linux/drivers/tty/rocket.c
<<
>>
Prefs
   1/*
   2 * RocketPort device driver for Linux
   3 *
   4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
   5 * 
   6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
   7 * 
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2 of the
  11 * License, or (at your option) any later version.
  12 * 
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 * 
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23/*
  24 * Kernel Synchronization:
  25 *
  26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
  27 * from user mode) and the timer bottom half (tasklet).  This is a polled driver, interrupts
  28 * are not used.
  29 *
  30 * Critical data: 
  31 * -  rp_table[], accessed through passed "info" pointers, is a global (static) array of 
  32 *    serial port state information and the xmit_buf circular buffer.  Protected by 
  33 *    a per port spinlock.
  34 * -  xmit_flags[], an array of ints indexed by line (port) number, indicating that there
  35 *    is data to be transmitted.  Protected by atomic bit operations.
  36 * -  rp_num_ports, int indicating number of open ports, protected by atomic operations.
  37 * 
  38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
  39 * simultaneous access to the same port by more than one process.
  40 */
  41
  42/****** Defines ******/
  43#define ROCKET_PARANOIA_CHECK
  44#define ROCKET_DISABLE_SIMUSAGE
  45
  46#undef ROCKET_SOFT_FLOW
  47#undef ROCKET_DEBUG_OPEN
  48#undef ROCKET_DEBUG_INTR
  49#undef ROCKET_DEBUG_WRITE
  50#undef ROCKET_DEBUG_FLOW
  51#undef ROCKET_DEBUG_THROTTLE
  52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
  53#undef ROCKET_DEBUG_RECEIVE
  54#undef ROCKET_DEBUG_HANGUP
  55#undef REV_PCI_ORDER
  56#undef ROCKET_DEBUG_IO
  57
  58#define POLL_PERIOD (HZ/100)    /*  Polling period .01 seconds (10ms) */
  59
  60/****** Kernel includes ******/
  61
  62#include <linux/module.h>
  63#include <linux/errno.h>
  64#include <linux/major.h>
  65#include <linux/kernel.h>
  66#include <linux/signal.h>
  67#include <linux/slab.h>
  68#include <linux/mm.h>
  69#include <linux/sched.h>
  70#include <linux/timer.h>
  71#include <linux/interrupt.h>
  72#include <linux/tty.h>
  73#include <linux/tty_driver.h>
  74#include <linux/tty_flip.h>
  75#include <linux/serial.h>
  76#include <linux/string.h>
  77#include <linux/fcntl.h>
  78#include <linux/ptrace.h>
  79#include <linux/mutex.h>
  80#include <linux/ioport.h>
  81#include <linux/delay.h>
  82#include <linux/completion.h>
  83#include <linux/wait.h>
  84#include <linux/pci.h>
  85#include <linux/uaccess.h>
  86#include <linux/atomic.h>
  87#include <asm/unaligned.h>
  88#include <linux/bitops.h>
  89#include <linux/spinlock.h>
  90#include <linux/init.h>
  91
  92/****** RocketPort includes ******/
  93
  94#include "rocket_int.h"
  95#include "rocket.h"
  96
  97#define ROCKET_VERSION "2.09"
  98#define ROCKET_DATE "12-June-2003"
  99
 100/****** RocketPort Local Variables ******/
 101
 102static void rp_do_poll(unsigned long dummy);
 103
 104static struct tty_driver *rocket_driver;
 105
 106static struct rocket_version driver_version = { 
 107        ROCKET_VERSION, ROCKET_DATE
 108};
 109
 110static struct r_port *rp_table[MAX_RP_PORTS];          /*  The main repository of serial port state information. */
 111static unsigned int xmit_flags[NUM_BOARDS];            /*  Bit significant, indicates port had data to transmit. */
 112                                                       /*  eg.  Bit 0 indicates port 0 has xmit data, ...        */
 113static atomic_t rp_num_ports_open;                     /*  Number of serial ports open                           */
 114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
 115
 116static unsigned long board1;                           /* ISA addresses, retrieved from rocketport.conf          */
 117static unsigned long board2;
 118static unsigned long board3;
 119static unsigned long board4;
 120static unsigned long controller;
 121static bool support_low_speed;
 122static unsigned long modem1;
 123static unsigned long modem2;
 124static unsigned long modem3;
 125static unsigned long modem4;
 126static unsigned long pc104_1[8];
 127static unsigned long pc104_2[8];
 128static unsigned long pc104_3[8];
 129static unsigned long pc104_4[8];
 130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
 131
 132static int rp_baud_base[NUM_BOARDS];                   /*  Board config info (Someday make a per-board structure)  */
 133static unsigned long rcktpt_io_addr[NUM_BOARDS];
 134static int rcktpt_type[NUM_BOARDS];
 135static int is_PCI[NUM_BOARDS];
 136static rocketModel_t rocketModel[NUM_BOARDS];
 137static int max_board;
 138static const struct tty_port_operations rocket_port_ops;
 139
 140/*
 141 * The following arrays define the interrupt bits corresponding to each AIOP.
 142 * These bits are different between the ISA and regular PCI boards and the
 143 * Universal PCI boards.
 144 */
 145
 146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
 147        AIOP_INTR_BIT_0,
 148        AIOP_INTR_BIT_1,
 149        AIOP_INTR_BIT_2,
 150        AIOP_INTR_BIT_3
 151};
 152
 153#ifdef CONFIG_PCI
 154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
 155        UPCI_AIOP_INTR_BIT_0,
 156        UPCI_AIOP_INTR_BIT_1,
 157        UPCI_AIOP_INTR_BIT_2,
 158        UPCI_AIOP_INTR_BIT_3
 159};
 160#endif
 161
 162static Byte_t RData[RDATASIZE] = {
 163        0x00, 0x09, 0xf6, 0x82,
 164        0x02, 0x09, 0x86, 0xfb,
 165        0x04, 0x09, 0x00, 0x0a,
 166        0x06, 0x09, 0x01, 0x0a,
 167        0x08, 0x09, 0x8a, 0x13,
 168        0x0a, 0x09, 0xc5, 0x11,
 169        0x0c, 0x09, 0x86, 0x85,
 170        0x0e, 0x09, 0x20, 0x0a,
 171        0x10, 0x09, 0x21, 0x0a,
 172        0x12, 0x09, 0x41, 0xff,
 173        0x14, 0x09, 0x82, 0x00,
 174        0x16, 0x09, 0x82, 0x7b,
 175        0x18, 0x09, 0x8a, 0x7d,
 176        0x1a, 0x09, 0x88, 0x81,
 177        0x1c, 0x09, 0x86, 0x7a,
 178        0x1e, 0x09, 0x84, 0x81,
 179        0x20, 0x09, 0x82, 0x7c,
 180        0x22, 0x09, 0x0a, 0x0a
 181};
 182
 183static Byte_t RRegData[RREGDATASIZE] = {
 184        0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
 185        0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
 186        0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
 187        0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
 188        0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
 189        0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
 190        0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
 191        0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
 192        0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
 193        0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
 194        0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
 195        0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
 196        0x22, 0x09, 0x0a, 0x0a  /* 30: Rx FIFO Enable */
 197};
 198
 199static CONTROLLER_T sController[CTL_SIZE] = {
 200        {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 201         {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 202        {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 203         {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 204        {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 205         {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 206        {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 207         {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
 208};
 209
 210static Byte_t sBitMapClrTbl[8] = {
 211        0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
 212};
 213
 214static Byte_t sBitMapSetTbl[8] = {
 215        0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
 216};
 217
 218static int sClockPrescale = 0x14;
 219
 220/*
 221 *  Line number is the ttySIx number (x), the Minor number.  We 
 222 *  assign them sequentially, starting at zero.  The following 
 223 *  array keeps track of the line number assigned to a given board/aiop/channel.
 224 */
 225static unsigned char lineNumbers[MAX_RP_PORTS];
 226static unsigned long nextLineNumber;
 227
 228/*****  RocketPort Static Prototypes   *********/
 229static int __init init_ISA(int i);
 230static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
 231static void rp_flush_buffer(struct tty_struct *tty);
 232static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
 233static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
 234static void rp_start(struct tty_struct *tty);
 235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
 236                     int ChanNum);
 237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
 238static void sFlushRxFIFO(CHANNEL_T * ChP);
 239static void sFlushTxFIFO(CHANNEL_T * ChP);
 240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
 241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
 242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
 243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
 244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
 245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
 246                           ByteIO_t * AiopIOList, int AiopIOListSize,
 247                           int IRQNum, Byte_t Frequency, int PeriodicOnly);
 248static int sReadAiopID(ByteIO_t io);
 249static int sReadAiopNumChan(WordIO_t io);
 250
 251MODULE_AUTHOR("Theodore Ts'o");
 252MODULE_DESCRIPTION("Comtrol RocketPort driver");
 253module_param_hw(board1, ulong, ioport, 0);
 254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
 255module_param_hw(board2, ulong, ioport, 0);
 256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
 257module_param_hw(board3, ulong, ioport, 0);
 258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
 259module_param_hw(board4, ulong, ioport, 0);
 260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
 261module_param_hw(controller, ulong, ioport, 0);
 262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
 263module_param(support_low_speed, bool, 0);
 264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
 265module_param(modem1, ulong, 0);
 266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
 267module_param(modem2, ulong, 0);
 268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
 269module_param(modem3, ulong, 0);
 270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
 271module_param(modem4, ulong, 0);
 272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
 273module_param_array(pc104_1, ulong, NULL, 0);
 274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
 275module_param_array(pc104_2, ulong, NULL, 0);
 276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
 277module_param_array(pc104_3, ulong, NULL, 0);
 278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
 279module_param_array(pc104_4, ulong, NULL, 0);
 280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
 281
 282static int rp_init(void);
 283static void rp_cleanup_module(void);
 284
 285module_init(rp_init);
 286module_exit(rp_cleanup_module);
 287
 288
 289MODULE_LICENSE("Dual BSD/GPL");
 290
 291/*************************************************************************/
 292/*                     Module code starts here                           */
 293
 294static inline int rocket_paranoia_check(struct r_port *info,
 295                                        const char *routine)
 296{
 297#ifdef ROCKET_PARANOIA_CHECK
 298        if (!info)
 299                return 1;
 300        if (info->magic != RPORT_MAGIC) {
 301                printk(KERN_WARNING "Warning: bad magic number for rocketport "
 302                                "struct in %s\n", routine);
 303                return 1;
 304        }
 305#endif
 306        return 0;
 307}
 308
 309
 310/*  Serial port receive data function.  Called (from timer poll) when an AIOPIC signals 
 311 *  that receive data is present on a serial port.  Pulls data from FIFO, moves it into the 
 312 *  tty layer.  
 313 */
 314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
 315                unsigned int ChanStatus)
 316{
 317        unsigned int CharNStat;
 318        int ToRecv, wRecv, space;
 319        unsigned char *cbuf;
 320
 321        ToRecv = sGetRxCnt(cp);
 322#ifdef ROCKET_DEBUG_INTR
 323        printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
 324#endif
 325        if (ToRecv == 0)
 326                return;
 327
 328        /*
 329         * if status indicates there are errored characters in the
 330         * FIFO, then enter status mode (a word in FIFO holds
 331         * character and status).
 332         */
 333        if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
 334                if (!(ChanStatus & STATMODE)) {
 335#ifdef ROCKET_DEBUG_RECEIVE
 336                        printk(KERN_INFO "Entering STATMODE...\n");
 337#endif
 338                        ChanStatus |= STATMODE;
 339                        sEnRxStatusMode(cp);
 340                }
 341        }
 342
 343        /* 
 344         * if we previously entered status mode, then read down the
 345         * FIFO one word at a time, pulling apart the character and
 346         * the status.  Update error counters depending on status
 347         */
 348        if (ChanStatus & STATMODE) {
 349#ifdef ROCKET_DEBUG_RECEIVE
 350                printk(KERN_INFO "Ignore %x, read %x...\n",
 351                        info->ignore_status_mask, info->read_status_mask);
 352#endif
 353                while (ToRecv) {
 354                        char flag;
 355
 356                        CharNStat = sInW(sGetTxRxDataIO(cp));
 357#ifdef ROCKET_DEBUG_RECEIVE
 358                        printk(KERN_INFO "%x...\n", CharNStat);
 359#endif
 360                        if (CharNStat & STMBREAKH)
 361                                CharNStat &= ~(STMFRAMEH | STMPARITYH);
 362                        if (CharNStat & info->ignore_status_mask) {
 363                                ToRecv--;
 364                                continue;
 365                        }
 366                        CharNStat &= info->read_status_mask;
 367                        if (CharNStat & STMBREAKH)
 368                                flag = TTY_BREAK;
 369                        else if (CharNStat & STMPARITYH)
 370                                flag = TTY_PARITY;
 371                        else if (CharNStat & STMFRAMEH)
 372                                flag = TTY_FRAME;
 373                        else if (CharNStat & STMRCVROVRH)
 374                                flag = TTY_OVERRUN;
 375                        else
 376                                flag = TTY_NORMAL;
 377                        tty_insert_flip_char(&info->port, CharNStat & 0xff,
 378                                        flag);
 379                        ToRecv--;
 380                }
 381
 382                /*
 383                 * after we've emptied the FIFO in status mode, turn
 384                 * status mode back off
 385                 */
 386                if (sGetRxCnt(cp) == 0) {
 387#ifdef ROCKET_DEBUG_RECEIVE
 388                        printk(KERN_INFO "Status mode off.\n");
 389#endif
 390                        sDisRxStatusMode(cp);
 391                }
 392        } else {
 393                /*
 394                 * we aren't in status mode, so read down the FIFO two
 395                 * characters at time by doing repeated word IO
 396                 * transfer.
