linux/fs/btrfs/transaction.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
  22#include <linux/writeback.h>
  23#include <linux/pagemap.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include "ctree.h"
  27#include "disk-io.h"
  28#include "transaction.h"
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "inode-map.h"
  32#include "volumes.h"
  33#include "dev-replace.h"
  34#include "qgroup.h"
  35
  36#define BTRFS_ROOT_TRANS_TAG 0
  37
  38static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
  39        [TRANS_STATE_RUNNING]           = 0U,
  40        [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
  41                                           __TRANS_START),
  42        [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
  43                                           __TRANS_START |
  44                                           __TRANS_ATTACH),
  45        [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
  46                                           __TRANS_START |
  47                                           __TRANS_ATTACH |
  48                                           __TRANS_JOIN),
  49        [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
  50                                           __TRANS_START |
  51                                           __TRANS_ATTACH |
  52                                           __TRANS_JOIN |
  53                                           __TRANS_JOIN_NOLOCK),
  54        [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
  55                                           __TRANS_START |
  56                                           __TRANS_ATTACH |
  57                                           __TRANS_JOIN |
  58                                           __TRANS_JOIN_NOLOCK),
  59};
  60
  61void btrfs_put_transaction(struct btrfs_transaction *transaction)
  62{
  63        WARN_ON(refcount_read(&transaction->use_count) == 0);
  64        if (refcount_dec_and_test(&transaction->use_count)) {
  65                BUG_ON(!list_empty(&transaction->list));
  66                WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
  67                if (transaction->delayed_refs.pending_csums)
  68                        btrfs_err(transaction->fs_info,
  69                                  "pending csums is %llu",
  70                                  transaction->delayed_refs.pending_csums);
  71                while (!list_empty(&transaction->pending_chunks)) {
  72                        struct extent_map *em;
  73
  74                        em = list_first_entry(&transaction->pending_chunks,
  75                                              struct extent_map, list);
  76                        list_del_init(&em->list);
  77                        free_extent_map(em);
  78                }
  79                /*
  80                 * If any block groups are found in ->deleted_bgs then it's
  81                 * because the transaction was aborted and a commit did not
  82                 * happen (things failed before writing the new superblock
  83                 * and calling btrfs_finish_extent_commit()), so we can not
  84                 * discard the physical locations of the block groups.
  85                 */
  86                while (!list_empty(&transaction->deleted_bgs)) {
  87                        struct btrfs_block_group_cache *cache;
  88
  89                        cache = list_first_entry(&transaction->deleted_bgs,
  90                                                 struct btrfs_block_group_cache,
  91                                                 bg_list);
  92                        list_del_init(&cache->bg_list);
  93                        btrfs_put_block_group_trimming(cache);
  94                        btrfs_put_block_group(cache);
  95                }
  96                kfree(transaction);
  97        }
  98}
  99
 100static void clear_btree_io_tree(struct extent_io_tree *tree)
 101{
 102        spin_lock(&tree->lock);
 103        /*
 104         * Do a single barrier for the waitqueue_active check here, the state
 105         * of the waitqueue should not change once clear_btree_io_tree is
 106         * called.
 107         */
 108        smp_mb();
 109        while (!RB_EMPTY_ROOT(&tree->state)) {
 110                struct rb_node *node;
 111                struct extent_state *state;
 112
 113                node = rb_first(&tree->state);
 114                state = rb_entry(node, struct extent_state, rb_node);
 115                rb_erase(&state->rb_node, &tree->state);
 116                RB_CLEAR_NODE(&state->rb_node);
 117                /*
 118                 * btree io trees aren't supposed to have tasks waiting for
 119                 * changes in the flags of extent states ever.
 120                 */
 121                ASSERT(!waitqueue_active(&state->wq));
 122                free_extent_state(state);
 123
 124                cond_resched_lock(&tree->lock);
 125        }
 126        spin_unlock(&tree->lock);
 127}
 128
 129static noinline void switch_commit_roots(struct btrfs_transaction *trans,
 130                                         struct btrfs_fs_info *fs_info)
 131{
 132        struct btrfs_root *root, *tmp;
 133
 134        down_write(&fs_info->commit_root_sem);
 135        list_for_each_entry_safe(root, tmp, &trans->switch_commits,
 136                                 dirty_list) {
 137                list_del_init(&root->dirty_list);
 138                free_extent_buffer(root->commit_root);
 139                root->commit_root = btrfs_root_node(root);
 140                if (is_fstree(root->objectid))
 141                        btrfs_unpin_free_ino(root);
 142                clear_btree_io_tree(&root->dirty_log_pages);
 143        }
 144
 145        /* We can free old roots now. */
 146        spin_lock(&trans->dropped_roots_lock);
 147        while (!list_empty(&trans->dropped_roots)) {
 148                root = list_first_entry(&trans->dropped_roots,
 149                                        struct btrfs_root, root_list);
 150                list_del_init(&root->root_list);
 151                spin_unlock(&trans->dropped_roots_lock);
 152                btrfs_drop_and_free_fs_root(fs_info, root);
 153                spin_lock(&trans->dropped_roots_lock);
 154        }
 155        spin_unlock(&trans->dropped_roots_lock);
 156        up_write(&fs_info->commit_root_sem);
 157}
 158
 159static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 160                                         unsigned int type)
 161{
 162        if (type & TRANS_EXTWRITERS)
 163                atomic_inc(&trans->num_extwriters);
 164}
 165
 166static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 167                                         unsigned int type)
 168{
 169        if (type & TRANS_EXTWRITERS)
 170                atomic_dec(&trans->num_extwriters);
 171}
 172
 173static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 174                                          unsigned int type)
 175{
 176        atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 177}
 178
 179static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 180{
 181        return atomic_read(&trans->num_extwriters);
 182}
 183
 184/*
 185 * either allocate a new transaction or hop into the existing one
 186 */
 187static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 188                                     unsigned int type)
 189{
 190        struct btrfs_transaction *cur_trans;
 191
 192        spin_lock(&fs_info->trans_lock);
 193loop:
 194        /* The file system has been taken offline. No new transactions. */
 195        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 196                spin_unlock(&fs_info->trans_lock);
 197                return -EROFS;
 198        }
 199
 200        cur_trans = fs_info->running_transaction;
 201        if (cur_trans) {
 202                if (cur_trans->aborted) {
 203                        spin_unlock(&fs_info->trans_lock);
 204                        return cur_trans->aborted;
 205                }
 206                if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 207                        spin_unlock(&fs_info->trans_lock);
 208                        return -EBUSY;
 209                }
 210                refcount_inc(&cur_trans->use_count);
 211                atomic_inc(&cur_trans->num_writers);
 212                extwriter_counter_inc(cur_trans, type);
 213                spin_unlock(&fs_info->trans_lock);
 214                return 0;
 215        }
 216        spin_unlock(&fs_info->trans_lock);
 217
 218        /*
 219         * If we are ATTACH, we just want to catch the current transaction,
 220         * and commit it. If there is no transaction, just return ENOENT.
 221         */
 222        if (type == TRANS_ATTACH)
 223                return -ENOENT;
 224
 225        /*
 226         * JOIN_NOLOCK only happens during the transaction commit, so
 227         * it is impossible that ->running_transaction is NULL
 228         */
 229        BUG_ON(type == TRANS_JOIN_NOLOCK);
 230
 231        cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 232        if (!cur_trans)
 233                return -ENOMEM;
 234
 235        spin_lock(&fs_info->trans_lock);
 236        if (fs_info->running_transaction) {
 237                /*
 238                 * someone started a transaction after we unlocked.  Make sure
 239                 * to redo the checks above
 240                 */
 241                kfree(cur_trans);
 242                goto loop;
 243        } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 244                spin_unlock(&fs_info->trans_lock);
 245                kfree(cur_trans);
 246                return -EROFS;
 247        }
 248
 249        cur_trans->fs_info = fs_info;
 250        atomic_set(&cur_trans->num_writers, 1);
 251        extwriter_counter_init(cur_trans, type);
 252        init_waitqueue_head(&cur_trans->writer_wait);
 253        init_waitqueue_head(&cur_trans->commit_wait);
 254        init_waitqueue_head(&cur_trans->pending_wait);
 255        cur_trans->state = TRANS_STATE_RUNNING;
 256        /*
 257         * One for this trans handle, one so it will live on until we
 258         * commit the transaction.
 259         */
 260        refcount_set(&cur_trans->use_count, 2);
 261        atomic_set(&cur_trans->pending_ordered, 0);
 262        cur_trans->flags = 0;
 263        cur_trans->start_time = get_seconds();
 264
 265        memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 266
 267        cur_trans->delayed_refs.href_root = RB_ROOT;
 268        cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 269        atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 270
 271        /*
 272         * although the tree mod log is per file system and not per transaction,
 273         * the log must never go across transaction boundaries.
