1/* 2 * Copyright (C) 2016 IBM Corp. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 */ 9 10#ifndef PINCTRL_ASPEED 11#define PINCTRL_ASPEED 12 13#include <linux/pinctrl/pinctrl.h> 14#include <linux/pinctrl/pinmux.h> 15#include <linux/pinctrl/pinconf.h> 16#include <linux/pinctrl/pinconf-generic.h> 17#include <linux/regmap.h> 18 19/* 20 * The ASPEED SoCs provide typically more than 200 pins for GPIO and other 21 * functions. The SoC function enabled on a pin is determined on a priority 22 * basis where a given pin can provide a number of different signal types. 23 * 24 * The signal active on a pin is described by both a priority level and 25 * compound logical expressions involving multiple operators, registers and 26 * bits. Some difficulty arises as the pin's function bit masks for each 27 * priority level are frequently not the same (i.e. cannot just flip a bit to 28 * change from a high to low priority signal), or even in the same register. 29 * Further, not all signals can be unmuxed, as some expressions depend on 30 * values in the hardware strapping register (which is treated as read-only). 31 * 32 * SoC Multi-function Pin Expression Examples 33 * ------------------------------------------ 34 * 35 * Here are some sample mux configurations from the AST2400 and AST2500 36 * datasheets to illustrate the corner cases, roughly in order of least to most 37 * corner. The signal priorities are in decending order from P0 (highest). 38 * 39 * D6 is a pin with a single function (beside GPIO); a high priority signal 40 * that participates in one function: 41 * 42 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 43 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 44 * D6 GPIOA0 MAC1LINK SCU80[0]=1 GPIOA0 45 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 46 * 47 * C5 is a multi-signal pin (high and low priority signals). Here we touch 48 * different registers for the different functions that enable each signal: 49 * 50 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 51 * C5 GPIOA4 SCL9 SCU90[22]=1 TIMER5 SCU80[4]=1 GPIOA4 52 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 53 * 54 * E19 is a single-signal pin with two functions that influence the active 55 * signal. In this case both bits have the same meaning - enable a dedicated 56 * LPC reset pin. However it's not always the case that the bits in the 57 * OR-relationship have the same meaning. 58 * 59 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 60 * E19 GPIOB4 LPCRST# SCU80[12]=1 | Strap[14]=1 GPIOB4 61 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 62 * 63 * For example, pin B19 has a low-priority signal that's enabled by two 64 * distinct SoC functions: A specific SIOPBI bit in register SCUA4, and an ACPI 65 * bit in the STRAP register. The ACPI bit configures signals on pins in 66 * addition to B19. Both of the low priority functions as well as the high 67 * priority function must be disabled for GPIOF1 to be used. 68 * 69 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 70 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 71 * B19 GPIOF1 NDCD4 SCU80[25]=1 SIOPBI# SCUA4[12]=1 | Strap[19]=0 GPIOF1 72 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 73 * 74 * For pin E18, the SoC ANDs the expected state of three bits to determine the 75 * pin's active signal: 76 * 77 * * SCU3C[3]: Enable external SOC reset function 78 * * SCU80[15]: Enable SPICS1# or EXTRST# function pin 79 * * SCU90[31]: Select SPI interface CS# output 80 * 81 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 82 * E18 GPIOB7 EXTRST# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=0 SPICS1# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=1 GPIOB7 83 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 84 * 85 * (Bits SCU3C[3] and SCU80[15] appear to only be used in the expressions for 86 * selecting the signals on pin E18) 87 * 88 * Pin T5 is a multi-signal pin with a more complex configuration: 89 * 90 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 91 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 92 * T5 GPIOL1 VPIDE SCU90[5:4]!