 397                 */
 398                space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
 399                if (space < ToRecv) {
 400#ifdef ROCKET_DEBUG_RECEIVE
 401                        printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
 402#endif
 403                        if (space <= 0)
 404                                return;
 405                        ToRecv = space;
 406                }
 407                wRecv = ToRecv >> 1;
 408                if (wRecv)
 409                        sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
 410                if (ToRecv & 1)
 411                        cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
 412        }
 413        /*  Push the data up to the tty layer */
 414        tty_flip_buffer_push(&info->port);
 415}
 416
 417/*
 418 *  Serial port transmit data function.  Called from the timer polling loop as a 
 419 *  result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
 420 *  to be sent out the serial port.  Data is buffered in rp_table[line].xmit_buf, it is 
 421 *  moved to the port's xmit FIFO.  *info is critical data, protected by spinlocks.
 422 */
 423static void rp_do_transmit(struct r_port *info)
 424{
 425        int c;
 426        CHANNEL_t *cp = &info->channel;
 427        struct tty_struct *tty;
 428        unsigned long flags;
 429
 430#ifdef ROCKET_DEBUG_INTR
 431        printk(KERN_DEBUG "%s\n", __func__);
 432#endif
 433        if (!info)
 434                return;
 435        tty = tty_port_tty_get(&info->port);
 436
 437        if (tty == NULL) {
 438                printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
 439                clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 440                return;
 441        }
 442
 443        spin_lock_irqsave(&info->slock, flags);
 444        info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
 445
 446        /*  Loop sending data to FIFO until done or FIFO full */
 447        while (1) {
 448                if (tty->stopped)
 449                        break;
 450                c = min(info->xmit_fifo_room, info->xmit_cnt);
 451                c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
 452                if (c <= 0 || info->xmit_fifo_room <= 0)
 453                        break;
 454                sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
 455                if (c & 1)
 456                        sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
 457                info->xmit_tail += c;
 458                info->xmit_tail &= XMIT_BUF_SIZE - 1;
 459                info->xmit_cnt -= c;
 460                info->xmit_fifo_room -= c;
 461#ifdef ROCKET_DEBUG_INTR
 462                printk(KERN_INFO "tx %d chars...\n", c);
 463#endif
 464        }
 465
 466        if (info->xmit_cnt == 0)
 467                clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 468
 469        if (info->xmit_cnt < WAKEUP_CHARS) {
 470                tty_wakeup(tty);
 471#ifdef ROCKETPORT_HAVE_POLL_WAIT
 472                wake_up_interruptible(&tty->poll_wait);
 473#endif
 474        }
 475
 476        spin_unlock_irqrestore(&info->slock, flags);
 477        tty_kref_put(tty);
 478
 479#ifdef ROCKET_DEBUG_INTR
 480        printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
 481               info->xmit_tail, info->xmit_fifo_room);
 482#endif
 483}
 484
 485/*
 486 *  Called when a serial port signals it has read data in it's RX FIFO.
 487 *  It checks what interrupts are pending and services them, including
 488 *  receiving serial data.  
 489 */
 490static void rp_handle_port(struct r_port *info)
 491{
 492        CHANNEL_t *cp;
 493        unsigned int IntMask, ChanStatus;
 494
 495        if (!info)
 496                return;
 497
 498        if (!tty_port_initialized(&info->port)) {
 499                printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
 500                                "info->flags & NOT_INIT\n");
 501                return;
 502        }
 503
 504        cp = &info->channel;
 505
 506        IntMask = sGetChanIntID(cp) & info->intmask;
 507#ifdef ROCKET_DEBUG_INTR
 508        printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
 509#endif
 510        ChanStatus = sGetChanStatus(cp);
 511        if (IntMask & RXF_TRIG) {       /* Rx FIFO trigger level */
 512                rp_do_receive(info, cp, ChanStatus);
 513        }
 514        if (IntMask & DELTA_CD) {       /* CD change  */
 515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
 516                printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
 517                       (ChanStatus & CD_ACT) ? "on" : "off");
 518#endif
 519                if (!(ChanStatus & CD_ACT) && info->cd_status) {
 520#ifdef ROCKET_DEBUG_HANGUP
 521                        printk(KERN_INFO "CD drop, calling hangup.\n");
 522#endif
 523                        tty_port_tty_hangup(&info->port, false);
 524                }
 525                info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
 526                wake_up_interruptible(&info->port.open_wait);
 527        }
 528#ifdef ROCKET_DEBUG_INTR
 529        if (IntMask & DELTA_CTS) {      /* CTS change */
 530                printk(KERN_INFO "CTS change...\n");
 531        }
 532        if (IntMask & DELTA_DSR) {      /* DSR change */
 533                printk(KERN_INFO "DSR change...\n");
 534        }
 535#endif
 536}
 537
 538/*
 539 *  The top level polling routine.  Repeats every 1/100 HZ (10ms).
 540 */
 541static void rp_do_poll(unsigned long dummy)
 542{
 543        CONTROLLER_t *ctlp;
 544        int ctrl, aiop, ch, line;
 545        unsigned int xmitmask, i;
 546        unsigned int CtlMask;
 547        unsigned char AiopMask;
 548        Word_t bit;
 549
 550        /*  Walk through all the boards (ctrl's) */
 551        for (ctrl = 0; ctrl < max_board; ctrl++) {
 552                if (rcktpt_io_addr[ctrl] <= 0)
 553                        continue;
 554
 555                /*  Get a ptr to the board's control struct */
 556                ctlp = sCtlNumToCtlPtr(ctrl);
 557
 558                /*  Get the interrupt status from the board */
 559#ifdef CONFIG_PCI
 560                if (ctlp->BusType == isPCI)
 561                        CtlMask = sPCIGetControllerIntStatus(ctlp);
 562                else
 563#endif
 564                        CtlMask = sGetControllerIntStatus(ctlp);
 565
 566                /*  Check if any AIOP read bits are set */
 567                for (aiop = 0; CtlMask; aiop++) {
 568                        bit = ctlp->AiopIntrBits[aiop];
 569                        if (CtlMask & bit) {
 570                                CtlMask &= ~bit;
 571                                AiopMask = sGetAiopIntStatus(ctlp, aiop);
 572
 573                                /*  Check if any port read bits are set */
 574                                for (ch = 0; AiopMask;  AiopMask >>= 1, ch++) {
 575                                        if (AiopMask & 1) {
 576
 577                                                /*  Get the line number (/dev/ttyRx number). */
 578                                                /*  Read the data from the port. */
 579                                                line = GetLineNumber(ctrl, aiop, ch);
 580                                                rp_handle_port(rp_table[line]);
 581                                        }
 582                                }
 583                        }
 584                }
 585
 586                xmitmask = xmit_flags[ctrl];
 587
 588                /*
 589                 *  xmit_flags contains bit-significant flags, indicating there is data
 590                 *  to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 
 591                 *  1, ... (32 total possible).  The variable i has the aiop and ch 
 592                 *  numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
 593                 */
 594                if (xmitmask) {
 595                        for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
 596                                if (xmitmask & (1 << i)) {
 597                                        aiop = (i & 0x18) >> 3;
 598                                        ch = i & 0x07;
 599                                        line = GetLineNumber(ctrl, aiop, ch);
 600                                        rp_do_transmit(rp_table[line]);
 601                                }
 602                        }
 603                }
 604        }
 605
 606        /*
 607         * Reset the timer so we get called at the next clock tick (10ms).
 608         */
 609        if (atomic_read(&rp_num_ports_open))
 610                mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 611}
 612
 613/*
 614 *  Initializes the r_port structure for a port, as well as enabling the port on 
 615 *  the board.  
 616 *  Inputs:  board, aiop, chan numbers
 617 */
 618static void __init
 619init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
 620{
 621        unsigned rocketMode;
 622        struct r_port *info;
 623        int line;
 624        CONTROLLER_T *ctlp;
 625
 626        /*  Get the next available line number */
 627        line = SetLineNumber(board, aiop, chan);
 628
 629        ctlp = sCtlNumToCtlPtr(board);
 630
 631        /*  Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
 632        info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
 633        if (!info) {
 634                printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
 635                                line);
 636                return;
 637        }
 638
 639        info->magic = RPORT_MAGIC;
 640        info->line = line;
 641        info->ctlp = ctlp;
 642        info->board = board;
 643        info->aiop = aiop;
 644        info->chan = chan;
 645        tty_port_init(&info->port);
 646        info->port.ops = &rocket_port_ops;
 647        info->flags &= ~ROCKET_MODE_MASK;
 648        switch (pc104[board][line]) {
 649        case 422:
 650                info->flags |= ROCKET_MODE_RS422;
 651                break;
 652        case 485:
 653                info->flags |= ROCKET_MODE_RS485;
 654                break;
 655        case 232:
 656        default:
 657                info->flags |= ROCKET_MODE_RS232;
 658                break;
 659        }
 660
 661        info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
 662        if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
 663                printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
 664                                board, aiop, chan);
 665                tty_port_destroy(&info->port);
 666                kfree(info);
 667                return;
 668        }
 669
 670        rocketMode = info->flags & ROCKET_MODE_MASK;
 671
 672        if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
 673                sEnRTSToggle(&info->channel);
 674        else
 675                sDisRTSToggle(&info->channel);
 676
 677        if (ctlp->boardType == ROCKET_TYPE_PC104) {
 678                switch (rocketMode) {
 679                case ROCKET_MODE_RS485:
 680                        sSetInterfaceMode(&info->channel, InterfaceModeRS485);
 681                        break;
 682                case ROCKET_MODE_RS422:
 683                        sSetInterfaceMode(&info->channel, InterfaceModeRS422);
 684                        break;
 685                case ROCKET_MODE_RS232:
 686                default:
 687                        if (info->flags & ROCKET_RTS_TOGGLE)
 688                                sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
 689                        else
 690                                sSetInterfaceMode(&info->channel, InterfaceModeRS232);
 691                        break;
 692                }
 693        }
 694        spin_lock_init(&info->slock);
 695        mutex_init(&info->write_mtx);
 696        rp_table[line] = info;
 697        tty_port_register_device(&info->port, rocket_driver, line,
 698                        pci_dev ? &pci_dev->dev : NULL);
 699}
 700
 701/*
 702 *  Configures a rocketport port according to its termio settings.  Called from 
 703 *  user mode into the driver (exception handler).  *info CD manipulation is spinlock protected.
 704 */
 705static void configure_r_port(struct tty_struct *tty, struct r_port *info,
 706                             struct ktermios *old_termios)
 707{
 708        unsigned cflag;
 709        unsigned long flags;
 710        unsigned rocketMode;
 711        int bits, baud, divisor;
 712        CHANNEL_t *cp;
 713        struct ktermios *t = &tty->termios;
 714
 715        cp = &info->channel;
 716        cflag = t->c_cflag;
 717
 718        /* Byte size and parity */
 719        if ((cflag & CSIZE) == CS8) {
 720                sSetData8(cp);
 721                bits = 10;
 722        } else {
 723                sSetData7(cp);
 724                bits = 9;
 725        }
 726        if (cflag & CSTOPB) {
 727                sSetStop2(cp);
 728                bits++;
 729        } else {
 730                sSetStop1(cp);
 731        }
 732
 733        if (cflag & PARENB) {
 734                sEnParity(cp);
 735                bits++;
 736                if (cflag & PARODD) {
 737                        sSetOddParity(cp);
 738                } else {
 739                        sSetEvenParity(cp);
 740                }
 741        } else {
 742                sDisParity(cp);
 743        }
 744
 745        /* baud rate */
 746        baud = tty_get_baud_rate(tty);
 747        if (!baud)
 748                baud = 9600;
 749        divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
 750        if ((divisor >= 8192 || divisor < 0) && old_termios) {
 751                baud = tty_termios_baud_rate(old_termios);
 752                if (!baud)
 753                        baud = 9600;
 754                divisor = (rp_baud_base[info->board] / baud) - 1;
 755        }
 756        if (divisor >= 8192 || divisor < 0) {
 757                baud = 9600;
 758                divisor = (rp_baud_base[info->board] / baud) - 1;
 759        }
 760        info->cps = baud / bits;
 761        sSetBaud(cp, divisor);
 762
 763        /* FIXME: Should really back compute a baud rate from the divisor */
 764        tty_encode_baud_rate(tty, baud, baud);
 765
 766        if (cflag & CRTSCTS) {
 767                info->intmask |= DELTA_CTS;
 768                sEnCTSFlowCtl(cp);
 769        } else {
 770                info->intmask &= ~DELTA_CTS;
 771                sDisCTSFlowCtl(cp);
 772        }
 773        if (cflag & CLOCAL) {
 774                info->intmask &= ~DELTA_CD;
 775        } else {
 776                spin_lock_irqsave(&info->slock, flags);
 777                if (sGetChanStatus(cp) & CD_ACT)
 778                        info->cd_status = 1;
 779                else
 780                        info->cd_status = 0;
 781                info->intmask |= DELTA_CD;
 782                spin_unlock_irqrestore(&info->slock, flags);
 783        }
 784
 785        /*
 786         * Handle software flow control in the board
 787         */
 788#ifdef ROCKET_SOFT_FLOW
 789        if (I_IXON(tty)) {
 790                sEnTxSoftFlowCtl(cp);
 791                if (I_IXANY(tty)) {
 792                        sEnIXANY(cp);
 793                } else {
 794                        sDisIXANY(cp);
 795                }
 796                sSetTxXONChar(cp, START_CHAR(tty));
 797                sSetTxXOFFChar(cp, STOP_CHAR(tty));
 798        } else {
 799                sDisTxSoftFlowCtl(cp);
 800                sDisIXANY(cp);
 801                sClrTxXOFF(cp);
 802        }
 803#endif
 804
 805        /*
 806         * Set up ignore/read mask words
 807         */
 808        info->read_status_mask = STMRCVROVRH | 0xFF;
 809        if (I_INPCK(tty))
 810                info->read_status_mask |= STMFRAMEH | STMPARITYH;
 811        if (I_BRKINT(tty) || I_PARMRK(tty))
 812                info->read_status_mask |= STMBREAKH;
 813
 814        /*
 815         * Characters to ignore
 816         */
 817        info->ignore_status_mask = 0;
 818        if (I_IGNPAR(tty))
 819                info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
 820        if (I_IGNBRK(tty)) {
 821                info->ignore_status_mask |= STMBREAKH;
 822                /*
 823                 * If we're ignoring parity and break indicators,
 824                 * ignore overruns too.  (For real raw support).
