linux/fs/dax.c
<<
>>
Prefs
   1/*
   2 * fs/dax.c - Direct Access filesystem code
   3 * Copyright (c) 2013-2014 Intel Corporation
   4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/blkdev.h>
  19#include <linux/buffer_head.h>
  20#include <linux/dax.h>
  21#include <linux/fs.h>
  22#include <linux/genhd.h>
  23#include <linux/highmem.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm.h>
  26#include <linux/mutex.h>
  27#include <linux/pagevec.h>
  28#include <linux/sched.h>
  29#include <linux/sched/signal.h>
  30#include <linux/uio.h>
  31#include <linux/vmstat.h>
  32#include <linux/pfn_t.h>
  33#include <linux/sizes.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/iomap.h>
  36#include "internal.h"
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/fs_dax.h>
  40
  41/* We choose 4096 entries - same as per-zone page wait tables */
  42#define DAX_WAIT_TABLE_BITS 12
  43#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  44
  45/* The 'colour' (ie low bits) within a PMD of a page offset.  */
  46#define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
  47
  48static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  49
  50static int __init init_dax_wait_table(void)
  51{
  52        int i;
  53
  54        for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  55                init_waitqueue_head(wait_table + i);
  56        return 0;
  57}
  58fs_initcall(init_dax_wait_table);
  59
  60/*
  61 * We use lowest available bit in exceptional entry for locking, one bit for
  62 * the entry size (PMD) and two more to tell us if the entry is a zero page or
  63 * an empty entry that is just used for locking.  In total four special bits.
  64 *
  65 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
  66 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
  67 * block allocation.
  68 */
  69#define RADIX_DAX_SHIFT         (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
  70#define RADIX_DAX_ENTRY_LOCK    (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
  71#define RADIX_DAX_PMD           (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
  72#define RADIX_DAX_ZERO_PAGE     (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
  73#define RADIX_DAX_EMPTY         (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
  74
  75static unsigned long dax_radix_sector(void *entry)
  76{
  77        return (unsigned long)entry >> RADIX_DAX_SHIFT;
  78}
  79
  80static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
  81{
  82        return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
  83                        ((unsigned long)sector << RADIX_DAX_SHIFT) |
  84                        RADIX_DAX_ENTRY_LOCK);
  85}
  86
  87static unsigned int dax_radix_order(void *entry)
  88{
  89        if ((unsigned long)entry & RADIX_DAX_PMD)
  90                return PMD_SHIFT - PAGE_SHIFT;
  91        return 0;
  92}
  93
  94static int dax_is_pmd_entry(void *entry)
  95{
  96        return (unsigned long)entry & RADIX_DAX_PMD;
  97}
  98
  99static int dax_is_pte_entry(void *entry)
 100{
 101        return !((unsigned long)entry & RADIX_DAX_PMD);
 102}
 103
 104static int dax_is_zero_entry(void *entry)
 105{
 106        return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
 107}
 108
 109static int dax_is_empty_entry(void *entry)
 110{
 111        return (unsigned long)entry & RADIX_DAX_EMPTY;
 112}
 113
 114/*
 115 * DAX radix tree locking
 116 */
 117struct exceptional_entry_key {
 118        struct address_space *mapping;
 119        pgoff_t entry_start;
 120};
 121
 122struct wait_exceptional_entry_queue {
 123        wait_queue_entry_t wait;
 124        struct exceptional_entry_key key;
 125};
 126
 127static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
 128                pgoff_t index, void *entry, struct exceptional_entry_key *key)
 129{
 130        unsigned long hash;
 131
 132        /*
 133         * If 'entry' is a PMD, align the 'index' that we use for the wait
 134         * queue to the start of that PMD.  This ensures that all offsets in
 135         * the range covered by the PMD map to the same bit lock.
 136         */
 137        if (dax_is_pmd_entry(entry))
 138                index &= ~PG_PMD_COLOUR;
 139
 140        key->mapping = mapping;
 141        key->entry_start = index;
 142
 143        hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
 144        return wait_table + hash;
 145}
 146
 147static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
 148                                       int sync, void *keyp)
 149{
 150        struct exceptional_entry_key *key = keyp;
 151        struct wait_exceptional_entry_queue *ewait =
 152                container_of(wait, struct wait_exceptional_entry_queue, wait);
 153
 154        if (key->mapping != ewait->key.mapping ||
 155            key->entry_start != ewait->key.entry_start)
 156                return 0;
 157        return autoremove_wake_function(wait, mode, sync, NULL);
 158}
 159
 160/*
 161 * We do not necessarily hold the mapping->tree_lock when we call this
 162 * function so it is possible that 'entry' is no longer a valid item in the
 163 * radix tree.  This is okay because all we really need to do is to find the
 164 * correct waitqueue where tasks might be waiting for that old 'entry' and
 165 * wake them.
 166 */
 167static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
 168                pgoff_t index, void *entry, bool wake_all)
 169{
 170        struct exceptional_entry_key key;
 171        wait_queue_head_t *wq;
 172
 173        wq = dax_entry_waitqueue(mapping, index, entry, &key);
 174
 175        /*
 176         * Checking for locked entry and prepare_to_wait_exclusive() happens
 177         * under mapping->tree_lock, ditto for entry handling in our callers.
 178         * So at this point all tasks that could have seen our entry locked
 179         * must be in the waitqueue and the following check will see them.