=0 & SCU84[17]=1 NDCD1 SCU84[17]=1 GPIOL1 93 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 94 * 95 * The high priority signal configuration is best thought of in terms of its 96 * exploded form, with reference to the SCU90[5:4] bits: 97 * 98 * * SCU90[5:4]=00: disable 99 * * SCU90[5:4]=01: 18 bits (R6/G6/B6) video mode. 100 * * SCU90[5:4]=10: 24 bits (R8/G8/B8) video mode. 101 * * SCU90[5:4]=11: 30 bits (R10/G10/B10) video mode. 102 * 103 * Re-writing: 104 * 105 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 106 * T5 GPIOL1 VPIDE (SCU90[5:4]=1 & SCU84[17]=1) NDCD1 SCU84[17]=1 GPIOL1 107 * | (SCU90[5:4]=2 & SCU84[17]=1) 108 * | (SCU90[5:4]=3 & SCU84[17]=1) 109 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 110 * 111 * For reference the SCU84[17] bit configure the "UART1 NDCD1 or Video VPIDE 112 * function pin", where the signal itself is determined by whether SCU94[5:4] 113 * is disabled or in one of the 18, 24 or 30bit video modes. 114 * 115 * Other video-input-related pins require an explicit state in SCU90[5:4], e.g. 116 * W1 and U5: 117 * 118 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 119 * W1 GPIOL6 VPIB0 SCU90[5:4]=3 & SCU84[22]=1 TXD1 SCU84[22]=1 GPIOL6 120 * U5 GPIOL7 VPIB1 SCU90[5:4]=3 & SCU84[23]=1 RXD1 SCU84[23]=1 GPIOL7 121 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 122 * 123 * The examples of T5 and W1 are particularly fertile, as they also demonstrate 124 * that despite operating as part of the video input bus each signal needs to 125 * be enabled individually via it's own SCU84 (in the cases of T5 and W1) 126 * register bit. This is a little crazy if the bus doesn't have optional 127 * signals, but is used to decent effect with some of the UARTs where not all 128 * signals are required. However, this isn't done consistently - UART1 is 129 * enabled on a per-pin basis, and by contrast, all signals for UART6 are 130 * enabled by a single bit. 131 * 132 * Further, the high and low priority signals listed in the table above share 133 * a configuration bit. The VPI signals should operate in concert in a single 134 * function, but the UART signals should retain the ability to be configured 135 * independently. This pushes the implementation down the path of tagging a 136 * signal's expressions with the function they participate in, rather than 137 * defining masks affecting multiple signals per function. The latter approach 138 * fails in this instance where applying the configuration for the UART pin of 139 * interest will stomp on the state of other UART signals when disabling the 140 * VPI functions on the current pin. 141 * 142 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 143 * -----+------------+-----------+---------------------------+-----------+---------------+------------ 144 * A12 RGMII1TXCK GPIOT0 SCUA0[0]=1 RMII1TXEN Strap[6]=0 RGMII1TXCK 145 * B12 RGMII1TXCTL GPIOT1 SCUA0[1]=1 – Strap[6]=0 RGMII1TXCTL 146 * -----+------------+-----------+---------------------------+-----------+---------------+------------ 147 * 148 * A12 demonstrates that the "Other" signal isn't always GPIO - in this case 149 * GPIOT0 is a high-priority signal and RGMII1TXCK is Other. Thus, GPIO 150 * should be treated like any other signal type with full function expression 151 * requirements, and not assumed to be the default case. Separately, GPIOT0 and 152 * GPIOT1's signal descriptor bits are distinct, therefore we must iterate all 153 * pins in the function's group to disable the higher-priority signals such 154 * that the signal for the function of interest is correctly enabled. 155 * 156 * Finally, three priority levels aren't always enough; the AST2500 brings with 157 * it 18 pins of five priority levels, however the 18 pins only use three of 158 * the five priority levels. 