 825                 */
 826                if (I_IGNPAR(tty))
 827                        info->ignore_status_mask |= STMRCVROVRH;
 828        }
 829
 830        rocketMode = info->flags & ROCKET_MODE_MASK;
 831
 832        if ((info->flags & ROCKET_RTS_TOGGLE)
 833            || (rocketMode == ROCKET_MODE_RS485))
 834                sEnRTSToggle(cp);
 835        else
 836                sDisRTSToggle(cp);
 837
 838        sSetRTS(&info->channel);
 839
 840        if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
 841                switch (rocketMode) {
 842                case ROCKET_MODE_RS485:
 843                        sSetInterfaceMode(cp, InterfaceModeRS485);
 844                        break;
 845                case ROCKET_MODE_RS422:
 846                        sSetInterfaceMode(cp, InterfaceModeRS422);
 847                        break;
 848                case ROCKET_MODE_RS232:
 849                default:
 850                        if (info->flags & ROCKET_RTS_TOGGLE)
 851                                sSetInterfaceMode(cp, InterfaceModeRS232T);
 852                        else
 853                                sSetInterfaceMode(cp, InterfaceModeRS232);
 854                        break;
 855                }
 856        }
 857}
 858
 859static int carrier_raised(struct tty_port *port)
 860{
 861        struct r_port *info = container_of(port, struct r_port, port);
 862        return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
 863}
 864
 865static void dtr_rts(struct tty_port *port, int on)
 866{
 867        struct r_port *info = container_of(port, struct r_port, port);
 868        if (on) {
 869                sSetDTR(&info->channel);
 870                sSetRTS(&info->channel);
 871        } else {
 872                sClrDTR(&info->channel);
 873                sClrRTS(&info->channel);
 874        }
 875}
 876
 877/*
 878 *  Exception handler that opens a serial port.  Creates xmit_buf storage, fills in 
 879 *  port's r_port struct.  Initializes the port hardware.  
 880 */
 881static int rp_open(struct tty_struct *tty, struct file *filp)
 882{
 883        struct r_port *info;
 884        struct tty_port *port;
 885        int retval;
 886        CHANNEL_t *cp;
 887        unsigned long page;
 888
 889        info = rp_table[tty->index];
 890        if (info == NULL)
 891                return -ENXIO;
 892        port = &info->port;
 893        
 894        page = __get_free_page(GFP_KERNEL);
 895        if (!page)
 896                return -ENOMEM;
 897
 898        /*
 899         * We must not sleep from here until the port is marked fully in use.
 900         */
 901        if (info->xmit_buf)
 902                free_page(page);
 903        else
 904                info->xmit_buf = (unsigned char *) page;
 905
 906        tty->driver_data = info;
 907        tty_port_tty_set(port, tty);
 908
 909        if (port->count++ == 0) {
 910                atomic_inc(&rp_num_ports_open);
 911
 912#ifdef ROCKET_DEBUG_OPEN
 913                printk(KERN_INFO "rocket mod++ = %d...\n",
 914                                atomic_read(&rp_num_ports_open));
 915#endif
 916        }
 917#ifdef ROCKET_DEBUG_OPEN
 918        printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
 919#endif
 920
 921        /*
 922         * Info->count is now 1; so it's safe to sleep now.
 923         */
 924        if (!tty_port_initialized(port)) {
 925                cp = &info->channel;
 926                sSetRxTrigger(cp, TRIG_1);
 927                if (sGetChanStatus(cp) & CD_ACT)
 928                        info->cd_status = 1;
 929                else
 930                        info->cd_status = 0;
 931                sDisRxStatusMode(cp);
 932                sFlushRxFIFO(cp);
 933                sFlushTxFIFO(cp);
 934
 935                sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
 936                sSetRxTrigger(cp, TRIG_1);
 937
 938                sGetChanStatus(cp);
 939                sDisRxStatusMode(cp);
 940                sClrTxXOFF(cp);
 941
 942                sDisCTSFlowCtl(cp);
 943                sDisTxSoftFlowCtl(cp);
 944
 945                sEnRxFIFO(cp);
 946                sEnTransmit(cp);
 947
 948                tty_port_set_initialized(&info->port, 1);
 949
 950                configure_r_port(tty, info, NULL);
 951                if (C_BAUD(tty)) {
 952                        sSetDTR(cp);
 953                        sSetRTS(cp);
 954                }
 955        }
 956        /*  Starts (or resets) the maint polling loop */
 957        mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 958
 959        retval = tty_port_block_til_ready(port, tty, filp);
 960        if (retval) {
 961#ifdef ROCKET_DEBUG_OPEN
 962                printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
 963#endif
 964                return retval;
 965        }
 966        return 0;
 967}
 968
 969/*
 970 *  Exception handler that closes a serial port. info->port.count is considered critical.
 971 */
 972static void rp_close(struct tty_struct *tty, struct file *filp)
 973{
 974        struct r_port *info = tty->driver_data;
 975        struct tty_port *port = &info->port;
 976        int timeout;
 977        CHANNEL_t *cp;
 978        
 979        if (rocket_paranoia_check(info, "rp_close"))
 980                return;
 981
 982#ifdef ROCKET_DEBUG_OPEN
 983        printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
 984#endif
 985
 986        if (tty_port_close_start(port, tty, filp) == 0)
 987                return;
 988
 989        mutex_lock(&port->mutex);
 990        cp = &info->channel;
 991        /*
 992         * Before we drop DTR, make sure the UART transmitter
 993         * has completely drained; this is especially
 994         * important if there is a transmit FIFO!
 995         */
 996        timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
 997        if (timeout == 0)
 998                timeout = 1;
 999        rp_wait_until_sent(tty, timeout);
1000        clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1001
1002        sDisTransmit(cp);
1003        sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1004        sDisCTSFlowCtl(cp);
1005        sDisTxSoftFlowCtl(cp);
1006        sClrTxXOFF(cp);
1007        sFlushRxFIFO(cp);
1008        sFlushTxFIFO(cp);
1009        sClrRTS(cp);
1010        if (C_HUPCL(tty))
1011                sClrDTR(cp);
1012
1013        rp_flush_buffer(tty);
1014                
1015        tty_ldisc_flush(tty);
1016
1017        clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1018
1019        /* We can't yet use tty_port_close_end as the buffer handling in this
1020           driver is a bit different to the usual */
1021
1022        if (port->blocked_open) {
1023                if (port->close_delay) {
1024                        msleep_interruptible(jiffies_to_msecs(port->close_delay));
1025                }
1026                wake_up_interruptible(&port->open_wait);
1027        } else {
1028                if (info->xmit_buf) {
1029                        free_page((unsigned long) info->xmit_buf);
1030                        info->xmit_buf = NULL;
1031                }
1032        }
1033        spin_lock_irq(&port->lock);
1034        tty->closing = 0;
1035        spin_unlock_irq(&port->lock);
1036        tty_port_set_initialized(port, 0);
1037        tty_port_set_active(port, 0);
1038        mutex_unlock(&port->mutex);
1039        tty_port_tty_set(port, NULL);
1040
1041        atomic_dec(&rp_num_ports_open);
1042
1043#ifdef ROCKET_DEBUG_OPEN
1044        printk(KERN_INFO "rocket mod-- = %d...\n",
1045                        atomic_read(&rp_num_ports_open));
1046        printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1047#endif
1048
1049}
1050
1051static void rp_set_termios(struct tty_struct *tty,
1052                           struct ktermios *old_termios)
1053{
1054        struct r_port *info = tty->driver_data;
1055        CHANNEL_t *cp;
1056        unsigned cflag;
1057
1058        if (rocket_paranoia_check(info, "rp_set_termios"))
1059                return;
1060
1061        cflag = tty->termios.c_cflag;
1062
1063        /*
1064         * This driver doesn't support CS5 or CS6
1065         */
1066        if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1067                tty->termios.c_cflag =
1068                    ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1069        /* Or CMSPAR */
1070        tty->termios.c_cflag &= ~CMSPAR;
1071
1072        configure_r_port(tty, info, old_termios);
1073
1074        cp = &info->channel;
1075
1076        /* Handle transition to B0 status */
1077        if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1078                sClrDTR(cp);
1079                sClrRTS(cp);
1080        }
1081
1082        /* Handle transition away from B0 status */
1083        if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1084                sSetRTS(cp);
1085                sSetDTR(cp);
1086        }
1087
1088        if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1089                rp_start(tty);
1090}
1091
1092static int rp_break(struct tty_struct *tty, int break_state)
1093{
1094        struct r_port *info = tty->driver_data;
1095        unsigned long flags;
1096
1097        if (rocket_paranoia_check(info, "rp_break"))
1098                return -EINVAL;
1099
1100        spin_lock_irqsave(&info->slock, flags);
1101        if (break_state == -1)
1102                sSendBreak(&info->channel);
1103        else
1104                sClrBreak(&info->channel);
1105        spin_unlock_irqrestore(&info->slock, flags);
1106        return 0;
1107}
1108
1109/*
1110 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1111 * the UPCI boards was added, it was decided to make this a function because
1112 * the macro was getting too complicated. All cases except the first one
1113 * (UPCIRingInd) are taken directly from the original macro.
1114 */
1115static int sGetChanRI(CHANNEL_T * ChP)
1116{
1117        CONTROLLER_t *CtlP = ChP->CtlP;
1118        int ChanNum = ChP->ChanNum;
1119        int RingInd = 0;
1120
1121        if (CtlP->UPCIRingInd)
1122                RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1123        else if (CtlP->AltChanRingIndicator)
1124                RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1125        else if (CtlP->boardType == ROCKET_TYPE_PC104)
1126                RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1127
1128        return RingInd;
1129}
1130
1131/********************************************************************************************/
1132/*  Here are the routines used by rp_ioctl.  These are all called from exception handlers.  */
1133
1134/*
1135 *  Returns the state of the serial modem control lines.  These next 2 functions 
1136 *  are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1137 */
1138static int rp_tiocmget(struct tty_struct *tty)
1139{
1140        struct r_port *info = tty->driver_data;
1141        unsigned int control, result, ChanStatus;
1142
1143        ChanStatus = sGetChanStatusLo(&info->channel);
1144        control = info->channel.TxControl[3];
1145        result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 
1146                ((control & SET_DTR) ?  TIOCM_DTR : 0) |
1147                ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1148                (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1149                ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1150                ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1151
1152        return result;
1153}
1154
1155/* 
1156 *  Sets the modem control lines
1157 */
1158static int rp_tiocmset(struct tty_struct *tty,
1159                                unsigned int set, unsigned int clear)
1160{
1161        struct r_port *info = tty->driver_data;
1162
1163        if (set & TIOCM_RTS)
1164                info->channel.TxControl[3] |= SET_RTS;
1165        if (set & TIOCM_DTR)
1166                info->channel.TxControl[3] |= SET_DTR;
1167        if (clear & TIOCM_RTS)
1168                info->channel.TxControl[3] &= ~SET_RTS;
1169        if (clear & TIOCM_DTR)
1170                info->channel.TxControl[3] &= ~SET_DTR;
1171
1172        out32(info->channel.IndexAddr, info->channel.TxControl);
1173        return 0;
1174}
1175
1176static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1177{
1178        struct rocket_config tmp;
1179
1180        memset(&tmp, 0, sizeof (tmp));
1181        mutex_lock(&info->port.mutex);
1182        tmp.line = info->line;
1183        tmp.flags = info->flags;
1184        tmp.close_delay = info->port.close_delay;
1185        tmp.closing_wait = info->port.closing_wait;
1186        tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1187        mutex_unlock(&info->port.mutex);
1188
1189        if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1190                return -EFAULT;
1191        return 0;
1192}
1193
1194static int set_config(struct tty_struct *tty, struct r_port *info,
1195                                        struct rocket_config __user *new_info)
1196{
1197        struct rocket_config new_serial;
1198
1199        if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1200                return -EFAULT;
1201
1202        mutex_lock(&info->port.mutex);
1203        if (!capable(CAP_SYS_ADMIN))
1204        {
1205                if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1206                        mutex_unlock(&info->port.mutex);
1207                        return -EPERM;
1208                }
1209                info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1210                mutex_unlock(&info->port.mutex);
1211                return 0;
1212        }
1213
1214        if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) {
1215                /* warn about deprecation, unless clearing */
1216                if (new_serial.flags & ROCKET_SPD_MASK)
1217                        dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n");
1218        }
1219
1220        info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1221        info->port.close_delay = new_serial.close_delay;
1222        info->port.closing_wait = new_serial.closing_wait;
1223
1224        mutex_unlock(&info->port.mutex);
1225
1226        configure_r_port(tty, info, NULL);
1227        return 0;
1228}
1229
1230/*
1231 *  This function fills in a rocket_ports struct with information
1232 *  about what boards/ports are in the system.  This info is passed
1233 *  to user space.  See setrocket.c where the info is used to create
1234 *  the /dev/ttyRx ports.