 180         */
 181        if (waitqueue_active(wq))
 182                __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
 183}
 184
 185/*
 186 * Check whether the given slot is locked. The function must be called with
 187 * mapping->tree_lock held
 188 */
 189static inline int slot_locked(struct address_space *mapping, void **slot)
 190{
 191        unsigned long entry = (unsigned long)
 192                radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 193        return entry & RADIX_DAX_ENTRY_LOCK;
 194}
 195
 196/*
 197 * Mark the given slot is locked. The function must be called with
 198 * mapping->tree_lock held
 199 */
 200static inline void *lock_slot(struct address_space *mapping, void **slot)
 201{
 202        unsigned long entry = (unsigned long)
 203                radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 204
 205        entry |= RADIX_DAX_ENTRY_LOCK;
 206        radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
 207        return (void *)entry;
 208}
 209
 210/*
 211 * Mark the given slot is unlocked. The function must be called with
 212 * mapping->tree_lock held
 213 */
 214static inline void *unlock_slot(struct address_space *mapping, void **slot)
 215{
 216        unsigned long entry = (unsigned long)
 217                radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 218
 219        entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
 220        radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
 221        return (void *)entry;
 222}
 223
 224/*
 225 * Lookup entry in radix tree, wait for it to become unlocked if it is
 226 * exceptional entry and return it. The caller must call
 227 * put_unlocked_mapping_entry() when he decided not to lock the entry or
 228 * put_locked_mapping_entry() when he locked the entry and now wants to
 229 * unlock it.
 230 *
 231 * The function must be called with mapping->tree_lock held.
 232 */
 233static void *get_unlocked_mapping_entry(struct address_space *mapping,
 234                                        pgoff_t index, void ***slotp)
 235{
 236        void *entry, **slot;
 237        struct wait_exceptional_entry_queue ewait;
 238        wait_queue_head_t *wq;
 239
 240        init_wait(&ewait.wait);
 241        ewait.wait.func = wake_exceptional_entry_func;
 242
 243        for (;;) {
 244                entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
 245                                          &slot);
 246                if (!entry ||
 247                    WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
 248                    !slot_locked(mapping, slot)) {
 249                        if (slotp)
 250                                *slotp = slot;
 251                        return entry;
 252                }
 253
 254                wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
 255                prepare_to_wait_exclusive(wq, &ewait.wait,
 256                                          TASK_UNINTERRUPTIBLE);
 257                spin_unlock_irq(&mapping->tree_lock);
 258                schedule();
 259                finish_wait(wq, &ewait.wait);
 260                spin_lock_irq(&mapping->tree_lock);
 261        }
 262}
 263
 264static void dax_unlock_mapping_entry(struct address_space *mapping,
 265                                     pgoff_t index)
 266{
 267        void *entry, **slot;
 268
 269        spin_lock_irq(&mapping->tree_lock);
 270        entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
 271        if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
 272                         !slot_locked(mapping, slot))) {
 273                spin_unlock_irq(&mapping->tree_lock);
 274                return;
 275        }
 276        unlock_slot(mapping, slot);
 277        spin_unlock_irq(&mapping->tree_lock);
 278        dax_wake_mapping_entry_waiter(mapping, index, entry, false);
 279}
 280
 281static void put_locked_mapping_entry(struct address_space *mapping,
 282                pgoff_t index)
 283{
 284        dax_unlock_mapping_entry(mapping, index);
 285}
 286
 287/*
 288 * Called when we are done with radix tree entry we looked up via
 289 * get_unlocked_mapping_entry() and which we didn't lock in the end.
 290 */
 291static void put_unlocked_mapping_entry(struct address_space *mapping,
 292                                       pgoff_t index, void *entry)
 293{
 294        if (!entry)
 295                return;
 296
 297        /* We have to wake up next waiter for the radix tree entry lock */
 298        dax_wake_mapping_entry_waiter(mapping, index, entry, false);
 299}
 300
 301/*
 302 * Find radix tree entry at given index. If it points to an exceptional entry,
 303 * return it with the radix tree entry locked. If the radix tree doesn't
 304 * contain given index, create an empty exceptional entry for the index and
 305 * return with it locked.
 306 *
 307 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
 308 * either return that locked entry or will return an error.  This error will
 309 * happen if there are any 4k entries within the 2MiB range that we are
 310 * requesting.
 311 *
 312 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
 313 * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
 314 * insertion will fail if it finds any 4k entries already in the tree, and a
 315 * 4k insertion will cause an existing 2MiB entry to be unmapped and
 316 * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
 317 * well as 2MiB empty entries.
 318 *
 319 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
 320 * real storage backing them.  We will leave these real 2MiB DAX entries in
 321 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
 322 *
 323 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 324 * persistent memory the benefit is doubtful. We can add that later if we can
 325 * show it helps.
 326 */
 327static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
 328                unsigned long size_flag)
 329{
 330        bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
 331        void *entry, **slot;
 332
 333restart:
 334        spin_lock_irq(&mapping->tree_lock);
 335        entry = get_unlocked_mapping_entry(mapping, index, &slot);
 336
 337        if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
 338                entry = ERR_PTR(-EIO);
 339                goto out_unlock;
 340        }
 341
 342        if (entry) {
 343                if (size_flag & RADIX_DAX_PMD) {
 344                        if (dax_is_pte_entry(entry)) {
 345                                put_unlocked_mapping_entry(mapping, index,
 346                                                entry);
 347                                entry = ERR_PTR(-EEXIST);
 348                                goto out_unlock;
 349                        }
 350                } else { /* trying to grab a PTE entry */
 351                        if (dax_is_pmd_entry(entry) &&
 352                            (dax_is_zero_entry(entry) ||
 353                             dax_is_empty_entry(entry))) {
 354                                pmd_downgrade = true;
 355                        }
 356                }
 357        }
 358
 359        /* No entry for given index? Make sure radix tree is big enough. */
 360        if (!entry || pmd_downgrade) {
 361                int err;
 362
 363                if (pmd_downgrade) {
 364                        /*
 365                         * Make sure 'entry' remains valid while we drop
 366                         * mapping->tree_lock.