159 * 160 * Ultimately the requirement to control pins in the examples above drive the 161 * design: 162 * 163 * * Pins provide signals according to functions activated in the mux 164 * configuration 165 * 166 * * Pins provide up to five signal types in a priority order 167 * 168 * * For priorities levels defined on a pin, each priority provides one signal 169 * 170 * * Enabling lower priority signals requires higher priority signals be 171 * disabled 172 * 173 * * A function represents a set of signals; functions are distinct if their 174 * sets of signals are not equal 175 * 176 * * Signals participate in one or more functions 177 * 178 * * A function is described by an expression of one or more signal 179 * descriptors, which compare bit values in a register 180 * 181 * * A signal expression is the smallest set of signal descriptors whose 182 * comparisons must evaluate 'true' for a signal to be enabled on a pin. 183 * 184 * * A function's signal is active on a pin if evaluating all signal 185 * descriptors in the pin's signal expression for the function yields a 'true' 186 * result 187 * 188 * * A signal at a given priority on a given pin is active if any of the 189 * functions in which the signal participates are active, and no higher 190 * priority signal on the pin is active 191 * 192 * * GPIO is configured per-pin 193 * 194 * And so: 195 * 196 * * To disable a signal, any function(s) activating the signal must be 197 * disabled 198 * 199 * * Each pin must know the signal expressions of functions in which it 200 * participates, for the purpose of enabling the Other function. This is done 201 * by deactivating all functions that activate higher priority signals on the 202 * pin. 203 * 204 * As a concrete example: 205 * 206 * * T5 provides three signals types: VPIDE, NDCD1 and GPIO 207 * 208 * * The VPIDE signal participates in 3 functions: VPI18, VPI24 and VPI30 209 * 210 * * The NDCD1 signal participates in just its own NDCD1 function 211 * 212 * * VPIDE is high priority, NDCD1 is low priority, and GPIOL1 is the least 213 * prioritised 214 * 215 * * The prerequisit for activating the NDCD1 signal is that the VPI18, VPI24 216 * and VPI30 functions all be disabled 217 * 218 * * Similarly, all of VPI18, VPI24, VPI30 and NDCD1 functions must be disabled 219 * to provide GPIOL6 220 * 221 * Considerations 222 * -------------- 223 * 224 * If pinctrl allows us to allocate a pin we can configure a function without 225 * concern for the function of already allocated pins, if pin groups are 226 * created with respect to the SoC functions in which they participate. This is 227 * intuitive, but it did not feel obvious from the bit/pin relationships. 228 * 229 * Conversely, failing to allocate all pins in a group indicates some bits (as 230 * well as pins) required for the group's configuration will already be in use, 231 * likely in a way that's inconsistent with the requirements of the failed 232 * group. 233 */ 234 235#define ASPEED_IP_SCU 0 236#define ASPEED_IP_GFX 1 237#define ASPEED_IP_LPC 2 238#define ASPEED_NR_PINMUX_IPS 3 239 240/* 241 * The "Multi-function Pins Mapping and Control" table in the SoC datasheet 242 * references registers by the device/offset mnemonic. The register macros 243 * below are named the same way to ease transcription and verification (as 244 * opposed to naming them e.g. PINMUX_CTRL_[0-9]). Further, signal expressions 245 * reference registers beyond those dedicated to pinmux, such as the system 246 * reset control and MAC clock configuration registers. The AST2500 goes a step 247 * further and references registers in the graphics IP block, but that isn't 248 * handled yet. 249 */ 250#define SCU2C 0x2C /* Misc. Control Register */ 251#define SCU3C 0x3C /* System Reset Control/Status Register */ 252#define SCU48 0x48 /* MAC Interface Clock Delay Setting */ 253#define HW_STRAP1 0x70 /* AST2400 strapping is 33 bits, is split */ 254#define HW_REVISION_ID 0x7C /* Silicon revision ID register */ 255#define SCU80 0x80 /* Multi-function Pin Control #1 */ 256#define SCU84 0x84 /* Multi-function Pin Control #2 */ 257#define SCU88 0x88 /* Multi-function Pin Control #3 */ 258#define SCU8C 0x8C /* Multi-function Pin Control #4 */ 259#define SCU90 0x90 /* Multi-function Pin Control #5 */ 260#define SCU94 0x94 /* Multi-function Pin Control #6 */ 261#define SCUA0 0xA0 /* Multi-function Pin Control #7 */ 262#define SCUA4 0xA4 /* Multi-function Pin Control #8 */ 263#define SCUA8 0xA8 /* Multi-function Pin Control #9 */ 264#define SCUAC 0xAC /* Multi-function Pin Control #10 */ 265#define HW_STRAP2 0xD0 /* Strapping */ 266 267 /** 268 * A signal descriptor, which describes the register, bits and the 269 * enable/disable values that should be compared or written. 