1235 */
1236static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1237{
1238        struct rocket_ports tmp;
1239        int board;
1240
1241        memset(&tmp, 0, sizeof (tmp));
1242        tmp.tty_major = rocket_driver->major;
1243
1244        for (board = 0; board < 4; board++) {
1245                tmp.rocketModel[board].model = rocketModel[board].model;
1246                strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1247                tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1248                tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1249                tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1250        }
1251        if (copy_to_user(retports, &tmp, sizeof (*retports)))
1252                return -EFAULT;
1253        return 0;
1254}
1255
1256static int reset_rm2(struct r_port *info, void __user *arg)
1257{
1258        int reset;
1259
1260        if (!capable(CAP_SYS_ADMIN))
1261                return -EPERM;
1262
1263        if (copy_from_user(&reset, arg, sizeof (int)))
1264                return -EFAULT;
1265        if (reset)
1266                reset = 1;
1267
1268        if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1269            rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1270                return -EINVAL;
1271
1272        if (info->ctlp->BusType == isISA)
1273                sModemReset(info->ctlp, info->chan, reset);
1274        else
1275                sPCIModemReset(info->ctlp, info->chan, reset);
1276
1277        return 0;
1278}
1279
1280static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1281{
1282        if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1283                return -EFAULT;
1284        return 0;
1285}
1286
1287/*  IOCTL call handler into the driver */
1288static int rp_ioctl(struct tty_struct *tty,
1289                    unsigned int cmd, unsigned long arg)
1290{
1291        struct r_port *info = tty->driver_data;
1292        void __user *argp = (void __user *)arg;
1293        int ret = 0;
1294
1295        if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1296                return -ENXIO;
1297
1298        switch (cmd) {
1299        case RCKP_GET_STRUCT:
1300                if (copy_to_user(argp, info, sizeof (struct r_port)))
1301                        ret = -EFAULT;
1302                break;
1303        case RCKP_GET_CONFIG:
1304                ret = get_config(info, argp);
1305                break;
1306        case RCKP_SET_CONFIG:
1307                ret = set_config(tty, info, argp);
1308                break;
1309        case RCKP_GET_PORTS:
1310                ret = get_ports(info, argp);
1311                break;
1312        case RCKP_RESET_RM2:
1313                ret = reset_rm2(info, argp);
1314                break;
1315        case RCKP_GET_VERSION:
1316                ret = get_version(info, argp);
1317                break;
1318        default:
1319                ret = -ENOIOCTLCMD;
1320        }
1321        return ret;
1322}
1323
1324static void rp_send_xchar(struct tty_struct *tty, char ch)
1325{
1326        struct r_port *info = tty->driver_data;
1327        CHANNEL_t *cp;
1328
1329        if (rocket_paranoia_check(info, "rp_send_xchar"))
1330                return;
1331
1332        cp = &info->channel;
1333        if (sGetTxCnt(cp))
1334                sWriteTxPrioByte(cp, ch);
1335        else
1336                sWriteTxByte(sGetTxRxDataIO(cp), ch);
1337}
1338
1339static void rp_throttle(struct tty_struct *tty)
1340{
1341        struct r_port *info = tty->driver_data;
1342
1343#ifdef ROCKET_DEBUG_THROTTLE
1344        printk(KERN_INFO "throttle %s ....\n", tty->name);
1345#endif
1346
1347        if (rocket_paranoia_check(info, "rp_throttle"))
1348                return;
1349
1350        if (I_IXOFF(tty))
1351                rp_send_xchar(tty, STOP_CHAR(tty));
1352
1353        sClrRTS(&info->channel);
1354}
1355
1356static void rp_unthrottle(struct tty_struct *tty)
1357{
1358        struct r_port *info = tty->driver_data;
1359#ifdef ROCKET_DEBUG_THROTTLE
1360        printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1361#endif
1362
1363        if (rocket_paranoia_check(info, "rp_unthrottle"))
1364                return;
1365
1366        if (I_IXOFF(tty))
1367                rp_send_xchar(tty, START_CHAR(tty));
1368
1369        sSetRTS(&info->channel);
1370}
1371
1372/*
1373 * ------------------------------------------------------------
1374 * rp_stop() and rp_start()
1375 *
1376 * This routines are called before setting or resetting tty->stopped.
1377 * They enable or disable transmitter interrupts, as necessary.
1378 * ------------------------------------------------------------
1379 */
1380static void rp_stop(struct tty_struct *tty)
1381{
1382        struct r_port *info = tty->driver_data;
1383
1384#ifdef ROCKET_DEBUG_FLOW
1385        printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1386               info->xmit_cnt, info->xmit_fifo_room);
1387#endif
1388
1389        if (rocket_paranoia_check(info, "rp_stop"))
1390                return;
1391
1392        if (sGetTxCnt(&info->channel))
1393                sDisTransmit(&info->channel);
1394}
1395
1396static void rp_start(struct tty_struct *tty)
1397{
1398        struct r_port *info = tty->driver_data;
1399
1400#ifdef ROCKET_DEBUG_FLOW
1401        printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1402               info->xmit_cnt, info->xmit_fifo_room);
1403#endif
1404
1405        if (rocket_paranoia_check(info, "rp_stop"))
1406                return;
1407
1408        sEnTransmit(&info->channel);
1409        set_bit((info->aiop * 8) + info->chan,
1410                (void *) &xmit_flags[info->board]);
1411}
1412
1413/*
1414 * rp_wait_until_sent() --- wait until the transmitter is empty
1415 */
1416static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1417{
1418        struct r_port *info = tty->driver_data;
1419        CHANNEL_t *cp;
1420        unsigned long orig_jiffies;
1421        int check_time, exit_time;
1422        int txcnt;
1423
1424        if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1425                return;
1426
1427        cp = &info->channel;
1428
1429        orig_jiffies = jiffies;
1430#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1431        printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1432               jiffies);
1433        printk(KERN_INFO "cps=%d...\n", info->cps);
1434#endif
1435        while (1) {
1436                txcnt = sGetTxCnt(cp);
1437                if (!txcnt) {
1438                        if (sGetChanStatusLo(cp) & TXSHRMT)
1439                                break;
1440                        check_time = (HZ / info->cps) / 5;
1441                } else {
1442                        check_time = HZ * txcnt / info->cps;
1443                }
1444                if (timeout) {
1445                        exit_time = orig_jiffies + timeout - jiffies;
1446                        if (exit_time <= 0)
1447                                break;
1448                        if (exit_time < check_time)
1449                                check_time = exit_time;
1450                }
1451                if (check_time == 0)
1452                        check_time = 1;
1453#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1454                printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1455                                jiffies, check_time);
1456#endif
1457                msleep_interruptible(jiffies_to_msecs(check_time));
1458                if (signal_pending(current))
1459                        break;
1460        }
1461        __set_current_state(TASK_RUNNING);
1462#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1463        printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1464#endif
1465}
1466
1467/*
1468 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1469 */
1470static void rp_hangup(struct tty_struct *tty)
1471{
1472        CHANNEL_t *cp;
1473        struct r_port *info = tty->driver_data;
1474        unsigned long flags;
1475
1476        if (rocket_paranoia_check(info, "rp_hangup"))
1477                return;
1478
1479#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1480        printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1481#endif
1482        rp_flush_buffer(tty);
1483        spin_lock_irqsave(&info->port.lock, flags);
1484        if (info->port.count)
1485                atomic_dec(&rp_num_ports_open);
1486        clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1487        spin_unlock_irqrestore(&info->port.lock, flags);
1488
1489        tty_port_hangup(&info->port);
1490
1491        cp = &info->channel;
1492        sDisRxFIFO(cp);
1493        sDisTransmit(cp);
1494        sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1495        sDisCTSFlowCtl(cp);
1496        sDisTxSoftFlowCtl(cp);
1497        sClrTxXOFF(cp);
1498        tty_port_set_initialized(&info->port, 0);
1499
1500        wake_up_interruptible(&info->port.open_wait);
1501}
1502
1503/*
1504 *  Exception handler - write char routine.  The RocketPort driver uses a
1505 *  double-buffering strategy, with the twist that if the in-memory CPU
1506 *  buffer is empty, and there's space in the transmit FIFO, the
1507 *  writing routines will write directly to transmit FIFO.
1508 *  Write buffer and counters protected by spinlocks
1509 */
1510static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1511{
1512        struct r_port *info = tty->driver_data;
1513        CHANNEL_t *cp;
1514        unsigned long flags;
1515
1516        if (rocket_paranoia_check(info, "rp_put_char"))
1517                return 0;
1518
1519        /*
1520         * Grab the port write mutex, locking out other processes that try to
1521         * write to this port
1522         */
1523        mutex_lock(&info->write_mtx);
1524
1525#ifdef ROCKET_DEBUG_WRITE
1526        printk(KERN_INFO "rp_put_char %c...\n", ch);
1527#endif
1528
1529        spin_lock_irqsave(&info->slock, flags);
1530        cp = &info->channel;
1531
1532        if (!tty->stopped && info->xmit_fifo_room == 0)
1533                info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1534
1535        if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1536                info->xmit_buf[info->xmit_head++] = ch;
1537                info->xmit_head &= XMIT_BUF_SIZE - 1;
1538                info->xmit_cnt++;
1539                set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1540        } else {
1541                sOutB(sGetTxRxDataIO(cp), ch);
1542                info->xmit_fifo_room--;
1543        }
1544        spin_unlock_irqrestore(&info->slock, flags);
1545        mutex_unlock(&info->write_mtx);
1546        return 1;
1547}
1548
1549/*
1550 *  Exception handler - write routine, called when user app writes to the device.
1551 *  A per port write mutex is used to protect from another process writing to
1552 *  this port at the same time.  This other process could be running on the other CPU
1553 *  or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 
1554 *  Spinlocks protect the info xmit members.
1555 */
1556static int rp_write(struct tty_struct *tty,
1557                    const unsigned char *buf, int count)
1558{
1559        struct r_port *info = tty->driver_data;
1560        CHANNEL_t *cp;
1561        const unsigned char *b;
1562        int c, retval = 0;
1563        unsigned long flags;
1564
1565        if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1566                return 0;
1567
1568        if (mutex_lock_interruptible(&info->write_mtx))
1569                return -ERESTARTSYS;
1570
1571#ifdef ROCKET_DEBUG_WRITE
1572        printk(KERN_INFO "rp_write %d chars...\n", count);
1573#endif
1574        cp = &info->channel;
1575
1576        if (!tty->stopped && info->xmit_fifo_room < count)
1577                info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1578
1579        /*
1580         *  If the write queue for the port is empty, and there is FIFO space, stuff bytes 
1581         *  into FIFO.  Use the write queue for temp storage.
1582         */
1583        if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1584                c = min(count, info->xmit_fifo_room);
1585                b = buf;
1586
1587                /*  Push data into FIFO, 2 bytes at a time */
1588                sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1589
1590                /*  If there is a byte remaining, write it */
1591                if (c & 1)
1592                        sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1593
1594                retval += c;
1595                buf += c;
1596                count -= c;
1597
1598                spin_lock_irqsave(&info->slock, flags);
1599                info->xmit_fifo_room -= c;
1600                spin_unlock_irqrestore(&info->slock, flags);
1601        }
1602
1603        /* If count is zero, we wrote it all and are done */
1604        if (!count)
1605                goto end;
1606
1607        /*  Write remaining data into the port's xmit_buf */
1608        while (1) {
1609                /* Hung up ? */
1610                if (!tty_port_active(&info->port))
1611                        goto end;
1612                c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1613                c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1614                if (c <= 0)
1615                        break;
1616
1617                b = buf;
1618                memcpy(info->xmit_buf + info->xmit_head, b, c);
1619
1620                spin_lock_irqsave(&info->slock, flags);
1621                info->xmit_head =
1622                    (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1623                info->xmit_cnt += c;
1624                spin_unlock_irqrestore(&info->slock, flags);
1625
1626                buf += c;
1627                count -= c;
1628                retval += c;
1629        }
1630
1631        if ((retval > 0) && !tty->stopped)
1632                set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1633        
1634end:
1635        if (info->xmit_cnt < WAKEUP_CHARS) {
1636                tty_wakeup(tty);
1637#ifdef ROCKETPORT_HAVE_POLL_WAIT
1638                wake_up_interruptible(&tty->poll_wait);
1639#endif
1640        }
1641        mutex_unlock(&info->write_mtx);
1642        return retval;
1643}
1644
1645/*
1646 * Return the number of characters that can be sent.  We estimate
1647 * only using the in-memory transmit buffer only, and ignore the
1648 * potential space in the transmit FIFO.