 274         */
 275        smp_mb();
 276        if (!list_empty(&fs_info->tree_mod_seq_list))
 277                WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 278        if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 279                WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 280        atomic64_set(&fs_info->tree_mod_seq, 0);
 281
 282        spin_lock_init(&cur_trans->delayed_refs.lock);
 283
 284        INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 285        INIT_LIST_HEAD(&cur_trans->pending_chunks);
 286        INIT_LIST_HEAD(&cur_trans->switch_commits);
 287        INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 288        INIT_LIST_HEAD(&cur_trans->io_bgs);
 289        INIT_LIST_HEAD(&cur_trans->dropped_roots);
 290        mutex_init(&cur_trans->cache_write_mutex);
 291        cur_trans->num_dirty_bgs = 0;
 292        spin_lock_init(&cur_trans->dirty_bgs_lock);
 293        INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 294        spin_lock_init(&cur_trans->dropped_roots_lock);
 295        list_add_tail(&cur_trans->list, &fs_info->trans_list);
 296        extent_io_tree_init(&cur_trans->dirty_pages,
 297                             fs_info->btree_inode);
 298        fs_info->generation++;
 299        cur_trans->transid = fs_info->generation;
 300        fs_info->running_transaction = cur_trans;
 301        cur_trans->aborted = 0;
 302        spin_unlock(&fs_info->trans_lock);
 303
 304        return 0;
 305}
 306
 307/*
 308 * this does all the record keeping required to make sure that a reference
 309 * counted root is properly recorded in a given transaction.  This is required
 310 * to make sure the old root from before we joined the transaction is deleted
 311 * when the transaction commits
 312 */
 313static int record_root_in_trans(struct btrfs_trans_handle *trans,
 314                               struct btrfs_root *root,
 315                               int force)
 316{
 317        struct btrfs_fs_info *fs_info = root->fs_info;
 318
 319        if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 320            root->last_trans < trans->transid) || force) {
 321                WARN_ON(root == fs_info->extent_root);
 322                WARN_ON(root->commit_root != root->node);
 323
 324                /*
 325                 * see below for IN_TRANS_SETUP usage rules
 326                 * we have the reloc mutex held now, so there
 327                 * is only one writer in this function
 328                 */
 329                set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 330
 331                /* make sure readers find IN_TRANS_SETUP before
 332                 * they find our root->last_trans update
 333                 */
 334                smp_wmb();
 335
 336                spin_lock(&fs_info->fs_roots_radix_lock);
 337                if (root->last_trans == trans->transid && !force) {
 338                        spin_unlock(&fs_info->fs_roots_radix_lock);
 339                        return 0;
 340                }
 341                radix_tree_tag_set(&fs_info->fs_roots_radix,
 342                                   (unsigned long)root->root_key.objectid,
 343                                   BTRFS_ROOT_TRANS_TAG);
 344                spin_unlock(&fs_info->fs_roots_radix_lock);
 345                root->last_trans = trans->transid;
 346
 347                /* this is pretty tricky.  We don't want to
 348                 * take the relocation lock in btrfs_record_root_in_trans
 349                 * unless we're really doing the first setup for this root in
 350                 * this transaction.
 351                 *
 352                 * Normally we'd use root->last_trans as a flag to decide
 353                 * if we want to take the expensive mutex.
 354                 *
 355                 * But, we have to set root->last_trans before we
 356                 * init the relocation root, otherwise, we trip over warnings
 357                 * in ctree.c.  The solution used here is to flag ourselves
 358                 * with root IN_TRANS_SETUP.  When this is 1, we're still
 359                 * fixing up the reloc trees and everyone must wait.
 360                 *
 361                 * When this is zero, they can trust root->last_trans and fly
 362                 * through btrfs_record_root_in_trans without having to take the
 363                 * lock.  smp_wmb() makes sure that all the writes above are
 364                 * done before we pop in the zero below
 365                 */
 366                btrfs_init_reloc_root(trans, root);
 367                smp_mb__before_atomic();
 368                clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 369        }
 370        return 0;
 371}
 372
 373
 374void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 375                            struct btrfs_root *root)
 376{
 377        struct btrfs_fs_info *fs_info = root->fs_info;
 378        struct btrfs_transaction *cur_trans = trans->transaction;
 379
 380        /* Add ourselves to the transaction dropped list */
 381        spin_lock(&cur_trans->dropped_roots_lock);
 382        list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 383        spin_unlock(&cur_trans->dropped_roots_lock);
 384
 385        /* Make sure we don't try to update the root at commit time */
 386        spin_lock(&fs_info->fs_roots_radix_lock);
 387        radix_tree_tag_clear(&fs_info->fs_roots_radix,
 388                             (unsigned long)root->root_key.objectid,
 389                             BTRFS_ROOT_TRANS_TAG);
 390        spin_unlock(&fs_info->fs_roots_radix_lock);
 391}
 392
 393int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 394                               struct btrfs_root *root)
 395{
 396        struct btrfs_fs_info *fs_info = root->fs_info;
 397
 398        if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 399                return 0;
 400
 401        /*
 402         * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 403         * and barriers
 404         */
 405        smp_rmb();
 406        if (root->last_trans == trans->transid &&
 407            !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 408                return 0;
 409
 410        mutex_lock(&fs_info->reloc_mutex);
 411        record_root_in_trans(trans, root, 0);
 412        mutex_unlock(&fs_info->reloc_mutex);
 413
 414        return 0;
 415}
 416
 417static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 418{
 419        return (trans->state >= TRANS_STATE_BLOCKED &&
 420                trans->state < TRANS_STATE_UNBLOCKED &&
 421                !trans->aborted);
 422}
 423
 424/* wait for commit against the current transaction to become unblocked
 425 * when this is done, it is safe to start a new transaction, but the current
 426 * transaction might not be fully on disk.
 427 */
 428static void wait_current_trans(struct btrfs_fs_info *fs_info)
 429{
 430        struct btrfs_transaction *cur_trans;
 431
 432        spin_lock(&fs_info->trans_lock);
 433        cur_trans = fs_info->running_transaction;
 434        if (cur_trans && is_transaction_blocked(cur_trans)) {
 435                refcount_inc(&cur_trans->use_count);
 436                spin_unlock(&fs_info->trans_lock);
 437
 438                wait_event(fs_info->transaction_wait,
 439                           cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 440                           cur_trans->aborted);
 441                btrfs_put_transaction(cur_trans);
 442        } else {
 443                spin_unlock(&fs_info->trans_lock);
 444        }
 445}
 446
 447static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 448{
 449        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 450                return 0;
 451
 452        if (type == TRANS_USERSPACE)
 453                return 1;
 454
 455        if (type == TRANS_START &&
 456            !atomic_read(&fs_info->open_ioctl_trans))
 457                return 1;
 458
 459        return 0;
 460}
 461
 462static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 463{
 464        struct btrfs_fs_info *fs_info = root->fs_info;
 465
 466        if (!fs_info->reloc_ctl ||
 467            !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 468            root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 469            root->reloc_root)
 470                return false;
 471
 472        return true;
 473}
 474
 475static struct btrfs_trans_handle *
 476start_transaction(struct btrfs_root *root, unsigned int num_items,
 477                  unsigned int type, enum btrfs_reserve_flush_enum flush,
 478                  bool enforce_qgroups)
 479{
 480        struct btrfs_fs_info *fs_info = root->fs_info;
 481
 482        struct btrfs_trans_handle *h;
 483        struct btrfs_transaction *cur_trans;
 484        u64 num_bytes = 0;
 485        u64 qgroup_reserved = 0;
 486        bool reloc_reserved = false;
 487        int ret;
 488
 489        /* Send isn't supposed to start transactions. */
 490        ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
 491
 492        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 493                return ERR_PTR(-EROFS);
 494
 495        if (current->journal_info) {
 496                WARN_ON(type & TRANS_EXTWRITERS);
 497                h = current->journal_info;
 498                h->use_count++;
 499                WARN_ON(h->use_count > 2);
 500                h->orig_rsv = h->block_rsv;
 501                h->block_rsv = NULL;
 502                goto got_it;
 503        }
 504
 505        /*
 506         * Do the reservation before we join the transaction so we can do all
 507         * the appropriate flushing if need be.
 508         */
 509        if (num_items && root != fs_info->chunk_root) {
 510                qgroup_reserved = num_items * fs_info->nodesize;
 511                ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved,
 512                                                enforce_qgroups);
 513                if (ret)
 514                        return ERR_PTR(ret);
 515
 516                num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
 517                /*
 518                 * Do the reservation for the relocation root creation
 519                 */
 520                if (need_reserve_reloc_root(root)) {
 521                        num_bytes += fs_info->nodesize;
 522                        reloc_reserved = true;
 523                }
 524
 525                ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
 526                                          num_bytes, flush);
 527                if (ret)
 528                        goto reserve_fail;
 529        }
 530again:
 531        h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 532        if (!h) {
 533                ret = -ENOMEM;
 534                goto alloc_fail;
 535        }
 536
 537        /*
 538         * If we are JOIN_NOLOCK we're already committing a transaction and
 539         * waiting on this guy, so we don't need to do the sb_start_intwrite
 540         * because we're already holding a ref.  We need this because we could
 541         * have raced in and did an fsync() on a file which can kick a commit
 542         * and then we deadlock with somebody doing a freeze.
 543         *
 544         * If we are ATTACH, it means we just want to catch the current
 545         * transaction and commit it, so we needn't do sb_start_intwrite(). 
 546         */
 547        if (type & __TRANS_FREEZABLE)
 548                sb_start_intwrite(fs_info->sb);
 549
 550        if (may_wait_transaction(fs_info, type))
 551                wait_current_trans(fs_info);
 552
 553        do {
 554                ret = join_transaction(fs_info, type);
 555                if (ret == -EBUSY) {
 556                        wait_current_trans(fs_info);
 557                        if (unlikely(type == TRANS_ATTACH))
 558                                ret = -ENOENT;
 559                }
 560        } while (ret == -EBUSY);
 561
 562        if (ret < 0)
 563                goto join_fail;
 564
 565        cur_trans = fs_info->running_transaction;
 566
 567        h->transid = cur_trans->transid;
 568        h->transaction = cur_trans;
 569        h->root = root;
 570        h->use_count = 1;
 571        h->fs_info = root->fs_info;
 572
 573        h->type = type;
 574        h->can_flush_pending_bgs = true;
 575        INIT_LIST_HEAD(&h->new_bgs);
 576
 577        smp_mb();
 578        if (cur_trans->state >= TRANS_STATE_BLOCKED &&
 579            may_wait_transaction(fs_info, type)) {
 580                current->journal_info = h;
 581                btrfs_commit_transaction(h);
 582                goto again;
 583        }
 584
 585        if (num_bytes) {
 586                trace_btrfs_space_reservation(fs_info, "transaction",
 587                                              h->transid, num_bytes, 1);
 588                h->block_rsv = &fs_info->trans_block_rsv;
 589                h->bytes_reserved = num_bytes;
 590                h->reloc_reserved = reloc_reserved;
 591        }
 592
 593got_it:
 594        btrfs_record_root_in_trans(h, root);
 595
 596        if (!current->journal_info && type != TRANS_USERSPACE)
 597                current->journal_info = h;
 598        return h;
 599
 600join_fail:
 601        if (type & __TRANS_FREEZABLE)
 602                sb_end_intwrite(fs_info->sb);
 603        kmem_cache_free(btrfs_trans_handle_cachep, h);
 604alloc_fail:
 605        if (num_bytes)
 606                btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
 607                                        num_bytes);
 608reserve_fail:
 609        btrfs_qgroup_free_meta(root, qgroup_reserved);
 610        return ERR_PTR(ret);
 611}
 612
 613struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 614                                                   unsigned int num_items)
 615{
 616        return start_transaction(root, num_items, TRANS_START,
 617                                 BTRFS_RESERVE_FLUSH_ALL, true);
 618}
 619
 620struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 621                                        struct btrfs_root *root,
 622                                        unsigned int num_items,
 623                                        int min_factor)
 624{
 625        struct btrfs_fs_info *fs_info = root->fs_info;
 626        struct btrfs_trans_handle *trans;
 627        u64 num_bytes;
 628        int ret;
 629
 630        /*
 631         * We have two callers: unlink and block group removal.  The
 632         * former should succeed even if we will temporarily exceed
 633         * quota and the latter operates on the extent root so
 634         * qgroup enforcement is ignored anyway.