270 * 271 * @ip: The IP block identifier, used as an index into the regmap array in 272 * struct aspeed_pinctrl_data 273 * @reg: The register offset with respect to the base address of the IP block 274 * @mask: The mask to apply to the register. The lowest set bit of the mask is 275 * used to derive the shift value. 276 * @enable: The value that enables the function. Value should be in the LSBs, 277 * not at the position of the mask. 278 * @disable: The value that disables the function. Value should be in the 279 * LSBs, not at the position of the mask. 280 */ 281struct aspeed_sig_desc { 282 unsigned int ip; 283 unsigned int reg; 284 u32 mask; 285 u32 enable; 286 u32 disable; 287}; 288 289/** 290 * Describes a signal expression. The expression is evaluated by ANDing the 291 * evaluation of the descriptors. 292 * 293 * @signal: The signal name for the priority level on the pin. If the signal 294 * type is GPIO, then the signal name must begin with the string 295 * "GPIO", e.g. GPIOA0, GPIOT4 etc. 296 * @function: The name of the function the signal participates in for the 297 * associated expression 298 * @ndescs: The number of signal descriptors in the expression 299 * @descs: Pointer to an array of signal descriptors that comprise the 300 * function expression 301 */ 302struct aspeed_sig_expr { 303 const char *signal; 304 const char *function; 305 int ndescs; 306 const struct aspeed_sig_desc *descs; 307}; 308 309/** 310 * A struct capturing the list of expressions enabling signals at each priority 311 * for a given pin. The signal configuration for a priority level is evaluated 312 * by ORing the evaluation of the signal expressions in the respective 313 * priority's list. 314 * 315 * @name: A name for the pin 316 * @prios: A pointer to an array of expression list pointers 317 * 318 */ 319struct aspeed_pin_desc { 320 const char *name; 321 const struct aspeed_sig_expr ***prios; 322}; 323 324/* Macro hell */ 325 326#define SIG_DESC_IP_BIT(ip, reg, idx, val) \ 327 { ip, reg, BIT_MASK(idx), val, (((val) + 1) & 1) } 328 329/** 330 * Short-hand macro for describing an SCU descriptor enabled by the state of 331 * one bit. The disable value is derived. 332 * 333 * @reg: The signal's associated register, offset from base 334 * @idx: The signal's bit index in the register 335 * @val: The value (0 or 1) that enables the function 336 */ 337#define SIG_DESC_BIT(reg, idx, val) \ 338 SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, val) 339 340#define SIG_DESC_IP_SET(ip, reg, idx) SIG_DESC_IP_BIT(ip, reg, idx, 1) 341 342/** 343 * A further short-hand macro expanding to an SCU descriptor enabled by a set 344 * bit. 345 * 346 * @reg: The register, offset from base 347 * @idx: The bit index in the register 348 */ 349#define SIG_DESC_SET(reg, idx) SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, 1) 350 351#define SIG_DESC_LIST_SYM(sig, func) sig_descs_ ## sig ## _ ## func 352#define SIG_DESC_LIST_DECL(sig, func, ...) \ 353 static const struct aspeed_sig_desc SIG_DESC_LIST_SYM(sig, func)[] = \ 354 { __VA_ARGS__ } 355 356#define SIG_EXPR_SYM(sig, func) sig_expr_ ## sig ## _ ## func 357#define SIG_EXPR_DECL_(sig, func) \ 358 static const struct aspeed_sig_expr SIG_EXPR_SYM(sig, func) = \ 359 { \ 360 .signal = #sig, \ 361 .function = #func, \ 362 .ndescs = ARRAY_SIZE(SIG_DESC_LIST_SYM(sig, func)), \ 363 .descs = &(SIG_DESC_LIST_SYM(sig, func))[0], \ 364 } 365 366/** 367 * Declare a signal expression. 