1649 */
1650static int rp_write_room(struct tty_struct *tty)
1651{
1652        struct r_port *info = tty->driver_data;
1653        int ret;
1654
1655        if (rocket_paranoia_check(info, "rp_write_room"))
1656                return 0;
1657
1658        ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1659        if (ret < 0)
1660                ret = 0;
1661#ifdef ROCKET_DEBUG_WRITE
1662        printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1663#endif
1664        return ret;
1665}
1666
1667/*
1668 * Return the number of characters in the buffer.  Again, this only
1669 * counts those characters in the in-memory transmit buffer.
1670 */
1671static int rp_chars_in_buffer(struct tty_struct *tty)
1672{
1673        struct r_port *info = tty->driver_data;
1674
1675        if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1676                return 0;
1677
1678#ifdef ROCKET_DEBUG_WRITE
1679        printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1680#endif
1681        return info->xmit_cnt;
1682}
1683
1684/*
1685 *  Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1686 *  r_port struct for the port.  Note that spinlock are used to protect info members,
1687 *  do not call this function if the spinlock is already held.
1688 */
1689static void rp_flush_buffer(struct tty_struct *tty)
1690{
1691        struct r_port *info = tty->driver_data;
1692        CHANNEL_t *cp;
1693        unsigned long flags;
1694
1695        if (rocket_paranoia_check(info, "rp_flush_buffer"))
1696                return;
1697
1698        spin_lock_irqsave(&info->slock, flags);
1699        info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1700        spin_unlock_irqrestore(&info->slock, flags);
1701
1702#ifdef ROCKETPORT_HAVE_POLL_WAIT
1703        wake_up_interruptible(&tty->poll_wait);
1704#endif
1705        tty_wakeup(tty);
1706
1707        cp = &info->channel;
1708        sFlushTxFIFO(cp);
1709}
1710
1711#ifdef CONFIG_PCI
1712
1713static const struct pci_device_id rocket_pci_ids[] = {
1714        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1715        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1716        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1717        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1718        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1719        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1720        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1721        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1722        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1723        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1724        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1725        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1726        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1727        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1728        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1729        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1730        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1731        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1732        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1733        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1734        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1735        { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1736        { }
1737};
1738MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1739
1740/*  Resets the speaker controller on RocketModem II and III devices */
1741static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1742{
1743        ByteIO_t addr;
1744
1745        /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1746        if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1747                addr = CtlP->AiopIO[0] + 0x4F;
1748                sOutB(addr, 0);
1749        }
1750
1751        /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1752        if ((model == MODEL_UPCI_RM3_8PORT)
1753            || (model == MODEL_UPCI_RM3_4PORT)) {
1754                addr = CtlP->AiopIO[0] + 0x88;
1755                sOutB(addr, 0);
1756        }
1757}
1758
1759/***************************************************************************
1760Function: sPCIInitController
1761Purpose:  Initialization of controller global registers and controller
1762          structure.
1763Call:     sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1764                          IRQNum,Frequency,PeriodicOnly)
1765          CONTROLLER_T *CtlP; Ptr to controller structure
1766          int CtlNum; Controller number
1767          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1768             This list must be in the order the AIOPs will be found on the
1769             controller.  Once an AIOP in the list is not found, it is
1770             assumed that there are no more AIOPs on the controller.
1771          int AiopIOListSize; Number of addresses in AiopIOList
1772          int IRQNum; Interrupt Request number.  Can be any of the following:
1773                         0: Disable global interrupts
1774                         3: IRQ 3
1775                         4: IRQ 4
1776                         5: IRQ 5
1777                         9: IRQ 9
1778                         10: IRQ 10
1779                         11: IRQ 11
1780                         12: IRQ 12
1781                         15: IRQ 15
1782          Byte_t Frequency: A flag identifying the frequency
1783                   of the periodic interrupt, can be any one of the following:
1784                      FREQ_DIS - periodic interrupt disabled
1785                      FREQ_137HZ - 137 Hertz
1786                      FREQ_69HZ - 69 Hertz
1787                      FREQ_34HZ - 34 Hertz
1788                      FREQ_17HZ - 17 Hertz
1789                      FREQ_9HZ - 9 Hertz
1790                      FREQ_4HZ - 4 Hertz
1791                   If IRQNum is set to 0 the Frequency parameter is
1792                   overidden, it is forced to a value of FREQ_DIS.
1793          int PeriodicOnly: 1 if all interrupts except the periodic
1794                               interrupt are to be blocked.
1795                            0 is both the periodic interrupt and
1796                               other channel interrupts are allowed.
1797                            If IRQNum is set to 0 the PeriodicOnly parameter is
1798                               overidden, it is forced to a value of 0.
1799Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
1800               initialization failed.
1801
1802Comments:
1803          If periodic interrupts are to be disabled but AIOP interrupts
1804          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1805
1806          If interrupts are to be completely disabled set IRQNum to 0.
1807
1808          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1809          invalid combination.
1810
1811          This function performs initialization of global interrupt modes,
1812          but it does not actually enable global interrupts.  To enable
1813          and disable global interrupts use functions sEnGlobalInt() and
1814          sDisGlobalInt().  Enabling of global interrupts is normally not
1815          done until all other initializations are complete.
1816
1817          Even if interrupts are globally enabled, they must also be
1818          individually enabled for each channel that is to generate
1819          interrupts.
1820
1821Warnings: No range checking on any of the parameters is done.
1822
1823          No context switches are allowed while executing this function.
1824
1825          After this function all AIOPs on the controller are disabled,
1826          they can be enabled with sEnAiop().
1827*/
1828static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1829                              ByteIO_t * AiopIOList, int AiopIOListSize,
1830                              WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1831                              int PeriodicOnly, int altChanRingIndicator,
1832                              int UPCIRingInd)
1833{
1834        int i;
1835        ByteIO_t io;
1836
1837        CtlP->AltChanRingIndicator = altChanRingIndicator;
1838        CtlP->UPCIRingInd = UPCIRingInd;
1839        CtlP->CtlNum = CtlNum;
1840        CtlP->CtlID = CTLID_0001;       /* controller release 1 */
1841        CtlP->BusType = isPCI;  /* controller release 1 */
1842
1843        if (ConfigIO) {
1844                CtlP->isUPCI = 1;
1845                CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1846                CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1847                CtlP->AiopIntrBits = upci_aiop_intr_bits;
1848        } else {
1849                CtlP->isUPCI = 0;
1850                CtlP->PCIIO =
1851                    (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1852                CtlP->AiopIntrBits = aiop_intr_bits;
1853        }
1854
1855        sPCIControllerEOI(CtlP);        /* clear EOI if warm init */
1856        /* Init AIOPs */
1857        CtlP->NumAiop = 0;
1858        for (i = 0; i < AiopIOListSize; i++) {
1859                io = AiopIOList[i];
1860                CtlP->AiopIO[i] = (WordIO_t) io;
1861                CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1862
1863                CtlP->AiopID[i] = sReadAiopID(io);      /* read AIOP ID */
1864                if (CtlP->AiopID[i] == AIOPID_NULL)     /* if AIOP does not exist */
1865                        break;  /* done looking for AIOPs */
1866
1867                CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1868                sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);    /* clock prescaler */
1869                sOutB(io + _INDX_DATA, sClockPrescale);
1870                CtlP->NumAiop++;        /* bump count of AIOPs */
1871        }
1872
1873        if (CtlP->NumAiop == 0)
1874                return (-1);
1875        else
1876                return (CtlP->NumAiop);
1877}
1878
1879/*
1880 *  Called when a PCI card is found.  Retrieves and stores model information,
1881 *  init's aiopic and serial port hardware.
1882 *  Inputs:  i is the board number (0-n)
1883 */
1884static __init int register_PCI(int i, struct pci_dev *dev)
1885{
1886        int num_aiops, aiop, max_num_aiops, num_chan, chan;
1887        unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1888        CONTROLLER_t *ctlp;
1889
1890        int fast_clock = 0;
1891        int altChanRingIndicator = 0;
1892        int ports_per_aiop = 8;
1893        WordIO_t ConfigIO = 0;
1894        ByteIO_t UPCIRingInd = 0;
1895
1896        if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1897            pci_enable_device(dev))
1898                return 0;
1899
1900        rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1901
1902        rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1903        rocketModel[i].loadrm2 = 0;
1904        rocketModel[i].startingPortNumber = nextLineNumber;
1905
1906        /*  Depending on the model, set up some config variables */
1907        switch (dev->device) {
1908        case PCI_DEVICE_ID_RP4QUAD:
1909                max_num_aiops = 1;
1910                ports_per_aiop = 4;
1911                rocketModel[i].model = MODEL_RP4QUAD;
1912                strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1913                rocketModel[i].numPorts = 4;
1914                break;
1915        case PCI_DEVICE_ID_RP8OCTA:
1916                max_num_aiops = 1;
1917                rocketModel[i].model = MODEL_RP8OCTA;
1918                strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1919                rocketModel[i].numPorts = 8;
1920                break;
1921        case PCI_DEVICE_ID_URP8OCTA:
1922                max_num_aiops = 1;
1923                rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1924                strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1925                rocketModel[i].numPorts = 8;
1926                break;
1927        case PCI_DEVICE_ID_RP8INTF:
1928                max_num_aiops = 1;
1929                rocketModel[i].model = MODEL_RP8INTF;
1930                strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1931                rocketModel[i].numPorts = 8;
1932                break;
1933        case PCI_DEVICE_ID_URP8INTF:
1934                max_num_aiops = 1;
1935                rocketModel[i].model = MODEL_UPCI_RP8INTF;
1936                strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1937                rocketModel[i].numPorts = 8;
1938                break;
1939        case PCI_DEVICE_ID_RP8J:
1940                max_num_aiops = 1;
1941                rocketModel[i].model = MODEL_RP8J;
1942                strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1943                rocketModel[i].numPorts = 8;
1944                break;
1945        case PCI_DEVICE_ID_RP4J:
1946                max_num_aiops = 1;
1947                ports_per_aiop = 4;
1948                rocketModel[i].model = MODEL_RP4J;
1949                strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1950                rocketModel[i].numPorts = 4;
1951                break;
1952        case PCI_DEVICE_ID_RP8SNI:
1953                max_num_aiops = 1;
1954                rocketModel[i].model = MODEL_RP8SNI;
1955                strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1956                rocketModel[i].numPorts = 8;
1957                break;
1958        case PCI_DEVICE_ID_RP16SNI:
1959                max_num_aiops = 2;
1960                rocketModel[i].model = MODEL_RP16SNI;
1961                strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1962                rocketModel[i].numPorts = 16;
1963                break;
1964        case PCI_DEVICE_ID_RP16INTF:
1965                max_num_aiops = 2;
1966                rocketModel[i].model = MODEL_RP16INTF;
1967                strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1968                rocketModel[i].numPorts = 16;
1969                break;
1970        case PCI_DEVICE_ID_URP16INTF:
1971                max_num_aiops = 2;
1972                rocketModel[i].model = MODEL_UPCI_RP16INTF;
1973                strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1974                rocketModel[i].numPorts = 16;
1975                break;
1976        case PCI_DEVICE_ID_CRP16INTF:
1977                max_num_aiops = 2;
1978                rocketModel[i].model = MODEL_CPCI_RP16INTF;
1979                strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1980                rocketModel[i].numPorts = 16;
1981                break;
1982        case PCI_DEVICE_ID_RP32INTF:
1983                max_num_aiops = 4;
1984                rocketModel[i].model = MODEL_RP32INTF;
1985                strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1986                rocketModel[i].numPorts = 32;
1987                break;
1988        case PCI_DEVICE_ID_URP32INTF:
1989                max_num_aiops = 4;
1990                rocketModel[i].model = MODEL_UPCI_RP32INTF;
1991                strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1992                rocketModel[i].numPorts = 32;
1993                break;
1994        case PCI_DEVICE_ID_RPP4:
1995                max_num_aiops = 1;
1996                ports_per_aiop = 4;
1997                altChanRingIndicator++;
1998                fast_clock++;
1999                rocketModel[i].model = MODEL_RPP4;
2000                strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2001                rocketModel[i].numPorts = 4;
2002                break;
2003        case PCI_DEVICE_ID_RPP8:
2004                max_num_aiops = 2;
2005                ports_per_aiop = 4;
2006                altChanRingIndicator++;
2007                fast_clock++;
2008                rocketModel[i].model = MODEL_RPP8;
2009                strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2010                rocketModel[i].numPorts = 8;
2011                break;
2012        case PCI_DEVICE_ID_RP2_232:
2013                max_num_aiops = 1;
2014                ports_per_aiop = 2;
2015                altChanRingIndicator++;
2016                fast_clock++;
2017                rocketModel[i].model = MODEL_RP2_232;
2018                strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2019                rocketModel[i].numPorts = 2;
2020                break;
2021        case PCI_DEVICE_ID_RP2_422:
2022                max_num_aiops = 1;
2023                ports_per_aiop = 2;
2024                altChanRingIndicator++;
2025                fast_clock++;
2026                rocketModel[i].model = MODEL_RP2_422;
2027                strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2028                rocketModel[i].numPorts = 2;
2029                break;
2030        case PCI_DEVICE_ID_RP6M:
2031
2032                max_num_aiops = 1;
2033                ports_per_aiop = 6;
2034
2035                /*  If revision is 1, the rocketmodem flash must be loaded.