 635         */
 636        trans = start_transaction(root, num_items, TRANS_START,
 637                                  BTRFS_RESERVE_FLUSH_ALL, false);
 638        if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
 639                return trans;
 640
 641        trans = btrfs_start_transaction(root, 0);
 642        if (IS_ERR(trans))
 643                return trans;
 644
 645        num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
 646        ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
 647                                       num_bytes, min_factor);
 648        if (ret) {
 649                btrfs_end_transaction(trans);
 650                return ERR_PTR(ret);
 651        }
 652
 653        trans->block_rsv = &fs_info->trans_block_rsv;
 654        trans->bytes_reserved = num_bytes;
 655        trace_btrfs_space_reservation(fs_info, "transaction",
 656                                      trans->transid, num_bytes, 1);
 657
 658        return trans;
 659}
 660
 661struct btrfs_trans_handle *btrfs_start_transaction_lflush(
 662                                        struct btrfs_root *root,
 663                                        unsigned int num_items)
 664{
 665        return start_transaction(root, num_items, TRANS_START,
 666                                 BTRFS_RESERVE_FLUSH_LIMIT, true);
 667}
 668
 669struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 670{
 671        return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 672                                 true);
 673}
 674
 675struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
 676{
 677        return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 678                                 BTRFS_RESERVE_NO_FLUSH, true);
 679}
 680
 681struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
 682{
 683        return start_transaction(root, 0, TRANS_USERSPACE,
 684                                 BTRFS_RESERVE_NO_FLUSH, true);
 685}
 686
 687/*
 688 * btrfs_attach_transaction() - catch the running transaction
 689 *
 690 * It is used when we want to commit the current the transaction, but
 691 * don't want to start a new one.
 692 *
 693 * Note: If this function return -ENOENT, it just means there is no
 694 * running transaction. But it is possible that the inactive transaction
 695 * is still in the memory, not fully on disk. If you hope there is no
 696 * inactive transaction in the fs when -ENOENT is returned, you should
 697 * invoke
 698 *     btrfs_attach_transaction_barrier()
 699 */
 700struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 701{
 702        return start_transaction(root, 0, TRANS_ATTACH,
 703                                 BTRFS_RESERVE_NO_FLUSH, true);
 704}
 705
 706/*
 707 * btrfs_attach_transaction_barrier() - catch the running transaction
 708 *
 709 * It is similar to the above function, the differentia is this one
 710 * will wait for all the inactive transactions until they fully
 711 * complete.
 712 */
 713struct btrfs_trans_handle *
 714btrfs_attach_transaction_barrier(struct btrfs_root *root)
 715{
 716        struct btrfs_trans_handle *trans;
 717
 718        trans = start_transaction(root, 0, TRANS_ATTACH,
 719                                  BTRFS_RESERVE_NO_FLUSH, true);
 720        if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
 721                btrfs_wait_for_commit(root->fs_info, 0);
 722
 723        return trans;
 724}
 725
 726/* wait for a transaction commit to be fully complete */
 727static noinline void wait_for_commit(struct btrfs_transaction *commit)
 728{
 729        wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 730}
 731
 732int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 733{
 734        struct btrfs_transaction *cur_trans = NULL, *t;
 735        int ret = 0;
 736
 737        if (transid) {
 738                if (transid <= fs_info->last_trans_committed)
 739                        goto out;
 740
 741                /* find specified transaction */
 742                spin_lock(&fs_info->trans_lock);
 743                list_for_each_entry(t, &fs_info->trans_list, list) {
 744                        if (t->transid == transid) {
 745                                cur_trans = t;
 746                                refcount_inc(&cur_trans->use_count);
 747                                ret = 0;
 748                                break;
 749                        }
 750                        if (t->transid > transid) {
 751                                ret = 0;
 752                                break;
 753                        }
 754                }
 755                spin_unlock(&fs_info->trans_lock);
 756
 757                /*
 758                 * The specified transaction doesn't exist, or we
 759                 * raced with btrfs_commit_transaction
 760                 */
 761                if (!cur_trans) {
 762                        if (transid > fs_info->last_trans_committed)
 763                                ret = -EINVAL;
 764                        goto out;
 765                }
 766        } else {
 767                /* find newest transaction that is committing | committed */
 768                spin_lock(&fs_info->trans_lock);
 769                list_for_each_entry_reverse(t, &fs_info->trans_list,
 770                                            list) {
 771                        if (t->state >= TRANS_STATE_COMMIT_START) {
 772                                if (t->state == TRANS_STATE_COMPLETED)
 773                                        break;
 774                                cur_trans = t;
 775                                refcount_inc(&cur_trans->use_count);
 776                                break;
 777                        }
 778                }
 779                spin_unlock(&fs_info->trans_lock);
 780                if (!cur_trans)
 781                        goto out;  /* nothing committing|committed */
 782        }
 783
 784        wait_for_commit(cur_trans);
 785        btrfs_put_transaction(cur_trans);
 786out:
 787        return ret;
 788}
 789
 790void btrfs_throttle(struct btrfs_fs_info *fs_info)
 791{
 792        if (!atomic_read(&fs_info->open_ioctl_trans))
 793                wait_current_trans(fs_info);
 794}
 795
 796static int should_end_transaction(struct btrfs_trans_handle *trans)
 797{
 798        struct btrfs_fs_info *fs_info = trans->fs_info;
 799
 800        if (fs_info->global_block_rsv.space_info->full &&
 801            btrfs_check_space_for_delayed_refs(trans, fs_info))
 802                return 1;
 803
 804        return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
 805}
 806
 807int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 808{
 809        struct btrfs_transaction *cur_trans = trans->transaction;
 810        struct btrfs_fs_info *fs_info = trans->fs_info;
 811        int updates;
 812        int err;
 813
 814        smp_mb();
 815        if (cur_trans->state >= TRANS_STATE_BLOCKED ||
 816            cur_trans->delayed_refs.flushing)
 817                return 1;
 818
 819        updates = trans->delayed_ref_updates;
 820        trans->delayed_ref_updates = 0;
 821        if (updates) {
 822                err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
 823                if (err) /* Error code will also eval true */
 824                        return err;
 825        }
 826
 827        return should_end_transaction(trans);
 828}
 829
 830static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 831                                   int throttle)
 832{
 833        struct btrfs_fs_info *info = trans->fs_info;
 834        struct btrfs_transaction *cur_trans = trans->transaction;
 835        u64 transid = trans->transid;
 836        unsigned long cur = trans->delayed_ref_updates;
 837        int lock = (trans->type != TRANS_JOIN_NOLOCK);
 838        int err = 0;
 839        int must_run_delayed_refs = 0;
 840
 841        if (trans->use_count > 1) {
 842                trans->use_count--;
 843                trans->block_rsv = trans->orig_rsv;
 844                return 0;
 845        }
 846
 847        btrfs_trans_release_metadata(trans, info);
 848        trans->block_rsv = NULL;
 849
 850        if (!list_empty(&trans->new_bgs))
 851                btrfs_create_pending_block_groups(trans, info);
 852
 853        trans->delayed_ref_updates = 0;
 854        if (!trans->sync) {
 855                must_run_delayed_refs =
 856                        btrfs_should_throttle_delayed_refs(trans, info);
 857                cur = max_t(unsigned long, cur, 32);
 858
 859                /*
 860                 * don't make the caller wait if they are from a NOLOCK
 861                 * or ATTACH transaction, it will deadlock with commit
 862                 */
 863                if (must_run_delayed_refs == 1 &&
 864                    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
 865                        must_run_delayed_refs = 2;
 866        }
 867
 868        btrfs_trans_release_metadata(trans, info);
 869        trans->block_rsv = NULL;
 870
 871        if (!list_empty(&trans->new_bgs))
 872                btrfs_create_pending_block_groups(trans, info);
 873
 874        btrfs_trans_release_chunk_metadata(trans);
 875
 876        if (lock && !atomic_read(&info->open_ioctl_trans) &&
 877            should_end_transaction(trans) &&
 878            READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
 879                spin_lock(&info->trans_lock);
 880                if (cur_trans->state == TRANS_STATE_RUNNING)
 881                        cur_trans->state = TRANS_STATE_BLOCKED;
 882                spin_unlock(&info->trans_lock);
 883        }
 884
 885        if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
 886                if (throttle)
 887                        return btrfs_commit_transaction(trans);
 888                else
 889                        wake_up_process(info->transaction_kthread);
 890        }
 891
 892        if (trans->type & __TRANS_FREEZABLE)
 893                sb_end_intwrite(info->sb);
 894
 895        WARN_ON(cur_trans != info->running_transaction);
 896        WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 897        atomic_dec(&cur_trans->num_writers);
 898        extwriter_counter_dec(cur_trans, trans->type);
 899
 900        /*
 901         * Make sure counter is updated before we wake up waiters.