 367                         */
 368                        entry = lock_slot(mapping, slot);
 369                }
 370
 371                spin_unlock_irq(&mapping->tree_lock);
 372                /*
 373                 * Besides huge zero pages the only other thing that gets
 374                 * downgraded are empty entries which don't need to be
 375                 * unmapped.
 376                 */
 377                if (pmd_downgrade && dax_is_zero_entry(entry))
 378                        unmap_mapping_range(mapping,
 379                                (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
 380
 381                err = radix_tree_preload(
 382                                mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
 383                if (err) {
 384                        if (pmd_downgrade)
 385                                put_locked_mapping_entry(mapping, index);
 386                        return ERR_PTR(err);
 387                }
 388                spin_lock_irq(&mapping->tree_lock);
 389
 390                if (!entry) {
 391                        /*
 392                         * We needed to drop the page_tree lock while calling
 393                         * radix_tree_preload() and we didn't have an entry to
 394                         * lock.  See if another thread inserted an entry at
 395                         * our index during this time.
 396                         */
 397                        entry = __radix_tree_lookup(&mapping->page_tree, index,
 398                                        NULL, &slot);
 399                        if (entry) {
 400                                radix_tree_preload_end();
 401                                spin_unlock_irq(&mapping->tree_lock);
 402                                goto restart;
 403                        }
 404                }
 405
 406                if (pmd_downgrade) {
 407                        radix_tree_delete(&mapping->page_tree, index);
 408                        mapping->nrexceptional--;
 409                        dax_wake_mapping_entry_waiter(mapping, index, entry,
 410                                        true);
 411                }
 412
 413                entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
 414
 415                err = __radix_tree_insert(&mapping->page_tree, index,
 416                                dax_radix_order(entry), entry);
 417                radix_tree_preload_end();
 418                if (err) {
 419                        spin_unlock_irq(&mapping->tree_lock);
 420                        /*
 421                         * Our insertion of a DAX entry failed, most likely
 422                         * because we were inserting a PMD entry and it
 423                         * collided with a PTE sized entry at a different
 424                         * index in the PMD range.  We haven't inserted
 425                         * anything into the radix tree and have no waiters to
 426                         * wake.
 427                         */
 428                        return ERR_PTR(err);
 429                }
 430                /* Good, we have inserted empty locked entry into the tree. */
 431                mapping->nrexceptional++;
 432                spin_unlock_irq(&mapping->tree_lock);
 433                return entry;
 434        }
 435        entry = lock_slot(mapping, slot);
 436 out_unlock:
 437        spin_unlock_irq(&mapping->tree_lock);
 438        return entry;
 439}
 440
 441static int __dax_invalidate_mapping_entry(struct address_space *mapping,
 442                                          pgoff_t index, bool trunc)
 443{
 444        int ret = 0;
 445        void *entry;
 446        struct radix_tree_root *page_tree = &mapping->page_tree;
 447
 448        spin_lock_irq(&mapping->tree_lock);
 449        entry = get_unlocked_mapping_entry(mapping, index, NULL);
 450        if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
 451                goto out;
 452        if (!trunc &&
 453            (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
 454             radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
 455                goto out;
 456        radix_tree_delete(page_tree, index);
 457        mapping->nrexceptional--;
 458        ret = 1;
 459out:
 460        put_unlocked_mapping_entry(mapping, index, entry);
 461        spin_unlock_irq(&mapping->tree_lock);
 462        return ret;
 463}
 464/*
 465 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
 466 * entry to get unlocked before deleting it.
 467 */
 468int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 469{
 470        int ret = __dax_invalidate_mapping_entry(mapping, index, true);
 471
 472        /*
 473         * This gets called from truncate / punch_hole path. As such, the caller
 474         * must hold locks protecting against concurrent modifications of the
 475         * radix tree (usually fs-private i_mmap_sem for writing). Since the
 476         * caller has seen exceptional entry for this index, we better find it
 477         * at that index as well...
 478         */
 479        WARN_ON_ONCE(!ret);
 480        return ret;
 481}
 482
 483/*
 484 * Invalidate exceptional DAX entry if it is clean.
 485 */
 486int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 487                                      pgoff_t index)
 488{
 489        return __dax_invalidate_mapping_entry(mapping, index, false);
 490}
 491
 492static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
 493                sector_t sector, size_t size, struct page *to,
 494                unsigned long vaddr)
 495{
 496        void *vto, *kaddr;
 497        pgoff_t pgoff;
 498        pfn_t pfn;
 499        long rc;
 500        int id;
 501
 502        rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
 503        if (rc)
 504                return rc;
 505
 506        id = dax_read_lock();
 507        rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
 508        if (rc < 0) {
 509                dax_read_unlock(id);
 510                return rc;
 511        }
 512        vto = kmap_atomic(to);
 513        copy_user_page(vto, (void __force *)kaddr, vaddr, to);
 514        kunmap_atomic(vto);
 515        dax_read_unlock(id);
 516        return 0;
 517}
 518
 519/*
 520 * By this point grab_mapping_entry() has ensured that we have a locked entry
 521 * of the appropriate size so we don't have to worry about downgrading PMDs to
 522 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 523 * already in the tree, we will skip the insertion and just dirty the PMD as
 524 * appropriate.