368 * 369 * @sig: A macro symbol name for the signal (is subjected to stringification 370 * and token pasting) 371 * @func: The function in which the signal is participating 372 * @...: Signal descriptors that define the signal expression 373 * 374 * For example, the following declares the ROMD8 signal for the ROM16 function: 375 * 376 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6)); 377 * 378 * And with multiple signal descriptors: 379 * 380 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), 381 * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); 382 */ 383#define SIG_EXPR_DECL(sig, func, ...) \ 384 SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \ 385 SIG_EXPR_DECL_(sig, func) 386 387/** 388 * Declare a pointer to a signal expression 389 * 390 * @sig: The macro symbol name for the signal (subjected to token pasting) 391 * @func: The macro symbol name for the function (subjected to token pasting) 392 */ 393#define SIG_EXPR_PTR(sig, func) (&SIG_EXPR_SYM(sig, func)) 394 395#define SIG_EXPR_LIST_SYM(sig) sig_exprs_ ## sig 396 397/** 398 * Declare a signal expression list for reference in a struct aspeed_pin_prio. 399 * 400 * @sig: A macro symbol name for the signal (is subjected to token pasting) 401 * @...: Signal expression structure pointers (use SIG_EXPR_PTR()) 402 * 403 * For example, the 16-bit ROM bus can be enabled by one of two possible signal 404 * expressions: 405 * 406 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6)); 407 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), 408 * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); 409 * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16), 410 * SIG_EXPR_PTR(ROMD8, ROM16S)); 411 */ 412#define SIG_EXPR_LIST_DECL(sig, ...) \ 413 static const struct aspeed_sig_expr *SIG_EXPR_LIST_SYM(sig)[] = \ 414 { __VA_ARGS__, NULL } 415 416/** 417 * A short-hand macro for declaring a function expression and an expression 418 * list with a single function. 419 * 420 * @func: A macro symbol name for the function (is subjected to token pasting) 421 * @...: Function descriptors that define the function expression 422 * 423 * For example, signal NCTS6 participates in its own function with one group: 424 * 425 * SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7)); 426 */ 427#define SIG_EXPR_LIST_DECL_SINGLE(sig, func, ...) \ 428 SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \ 429 SIG_EXPR_DECL_(sig, func); \ 430 SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, func)) 431 432#define SIG_EXPR_LIST_DECL_DUAL(sig, f0, f1) \ 433 SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, f0), SIG_EXPR_PTR(sig, f1)) 434 435#define SIG_EXPR_LIST_PTR(sig) (&SIG_EXPR_LIST_SYM(sig)[0]) 436 437#define PIN_EXPRS_SYM(pin) pin_exprs_ ## pin 438#define PIN_EXPRS_PTR(pin) (&PIN_EXPRS_SYM(pin)[0]) 439#define PIN_SYM(pin) pin_ ## pin 440 441#define MS_PIN_DECL_(pin, ...) \ 442 static const struct aspeed_sig_expr **PIN_EXPRS_SYM(pin)[] = \ 443 { __VA_ARGS__, NULL }; \ 444 static const struct aspeed_pin_desc PIN_SYM(pin) = \ 445 { #pin, PIN_EXPRS_PTR(pin) } 446 447/** 448 * Declare a multi-signal pin 449 * 450 * @pin: The pin number 451 * @other: Macro name for "other" functionality (subjected to stringification) 452 * @high: Macro name for the highest priority signal functions 453 * @low: Macro name for the low signal functions 454 * 455 * For example: 456 * 457 * #define A8 56 458 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6)); 459 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), 460 * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); 461 * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16), 462 * SIG_EXPR_PTR(ROMD8, ROM16S)); 463 * SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7)); 464 * MS_PIN_DECL(A8, GPIOH0, ROMD8, NCTS6); 465 */ 466#define MS_PIN_DECL(pin, other, high, low) \ 467 SIG_EXPR_LIST_DECL_SINGLE(other, other); \ 468 MS_PIN_DECL_(pin, \ 469 SIG_EXPR_LIST_PTR(high), \ 470 SIG_EXPR_LIST_PTR(low), \ 471 SIG_EXPR_LIST_PTR(other)) 472 473#define PIN_GROUP_SYM(func) pins_ ## func 474#define FUNC_GROUP_SYM(func) groups_ ## func 475#define FUNC_GROUP_DECL(func, ...) \ 476 static const int PIN_GROUP_SYM(func)[] = { __VA_ARGS__ }; \ 477 static const char *FUNC_GROUP_SYM(func)[] = { #func } 478 479/** 480 * Declare a single signal pin 481 * 482 * @pin: The pin number 483 * @other: Macro name for "other" functionality (subjected to stringification) 484 * @sig: Macro name for the signal (subjected to stringification) 485 * 486 * For example: 487 * 488 * #define E3 80 489 * SIG_EXPR_LIST_DECL_SINGLE(SCL5, I2C5, I2C5_DESC); 490 * SS_PIN_DECL(E3, GPIOK0, SCL5); 491 */ 492#define