 902         */
 903        smp_mb();
 904        if (waitqueue_active(&cur_trans->writer_wait))
 905                wake_up(&cur_trans->writer_wait);
 906        btrfs_put_transaction(cur_trans);
 907
 908        if (current->journal_info == trans)
 909                current->journal_info = NULL;
 910
 911        if (throttle)
 912                btrfs_run_delayed_iputs(info);
 913
 914        if (trans->aborted ||
 915            test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
 916                wake_up_process(info->transaction_kthread);
 917                err = -EIO;
 918        }
 919
 920        kmem_cache_free(btrfs_trans_handle_cachep, trans);
 921        if (must_run_delayed_refs) {
 922                btrfs_async_run_delayed_refs(info, cur, transid,
 923                                             must_run_delayed_refs == 1);
 924        }
 925        return err;
 926}
 927
 928int btrfs_end_transaction(struct btrfs_trans_handle *trans)
 929{
 930        return __btrfs_end_transaction(trans, 0);
 931}
 932
 933int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
 934{
 935        return __btrfs_end_transaction(trans, 1);
 936}
 937
 938/*
 939 * when btree blocks are allocated, they have some corresponding bits set for
 940 * them in one of two extent_io trees.  This is used to make sure all of
 941 * those extents are sent to disk but does not wait on them
 942 */
 943int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
 944                               struct extent_io_tree *dirty_pages, int mark)
 945{
 946        int err = 0;
 947        int werr = 0;
 948        struct address_space *mapping = fs_info->btree_inode->i_mapping;
 949        struct extent_state *cached_state = NULL;
 950        u64 start = 0;
 951        u64 end;
 952
 953        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 954                                      mark, &cached_state)) {
 955                bool wait_writeback = false;
 956
 957                err = convert_extent_bit(dirty_pages, start, end,
 958                                         EXTENT_NEED_WAIT,
 959                                         mark, &cached_state);
 960                /*
 961                 * convert_extent_bit can return -ENOMEM, which is most of the
 962                 * time a temporary error. So when it happens, ignore the error
 963                 * and wait for writeback of this range to finish - because we
 964                 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
 965                 * to __btrfs_wait_marked_extents() would not know that
 966                 * writeback for this range started and therefore wouldn't
 967                 * wait for it to finish - we don't want to commit a
 968                 * superblock that points to btree nodes/leafs for which
 969                 * writeback hasn't finished yet (and without errors).
 970                 * We cleanup any entries left in the io tree when committing
 971                 * the transaction (through clear_btree_io_tree()).
 972                 */
 973                if (err == -ENOMEM) {
 974                        err = 0;
 975                        wait_writeback = true;
 976                }
 977                if (!err)
 978                        err = filemap_fdatawrite_range(mapping, start, end);
 979                if (err)
 980                        werr = err;
 981                else if (wait_writeback)
 982                        werr = filemap_fdatawait_range(mapping, start, end);
 983                free_extent_state(cached_state);
 984                cached_state = NULL;
 985                cond_resched();
 986                start = end + 1;
 987        }
 988        return werr;
 989}
 990
 991/*
 992 * when btree blocks are allocated, they have some corresponding bits set for
 993 * them in one of two extent_io trees.  This is used to make sure all of
 994 * those extents are on disk for transaction or log commit.  We wait
 995 * on all the pages and clear them from the dirty pages state tree
 996 */
 997static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
 998                                       struct extent_io_tree *dirty_pages)
 999{
1000        int err = 0;
1001        int werr = 0;
1002        struct address_space *mapping = fs_info->btree_inode->i_mapping;
1003        struct extent_state *cached_state = NULL;
1004        u64 start = 0;
1005        u64 end;
1006
1007        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1008                                      EXTENT_NEED_WAIT, &cached_state)) {
1009                /*
1010                 * Ignore -ENOMEM errors returned by clear_extent_bit().
1011                 * When committing the transaction, we'll remove any entries
1012                 * left in the io tree. For a log commit, we don't remove them
1013                 * after committing the log because the tree can be accessed
1014                 * concurrently - we do it only at transaction commit time when
1015                 * it's safe to do it (through clear_btree_io_tree()).
1016                 */
1017                err = clear_extent_bit(dirty_pages, start, end,
1018                                       EXTENT_NEED_WAIT,
1019                                       0, 0, &cached_state, GFP_NOFS);
1020                if (err == -ENOMEM)
1021                        err = 0;
1022                if (!err)
1023                        err = filemap_fdatawait_range(mapping, start, end);
1024                if (err)
1025                        werr = err;
1026                free_extent_state(cached_state);
1027                cached_state = NULL;
1028                cond_resched();
1029                start = end + 1;
1030        }
1031        if (err)
1032                werr = err;
1033        return werr;
1034}
1035
1036int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1037                       struct extent_io_tree *dirty_pages)
1038{
1039        bool errors = false;
1040        int err;
1041
1042        err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1043        if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1044                errors = true;
1045
1046        if (errors && !err)
1047                err = -EIO;
1048        return err;
1049}
1050
1051int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1052{
1053        struct btrfs_fs_info *fs_info = log_root->fs_info;
1054        struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1055        bool errors = false;
1056        int err;
1057
1058        ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1059
1060        err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1061        if ((mark & EXTENT_DIRTY) &&
1062            test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1063                errors = true;
1064
1065        if ((mark & EXTENT_NEW) &&
1066            test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1067                errors = true;
1068
1069        if (errors && !err)
1070                err = -EIO;
1071        return err;
1072}
1073
1074/*
1075 * when btree blocks are allocated, they have some corresponding bits set for
1076 * them in one of two extent_io trees.  This is used to make sure all of
1077 * those extents are on disk for transaction or log commit
1078 */
1079static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1080                                struct extent_io_tree *dirty_pages, int mark)
1081{
1082        int ret;
1083        int ret2;
1084        struct blk_plug plug;
1085
1086        blk_start_plug(&plug);
1087        ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1088        blk_finish_plug(&plug);
1089        ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1090
1091        if (ret)
1092                return ret;
1093        if (ret2)
1094                return ret2;
1095        return 0;
1096}
1097
1098static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1099                                            struct btrfs_fs_info *fs_info)
1100{
1101        int ret;
1102
1103        ret = btrfs_write_and_wait_marked_extents(fs_info,
1104                                           &trans->transaction->dirty_pages,
1105                                           EXTENT_DIRTY);
1106        clear_btree_io_tree(&trans->transaction->dirty_pages);
1107
1108        return ret;
1109}
1110
1111/*
1112 * this is used to update the root pointer in the tree of tree roots.
1113 *
1114 * But, in the case of the extent allocation tree, updating the root
1115 * pointer may allocate blocks which may change the root of the extent
1116 * allocation tree.
1117 *
1118 * So, this loops and repeats and makes sure the cowonly root didn't
1119 * change while the root pointer was being updated in the metadata.
1120 */
1121static int update_cowonly_root(struct btrfs_trans_handle *trans,
1122                               struct btrfs_root *root)
1123{
1124        int ret;
1125        u64 old_root_bytenr;
1126        u64 old_root_used;
1127        struct btrfs_fs_info *fs_info = root->fs_info;
1128        struct btrfs_root *tree_root = fs_info->tree_root;
1129
1130        old_root_used = btrfs_root_used(&root->root_item);
1131
1132        while (1) {
1133                old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1134                if (old_root_bytenr == root->node->start &&
1135                    old_root_used == btrfs_root_used(&root->root_item))
1136                        break;
1137
1138                btrfs_set_root_node(&root->root_item, root->node);
1139                ret = btrfs_update_root(trans, tree_root,
1140                                        &root->root_key,
1141                                        &root->root_item);
1142                if (ret)
1143                        return ret;
1144
1145                old_root_used = btrfs_root_used(&root->root_item);
1146        }
1147
1148        return 0;
1149}
1150
1151/*
1152 * update all the cowonly tree roots on disk
1153 *
1154 * The error handling in this function may not be obvious. Any of the
1155 * failures will cause the file system to go offline. We still need
1156 * to clean up the delayed refs.