 525 */
 526static void *dax_insert_mapping_entry(struct address_space *mapping,
 527                                      struct vm_fault *vmf,
 528                                      void *entry, sector_t sector,
 529                                      unsigned long flags)
 530{
 531        struct radix_tree_root *page_tree = &mapping->page_tree;
 532        void *new_entry;
 533        pgoff_t index = vmf->pgoff;
 534
 535        if (vmf->flags & FAULT_FLAG_WRITE)
 536                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 537
 538        if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
 539                /* we are replacing a zero page with block mapping */
 540                if (dax_is_pmd_entry(entry))
 541                        unmap_mapping_range(mapping,
 542                                        (vmf->pgoff << PAGE_SHIFT) & PMD_MASK,
 543                                        PMD_SIZE, 0);
 544                else /* pte entry */
 545                        unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
 546                                        PAGE_SIZE, 0);
 547        }
 548
 549        spin_lock_irq(&mapping->tree_lock);
 550        new_entry = dax_radix_locked_entry(sector, flags);
 551
 552        if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 553                /*
 554                 * Only swap our new entry into the radix tree if the current
 555                 * entry is a zero page or an empty entry.  If a normal PTE or
 556                 * PMD entry is already in the tree, we leave it alone.  This
 557                 * means that if we are trying to insert a PTE and the
 558                 * existing entry is a PMD, we will just leave the PMD in the
 559                 * tree and dirty it if necessary.
 560                 */
 561                struct radix_tree_node *node;
 562                void **slot;
 563                void *ret;
 564
 565                ret = __radix_tree_lookup(page_tree, index, &node, &slot);
 566                WARN_ON_ONCE(ret != entry);
 567                __radix_tree_replace(page_tree, node, slot,
 568                                     new_entry, NULL, NULL);
 569                entry = new_entry;
 570        }
 571
 572        if (vmf->flags & FAULT_FLAG_WRITE)
 573                radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
 574
 575        spin_unlock_irq(&mapping->tree_lock);
 576        return entry;
 577}
 578
 579static inline unsigned long
 580pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 581{
 582        unsigned long address;
 583
 584        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 585        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 586        return address;
 587}
 588
 589/* Walk all mappings of a given index of a file and writeprotect them */
 590static void dax_mapping_entry_mkclean(struct address_space *mapping,
 591                                      pgoff_t index, unsigned long pfn)
 592{
 593        struct vm_area_struct *vma;
 594        pte_t pte, *ptep = NULL;
 595        pmd_t *pmdp = NULL;
 596        spinlock_t *ptl;
 597
 598        i_mmap_lock_read(mapping);
 599        vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 600                unsigned long address, start, end;
 601
 602                cond_resched();
 603
 604                if (!(vma->vm_flags & VM_SHARED))
 605                        continue;
 606
 607                address = pgoff_address(index, vma);
 608
 609                /*
 610                 * Note because we provide start/end to follow_pte_pmd it will
 611                 * call mmu_notifier_invalidate_range_start() on our behalf
 612                 * before taking any lock.
 613                 */
 614                if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
 615                        continue;
 616
 617                if (pmdp) {
 618#ifdef CONFIG_FS_DAX_PMD
 619                        pmd_t pmd;
 620
 621                        if (pfn != pmd_pfn(*pmdp))
 622                                goto unlock_pmd;
 623                        if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 624                                goto unlock_pmd;
 625
 626                        flush_cache_page(vma, address, pfn);
 627                        pmd = pmdp_huge_clear_flush(vma, address, pmdp);
 628                        pmd = pmd_wrprotect(pmd);
 629                        pmd = pmd_mkclean(pmd);
 630                        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 631                        mmu_notifier_invalidate_range(vma->vm_mm, start, end);
 632unlock_pmd:
 633                        spin_unlock(ptl);
 634#endif
 635                } else {
 636                        if (pfn != pte_pfn(*ptep))
 637                                goto unlock_pte;
 638                        if (!pte_dirty(*ptep) && !pte_write(*ptep))
 639                                goto unlock_pte;
 640
 641                        flush_cache_page(vma, address, pfn);
 642                        pte = ptep_clear_flush(vma, address, ptep);
 643                        pte = pte_wrprotect(pte);
 644                        pte = pte_mkclean(pte);
 645                        set_pte_at(vma->vm_mm, address, ptep, pte);
 646                        mmu_notifier_invalidate_range(vma->vm_mm, start, end);
 647unlock_pte:
 648                        pte_unmap_unlock(ptep, ptl);
 649                }
 650
 651                mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
 652        }
 653        i_mmap_unlock_read(mapping);
 654}
 655
 656static int dax_writeback_one(struct block_device *bdev,
 657                struct dax_device *dax_dev, struct address_space *mapping,
 658                pgoff_t index, void *entry)
 659{
 660        struct radix_tree_root *page_tree = &mapping->page_tree;
 661        void *entry2, **slot, *kaddr;
 662        long ret = 0, id;
 663        sector_t sector;
 664        pgoff_t pgoff;
 665        size_t size;
 666        pfn_t pfn;
 667
 668        /*
 669         * A page got tagged dirty in DAX mapping? Something is seriously
 670         * wrong.
 671         */
 672        if (WARN_ON(!radix_tree_exceptional_entry(entry)))
 673                return -EIO;
 674
 675        spin_lock_irq(&mapping->tree_lock);
 676        entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
 677        /* Entry got punched out / reallocated? */
 678        if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
 679                goto put_unlocked;
 680        /*
 681         * Entry got reallocated elsewhere? No need to writeback. We have to
 682         * compare sectors as we must not bail out due to difference in lockbit
 683         * or entry type.
 684         */
 685        if (dax_radix_sector(entry2) != dax_radix_sector(entry))
 686                goto put_unlocked;
 687        if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 688                                dax_is_zero_entry(entry))) {
 689                ret = -EIO;
 690                goto put_unlocked;
 691        }
 692
 693        /* Another fsync thread may have already written back this entry */
 694        if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
 695                goto put_unlocked;
 696        /* Lock the entry to serialize with page faults */
 697        entry = lock_slot(mapping, slot);
 698        /*
 699         * We can clear the tag now but we have to be careful so that concurrent
 700         * dax_writeback_one() calls for the same index cannot finish before we
 701         * actually flush the caches. This is achieved as the calls will look
 702         * at the entry only under tree_lock and once they do that they will
 703         * see the entry locked and wait for it to unlock.
