->netdev->dev.parent,
1410                                        tpbuf->dma_addr);
1411                if (ret)
1412                        goto error;
1413
1414                TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1415                TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1416                TPD_BUF_LEN_SET(tpd, tpbuf->length);
1417                emac_tx_tpd_create(adpt, tx_q, tpd);
1418                count++;
1419        }
1420
1421        /* The last tpd */
1422        wmb();
1423        emac_tx_tpd_mark_last(adpt, tx_q);
1424
1425        /* The last buffer info contain the skb address,
1426         * so it will be freed after unmap
1427         */
1428        tpbuf->skb = skb;
1429
1430        return;
1431
1432error:
1433        /* One of the memory mappings failed, so undo everything */
1434        tx_q->tpd.produce_idx = first;
1435
1436        while (count--) {
1437                tpbuf = GET_TPD_BUFFER(tx_q, first);
1438                dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1439                               tpbuf->length, DMA_TO_DEVICE);
1440                tpbuf->dma_addr = 0;
1441                tpbuf->length = 0;
1442
1443                if (++first == tx_q->tpd.count)
1444                        first = 0;
1445        }
1446
1447        dev_kfree_skb(skb);
1448}
1449
1450/* Transmit the packet using specified transmit queue */
1451int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
1452                         struct sk_buff *skb)
1453{
1454        struct emac_tpd tpd;
1455        u32 prod_idx;
1456
1457        memset(&tpd, 0, sizeof(tpd));
1458
1459        if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1460                dev_kfree_skb_any(skb);
1461                return NETDEV_TX_OK;
1462        }
1463
1464        if (skb_vlan_tag_present(skb)) {
1465                u16 tag;
1466
1467                EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1468                TPD_CVLAN_TAG_SET(&tpd, tag);
1469                TPD_INSTC_SET(&tpd, 1);
1470        }
1471
1472        if (skb_network_offset(skb) != ETH_HLEN)
1473                TPD_TYP_SET(&tpd, 1);
1474
1475        emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1476
1477        netdev_sent_queue(adpt->netdev, skb->len);
1478
1479        /* Make sure the are enough free descriptors to hold one
1480         * maximum-sized SKB.  We need one desc for each fragment,
1481         * one for the checksum (emac_tso_csum), one for TSO, and
1482         * and one for the SKB header.
1483         */
1484        if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1485                netif_stop_queue(adpt->netdev);
1486
1487        /* update produce idx */
1488        prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1489                    tx_q->produce_mask;
1490        emac_reg_update32(adpt->base + tx_q->produce_reg,
1491                          tx_q->produce_mask, prod_idx);
1492
1493        return NETDEV_TX_OK;
1494}
1495