1157 */
1158static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1159                                         struct btrfs_fs_info *fs_info)
1160{
1161        struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1162        struct list_head *io_bgs = &trans->transaction->io_bgs;
1163        struct list_head *next;
1164        struct extent_buffer *eb;
1165        int ret;
1166
1167        eb = btrfs_lock_root_node(fs_info->tree_root);
1168        ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1169                              0, &eb);
1170        btrfs_tree_unlock(eb);
1171        free_extent_buffer(eb);
1172
1173        if (ret)
1174                return ret;
1175
1176        ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1177        if (ret)
1178                return ret;
1179
1180        ret = btrfs_run_dev_stats(trans, fs_info);
1181        if (ret)
1182                return ret;
1183        ret = btrfs_run_dev_replace(trans, fs_info);
1184        if (ret)
1185                return ret;
1186        ret = btrfs_run_qgroups(trans, fs_info);
1187        if (ret)
1188                return ret;
1189
1190        ret = btrfs_setup_space_cache(trans, fs_info);
1191        if (ret)
1192                return ret;
1193
1194        /* run_qgroups might have added some more refs */
1195        ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1196        if (ret)
1197                return ret;
1198again:
1199        while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1200                struct btrfs_root *root;
1201                next = fs_info->dirty_cowonly_roots.next;
1202                list_del_init(next);
1203                root = list_entry(next, struct btrfs_root, dirty_list);
1204                clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1205
1206                if (root != fs_info->extent_root)
1207                        list_add_tail(&root->dirty_list,
1208                                      &trans->transaction->switch_commits);
1209                ret = update_cowonly_root(trans, root);
1210                if (ret)
1211                        return ret;
1212                ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1213                if (ret)
1214                        return ret;
1215        }
1216
1217        while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1218                ret = btrfs_write_dirty_block_groups(trans, fs_info);
1219                if (ret)
1220                        return ret;
1221                ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1222                if (ret)
1223                        return ret;
1224        }
1225
1226        if (!list_empty(&fs_info->dirty_cowonly_roots))
1227                goto again;
1228
1229        list_add_tail(&fs_info->extent_root->dirty_list,
1230                      &trans->transaction->switch_commits);
1231        btrfs_after_dev_replace_commit(fs_info);
1232
1233        return 0;
1234}
1235
1236/*
1237 * dead roots are old snapshots that need to be deleted.  This allocates
1238 * a dirty root struct and adds it into the list of dead roots that need to
1239 * be deleted
1240 */
1241void btrfs_add_dead_root(struct btrfs_root *root)
1242{
1243        struct btrfs_fs_info *fs_info = root->fs_info;
1244
1245        spin_lock(&fs_info->trans_lock);
1246        if (list_empty(&root->root_list))
1247                list_add_tail(&root->root_list, &fs_info->dead_roots);
1248        spin_unlock(&fs_info->trans_lock);
1249}
1250
1251/*
1252 * update all the cowonly tree roots on disk
1253 */
1254static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1255                                    struct btrfs_fs_info *fs_info)
1256{
1257        struct btrfs_root *gang[8];
1258        int i;
1259        int ret;
1260        int err = 0;
1261
1262        spin_lock(&fs_info->fs_roots_radix_lock);
1263        while (1) {
1264                ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1265                                                 (void **)gang, 0,
1266                                                 ARRAY_SIZE(gang),
1267                                                 BTRFS_ROOT_TRANS_TAG);
1268                if (ret == 0)
1269                        break;
1270                for (i = 0; i < ret; i++) {
1271                        struct btrfs_root *root = gang[i];
1272                        radix_tree_tag_clear(&fs_info->fs_roots_radix,
1273                                        (unsigned long)root->root_key.objectid,
1274                                        BTRFS_ROOT_TRANS_TAG);
1275                        spin_unlock(&fs_info->fs_roots_radix_lock);
1276
1277                        btrfs_free_log(trans, root);
1278                        btrfs_update_reloc_root(trans, root);
1279                        btrfs_orphan_commit_root(trans, root);
1280
1281                        btrfs_save_ino_cache(root, trans);
1282
1283                        /* see comments in should_cow_block() */
1284                        clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1285                        smp_mb__after_atomic();
1286
1287                        if (root->commit_root != root->node) {
1288                                list_add_tail(&root->dirty_list,
1289                                        &trans->transaction->switch_commits);
1290                                btrfs_set_root_node(&root->root_item,
1291                                                    root->node);
1292                        }
1293
1294                        err = btrfs_update_root(trans, fs_info->tree_root,
1295                                                &root->root_key,
1296                                                &root->root_item);
1297                        spin_lock(&fs_info->fs_roots_radix_lock);
1298                        if (err)
1299                                break;
1300                        btrfs_qgroup_free_meta_all(root);
1301                }
1302        }
1303        spin_unlock(&fs_info->fs_roots_radix_lock);
1304        return err;
1305}
1306
1307/*
1308 * defrag a given btree.
1309 * Every leaf in the btree is read and defragged.
1310 */
1311int btrfs_defrag_root(struct btrfs_root *root)
1312{
1313        struct btrfs_fs_info *info = root->fs_info;
1314        struct btrfs_trans_handle *trans;
1315        int ret;
1316
1317        if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1318                return 0;
1319
1320        while (1) {
1321                trans = btrfs_start_transaction(root, 0);
1322                if (IS_ERR(trans))
1323                        return PTR_ERR(trans);
1324
1325                ret = btrfs_defrag_leaves(trans, root);
1326
1327                btrfs_end_transaction(trans);
1328                btrfs_btree_balance_dirty(info);
1329                cond_resched();
1330
1331                if (btrfs_fs_closing(info) || ret != -EAGAIN)
1332                        break;
1333
1334                if (btrfs_defrag_cancelled(info)) {
1335                        btrfs_debug(info, "defrag_root cancelled");
1336                        ret = -EAGAIN;
1337                        break;
1338                }
1339        }
1340        clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1341        return ret;
1342}
1343
1344/*
1345 * Do all special snapshot related qgroup dirty hack.
1346 *
1347 * Will do all needed qgroup inherit and dirty hack like switch commit
1348 * roots inside one transaction and write all btree into disk, to make
1349 * qgroup works.
1350 */
1351static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1352                                   struct btrfs_root *src,
1353                                   struct btrfs_root *parent,
1354                                   struct btrfs_qgroup_inherit *inherit,
1355                                   u64 dst_objectid)
1356{
1357        struct btrfs_fs_info *fs_info = src->fs_info;
1358        int ret;
1359
1360        /*
1361         * Save some performance in the case that qgroups are not
1362         * enabled. If this check races with the ioctl, rescan will
1363         * kick in anyway.
1364         */
1365        if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1366                return 0;
1367
1368        /*
1369         * We are going to commit transaction, see btrfs_commit_transaction()
1370         * comment for reason locking tree_log_mutex
1371         */
1372        mutex_lock(&fs_info->tree_log_mutex);
1373
1374        ret = commit_fs_roots(trans, fs_info);
1375        if (ret)
1376                goto out;
1377        ret = btrfs_qgroup_account_extents(trans, fs_info);
1378        if (ret < 0)
1379                goto out;
1380
1381        /* Now qgroup are all updated, we can inherit it to new qgroups */
1382        ret = btrfs_qgroup_inherit(trans, fs_info,
1383                                   src->root_key.objectid, dst_objectid,
1384                                   inherit);
1385        if (ret < 0)
1386                goto out;
1387
1388        /*
1389         * Now we do a simplified commit transaction, which will:
1390         * 1) commit all subvolume and extent tree
1391         *    To ensure all subvolume and extent tree have a valid
1392         *    commit_root to accounting later insert_dir_item()
1393         * 2) write all btree blocks onto disk
1394         *    This is to make sure later btree modification will be cowed
1395         *    Or commit_root can be populated and cause wrong qgroup numbers
1396         * In this simplified commit, we don't really care about other trees
1397         * like chunk and root tree, as they won't affect qgroup.
1398         * And we don't write super to avoid half committed status.
1399         */
1400        ret = commit_cowonly_roots(trans, fs_info);
1401        if (ret)
1402                goto out;
1403        switch_commit_roots(trans->transaction, fs_info);
1404        ret = btrfs_write_and_wait_transaction(trans, fs_info);
1405        if (ret)
1406                btrfs_handle_fs_error(fs_info, ret,
1407                        "Error while writing out transaction for qgroup");
1408
1409out:
1410        mutex_unlock(&fs_info->tree_log_mutex);
1411
1412        /*
1413         * Force parent root to be updated, as we recorded it before so its
1414         * last_trans == cur_transid.
1415         * Or it won't be committed again onto disk after later
1416         * insert_dir_item()
1417         */
1418        if (!ret)
1419                record_root_in_trans(trans, parent, 1);
1420        return ret;
1421}
1422
1423/*
1424 * new snapshots need to be created at a very specific time in the
1425 * transaction commit.  This does the actual creation.
1426 *
1427 * Note:
1428 * If the error which may affect the commitment of the current transaction
1429 * happens, we should return the error number. If the error which just affect
1430 * the creation of the pending snapshots, just return 0.
1431 */
1432static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1433                                   struct btrfs_fs_info *fs_info,
1434                                   struct btrfs_pending_snapshot *pending)
1435{
1436        struct btrfs_key key;
1437        struct btrfs_root_item *new_root_item;
1438        struct btrfs_root *tree_root = fs_info->tree_root;
1439        struct btrfs_root *root = pending->root;
1440        struct btrfs_root *parent_root;
1441        struct btrfs_block_rsv *rsv;
1442        struct inode *parent_inode;
1443        struct btrfs_path *path;
1444        struct btrfs_dir_item *dir_item;
1445        struct dentry *dentry;
1446        struct extent_buffer *tmp;
1447        struct extent_buffer *old;
1448        struct timespec cur_time;
1449        int ret = 0;
1450        u64 to_reserve = 0;
1451        u64 index = 0;
1452        u64 objectid;
1453        u64 root_flags;
1454        uuid_le new_uuid;
1455
1456        ASSERT(pending->path);
1457        path = pending->path;
1458
1459        ASSERT(pending->root_item);
1460        new_root_item = pending->root_item;
1461
1462        pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1463        if (pending->error)
1464                goto no_free_objectid;
1465
1466        /*
1467         * Make qgroup to skip current new snapshot's qgroupid, as it is
1468         * accounted by later btrfs_qgroup_inherit().