 704         */
 705        radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
 706        spin_unlock_irq(&mapping->tree_lock);
 707
 708        /*
 709         * Even if dax_writeback_mapping_range() was given a wbc->range_start
 710         * in the middle of a PMD, the 'index' we are given will be aligned to
 711         * the start index of the PMD, as will the sector we pull from
 712         * 'entry'.  This allows us to flush for PMD_SIZE and not have to
 713         * worry about partial PMD writebacks.
 714         */
 715        sector = dax_radix_sector(entry);
 716        size = PAGE_SIZE << dax_radix_order(entry);
 717
 718        id = dax_read_lock();
 719        ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
 720        if (ret)
 721                goto dax_unlock;
 722
 723        /*
 724         * dax_direct_access() may sleep, so cannot hold tree_lock over
 725         * its invocation.
 726         */
 727        ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
 728        if (ret < 0)
 729                goto dax_unlock;
 730
 731        if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
 732                ret = -EIO;
 733                goto dax_unlock;
 734        }
 735
 736        dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
 737        dax_flush(dax_dev, kaddr, size);
 738        /*
 739         * After we have flushed the cache, we can clear the dirty tag. There
 740         * cannot be new dirty data in the pfn after the flush has completed as
 741         * the pfn mappings are writeprotected and fault waits for mapping
 742         * entry lock.
 743         */
 744        spin_lock_irq(&mapping->tree_lock);
 745        radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
 746        spin_unlock_irq(&mapping->tree_lock);
 747        trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
 748 dax_unlock:
 749        dax_read_unlock(id);
 750        put_locked_mapping_entry(mapping, index);
 751        return ret;
 752
 753 put_unlocked:
 754        put_unlocked_mapping_entry(mapping, index, entry2);
 755        spin_unlock_irq(&mapping->tree_lock);
 756        return ret;
 757}
 758
 759/*
 760 * Flush the mapping to the persistent domain within the byte range of [start,
 761 * end]. This is required by data integrity operations to ensure file data is
 762 * on persistent storage prior to completion of the operation.
 763 */
 764int dax_writeback_mapping_range(struct address_space *mapping,
 765                struct block_device *bdev, struct writeback_control *wbc)
 766{
 767        struct inode *inode = mapping->host;
 768        pgoff_t start_index, end_index;
 769        pgoff_t indices[PAGEVEC_SIZE];
 770        struct dax_device *dax_dev;
 771        struct pagevec pvec;
 772        bool done = false;
 773        int i, ret = 0;
 774
 775        if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 776                return -EIO;
 777
 778        if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
 779                return 0;
 780
 781        dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 782        if (!dax_dev)
 783                return -EIO;
 784
 785        start_index = wbc->range_start >> PAGE_SHIFT;
 786        end_index = wbc->range_end >> PAGE_SHIFT;
 787
 788        trace_dax_writeback_range(inode, start_index, end_index);
 789
 790        tag_pages_for_writeback(mapping, start_index, end_index);
 791
 792        pagevec_init(&pvec, 0);
 793        while (!done) {
 794                pvec.nr = find_get_entries_tag(mapping, start_index,
 795                                PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
 796                                pvec.pages, indices);
 797
 798                if (pvec.nr == 0)
 799                        break;
 800
 801                for (i = 0; i < pvec.nr; i++) {
 802                        if (indices[i] > end_index) {
 803                                done = true;
 804                                break;
 805                        }
 806
 807                        ret = dax_writeback_one(bdev, dax_dev, mapping,
 808                                        indices[i], pvec.pages[i]);
 809                        if (ret < 0) {
 810                                mapping_set_error(mapping, ret);
 811                                goto out;
 812                        }
 813                }
 814                start_index = indices[pvec.nr - 1] + 1;
 815        }
 816out:
 817        put_dax(dax_dev);
 818        trace_dax_writeback_range_done(inode, start_index, end_index);
 819        return (ret < 0 ? ret : 0);
 820}
 821EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
 822
 823static int dax_insert_mapping(struct address_space *mapping,
 824                struct block_device *bdev, struct dax_device *dax_dev,
 825                sector_t sector, size_t size, void *entry,
 826                struct vm_area_struct *vma, struct vm_fault *vmf)
 827{
 828        unsigned long vaddr = vmf->address;
 829        void *ret, *kaddr;
 830        pgoff_t pgoff;
 831        int id, rc;
 832        pfn_t pfn;
 833
 834        rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
 835        if (rc)
 836                return rc;
 837
 838        id = dax_read_lock();
 839        rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
 840        if (rc < 0) {
 841                dax_read_unlock(id);
 842                return rc;
 843        }
 844        dax_read_unlock(id);
 845
 846        ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
 847        if (IS_ERR(ret))
 848                return PTR_ERR(ret);
 849
 850        trace_dax_insert_mapping(mapping->host, vmf, ret);
 851        if (vmf->flags & FAULT_FLAG_WRITE)
 852                return vm_insert_mixed_mkwrite(vma, vaddr, pfn);
 853        else
 854                return vm_insert_mixed(vma, vaddr, pfn);
 855}
 856
 857/*
 858 * The user has performed a load from a hole in the file.  Allocating a new
 859 * page in the file would cause excessive storage usage for workloads with
 860 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
 861 * If this page is ever written to we will re-fault and change the mapping to
 862 * point to real DAX storage instead.