2036                 *  If it is 2 it is a "socketed" version. */
2037                if (dev->revision == 1) {
2038                        rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2039                        rocketModel[i].loadrm2 = 1;
2040                } else {
2041                        rcktpt_type[i] = ROCKET_TYPE_MODEM;
2042                }
2043
2044                rocketModel[i].model = MODEL_RP6M;
2045                strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2046                rocketModel[i].numPorts = 6;
2047                break;
2048        case PCI_DEVICE_ID_RP4M:
2049                max_num_aiops = 1;
2050                ports_per_aiop = 4;
2051                if (dev->revision == 1) {
2052                        rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2053                        rocketModel[i].loadrm2 = 1;
2054                } else {
2055                        rcktpt_type[i] = ROCKET_TYPE_MODEM;
2056                }
2057
2058                rocketModel[i].model = MODEL_RP4M;
2059                strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2060                rocketModel[i].numPorts = 4;
2061                break;
2062        default:
2063                max_num_aiops = 0;
2064                break;
2065        }
2066
2067        /*
2068         * Check for UPCI boards.
2069         */
2070
2071        switch (dev->device) {
2072        case PCI_DEVICE_ID_URP32INTF:
2073        case PCI_DEVICE_ID_URP8INTF:
2074        case PCI_DEVICE_ID_URP16INTF:
2075        case PCI_DEVICE_ID_CRP16INTF:
2076        case PCI_DEVICE_ID_URP8OCTA:
2077                rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2078                ConfigIO = pci_resource_start(dev, 1);
2079                if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2080                        UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2081
2082                        /*
2083                         * Check for octa or quad cable.
2084                         */
2085                        if (!
2086                            (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2087                             PCI_GPIO_CTRL_8PORT)) {
2088                                ports_per_aiop = 4;
2089                                rocketModel[i].numPorts = 4;
2090                        }
2091                }
2092                break;
2093        case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2094                max_num_aiops = 1;
2095                rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2096                strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2097                rocketModel[i].numPorts = 8;
2098                rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2099                UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2100                ConfigIO = pci_resource_start(dev, 1);
2101                rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2102                break;
2103        case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2104                max_num_aiops = 1;
2105                rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2106                strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2107                rocketModel[i].numPorts = 4;
2108                rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2109                UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2110                ConfigIO = pci_resource_start(dev, 1);
2111                rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2112                break;
2113        default:
2114                break;
2115        }
2116
2117        if (fast_clock) {
2118                sClockPrescale = 0x12;  /* mod 2 (divide by 3) */
2119                rp_baud_base[i] = 921600;
2120        } else {
2121                /*
2122                 * If support_low_speed is set, use the slow clock
2123                 * prescale, which supports 50 bps
2124                 */
2125                if (support_low_speed) {
2126                        /* mod 9 (divide by 10) prescale */
2127                        sClockPrescale = 0x19;
2128                        rp_baud_base[i] = 230400;
2129                } else {
2130                        /* mod 4 (divide by 5) prescale */
2131                        sClockPrescale = 0x14;
2132                        rp_baud_base[i] = 460800;
2133                }
2134        }
2135
2136        for (aiop = 0; aiop < max_num_aiops; aiop++)
2137                aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2138        ctlp = sCtlNumToCtlPtr(i);
2139        num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2140        for (aiop = 0; aiop < max_num_aiops; aiop++)
2141                ctlp->AiopNumChan[aiop] = ports_per_aiop;
2142
2143        dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2144                "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2145                i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2146                rocketModel[i].startingPortNumber,
2147                rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2148
2149        if (num_aiops <= 0) {
2150                rcktpt_io_addr[i] = 0;
2151                return (0);
2152        }
2153        is_PCI[i] = 1;
2154
2155        /*  Reset the AIOPIC, init the serial ports */
2156        for (aiop = 0; aiop < num_aiops; aiop++) {
2157                sResetAiopByNum(ctlp, aiop);
2158                num_chan = ports_per_aiop;
2159                for (chan = 0; chan < num_chan; chan++)
2160                        init_r_port(i, aiop, chan, dev);
2161        }
2162
2163        /*  Rocket modems must be reset */
2164        if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2165            (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2166            (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2167                num_chan = ports_per_aiop;
2168                for (chan = 0; chan < num_chan; chan++)
2169                        sPCIModemReset(ctlp, chan, 1);
2170                msleep(500);
2171                for (chan = 0; chan < num_chan; chan++)
2172                        sPCIModemReset(ctlp, chan, 0);
2173                msleep(500);
2174                rmSpeakerReset(ctlp, rocketModel[i].model);
2175        }
2176        return (1);
2177}
2178
2179/*
2180 *  Probes for PCI cards, inits them if found
2181 *  Input:   board_found = number of ISA boards already found, or the
2182 *           starting board number
2183 *  Returns: Number of PCI boards found
2184 */
2185static int __init init_PCI(int boards_found)
2186{
2187        struct pci_dev *dev = NULL;
2188        int count = 0;
2189
2190        /*  Work through the PCI device list, pulling out ours */
2191        while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2192                if (register_PCI(count + boards_found, dev))
2193                        count++;
2194        }
2195        return (count);
2196}
2197
2198#endif                          /* CONFIG_PCI */
2199
2200/*
2201 *  Probes for ISA cards
2202 *  Input:   i = the board number to look for
2203 *  Returns: 1 if board found, 0 else
2204 */
2205static int __init init_ISA(int i)
2206{
2207        int num_aiops, num_chan = 0, total_num_chan = 0;
2208        int aiop, chan;
2209        unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2210        CONTROLLER_t *ctlp;
2211        char *type_string;
2212
2213        /*  If io_addr is zero, no board configured */
2214        if (rcktpt_io_addr[i] == 0)
2215                return (0);
2216
2217        /*  Reserve the IO region */
2218        if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2219                printk(KERN_ERR "Unable to reserve IO region for configured "
2220                                "ISA RocketPort at address 0x%lx, board not "
2221                                "installed...\n", rcktpt_io_addr[i]);
2222                rcktpt_io_addr[i] = 0;
2223                return (0);
2224        }
2225
2226        ctlp = sCtlNumToCtlPtr(i);
2227
2228        ctlp->boardType = rcktpt_type[i];
2229
2230        switch (rcktpt_type[i]) {
2231        case ROCKET_TYPE_PC104:
2232                type_string = "(PC104)";
2233                break;
2234        case ROCKET_TYPE_MODEM:
2235                type_string = "(RocketModem)";
2236                break;
2237        case ROCKET_TYPE_MODEMII:
2238                type_string = "(RocketModem II)";
2239                break;
2240        default:
2241                type_string = "";
2242                break;
2243        }
2244
2245        /*
2246         * If support_low_speed is set, use the slow clock prescale,
2247         * which supports 50 bps
2248         */
2249        if (support_low_speed) {
2250                sClockPrescale = 0x19;  /* mod 9 (divide by 10) prescale */
2251                rp_baud_base[i] = 230400;
2252        } else {
2253                sClockPrescale = 0x14;  /* mod 4 (divide by 5) prescale */
2254                rp_baud_base[i] = 460800;
2255        }
2256
2257        for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2258                aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2259
2260        num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio,  MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2261
2262        if (ctlp->boardType == ROCKET_TYPE_PC104) {
2263                sEnAiop(ctlp, 2);       /* only one AIOPIC, but these */
2264                sEnAiop(ctlp, 3);       /* CSels used for other stuff */
2265        }
2266
2267        /*  If something went wrong initing the AIOP's release the ISA IO memory */
2268        if (num_aiops <= 0) {
2269                release_region(rcktpt_io_addr[i], 64);
2270                rcktpt_io_addr[i] = 0;
2271                return (0);
2272        }
2273  
2274        rocketModel[i].startingPortNumber = nextLineNumber;
2275
2276        for (aiop = 0; aiop < num_aiops; aiop++) {
2277                sResetAiopByNum(ctlp, aiop);
2278                sEnAiop(ctlp, aiop);
2279                num_chan = sGetAiopNumChan(ctlp, aiop);
2280                total_num_chan += num_chan;
2281                for (chan = 0; chan < num_chan; chan++)
2282                        init_r_port(i, aiop, chan, NULL);
2283        }
2284        is_PCI[i] = 0;
2285        if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2286                num_chan = sGetAiopNumChan(ctlp, 0);
2287                total_num_chan = num_chan;
2288                for (chan = 0; chan < num_chan; chan++)
2289                        sModemReset(ctlp, chan, 1);
2290                msleep(500);
2291                for (chan = 0; chan < num_chan; chan++)
2292                        sModemReset(ctlp, chan, 0);
2293                msleep(500);
2294                strcpy(rocketModel[i].modelString, "RocketModem ISA");
2295        } else {
2296                strcpy(rocketModel[i].modelString, "RocketPort ISA");
2297        }
2298        rocketModel[i].numPorts = total_num_chan;
2299        rocketModel[i].model = MODEL_ISA;
2300
2301        printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 
2302               i, rcktpt_io_addr[i], num_aiops, type_string);
2303
2304        printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2305               rocketModel[i].modelString,
2306               rocketModel[i].startingPortNumber,
2307               rocketModel[i].startingPortNumber +
2308               rocketModel[i].numPorts - 1);
2309
2310        return (1);
2311}
2312
2313static const struct tty_operations rocket_ops = {
2314        .open = rp_open,
2315        .close = rp_close,
2316        .write = rp_write,
2317        .put_char = rp_put_char,
2318        .write_room = rp_write_room,
2319        .chars_in_buffer = rp_chars_in_buffer,
2320        .flush_buffer = rp_flush_buffer,
2321        .ioctl = rp_ioctl,
2322        .throttle = rp_throttle,
2323        .unthrottle = rp_unthrottle,
2324        .set_termios = rp_set_termios,
2325        .stop = rp_stop,
2326        .start = rp_start,
2327        .hangup = rp_hangup,
2328        .break_ctl = rp_break,
2329        .send_xchar = rp_send_xchar,
2330        .wait_until_sent = rp_wait_until_sent,
2331        .tiocmget = rp_tiocmget,
2332        .tiocmset = rp_tiocmset,
2333};
2334
2335static const struct tty_port_operations rocket_port_ops = {
2336        .carrier_raised = carrier_raised,
2337        .dtr_rts = dtr_rts,
2338};
2339
2340/*
2341 * The module "startup" routine; it's run when the module is loaded.
2342 */
2343static int __init rp_init(void)
2344{
2345        int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2346
2347        printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2348               ROCKET_VERSION, ROCKET_DATE);
2349
2350        rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2351        if (!rocket_driver)
2352                goto err;
2353
2354        /*
2355         *  If board 1 is non-zero, there is at least one ISA configured.  If controller is 
2356         *  zero, use the default controller IO address of board1 + 0x40.
2357         */
2358        if (board1) {
2359                if (controller == 0)
2360                        controller = board1 + 0x40;
2361        } else {
2362                controller = 0;  /*  Used as a flag, meaning no ISA boards */
2363        }
2364
2365        /*  If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2366        if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2367                printk(KERN_ERR "Unable to reserve IO region for first "
2368                        "configured ISA RocketPort controller 0x%lx.  "
2369                        "Driver exiting\n", controller);
2370                ret = -EBUSY;
2371                goto err_tty;
2372        }
2373
2374        /*  Store ISA variable retrieved from command line or .conf file. */
2375        rcktpt_io_addr[0] = board1;
2376        rcktpt_io_addr[1] = board2;
2377        rcktpt_io_addr[2] = board3;
2378        rcktpt_io_addr[3] = board4;
2379
2380        rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2381        rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2382        rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2383        rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2384        rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2385        rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2386        rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2387        rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2388
2389        /*
2390         * Set up the tty driver structure and then register this
2391         * driver with the tty layer.
2392         */
2393
2394        rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2395        rocket_driver->name = "ttyR";
2396        rocket_driver->driver_name = "Comtrol RocketPort";
2397        rocket_driver->major = TTY_ROCKET_MAJOR;
2398        rocket_driver->minor_start = 0;
2399        rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2400        rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2401        rocket_driver->init_termios = tty_std_termios;
2402        rocket_driver->init_termios.c_cflag =
2403            B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2404        rocket_driver->init_termios.c_ispeed = 9600;
2405        rocket_driver->init_termios.c_ospeed = 9600;
2406#ifdef ROCKET_SOFT_FLOW
2407        rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2408#endif
2409        tty_set_operations(rocket_driver, &rocket_ops);
2410
2411        ret = tty_register_driver(rocket_driver);
2412        if (ret < 0) {
2413                printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2414                goto err_controller;
2415        }
2416
2417#ifdef ROCKET_DEBUG_OPEN
2418        printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2419#endif
2420
2421        /*
2422         *  OK, let's probe each of the controllers looking for boards.  Any boards found
2423         *  will be initialized here.