1469         */
1470        btrfs_set_skip_qgroup(trans, objectid);
1471
1472        btrfs_reloc_pre_snapshot(pending, &to_reserve);
1473
1474        if (to_reserve > 0) {
1475                pending->error = btrfs_block_rsv_add(root,
1476                                                     &pending->block_rsv,
1477                                                     to_reserve,
1478                                                     BTRFS_RESERVE_NO_FLUSH);
1479                if (pending->error)
1480                        goto clear_skip_qgroup;
1481        }
1482
1483        key.objectid = objectid;
1484        key.offset = (u64)-1;
1485        key.type = BTRFS_ROOT_ITEM_KEY;
1486
1487        rsv = trans->block_rsv;
1488        trans->block_rsv = &pending->block_rsv;
1489        trans->bytes_reserved = trans->block_rsv->reserved;
1490        trace_btrfs_space_reservation(fs_info, "transaction",
1491                                      trans->transid,
1492                                      trans->bytes_reserved, 1);
1493        dentry = pending->dentry;
1494        parent_inode = pending->dir;
1495        parent_root = BTRFS_I(parent_inode)->root;
1496        record_root_in_trans(trans, parent_root, 0);
1497
1498        cur_time = current_time(parent_inode);
1499
1500        /*
1501         * insert the directory item
1502         */
1503        ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1504        BUG_ON(ret); /* -ENOMEM */
1505
1506        /* check if there is a file/dir which has the same name. */
1507        dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1508                                         btrfs_ino(BTRFS_I(parent_inode)),
1509                                         dentry->d_name.name,
1510                                         dentry->d_name.len, 0);
1511        if (dir_item != NULL && !IS_ERR(dir_item)) {
1512                pending->error = -EEXIST;
1513                goto dir_item_existed;
1514        } else if (IS_ERR(dir_item)) {
1515                ret = PTR_ERR(dir_item);
1516                btrfs_abort_transaction(trans, ret);
1517                goto fail;
1518        }
1519        btrfs_release_path(path);
1520
1521        /*
1522         * pull in the delayed directory update
1523         * and the delayed inode item
1524         * otherwise we corrupt the FS during
1525         * snapshot
1526         */
1527        ret = btrfs_run_delayed_items(trans, fs_info);
1528        if (ret) {      /* Transaction aborted */
1529                btrfs_abort_transaction(trans, ret);
1530                goto fail;
1531        }
1532
1533        record_root_in_trans(trans, root, 0);
1534        btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1535        memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1536        btrfs_check_and_init_root_item(new_root_item);
1537
1538        root_flags = btrfs_root_flags(new_root_item);
1539        if (pending->readonly)
1540                root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1541        else
1542                root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1543        btrfs_set_root_flags(new_root_item, root_flags);
1544
1545        btrfs_set_root_generation_v2(new_root_item,
1546                        trans->transid);
1547        uuid_le_gen(&new_uuid);
1548        memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1549        memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1550                        BTRFS_UUID_SIZE);
1551        if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1552                memset(new_root_item->received_uuid, 0,
1553                       sizeof(new_root_item->received_uuid));
1554                memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1555                memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1556                btrfs_set_root_stransid(new_root_item, 0);
1557                btrfs_set_root_rtransid(new_root_item, 0);
1558        }
1559        btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1560        btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1561        btrfs_set_root_otransid(new_root_item, trans->transid);
1562
1563        old = btrfs_lock_root_node(root);
1564        ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1565        if (ret) {
1566                btrfs_tree_unlock(old);
1567                free_extent_buffer(old);
1568                btrfs_abort_transaction(trans, ret);
1569                goto fail;
1570        }
1571
1572        btrfs_set_lock_blocking(old);
1573
1574        ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1575        /* clean up in any case */
1576        btrfs_tree_unlock(old);
1577        free_extent_buffer(old);
1578        if (ret) {
1579                btrfs_abort_transaction(trans, ret);
1580                goto fail;
1581        }
1582        /* see comments in should_cow_block() */
1583        set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1584        smp_wmb();
1585
1586        btrfs_set_root_node(new_root_item, tmp);
1587        /* record when the snapshot was created in key.offset */
1588        key.offset = trans->transid;
1589        ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1590        btrfs_tree_unlock(tmp);
1591        free_extent_buffer(tmp);
1592        if (ret) {
1593                btrfs_abort_transaction(trans, ret);
1594                goto fail;
1595        }
1596
1597        /*
1598         * insert root back/forward references
1599         */
1600        ret = btrfs_add_root_ref(trans, fs_info, objectid,
1601                                 parent_root->root_key.objectid,
1602                                 btrfs_ino(BTRFS_I(parent_inode)), index,
1603                                 dentry->d_name.name, dentry->d_name.len);
1604        if (ret) {
1605                btrfs_abort_transaction(trans, ret);
1606                goto fail;
1607        }
1608
1609        key.offset = (u64)-1;
1610        pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1611        if (IS_ERR(pending->snap)) {
1612                ret = PTR_ERR(pending->snap);
1613                btrfs_abort_transaction(trans, ret);
1614                goto fail;
1615        }
1616
1617        ret = btrfs_reloc_post_snapshot(trans, pending);
1618        if (ret) {
1619                btrfs_abort_transaction(trans, ret);
1620                goto fail;
1621        }
1622
1623        ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1624        if (ret) {
1625                btrfs_abort_transaction(trans, ret);
1626                goto fail;
1627        }
1628
1629        /*
1630         * Do special qgroup accounting for snapshot, as we do some qgroup
1631         * snapshot hack to do fast snapshot.
1632         * To co-operate with that hack, we do hack again.
1633         * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1634         */
1635        ret = qgroup_account_snapshot(trans, root, parent_root,
1636                                      pending->inherit, objectid);
1637        if (ret < 0)
1638                goto fail;
1639
1640        ret = btrfs_insert_dir_item(trans, parent_root,
1641                                    dentry->d_name.name, dentry->d_name.len,
1642                                    BTRFS_I(parent_inode), &key,
1643                                    BTRFS_FT_DIR, index);
1644        /* We have check then name at the beginning, so it is impossible. */
1645        BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1646        if (ret) {
1647                btrfs_abort_transaction(trans, ret);
1648                goto fail;
1649        }
1650
1651        btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1652                                         dentry->d_name.len * 2);
1653        parent_inode->i_mtime = parent_inode->i_ctime =
1654                current_time(parent_inode);
1655        ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1656        if (ret) {
1657                btrfs_abort_transaction(trans, ret);
1658                goto fail;
1659        }
1660        ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1661                                  BTRFS_UUID_KEY_SUBVOL, objectid);
1662        if (ret) {
1663                btrfs_abort_transaction(trans, ret);
1664                goto fail;
1665        }
1666        if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1667                ret = btrfs_uuid_tree_add(trans, fs_info,
1668                                          new_root_item->received_uuid,
1669                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1670                                          objectid);
1671                if (ret && ret != -EEXIST) {
1672                        btrfs_abort_transaction(trans, ret);
1673                        goto fail;
1674                }
1675        }
1676
1677        ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1678        if (ret) {
1679                btrfs_abort_transaction(trans, ret);
1680                goto fail;
1681        }
1682
1683fail:
1684        pending->error = ret;
1685dir_item_existed:
1686        trans->block_rsv = rsv;
1687        trans->bytes_reserved = 0;
1688clear_skip_qgroup:
1689        btrfs_clear_skip_qgroup(trans);
1690no_free_objectid:
1691        kfree(new_root_item);
1692        pending->root_item = NULL;
1693        btrfs_free_path(path);
1694        pending->path = NULL;
1695
1696        return ret;
1697}
1698
1699/*
1700 * create all the snapshots we've scheduled for creation
1701 */
1702static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1703                                             struct btrfs_fs_info *fs_info)
1704{
1705        struct btrfs_pending_snapshot *pending, *next;
1706        struct list_head *head = &trans->transaction->pending_snapshots;
1707        int ret = 0;
1708
1709        list_for_each_entry_safe(pending, next, head, list) {
1710                list_del(&pending->list);
1711                ret = create_pending_snapshot(trans, fs_info, pending);
1712                if (ret)
1713                        break;
1714        }
1715        return ret;
1716}
1717
1718static void update_super_roots(struct btrfs_fs_info *fs_info)
1719{
1720        struct btrfs_root_item *root_item;
1721        struct btrfs_super_block *super;
1722
1723        super = fs_info->super_copy;
1724
1725        root_item = &fs_info->chunk_root->root_item;
1726        super->chunk_root = root_item->bytenr;
1727        super->chunk_root_generation = root_item->generation;
1728        super->chunk_root_level = root_item->level;
1729
1730        root_item = &fs_info->tree_root->root_item;
1731        super->root = root_item->bytenr;
1732        super->generation = root_item->generation;
1733        super->root_level = root_item->level;
1734        if (btrfs_test_opt(fs_info, SPACE_CACHE))
1735                super->cache_generation = root_item->generation;
1736        if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1737                super->uuid_tree_generation = root_item->generation;
1738}
1739
1740int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1741{
1742        struct btrfs_transaction *trans;
1743        int ret = 0;
1744
1745        spin_lock(&info->trans_lock);
1746        trans = info->running_transaction;
1747        if (trans)
1748                ret = (trans->state >= TRANS_STATE_COMMIT_START);
1749        spin_unlock(&info->trans_lock);
1750        return ret;
1751}
1752
1753int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1754{
1755        struct btrfs_transaction *trans;
1756        int ret = 0;
1757
1758        spin_lock(&info->trans_lock);
1759        trans = info->running_transaction;
1760        if (trans)
1761                ret = is_transaction_blocked(trans);
1762        spin_unlock(&info->trans_lock);
1763        return ret;
1764}
1765
1766/*
1767 * wait for the current transaction commit to start and block subsequent
1768 * transaction joins
1769 */
1770static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1771                                            struct btrfs_transaction *trans)
1772{
1773        wait_event(fs_info->transaction_blocked_wait,
1774                   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1775}
1776
1777/*
1778 * wait for the current transaction to start and then become unblocked.
1779 * caller holds ref.
1780 */
1781static void wait_current_trans_commit_start_and_unblock(
1782                                        struct btrfs_fs_info *fs_info,
1783                                        struct btrfs_transaction *trans)
1784{
1785        wait_event(fs_info->transaction_wait,
1786                   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1787}
1788
1789/*
1790 * commit transactions asynchronously. once btrfs_commit_transaction_async
1791 * returns, any subsequent transaction will not be allowed to join.
1792 */
1793struct btrfs_async_commit {
1794        struct btrfs_trans_handle *newtrans;
1795        struct work_struct work;
1796};
1797
1798static void do_async_commit(struct work_struct *work)
1799{
1800        struct btrfs_async_commit *ac =
1801                container_of(work, struct btrfs_async_commit, work);
1802
1803        /*
1804         * We've got freeze protection passed with the transaction.
1805         * Tell lockdep about it.