 863 */
 864static int dax_load_hole(struct address_space *mapping, void *entry,
 865                         struct vm_fault *vmf)
 866{
 867        struct inode *inode = mapping->host;
 868        unsigned long vaddr = vmf->address;
 869        int ret = VM_FAULT_NOPAGE;
 870        struct page *zero_page;
 871        void *entry2;
 872
 873        zero_page = ZERO_PAGE(0);
 874        if (unlikely(!zero_page)) {
 875                ret = VM_FAULT_OOM;
 876                goto out;
 877        }
 878
 879        entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
 880                        RADIX_DAX_ZERO_PAGE);
 881        if (IS_ERR(entry2)) {
 882                ret = VM_FAULT_SIGBUS;
 883                goto out;
 884        }
 885
 886        vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
 887out:
 888        trace_dax_load_hole(inode, vmf, ret);
 889        return ret;
 890}
 891
 892static bool dax_range_is_aligned(struct block_device *bdev,
 893                                 unsigned int offset, unsigned int length)
 894{
 895        unsigned short sector_size = bdev_logical_block_size(bdev);
 896
 897        if (!IS_ALIGNED(offset, sector_size))
 898                return false;
 899        if (!IS_ALIGNED(length, sector_size))
 900                return false;
 901
 902        return true;
 903}
 904
 905int __dax_zero_page_range(struct block_device *bdev,
 906                struct dax_device *dax_dev, sector_t sector,
 907                unsigned int offset, unsigned int size)
 908{
 909        if (dax_range_is_aligned(bdev, offset, size)) {
 910                sector_t start_sector = sector + (offset >> 9);
 911
 912                return blkdev_issue_zeroout(bdev, start_sector,
 913                                size >> 9, GFP_NOFS, 0);
 914        } else {
 915                pgoff_t pgoff;
 916                long rc, id;
 917                void *kaddr;
 918                pfn_t pfn;
 919
 920                rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
 921                if (rc)
 922                        return rc;
 923
 924                id = dax_read_lock();
 925                rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
 926                                &pfn);
 927                if (rc < 0) {
 928                        dax_read_unlock(id);
 929                        return rc;
 930                }
 931                memset(kaddr + offset, 0, size);
 932                dax_flush(dax_dev, kaddr + offset, size);
 933                dax_read_unlock(id);
 934        }
 935        return 0;
 936}
 937EXPORT_SYMBOL_GPL(__dax_zero_page_range);
 938
 939static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
 940{
 941        return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
 942}
 943
 944static loff_t
 945dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
 946                struct iomap *iomap)
 947{
 948        struct block_device *bdev = iomap->bdev;
 949        struct dax_device *dax_dev = iomap->dax_dev;
 950        struct iov_iter *iter = data;
 951        loff_t end = pos + length, done = 0;
 952        ssize_t ret = 0;
 953        int id;
 954
 955        if (iov_iter_rw(iter) == READ) {
 956                end = min(end, i_size_read(inode));
 957                if (pos >= end)
 958                        return 0;
 959
 960                if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
 961                        return iov_iter_zero(min(length, end - pos), iter);
 962        }
 963
 964        if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
 965                return -EIO;
 966
 967        /*
 968         * Write can allocate block for an area which has a hole page mapped
 969         * into page tables. We have to tear down these mappings so that data
 970         * written by write(2) is visible in mmap.
 971         */
 972        if (iomap->flags & IOMAP_F_NEW) {
 973                invalidate_inode_pages2_range(inode->i_mapping,
 974                                              pos >> PAGE_SHIFT,
 975                                              (end - 1) >> PAGE_SHIFT);
 976        }
 977
 978        id = dax_read_lock();
 979        while (pos < end) {
 980                unsigned offset = pos & (PAGE_SIZE - 1);
 981                const size_t size = ALIGN(length + offset, PAGE_SIZE);
 982                const sector_t sector = dax_iomap_sector(iomap, pos);
 983                ssize_t map_len;
 984                pgoff_t pgoff;
 985                void *kaddr;
 986                pfn_t pfn;
 987
 988                if (fatal_signal_pending(current)) {
 989                        ret = -EINTR;
 990                        break;
 991                }
 992
 993                ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
 994                if (ret)
 995                        break;
 996
 997                map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
 998                                &kaddr, &pfn);
 999                if (map_len < 0) {
1000                        ret = map_len;
1001                        break;
1002                }
1003
1004                map_len = PFN_PHYS(map_len);
1005                kaddr += offset;
1006                map_len -= offset;
1007                if (map_len > end - pos)
1008                        map_len = end - pos;
1009
1010                /*
1011                 * The userspace address for the memory copy has already been
1012                 * validated via access_ok() in either vfs_read() or
1013                 * vfs_write(), depending on which operation we are doing.
1014                 */
1015                if (iov_iter_rw(iter) == WRITE)
1016                        map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1017                                        map_len, iter);
1018                else
1019                        map_len = copy_to_iter(kaddr, map_len, iter);
1020                if (map_len <= 0) {
1021                        ret = map_len ? map_len : -EFAULT;
1022                        break;
1023                }
1024
1025                pos += map_len;
1026                length -= map_len;
1027                done += map_len;
1028        }
1029        dax_read_unlock(id);
1030
1031        return done ? done : ret;
1032}
1033
1034/**
1035 * dax_iomap_rw - Perform I/O to a DAX file
1036 * @iocb:       The control block for this I/O
1037 * @iter:       The addresses to do I/O from or to
1038 * @ops:        iomap ops passed from the file system
1039 *
1040 * This function performs read and write operations to directly mapped
1041 * persistent memory.  The callers needs to take care of read/write exclusion
1042 * and evicting any page cache pages in the region under I/O.