2424         */
2425        isa_boards_found = 0;
2426        pci_boards_found = 0;
2427
2428        for (i = 0; i < NUM_BOARDS; i++) {
2429                if (init_ISA(i))
2430                        isa_boards_found++;
2431        }
2432
2433#ifdef CONFIG_PCI
2434        if (isa_boards_found < NUM_BOARDS)
2435                pci_boards_found = init_PCI(isa_boards_found);
2436#endif
2437
2438        max_board = pci_boards_found + isa_boards_found;
2439
2440        if (max_board == 0) {
2441                printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2442                ret = -ENXIO;
2443                goto err_ttyu;
2444        }
2445
2446        return 0;
2447err_ttyu:
2448        tty_unregister_driver(rocket_driver);
2449err_controller:
2450        if (controller)
2451                release_region(controller, 4);
2452err_tty:
2453        put_tty_driver(rocket_driver);
2454err:
2455        return ret;
2456}
2457
2458
2459static void rp_cleanup_module(void)
2460{
2461        int retval;
2462        int i;
2463
2464        del_timer_sync(&rocket_timer);
2465
2466        retval = tty_unregister_driver(rocket_driver);
2467        if (retval)
2468                printk(KERN_ERR "Error %d while trying to unregister "
2469                       "rocketport driver\n", -retval);
2470
2471        for (i = 0; i < MAX_RP_PORTS; i++)
2472                if (rp_table[i]) {
2473                        tty_unregister_device(rocket_driver, i);
2474                        tty_port_destroy(&rp_table[i]->port);
2475                        kfree(rp_table[i]);
2476                }
2477
2478        put_tty_driver(rocket_driver);
2479
2480        for (i = 0; i < NUM_BOARDS; i++) {
2481                if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2482                        continue;
2483                release_region(rcktpt_io_addr[i], 64);
2484        }
2485        if (controller)
2486                release_region(controller, 4);
2487}
2488
2489/***************************************************************************
2490Function: sInitController
2491Purpose:  Initialization of controller global registers and controller
2492          structure.
2493Call:     sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2494                          IRQNum,Frequency,PeriodicOnly)
2495          CONTROLLER_T *CtlP; Ptr to controller structure
2496          int CtlNum; Controller number
2497          ByteIO_t MudbacIO; Mudbac base I/O address.
2498          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2499             This list must be in the order the AIOPs will be found on the
2500             controller.  Once an AIOP in the list is not found, it is
2501             assumed that there are no more AIOPs on the controller.
2502          int AiopIOListSize; Number of addresses in AiopIOList
2503          int IRQNum; Interrupt Request number.  Can be any of the following:
2504                         0: Disable global interrupts
2505                         3: IRQ 3
2506                         4: IRQ 4
2507                         5: IRQ 5
2508                         9: IRQ 9
2509                         10: IRQ 10
2510                         11: IRQ 11
2511                         12: IRQ 12
2512                         15: IRQ 15
2513          Byte_t Frequency: A flag identifying the frequency
2514                   of the periodic interrupt, can be any one of the following:
2515                      FREQ_DIS - periodic interrupt disabled
2516                      FREQ_137HZ - 137 Hertz
2517                      FREQ_69HZ - 69 Hertz
2518                      FREQ_34HZ - 34 Hertz
2519                      FREQ_17HZ - 17 Hertz
2520                      FREQ_9HZ - 9 Hertz
2521                      FREQ_4HZ - 4 Hertz
2522                   If IRQNum is set to 0 the Frequency parameter is
2523                   overidden, it is forced to a value of FREQ_DIS.
2524          int PeriodicOnly: 1 if all interrupts except the periodic
2525                               interrupt are to be blocked.
2526                            0 is both the periodic interrupt and
2527                               other channel interrupts are allowed.
2528                            If IRQNum is set to 0 the PeriodicOnly parameter is
2529                               overidden, it is forced to a value of 0.
2530Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2531               initialization failed.
2532
2533Comments:
2534          If periodic interrupts are to be disabled but AIOP interrupts
2535          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2536
2537          If interrupts are to be completely disabled set IRQNum to 0.
2538
2539          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2540          invalid combination.
2541
2542          This function performs initialization of global interrupt modes,
2543          but it does not actually enable global interrupts.  To enable
2544          and disable global interrupts use functions sEnGlobalInt() and
2545          sDisGlobalInt().  Enabling of global interrupts is normally not
2546          done until all other initializations are complete.
2547
2548          Even if interrupts are globally enabled, they must also be
2549          individually enabled for each channel that is to generate
2550          interrupts.
2551
2552Warnings: No range checking on any of the parameters is done.
2553
2554          No context switches are allowed while executing this function.
2555
2556          After this function all AIOPs on the controller are disabled,
2557          they can be enabled with sEnAiop().
2558*/
2559static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2560                           ByteIO_t * AiopIOList, int AiopIOListSize,
2561                           int IRQNum, Byte_t Frequency, int PeriodicOnly)
2562{
2563        int i;
2564        ByteIO_t io;
2565        int done;
2566
2567        CtlP->AiopIntrBits = aiop_intr_bits;
2568        CtlP->AltChanRingIndicator = 0;
2569        CtlP->CtlNum = CtlNum;
2570        CtlP->CtlID = CTLID_0001;       /* controller release 1 */
2571        CtlP->BusType = isISA;
2572        CtlP->MBaseIO = MudbacIO;
2573        CtlP->MReg1IO = MudbacIO + 1;
2574        CtlP->MReg2IO = MudbacIO + 2;
2575        CtlP->MReg3IO = MudbacIO + 3;
2576#if 1
2577        CtlP->MReg2 = 0;        /* interrupt disable */
2578        CtlP->MReg3 = 0;        /* no periodic interrupts */
2579#else
2580        if (sIRQMap[IRQNum] == 0) {     /* interrupts globally disabled */
2581                CtlP->MReg2 = 0;        /* interrupt disable */
2582                CtlP->MReg3 = 0;        /* no periodic interrupts */
2583        } else {
2584                CtlP->MReg2 = sIRQMap[IRQNum];  /* set IRQ number */
2585                CtlP->MReg3 = Frequency;        /* set frequency */
2586                if (PeriodicOnly) {     /* periodic interrupt only */
2587                        CtlP->MReg3 |= PERIODIC_ONLY;
2588                }
2589        }
2590#endif
2591        sOutB(CtlP->MReg2IO, CtlP->MReg2);
2592        sOutB(CtlP->MReg3IO, CtlP->MReg3);
2593        sControllerEOI(CtlP);   /* clear EOI if warm init */
2594        /* Init AIOPs */
2595        CtlP->NumAiop = 0;
2596        for (i = done = 0; i < AiopIOListSize; i++) {
2597                io = AiopIOList[i];
2598                CtlP->AiopIO[i] = (WordIO_t) io;
2599                CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2600                sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2601                sOutB(MudbacIO, (Byte_t) (io >> 6));    /* set up AIOP I/O in MUDBAC */
2602                if (done)
2603                        continue;
2604                sEnAiop(CtlP, i);       /* enable the AIOP */
2605                CtlP->AiopID[i] = sReadAiopID(io);      /* read AIOP ID */
2606                if (CtlP->AiopID[i] == AIOPID_NULL)     /* if AIOP does not exist */
2607                        done = 1;       /* done looking for AIOPs */
2608                else {
2609                        CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2610                        sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);    /* clock prescaler */
2611                        sOutB(io + _INDX_DATA, sClockPrescale);
2612                        CtlP->NumAiop++;        /* bump count of AIOPs */
2613                }
2614                sDisAiop(CtlP, i);      /* disable AIOP */
2615        }
2616
2617        if (CtlP->NumAiop == 0)
2618                return (-1);
2619        else
2620                return (CtlP->NumAiop);
2621}
2622
2623/***************************************************************************
2624Function: sReadAiopID
2625Purpose:  Read the AIOP idenfication number directly from an AIOP.
2626Call:     sReadAiopID(io)
2627          ByteIO_t io: AIOP base I/O address
2628Return:   int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2629                 is replace by an identifying number.
2630          Flag AIOPID_NULL if no valid AIOP is found
2631Warnings: No context switches are allowed while executing this function.
2632
2633*/
2634static int sReadAiopID(ByteIO_t io)
2635{
2636        Byte_t AiopID;          /* ID byte from AIOP */
2637
2638        sOutB(io + _CMD_REG, RESET_ALL);        /* reset AIOP */
2639        sOutB(io + _CMD_REG, 0x0);
2640        AiopID = sInW(io + _CHN_STAT0) & 0x07;
2641        if (AiopID == 0x06)
2642                return (1);
2643        else                    /* AIOP does not exist */
2644                return (-1);
2645}
2646
2647/***************************************************************************
2648Function: sReadAiopNumChan
2649Purpose:  Read the number of channels available in an AIOP directly from
2650          an AIOP.
2651Call:     sReadAiopNumChan(io)
2652          WordIO_t io: AIOP base I/O address
2653Return:   int: The number of channels available
2654Comments: The number of channels is determined by write/reads from identical
2655          offsets within the SRAM address spaces for channels 0 and 4.
2656          If the channel 4 space is mirrored to channel 0 it is a 4 channel
2657          AIOP, otherwise it is an 8 channel.
2658Warnings: No context switches are allowed while executing this function.
2659*/
2660static int sReadAiopNumChan(WordIO_t io)
2661{
2662        Word_t x;
2663        static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2664
2665        /* write to chan 0 SRAM */
2666        out32((DWordIO_t) io + _INDX_ADDR, R);
2667        sOutW(io + _INDX_ADDR, 0);      /* read from SRAM, chan 0 */
2668        x = sInW(io + _INDX_DATA);
2669        sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2670        if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2671                return (8);
2672        else
2673                return (4);
2674}
2675
2676/***************************************************************************
2677Function: sInitChan
2678Purpose:  Initialization of a channel and channel structure
2679Call:     sInitChan(CtlP,ChP,AiopNum,ChanNum)
2680          CONTROLLER_T *CtlP; Ptr to controller structure
2681          CHANNEL_T *ChP; Ptr to channel structure
2682          int AiopNum; AIOP number within controller
2683          int ChanNum; Channel number within AIOP
2684Return:   int: 1 if initialization succeeded, 0 if it fails because channel
2685               number exceeds number of channels available in AIOP.
2686Comments: This function must be called before a channel can be used.
2687Warnings: No range checking on any of the parameters is done.
2688
2689          No context switches are allowed while executing this function.
2690*/
2691static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2692                     int ChanNum)
2693{
2694        int i;
2695        WordIO_t AiopIO;
2696        WordIO_t ChIOOff;
2697        Byte_t *ChR;
2698        Word_t ChOff;
2699        static Byte_t R[4];
2700        int brd9600;
2701
2702        if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2703                return 0;       /* exceeds num chans in AIOP */
2704
2705        /* Channel, AIOP, and controller identifiers */
2706        ChP->CtlP = CtlP;
2707        ChP->ChanID = CtlP->AiopID[AiopNum];
2708        ChP->AiopNum = AiopNum;
2709        ChP->ChanNum = ChanNum;
2710
2711        /* Global direct addresses */
2712        AiopIO = CtlP->AiopIO[AiopNum];
2713        ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2714        ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2715        ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2716        ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2717        ChP->IndexData = AiopIO + _INDX_DATA;
2718
2719        /* Channel direct addresses */
2720        ChIOOff = AiopIO + ChP->ChanNum * 2;
2721        ChP->TxRxData = ChIOOff + _TD0;
2722        ChP->ChanStat = ChIOOff + _CHN_STAT0;
2723        ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2724        ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2725
2726        /* Initialize the channel from the RData array */
2727        for (i = 0; i < RDATASIZE; i += 4) {
2728                R[0] = RData[i];
2729                R[1] = RData[i + 1] + 0x10 * ChanNum;
2730                R[2] = RData[i + 2];
2731                R[3] = RData[i + 3];
2732                out32(ChP->IndexAddr, R);
2733        }
2734
2735        ChR = ChP->R;
2736        for (i = 0; i < RREGDATASIZE; i += 4) {
2737                ChR[i] = RRegData[i];
2738                ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2739                ChR[i + 2] = RRegData[i + 2];
2740                ChR[i + 3] = RRegData[i + 3];
2741        }
2742
2743        /* Indexed registers */
2744        ChOff = (Word_t) ChanNum *0x1000;
2745
2746        if (sClockPrescale == 0x14)
2747                brd9600 = 47;
2748        else
2749                brd9600 = 23;
2750
2751        ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2752        ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2753        ChP->BaudDiv[2] = (Byte_t) brd9600;
2754        ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2755        out32(ChP->IndexAddr, ChP->BaudDiv);
2756
2757        ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2758        ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2759        ChP->TxControl[2] = 0;
2760        ChP->TxControl[3] = 0;
2761        out32(ChP->IndexAddr, ChP->TxControl);
2762
2763        ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2764        ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2765        ChP->RxControl[2] = 0;
2766        ChP->RxControl[3] = 0;
2767        out32(ChP->IndexAddr, ChP->RxControl);
2768
2769        ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2770        ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2771        ChP->TxEnables[2] = 0;
2772        ChP->TxEnables[3] = 0;
2773        out32(ChP->IndexAddr, ChP->TxEnables);
2774
2775        ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2776        ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2777        ChP->TxCompare[2] = 0;
2778        ChP->TxCompare[3] = 0;
2779        out32(ChP->IndexAddr, ChP->TxCompare);
2780
2781        ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2782        ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2783        ChP->TxReplace1[2] = 0;
2784        ChP->TxReplace1[3] = 0;
2785        out32(ChP->IndexAddr, ChP->TxReplace1);
2786
2787        ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2788        ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2789        ChP->TxReplace2[2] = 0;
2790        ChP->TxReplace2[3] = 0;
2791        out32(ChP->IndexAddr, ChP->TxReplace2);
2792
2793        ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2794        ChP->TxFIFO = ChOff + _TX_FIFO;
2795
2796        sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT);  /* apply reset Tx FIFO count */
2797        sOutB(ChP->Cmd, (Byte_t) ChanNum);      /* remove reset Tx FIFO count */
2798        sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);      /* clear Tx in/out ptrs */
2799        sOutW(ChP->IndexData, 0);
2800        ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2801        ChP->RxFIFO = ChOff + _RX_FIFO;
2802
2803        sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT);  /* apply reset Rx FIFO count */
2804        sOutB(ChP->Cmd, (Byte_t) ChanNum);      /* remove reset Rx FIFO count */
2805        sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);      /* clear Rx out ptr */
2806        sOutW(ChP->IndexData, 0);
2807        sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);  /* clear Rx in ptr */
2808        sOutW(ChP->IndexData, 0);
2809        ChP->TxPrioCnt = ChOff + _TXP_CNT;
2810        sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2811        sOutB(ChP->IndexData, 0);
2812        ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2813        sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2814        sOutB(ChP->IndexData, 0);
2815        ChP->TxPrioBuf = ChOff + _TXP_BUF;
2816        sEnRxProcessor(ChP);    /* start the Rx processor */
2817
2818        return 1;
2819}
2820
2821/***************************************************************************
2822Function: sStopRxProcessor
2823Purpose:  Stop the receive processor from processing a channel.