1806         */
1807        if (ac->newtrans->type & __TRANS_FREEZABLE)
1808                __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1809
1810        current->journal_info = ac->newtrans;
1811
1812        btrfs_commit_transaction(ac->newtrans);
1813        kfree(ac);
1814}
1815
1816int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1817                                   int wait_for_unblock)
1818{
1819        struct btrfs_fs_info *fs_info = trans->fs_info;
1820        struct btrfs_async_commit *ac;
1821        struct btrfs_transaction *cur_trans;
1822
1823        ac = kmalloc(sizeof(*ac), GFP_NOFS);
1824        if (!ac)
1825                return -ENOMEM;
1826
1827        INIT_WORK(&ac->work, do_async_commit);
1828        ac->newtrans = btrfs_join_transaction(trans->root);
1829        if (IS_ERR(ac->newtrans)) {
1830                int err = PTR_ERR(ac->newtrans);
1831                kfree(ac);
1832                return err;
1833        }
1834
1835        /* take transaction reference */
1836        cur_trans = trans->transaction;
1837        refcount_inc(&cur_trans->use_count);
1838
1839        btrfs_end_transaction(trans);
1840
1841        /*
1842         * Tell lockdep we've released the freeze rwsem, since the
1843         * async commit thread will be the one to unlock it.
1844         */
1845        if (ac->newtrans->type & __TRANS_FREEZABLE)
1846                __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1847
1848        schedule_work(&ac->work);
1849
1850        /* wait for transaction to start and unblock */
1851        if (wait_for_unblock)
1852                wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1853        else
1854                wait_current_trans_commit_start(fs_info, cur_trans);
1855
1856        if (current->journal_info == trans)
1857                current->journal_info = NULL;
1858
1859        btrfs_put_transaction(cur_trans);
1860        return 0;
1861}
1862
1863
1864static void cleanup_transaction(struct btrfs_trans_handle *trans,
1865                                struct btrfs_root *root, int err)
1866{
1867        struct btrfs_fs_info *fs_info = root->fs_info;
1868        struct btrfs_transaction *cur_trans = trans->transaction;
1869        DEFINE_WAIT(wait);
1870
1871        WARN_ON(trans->use_count > 1);
1872
1873        btrfs_abort_transaction(trans, err);
1874
1875        spin_lock(&fs_info->trans_lock);
1876
1877        /*
1878         * If the transaction is removed from the list, it means this
1879         * transaction has been committed successfully, so it is impossible
1880         * to call the cleanup function.
1881         */
1882        BUG_ON(list_empty(&cur_trans->list));
1883
1884        list_del_init(&cur_trans->list);
1885        if (cur_trans == fs_info->running_transaction) {
1886                cur_trans->state = TRANS_STATE_COMMIT_DOING;
1887                spin_unlock(&fs_info->trans_lock);
1888                wait_event(cur_trans->writer_wait,
1889                           atomic_read(&cur_trans->num_writers) == 1);
1890
1891                spin_lock(&fs_info->trans_lock);
1892        }
1893        spin_unlock(&fs_info->trans_lock);
1894
1895        btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1896
1897        spin_lock(&fs_info->trans_lock);
1898        if (cur_trans == fs_info->running_transaction)
1899                fs_info->running_transaction = NULL;
1900        spin_unlock(&fs_info->trans_lock);
1901
1902        if (trans->type & __TRANS_FREEZABLE)
1903                sb_end_intwrite(fs_info->sb);
1904        btrfs_put_transaction(cur_trans);
1905        btrfs_put_transaction(cur_trans);
1906
1907        trace_btrfs_transaction_commit(root);
1908
1909        if (current->journal_info == trans)
1910                current->journal_info = NULL;
1911        btrfs_scrub_cancel(fs_info);
1912
1913        kmem_cache_free(btrfs_trans_handle_cachep, trans);
1914}
1915
1916static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1917{
1918        if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1919                return btrfs_start_delalloc_roots(fs_info, 1, -1);
1920        return 0;
1921}
1922
1923static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1924{
1925        if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1926                btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1927}
1928
1929static inline void
1930btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1931{
1932        wait_event(cur_trans->pending_wait,
1933                   atomic_read(&cur_trans->pending_ordered) == 0);
1934}
1935
1936int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1937{
1938        struct btrfs_fs_info *fs_info = trans->fs_info;
1939        struct btrfs_transaction *cur_trans = trans->transaction;
1940        struct btrfs_transaction *prev_trans = NULL;
1941        int ret;
1942
1943        /* Stop the commit early if ->aborted is set */
1944        if (unlikely(READ_ONCE(cur_trans->aborted))) {
1945                ret = cur_trans->aborted;
1946                btrfs_end_transaction(trans);
1947                return ret;
1948        }
1949
1950        /* make a pass through all the delayed refs we have so far
1951         * any runnings procs may add more while we are here
1952         */
1953        ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1954        if (ret) {
1955                btrfs_end_transaction(trans);
1956                return ret;
1957        }
1958
1959        btrfs_trans_release_metadata(trans, fs_info);
1960        trans->block_rsv = NULL;
1961
1962        cur_trans = trans->transaction;
1963
1964        /*
1965         * set the flushing flag so procs in this transaction have to
1966         * start sending their work down.
1967         */
1968        cur_trans->delayed_refs.flushing = 1;
1969        smp_wmb();
1970
1971        if (!list_empty(&trans->new_bgs))
1972                btrfs_create_pending_block_groups(trans, fs_info);
1973
1974        ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1975        if (ret) {
1976                btrfs_end_transaction(trans);
1977                return ret;
1978        }
1979
1980        if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1981                int run_it = 0;
1982
1983                /* this mutex is also taken before trying to set
1984                 * block groups readonly.  We need to make sure
1985                 * that nobody has set a block group readonly
1986                 * after a extents from that block group have been
1987                 * allocated for cache files.  btrfs_set_block_group_ro
1988                 * will wait for the transaction to commit if it
1989                 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1990                 *
1991                 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1992                 * only one process starts all the block group IO.  It wouldn't
1993                 * hurt to have more than one go through, but there's no
1994                 * real advantage to it either.
1995                 */
1996                mutex_lock(&fs_info->ro_block_group_mutex);
1997                if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1998                                      &cur_trans->flags))
1999                        run_it = 1;
2000                mutex_unlock(&fs_info->ro_block_group_mutex);
2001
2002                if (run_it)
2003                        ret = btrfs_start_dirty_block_groups(trans, fs_info);
2004        }
2005        if (ret) {
2006                btrfs_end_transaction(trans);
2007                return ret;
2008        }
2009
2010        spin_lock(&fs_info->trans_lock);
2011        if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2012                spin_unlock(&fs_info->trans_lock);
2013                refcount_inc(&cur_trans->use_count);
2014                ret = btrfs_end_transaction(trans);
2015
2016                wait_for_commit(cur_trans);
2017
2018                if (unlikely(cur_trans->aborted))
2019                        ret = cur_trans->aborted;
2020
2021                btrfs_put_transaction(cur_trans);
2022
2023                return ret;
2024        }
2025
2026        cur_trans->state = TRANS_STATE_COMMIT_START;
2027        wake_up(&fs_info->transaction_blocked_wait);
2028
2029        if (cur_trans->list.prev != &fs_info->trans_list) {
2030                prev_trans = list_entry(cur_trans->list.prev,
2031                                        struct btrfs_transaction, list);
2032                if (prev_trans->state != TRANS_STATE_COMPLETED) {
2033                        refcount_inc(&prev_trans->use_count);
2034                        spin_unlock(&fs_info->trans_lock);
2035
2036                        wait_for_commit(prev_trans);
2037                        ret = prev_trans->aborted;
2038
2039                        btrfs_put_transaction(prev_trans);
2040                        if (ret)
2041                                goto cleanup_transaction;
2042                } else {
2043                        spin_unlock(&fs_info->trans_lock);
2044                }
2045        } else {
2046                spin_unlock(&fs_info->trans_lock);
2047        }
2048
2049        extwriter_counter_dec(cur_trans, trans->type);
2050
2051        ret = btrfs_start_delalloc_flush(fs_info);
2052        if (ret)
2053                goto cleanup_transaction;
2054
2055        ret = btrfs_run_delayed_items(trans, fs_info);
2056        if (ret)
2057                goto cleanup_transaction;
2058
2059        wait_event(cur_trans->writer_wait,
2060                   extwriter_counter_read(cur_trans) == 0);
2061
2062        /* some pending stuffs might be added after the previous flush. */
2063        ret = btrfs_run_delayed_items(trans, fs_info);
2064        if (ret)
2065                goto cleanup_transaction;
2066
2067        btrfs_wait_delalloc_flush(fs_info);
2068
2069        btrfs_wait_pending_ordered(cur_trans);
2070
2071        btrfs_scrub_pause(fs_info);
2072        /*
2073         * Ok now we need to make sure to block out any other joins while we
2074         * commit the transaction.  We could have started a join before setting
2075         * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2076         */
2077        spin_lock(&fs_info->trans_lock);
2078        cur_trans->state = TRANS_STATE_COMMIT_DOING;
2079        spin_unlock(&fs_info->trans_lock);
2080        wait_event(cur_trans->writer_wait,
2081                   atomic_read(&cur_trans->num_writers) == 1);
2082
2083        /* ->aborted might be set after the previous check, so check it */
2084        if (unlikely(READ_ONCE(cur_trans->aborted))) {
2085                ret = cur_trans->aborted;
2086                goto scrub_continue;
2087        }
2088        /*
2089         * the reloc mutex makes sure that we stop
2090         * the balancing code from coming in and moving
2091         * extents around in the middle of the commit
2092         */
2093        mutex_lock(&fs_info->reloc_mutex);
2094
2095        /*
2096         * We needn't worry about the delayed items because we will
2097         * deal with them in create_pending_snapshot(), which is the
2098         * core function of the snapshot creation.
2099         */
2100        ret = create_pending_snapshots(trans, fs_info);
2101        if (ret) {
2102                mutex_unlock(&fs_info->reloc_mutex);
2103                goto scrub_continue;
2104        }
2105
2106        /*
2107         * We insert the dir indexes of the snapshots and update the inode
2108         * of the snapshots' parents after the snapshot creation, so there
2109         * are some delayed items which are not dealt with. Now deal with
2110         * them.