1043 */
1044ssize_t
1045dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1046                const struct iomap_ops *ops)
1047{
1048        struct address_space *mapping = iocb->ki_filp->f_mapping;
1049        struct inode *inode = mapping->host;
1050        loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1051        unsigned flags = 0;
1052
1053        if (iov_iter_rw(iter) == WRITE) {
1054                lockdep_assert_held_exclusive(&inode->i_rwsem);
1055                flags |= IOMAP_WRITE;
1056        } else {
1057                lockdep_assert_held(&inode->i_rwsem);
1058        }
1059
1060        while (iov_iter_count(iter)) {
1061                ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1062                                iter, dax_iomap_actor);
1063                if (ret <= 0)
1064                        break;
1065                pos += ret;
1066                done += ret;
1067        }
1068
1069        iocb->ki_pos += done;
1070        return done ? done : ret;
1071}
1072EXPORT_SYMBOL_GPL(dax_iomap_rw);
1073
1074static int dax_fault_return(int error)
1075{
1076        if (error == 0)
1077                return VM_FAULT_NOPAGE;
1078        if (error == -ENOMEM)
1079                return VM_FAULT_OOM;
1080        return VM_FAULT_SIGBUS;
1081}
1082
1083static int dax_iomap_pte_fault(struct vm_fault *vmf,
1084                               const struct iomap_ops *ops)
1085{
1086        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1087        struct inode *inode = mapping->host;
1088        unsigned long vaddr = vmf->address;
1089        loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1090        sector_t sector;
1091        struct iomap iomap = { 0 };
1092        unsigned flags = IOMAP_FAULT;
1093        int error, major = 0;
1094        int vmf_ret = 0;
1095        void *entry;
1096
1097        trace_dax_pte_fault(inode, vmf, vmf_ret);
1098        /*
1099         * Check whether offset isn't beyond end of file now. Caller is supposed
1100         * to hold locks serializing us with truncate / punch hole so this is
1101         * a reliable test.
1102         */
1103        if (pos >= i_size_read(inode)) {
1104                vmf_ret = VM_FAULT_SIGBUS;
1105                goto out;
1106        }
1107
1108        if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1109                flags |= IOMAP_WRITE;
1110
1111        entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1112        if (IS_ERR(entry)) {
1113                vmf_ret = dax_fault_return(PTR_ERR(entry));
1114                goto out;
1115        }
1116
1117        /*
1118         * It is possible, particularly with mixed reads & writes to private
1119         * mappings, that we have raced with a PMD fault that overlaps with
1120         * the PTE we need to set up.  If so just return and the fault will be
1121         * retried.
1122         */
1123        if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1124                vmf_ret = VM_FAULT_NOPAGE;
1125                goto unlock_entry;
1126        }
1127
1128        /*
1129         * Note that we don't bother to use iomap_apply here: DAX required
1130         * the file system block size to be equal the page size, which means
1131         * that we never have to deal with more than a single extent here.
1132         */
1133        error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1134        if (error) {
1135                vmf_ret = dax_fault_return(error);
1136                goto unlock_entry;
1137        }
1138        if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1139                error = -EIO;   /* fs corruption? */
1140                goto error_finish_iomap;
1141        }
1142
1143        sector = dax_iomap_sector(&iomap, pos);
1144
1145        if (vmf->cow_page) {
1146                switch (iomap.type) {
1147                case IOMAP_HOLE:
1148                case IOMAP_UNWRITTEN:
1149                        clear_user_highpage(vmf->cow_page, vaddr);
1150                        break;
1151                case IOMAP_MAPPED:
1152                        error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1153                                        sector, PAGE_SIZE, vmf->cow_page, vaddr);
1154                        break;
1155                default:
1156                        WARN_ON_ONCE(1);
1157                        error = -EIO;
1158                        break;
1159                }
1160
1161                if (error)
1162                        goto error_finish_iomap;
1163
1164                __SetPageUptodate(vmf->cow_page);
1165                vmf_ret = finish_fault(vmf);
1166                if (!vmf_ret)
1167                        vmf_ret = VM_FAULT_DONE_COW;
1168                goto finish_iomap;
1169        }
1170
1171        switch (iomap.type) {
1172        case IOMAP_MAPPED:
1173                if (iomap.flags & IOMAP_F_NEW) {
1174                        count_vm_event(PGMAJFAULT);
1175                        count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1176                        major = VM_FAULT_MAJOR;
1177                }
1178                error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1179                                sector, PAGE_SIZE, entry, vmf->vma, vmf);
1180                /* -EBUSY is fine, somebody else faulted on the same PTE */
1181                if (error == -EBUSY)
1182                        error = 0;
1183                break;
1184        case IOMAP_UNWRITTEN:
1185        case IOMAP_HOLE:
1186                if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1187                        vmf_ret = dax_load_hole(mapping, entry, vmf);
1188                        goto finish_iomap;
1189                }
1190                /*FALLTHRU*/
1191        default:
1192                WARN_ON_ONCE(1);
1193                error = -EIO;
1194                break;
1195        }
1196
1197 error_finish_iomap:
1198        vmf_ret = dax_fault_return(error) | major;
1199 finish_iomap:
1200        if (ops->iomap_end) {
1201                int copied = PAGE_SIZE;
1202
1203                if (vmf_ret & VM_FAULT_ERROR)
1204                        copied = 0;
1205                /*
1206                 * The fault is done by now and there's no way back (other
1207                 * thread may be already happily using PTE we have installed).
1208                 * Just ignore error from ->iomap_end since we cannot do much
1209                 * with it.