2824Call:     sStopRxProcessor(ChP)
2825          CHANNEL_T *ChP; Ptr to channel structure
2826
2827Comments: The receive processor can be started again with sStartRxProcessor().
2828          This function causes the receive processor to skip over the
2829          stopped channel.  It does not stop it from processing other channels.
2830
2831Warnings: No context switches are allowed while executing this function.
2832
2833          Do not leave the receive processor stopped for more than one
2834          character time.
2835
2836          After calling this function a delay of 4 uS is required to ensure
2837          that the receive processor is no longer processing this channel.
2838*/
2839static void sStopRxProcessor(CHANNEL_T * ChP)
2840{
2841        Byte_t R[4];
2842
2843        R[0] = ChP->R[0];
2844        R[1] = ChP->R[1];
2845        R[2] = 0x0a;
2846        R[3] = ChP->R[3];
2847        out32(ChP->IndexAddr, R);
2848}
2849
2850/***************************************************************************
2851Function: sFlushRxFIFO
2852Purpose:  Flush the Rx FIFO
2853Call:     sFlushRxFIFO(ChP)
2854          CHANNEL_T *ChP; Ptr to channel structure
2855Return:   void
2856Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2857          while it is being flushed the receive processor is stopped
2858          and the transmitter is disabled.  After these operations a
2859          4 uS delay is done before clearing the pointers to allow
2860          the receive processor to stop.  These items are handled inside
2861          this function.
2862Warnings: No context switches are allowed while executing this function.
2863*/
2864static void sFlushRxFIFO(CHANNEL_T * ChP)
2865{
2866        int i;
2867        Byte_t Ch;              /* channel number within AIOP */
2868        int RxFIFOEnabled;      /* 1 if Rx FIFO enabled */
2869
2870        if (sGetRxCnt(ChP) == 0)        /* Rx FIFO empty */
2871                return;         /* don't need to flush */
2872
2873        RxFIFOEnabled = 0;
2874        if (ChP->R[0x32] == 0x08) {     /* Rx FIFO is enabled */
2875                RxFIFOEnabled = 1;
2876                sDisRxFIFO(ChP);        /* disable it */
2877                for (i = 0; i < 2000 / 200; i++)        /* delay 2 uS to allow proc to disable FIFO */
2878                        sInB(ChP->IntChan);     /* depends on bus i/o timing */
2879        }
2880        sGetChanStatus(ChP);    /* clear any pending Rx errors in chan stat */
2881        Ch = (Byte_t) sGetChanNum(ChP);
2882        sOutB(ChP->Cmd, Ch | RESRXFCNT);        /* apply reset Rx FIFO count */
2883        sOutB(ChP->Cmd, Ch);    /* remove reset Rx FIFO count */
2884        sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);      /* clear Rx out ptr */
2885        sOutW(ChP->IndexData, 0);
2886        sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);  /* clear Rx in ptr */
2887        sOutW(ChP->IndexData, 0);
2888        if (RxFIFOEnabled)
2889                sEnRxFIFO(ChP); /* enable Rx FIFO */
2890}
2891
2892/***************************************************************************
2893Function: sFlushTxFIFO
2894Purpose:  Flush the Tx FIFO
2895Call:     sFlushTxFIFO(ChP)
2896          CHANNEL_T *ChP; Ptr to channel structure
2897Return:   void
2898Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2899          while it is being flushed the receive processor is stopped
2900          and the transmitter is disabled.  After these operations a
2901          4 uS delay is done before clearing the pointers to allow
2902          the receive processor to stop.  These items are handled inside
2903          this function.
2904Warnings: No context switches are allowed while executing this function.
2905*/
2906static void sFlushTxFIFO(CHANNEL_T * ChP)
2907{
2908        int i;
2909        Byte_t Ch;              /* channel number within AIOP */
2910        int TxEnabled;          /* 1 if transmitter enabled */
2911
2912        if (sGetTxCnt(ChP) == 0)        /* Tx FIFO empty */
2913                return;         /* don't need to flush */
2914
2915        TxEnabled = 0;
2916        if (ChP->TxControl[3] & TX_ENABLE) {
2917                TxEnabled = 1;
2918                sDisTransmit(ChP);      /* disable transmitter */
2919        }
2920        sStopRxProcessor(ChP);  /* stop Rx processor */
2921        for (i = 0; i < 4000 / 200; i++)        /* delay 4 uS to allow proc to stop */
2922                sInB(ChP->IntChan);     /* depends on bus i/o timing */
2923        Ch = (Byte_t) sGetChanNum(ChP);
2924        sOutB(ChP->Cmd, Ch | RESTXFCNT);        /* apply reset Tx FIFO count */
2925        sOutB(ChP->Cmd, Ch);    /* remove reset Tx FIFO count */
2926        sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);      /* clear Tx in/out ptrs */
2927        sOutW(ChP->IndexData, 0);
2928        if (TxEnabled)
2929                sEnTransmit(ChP);       /* enable transmitter */
2930        sStartRxProcessor(ChP); /* restart Rx processor */
2931}
2932
2933/***************************************************************************
2934Function: sWriteTxPrioByte
2935Purpose:  Write a byte of priority transmit data to a channel
2936Call:     sWriteTxPrioByte(ChP,Data)
2937          CHANNEL_T *ChP; Ptr to channel structure
2938          Byte_t Data; The transmit data byte
2939
2940Return:   int: 1 if the bytes is successfully written, otherwise 0.
2941
2942Comments: The priority byte is transmitted before any data in the Tx FIFO.
2943
2944Warnings: No context switches are allowed while executing this function.
2945*/
2946static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2947{
2948        Byte_t DWBuf[4];        /* buffer for double word writes */
2949        Word_t *WordPtr;        /* must be far because Win SS != DS */
2950        register DWordIO_t IndexAddr;
2951
2952        if (sGetTxCnt(ChP) > 1) {       /* write it to Tx priority buffer */
2953                IndexAddr = ChP->IndexAddr;
2954                sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt);    /* get priority buffer status */
2955                if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2956                        return (0);     /* nothing sent */
2957
2958                WordPtr = (Word_t *) (&DWBuf[0]);
2959                *WordPtr = ChP->TxPrioBuf;      /* data byte address */
2960
2961                DWBuf[2] = Data;        /* data byte value */
2962                out32(IndexAddr, DWBuf);        /* write it out */
2963
2964                *WordPtr = ChP->TxPrioCnt;      /* Tx priority count address */
2965
2966                DWBuf[2] = PRI_PEND + 1;        /* indicate 1 byte pending */
2967                DWBuf[3] = 0;   /* priority buffer pointer */
2968                out32(IndexAddr, DWBuf);        /* write it out */
2969        } else {                /* write it to Tx FIFO */
2970
2971                sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2972        }
2973        return (1);             /* 1 byte sent */
2974}
2975
2976/***************************************************************************
2977Function: sEnInterrupts
2978Purpose:  Enable one or more interrupts for a channel
2979Call:     sEnInterrupts(ChP,Flags)
2980          CHANNEL_T *ChP; Ptr to channel structure
2981          Word_t Flags: Interrupt enable flags, can be any combination
2982             of the following flags:
2983                TXINT_EN:   Interrupt on Tx FIFO empty
2984                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
2985                            sSetRxTrigger())
2986                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
2987                MCINT_EN:   Interrupt on modem input change
2988                CHANINT_EN: Allow channel interrupt signal to the AIOP's
2989                            Interrupt Channel Register.
2990Return:   void
2991Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2992          enabled.  If an interrupt enable flag is not set in Flags, that
2993          interrupt will not be changed.  Interrupts can be disabled with
2994          function sDisInterrupts().
2995
2996          This function sets the appropriate bit for the channel in the AIOP's
2997          Interrupt Mask Register if the CHANINT_EN flag is set.  This allows
2998          this channel's bit to be set in the AIOP's Interrupt Channel Register.
2999
3000          Interrupts must also be globally enabled before channel interrupts
3001          will be passed on to the host.  This is done with function
3002          sEnGlobalInt().
3003
3004          In some cases it may be desirable to disable interrupts globally but
3005          enable channel interrupts.  This would allow the global interrupt
3006          status register to be used to determine which AIOPs need service.
3007*/
3008static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3009{
3010        Byte_t Mask;            /* Interrupt Mask Register */
3011
3012        ChP->RxControl[2] |=
3013            ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3014
3015        out32(ChP->IndexAddr, ChP->RxControl);
3016
3017        ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3018
3019        out32(ChP->IndexAddr, ChP->TxControl);
3020
3021        if (Flags & CHANINT_EN) {
3022                Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3023                sOutB(ChP->IntMask, Mask);
3024        }
3025}
3026
3027/***************************************************************************
3028Function: sDisInterrupts
3029Purpose:  Disable one or more interrupts for a channel
3030Call:     sDisInterrupts(ChP,Flags)
3031          CHANNEL_T *ChP; Ptr to channel structure
3032          Word_t Flags: Interrupt flags, can be any combination
3033             of the following flags:
3034                TXINT_EN:   Interrupt on Tx FIFO empty
3035                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3036                            sSetRxTrigger())
3037                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3038                MCINT_EN:   Interrupt on modem input change
3039                CHANINT_EN: Disable channel interrupt signal to the
3040                            AIOP's Interrupt Channel Register.
3041Return:   void
3042Comments: If an interrupt flag is set in Flags, that interrupt will be
3043          disabled.  If an interrupt flag is not set in Flags, that
3044          interrupt will not be changed.  Interrupts can be enabled with
3045          function sEnInterrupts().
3046
3047          This function clears the appropriate bit for the channel in the AIOP's
3048          Interrupt Mask Register if the CHANINT_EN flag is set.  This blocks
3049          this channel's bit from being set in the AIOP's Interrupt Channel
3050          Register.
3051*/
3052static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3053{
3054        Byte_t Mask;            /* Interrupt Mask Register */
3055
3056        ChP->RxControl[2] &=
3057            ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3058        out32(ChP->IndexAddr, ChP->RxControl);
3059        ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3060        out32(ChP->IndexAddr, ChP->TxControl);
3061
3062        if (Flags & CHANINT_EN) {
3063                Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3064                sOutB(ChP->IntMask, Mask);
3065        }
3066}
3067
3068static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3069{
3070        sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3071}
3072
3073/*
3074 *  Not an official SSCI function, but how to reset RocketModems.
3075 *  ISA bus version
3076 */
3077static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3078{
3079        ByteIO_t addr;
3080        Byte_t val;
3081
3082        addr = CtlP->AiopIO[0] + 0x400;
3083        val = sInB(CtlP->MReg3IO);
3084        /* if AIOP[1] is not enabled, enable it */
3085        if ((val & 2) == 0) {
3086                val = sInB(CtlP->MReg2IO);
3087                sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3088                sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3089        }
3090
3091        sEnAiop(CtlP, 1);
3092        if (!on)
3093                addr += 8;
3094        sOutB(addr + chan, 0);  /* apply or remove reset */
3095        sDisAiop(CtlP, 1);
3096}
3097
3098/*
3099 *  Not an official SSCI function, but how to reset RocketModems.
3100 *  PCI bus version
3101 */
3102static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3103{
3104        ByteIO_t addr;
3105
3106        addr = CtlP->AiopIO[0] + 0x40;  /* 2nd AIOP */
3107        if (!on)
3108                addr += 8;
3109        sOutB(addr + chan, 0);  /* apply or remove reset */
3110}
3111
3112/*  Returns the line number given the controller (board), aiop and channel number */
3113static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3114{
3115        return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3116}
3117
3118/*
3119 *  Stores the line number associated with a given controller (board), aiop
3120 *  and channel number.  
3121 *  Returns:  The line number assigned 
3122 */
3123static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3124{
3125        lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3126        return (nextLineNumber - 1);
3127}
3128