2111         *
2112         * We needn't worry that this operation will corrupt the snapshots,
2113         * because all the tree which are snapshoted will be forced to COW
2114         * the nodes and leaves.
2115         */
2116        ret = btrfs_run_delayed_items(trans, fs_info);
2117        if (ret) {
2118                mutex_unlock(&fs_info->reloc_mutex);
2119                goto scrub_continue;
2120        }
2121
2122        ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2123        if (ret) {
2124                mutex_unlock(&fs_info->reloc_mutex);
2125                goto scrub_continue;
2126        }
2127
2128        /*
2129         * make sure none of the code above managed to slip in a
2130         * delayed item
2131         */
2132        btrfs_assert_delayed_root_empty(fs_info);
2133
2134        WARN_ON(cur_trans != trans->transaction);
2135
2136        /* btrfs_commit_tree_roots is responsible for getting the
2137         * various roots consistent with each other.  Every pointer
2138         * in the tree of tree roots has to point to the most up to date
2139         * root for every subvolume and other tree.  So, we have to keep
2140         * the tree logging code from jumping in and changing any
2141         * of the trees.
2142         *
2143         * At this point in the commit, there can't be any tree-log
2144         * writers, but a little lower down we drop the trans mutex
2145         * and let new people in.  By holding the tree_log_mutex
2146         * from now until after the super is written, we avoid races
2147         * with the tree-log code.
2148         */
2149        mutex_lock(&fs_info->tree_log_mutex);
2150
2151        ret = commit_fs_roots(trans, fs_info);
2152        if (ret) {
2153                mutex_unlock(&fs_info->tree_log_mutex);
2154                mutex_unlock(&fs_info->reloc_mutex);
2155                goto scrub_continue;
2156        }
2157
2158        /*
2159         * Since the transaction is done, we can apply the pending changes
2160         * before the next transaction.
2161         */
2162        btrfs_apply_pending_changes(fs_info);
2163
2164        /* commit_fs_roots gets rid of all the tree log roots, it is now
2165         * safe to free the root of tree log roots
2166         */
2167        btrfs_free_log_root_tree(trans, fs_info);
2168
2169        /*
2170         * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2171         * new delayed refs. Must handle them or qgroup can be wrong.
2172         */
2173        ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2174        if (ret) {
2175                mutex_unlock(&fs_info->tree_log_mutex);
2176                mutex_unlock(&fs_info->reloc_mutex);
2177                goto scrub_continue;
2178        }
2179
2180        /*
2181         * Since fs roots are all committed, we can get a quite accurate
2182         * new_roots. So let's do quota accounting.
2183         */
2184        ret = btrfs_qgroup_account_extents(trans, fs_info);
2185        if (ret < 0) {
2186                mutex_unlock(&fs_info->tree_log_mutex);
2187                mutex_unlock(&fs_info->reloc_mutex);
2188                goto scrub_continue;
2189        }
2190
2191        ret = commit_cowonly_roots(trans, fs_info);
2192        if (ret) {
2193                mutex_unlock(&fs_info->tree_log_mutex);
2194                mutex_unlock(&fs_info->reloc_mutex);
2195                goto scrub_continue;
2196        }
2197
2198        /*
2199         * The tasks which save the space cache and inode cache may also
2200         * update ->aborted, check it.
2201         */
2202        if (unlikely(READ_ONCE(cur_trans->aborted))) {
2203                ret = cur_trans->aborted;
2204                mutex_unlock(&fs_info->tree_log_mutex);
2205                mutex_unlock(&fs_info->reloc_mutex);
2206                goto scrub_continue;
2207        }
2208
2209        btrfs_prepare_extent_commit(fs_info);
2210
2211        cur_trans = fs_info->running_transaction;
2212
2213        btrfs_set_root_node(&fs_info->tree_root->root_item,
2214                            fs_info->tree_root->node);
2215        list_add_tail(&fs_info->tree_root->dirty_list,
2216                      &cur_trans->switch_commits);
2217
2218        btrfs_set_root_node(&fs_info->chunk_root->root_item,
2219                            fs_info->chunk_root->node);
2220        list_add_tail(&fs_info->chunk_root->dirty_list,
2221                      &cur_trans->switch_commits);
2222
2223        switch_commit_roots(cur_trans, fs_info);
2224
2225        ASSERT(list_empty(&cur_trans->dirty_bgs));
2226        ASSERT(list_empty(&cur_trans->io_bgs));
2227        update_super_roots(fs_info);
2228
2229        btrfs_set_super_log_root(fs_info->super_copy, 0);
2230        btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2231        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2232               sizeof(*fs_info->super_copy));
2233
2234        btrfs_update_commit_device_size(fs_info);
2235        btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2236
2237        clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2238        clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2239
2240        btrfs_trans_release_chunk_metadata(trans);
2241
2242        spin_lock(&fs_info->trans_lock);
2243        cur_trans->state = TRANS_STATE_UNBLOCKED;
2244        fs_info->running_transaction = NULL;
2245        spin_unlock(&fs_info->trans_lock);
2246        mutex_unlock(&fs_info->reloc_mutex);
2247
2248        wake_up(&fs_info->transaction_wait);
2249
2250        ret = btrfs_write_and_wait_transaction(trans, fs_info);
2251        if (ret) {
2252                btrfs_handle_fs_error(fs_info, ret,
2253                                      "Error while writing out transaction");
2254                mutex_unlock(&fs_info->tree_log_mutex);
2255                goto scrub_continue;
2256        }
2257
2258        ret = write_all_supers(fs_info, 0);
2259        if (ret) {
2260                mutex_unlock(&fs_info->tree_log_mutex);
2261                goto scrub_continue;
2262        }
2263
2264        /*
2265         * the super is written, we can safely allow the tree-loggers
2266         * to go about their business
2267         */
2268        mutex_unlock(&fs_info->tree_log_mutex);
2269
2270        btrfs_finish_extent_commit(trans, fs_info);
2271
2272        if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2273                btrfs_clear_space_info_full(fs_info);
2274
2275        fs_info->last_trans_committed = cur_trans->transid;
2276        /*
2277         * We needn't acquire the lock here because there is no other task
2278         * which can change it.
2279         */
2280        cur_trans->state = TRANS_STATE_COMPLETED;
2281        wake_up(&cur_trans->commit_wait);
2282
2283        spin_lock(&fs_info->trans_lock);
2284        list_del_init(&cur_trans->list);
2285        spin_unlock(&fs_info->trans_lock);
2286
2287        btrfs_put_transaction(cur_trans);
2288        btrfs_put_transaction(cur_trans);
2289
2290        if (trans->type & __TRANS_FREEZABLE)
2291                sb_end_intwrite(fs_info->sb);
2292
2293        trace_btrfs_transaction_commit(trans->root);
2294
2295        btrfs_scrub_continue(fs_info);
2296
2297        if (current->journal_info == trans)
2298                current->journal_info = NULL;
2299
2300        kmem_cache_free(btrfs_trans_handle_cachep, trans);
2301
2302        /*
2303         * If fs has been frozen, we can not handle delayed iputs, otherwise
2304         * it'll result in deadlock about SB_FREEZE_FS.
2305         */
2306        if (current != fs_info->transaction_kthread &&
2307            current != fs_info->cleaner_kthread &&
2308            !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2309                btrfs_run_delayed_iputs(fs_info);
2310
2311        return ret;
2312
2313scrub_continue:
2314        btrfs_scrub_continue(fs_info);
2315cleanup_transaction:
2316        btrfs_trans_release_metadata(trans, fs_info);
2317        btrfs_trans_release_chunk_metadata(trans);
2318        trans->block_rsv = NULL;
2319        btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2320        if (current->journal_info == trans)
2321                current->journal_info = NULL;
2322        cleanup_transaction(trans, trans->root, ret);
2323
2324        return ret;
2325}
2326
2327/*
2328 * return < 0 if error
2329 * 0 if there are no more dead_roots at the time of call
2330 * 1 there are more to be processed, call me again
2331 *
2332 * The return value indicates there are certainly more snapshots to delete, but
2333 * if there comes a new one during processing, it may return 0. We don't mind,
2334 * because btrfs_commit_super will poke cleaner thread and it will process it a
2335 * few seconds later.
2336 */
2337int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2338{
2339        int ret;
2340        struct btrfs_fs_info *fs_info = root->fs_info;
2341
2342        spin_lock(&fs_info->trans_lock);
2343        if (list_empty(&fs_info->dead_roots)) {
2344                spin_unlock(&fs_info->trans_lock);
2345                return 0;
2346        }
2347        root = list_first_entry(&fs_info->dead_roots,
2348                        struct btrfs_root, root_list);
2349        list_del_init(&root->root_list);
2350        spin_unlock(&fs_info->trans_lock);
2351
2352        btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2353
2354        btrfs_kill_all_delayed_nodes(root);
2355
2356        if (btrfs_header_backref_rev(root->node) <
2357                        BTRFS_MIXED_BACKREF_REV)
2358                ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2359        else
2360                ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2361
2362        return (ret < 0) ? 0 : 1;
2363}
2364
2365void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2366{
2367        unsigned long prev;
2368        unsigned long bit;
2369
2370        prev = xchg(&fs_info->pending_changes, 0);
2371        if (!prev)
2372                return;
2373
2374        bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2375        if (prev & bit)
2376                btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2377        prev &= ~bit;
2378
2379        bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2380        if (prev & bit)
2381                btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2382        prev &= ~bit;
2383
2384        bit = 1 << BTRFS_PENDING_COMMIT;
2385        if (prev & bit)
2386                btrfs_debug(fs_info, "pending commit done");
2387        prev &= ~bit;
2388
2389        if (prev)
2390                btrfs_warn(fs_info,
2391                        "unknown pending changes left 0x%lx, ignoring", prev);
2392}
2393