SS_PIN_DECL(pin, other, sig) \ 493 SIG_EXPR_LIST_DECL_SINGLE(other, other); \ 494 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other)) 495 496/** 497 * Single signal, single function pin declaration 498 * 499 * @pin: The pin number 500 * @other: Macro name for "other" functionality (subjected to stringification) 501 * @sig: Macro name for the signal (subjected to stringification) 502 * @...: Signal descriptors that define the function expression 503 * 504 * For example: 505 * 506 * SSSF_PIN_DECL(A4, GPIOA2, TIMER3, SIG_DESC_SET(SCU80, 2)); 507 */ 508#define SSSF_PIN_DECL(pin, other, sig, ...) \ 509 SIG_EXPR_LIST_DECL_SINGLE(sig, sig, __VA_ARGS__); \ 510 SIG_EXPR_LIST_DECL_SINGLE(other, other); \ 511 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other)); \ 512 FUNC_GROUP_DECL(sig, pin) 513 514#define GPIO_PIN_DECL(pin, gpio) \ 515 SIG_EXPR_LIST_DECL_SINGLE(gpio, gpio); \ 516 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(gpio)) 517 518/** 519 * @param The pinconf parameter type 520 * @pins The pin range this config struct covers, [low, high] 521 * @reg The register housing the configuration bits 522 * @mask The mask to select the bits of interest in @reg 523 */ 524struct aspeed_pin_config { 525 enum pin_config_param param; 526 unsigned int pins[2]; 527 unsigned int reg; 528 u8 bit; 529 u8 value; 530}; 531 532struct aspeed_pinctrl_data { 533 struct regmap *maps[ASPEED_NR_PINMUX_IPS]; 534 535 const struct pinctrl_pin_desc *pins; 536 const unsigned int npins; 537 538 const struct aspeed_pin_group *groups; 539 const unsigned int ngroups; 540 541 const struct aspeed_pin_function *functions; 542 const unsigned int nfunctions; 543 544 const struct aspeed_pin_config *configs; 545 const unsigned int nconfigs; 546}; 547 548#define ASPEED_PINCTRL_PIN(name_) \ 549 [name_] = { \ 550 .number = name_, \ 551 .name = #name_, \ 552 .drv_data = (void *) &(PIN_SYM(name_)) \ 553 } 554 555struct aspeed_pin_group { 556 const char *name; 557 const unsigned int *pins; 558 const unsigned int npins; 559}; 560 561#define ASPEED_PINCTRL_GROUP(name_) { \ 562 .name = #name_, \ 563 .pins = &(PIN_GROUP_SYM(name_))[0], \ 564 .npins = ARRAY_SIZE(PIN_GROUP_SYM(name_)), \ 565} 566 567struct aspeed_pin_function { 568 const char *name; 569 const char *const *groups; 570 unsigned int ngroups; 571}; 572 573#define ASPEED_PINCTRL_FUNC(name_, ...) { \ 574 .name = #name_, \ 575 .groups = &FUNC_GROUP_SYM(name_)[0], \ 576 .ngroups = ARRAY_SIZE(FUNC_GROUP_SYM(name_)), \ 577} 578 579int aspeed_pinctrl_get_groups_count(struct pinctrl_dev *pctldev); 580const char *aspeed_pinctrl_get_group_name(struct pinctrl_dev *pctldev, 581 unsigned int group); 582int aspeed_pinctrl_get_group_pins(struct pinctrl_dev *pctldev, 583 unsigned int group, const unsigned int **pins, 584 unsigned int *npins); 585void aspeed_pinctrl_pin_dbg_show(struct pinctrl_dev *pctldev, 586 struct seq_file *s, unsigned int offset); 587int aspeed_pinmux_get_fn_count(struct pinctrl_dev *pctldev); 588const char *aspeed_pinmux_get_fn_name(struct pinctrl_dev *pctldev, 589 unsigned int function); 590int aspeed_pinmux_get_fn_groups(struct pinctrl_dev *pctldev, 591 unsigned int function, const char * const **groups, 592 unsigned int * const num_groups); 593int aspeed_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned int function, 594 unsigned int group); 595int aspeed_gpio_request_enable(struct pinctrl_dev *pctldev, 596 struct pinctrl_gpio_range *range, 597 unsigned int offset); 598int aspeed_pinctrl_probe(struct platform_device *pdev, 599 struct pinctrl_desc *pdesc, 600 struct aspeed_pinctrl_data *pdata); 601int aspeed_pin_config_get(struct pinctrl_dev *pctldev, unsigned int offset, 602 unsigned long *config); 603int aspeed_pin_config_set(struct pinctrl_dev *pctldev, unsigned int offset, 604 unsigned long *configs, unsigned int num_configs); 605int aspeed_pin_config_group_get(struct pinctrl_dev *pctldev, 606 unsigned int selector, 607 unsigned long *config); 608int aspeed_pin_config_group_set(struct pinctrl_dev *pctldev, 609 unsigned int selector, 610 unsigned long *configs, 611 unsigned int num_configs); 612 613#endif /* PINCTRL_ASPEED */ 614