1210                 */
1211                ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1212        }
1213 unlock_entry:
1214        put_locked_mapping_entry(mapping, vmf->pgoff);
1215 out:
1216        trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1217        return vmf_ret;
1218}
1219
1220#ifdef CONFIG_FS_DAX_PMD
1221static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1222                loff_t pos, void *entry)
1223{
1224        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1225        const sector_t sector = dax_iomap_sector(iomap, pos);
1226        struct dax_device *dax_dev = iomap->dax_dev;
1227        struct block_device *bdev = iomap->bdev;
1228        struct inode *inode = mapping->host;
1229        const size_t size = PMD_SIZE;
1230        void *ret = NULL, *kaddr;
1231        long length = 0;
1232        pgoff_t pgoff;
1233        pfn_t pfn = {};
1234        int id;
1235
1236        if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1237                goto fallback;
1238
1239        id = dax_read_lock();
1240        length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1241        if (length < 0)
1242                goto unlock_fallback;
1243        length = PFN_PHYS(length);
1244
1245        if (length < size)
1246                goto unlock_fallback;
1247        if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1248                goto unlock_fallback;
1249        if (!pfn_t_devmap(pfn))
1250                goto unlock_fallback;
1251        dax_read_unlock(id);
1252
1253        ret = dax_insert_mapping_entry(mapping, vmf, entry, sector,
1254                        RADIX_DAX_PMD);
1255        if (IS_ERR(ret))
1256                goto fallback;
1257
1258        trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1259        return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1260                        pfn, vmf->flags & FAULT_FLAG_WRITE);
1261
1262unlock_fallback:
1263        dax_read_unlock(id);
1264fallback:
1265        trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1266        return VM_FAULT_FALLBACK;
1267}
1268
1269static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1270                void *entry)
1271{
1272        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1273        unsigned long pmd_addr = vmf->address & PMD_MASK;
1274        struct inode *inode = mapping->host;
1275        struct page *zero_page;
1276        void *ret = NULL;
1277        spinlock_t *ptl;
1278        pmd_t pmd_entry;
1279
1280        zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1281
1282        if (unlikely(!zero_page))
1283                goto fallback;
1284
1285        ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
1286                        RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE);
1287        if (IS_ERR(ret))
1288                goto fallback;
1289
1290        ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1291        if (!pmd_none(*(vmf->pmd))) {
1292                spin_unlock(ptl);
1293                goto fallback;
1294        }
1295
1296        pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1297        pmd_entry = pmd_mkhuge(pmd_entry);
1298        set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1299        spin_unlock(ptl);
1300        trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1301        return VM_FAULT_NOPAGE;
1302
1303fallback:
1304        trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1305        return VM_FAULT_FALLBACK;
1306}
1307
1308static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1309                               const struct iomap_ops *ops)
1310{
1311        struct vm_area_struct *vma = vmf->vma;
1312        struct address_space *mapping = vma->vm_file->f_mapping;
1313        unsigned long pmd_addr = vmf->address & PMD_MASK;
1314        bool write = vmf->flags & FAULT_FLAG_WRITE;
1315        unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1316        struct inode *inode = mapping->host;
1317        int result = VM_FAULT_FALLBACK;
1318        struct iomap iomap = { 0 };
1319        pgoff_t max_pgoff, pgoff;
1320        void *entry;
1321        loff_t pos;
1322        int error;
1323
1324        /*
1325         * Check whether offset isn't beyond end of file now. Caller is
1326         * supposed to hold locks serializing us with truncate / punch hole so
1327         * this is a reliable test.
1328         */
1329        pgoff = linear_page_index(vma, pmd_addr);
1330        max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1331
1332        trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1333
1334        /*
1335         * Make sure that the faulting address's PMD offset (color) matches
1336         * the PMD offset from the start of the file.  This is necessary so
1337         * that a PMD range in the page table overlaps exactly with a PMD
1338         * range in the radix tree.
1339         */
1340        if ((vmf->pgoff & PG_PMD_COLOUR) !=
1341            ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1342                goto fallback;
1343
1344        /* Fall back to PTEs if we're going to COW */
1345        if (write && !(vma->vm_flags & VM_SHARED))
1346                goto fallback;
1347
1348        /* If the PMD would extend outside the VMA */
1349        if (pmd_addr < vma->vm_start)
1350                goto fallback;
1351        if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1352                goto fallback;
1353
1354        if (pgoff > max_pgoff) {
1355                result = VM_FAULT_SIGBUS;
1356                goto out;
1357        }
1358
1359        /* If the PMD would extend beyond the file size */
1360        if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1361                goto fallback;
1362
1363        /*
1364         * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1365         * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1366         * is already in the tree, for instance), it will return -EEXIST and
1367         * we just fall back to 4k entries.
1368         */
1369        entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1370        if (IS_ERR(entry))
1371                goto fallback;
1372
1373        /*
1374         * It is possible, particularly with mixed reads & writes to private
1375         * mappings, that we have raced with a PTE fault that overlaps with
1376         * the PMD we need to set up.  If so just return and the fault will be
1377         * retried.
1378         */
1379        if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1380                        !pmd_devmap(*vmf->pmd)) {
1381                result = 0;
1382                goto unlock_entry;
1383        }
1384
1385        /*
1386         * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1387         * setting up a mapping, so really we're using iomap_begin() as a way
1388         * to look up our filesystem block.
1389         */
1390        pos = (loff_t)pgoff << PAGE_SHIFT;
1391        error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1392        if (error)
1393                goto unlock_entry;
1394
1395        if (iomap.offset + iomap.length < pos + PMD_SIZE)
1396                goto finish_iomap;
1397
1398        switch (iomap.type) {
1399        case IOMAP_MAPPED:
1400                result = dax_pmd_insert_mapping(vmf, &iomap, pos, entry);
1401                break;
1402        case IOMAP_UNWRITTEN:
1403        case IOMAP_HOLE:
1404                if (WARN_ON_ONCE(write))
1405                        break;
1406                result = dax_pmd_load_hole(vmf, &iomap, entry);
1407                break;
1408        default:
1409                WARN_ON_ONCE(1);
1410                break;
1411        }
1412
1413 finish_iomap:
1414        if (ops->iomap_end) {
1415                int copied = PMD_SIZE;
1416
1417                if (result == VM_FAULT_FALLBACK)
1418                        copied = 0;
1419                /*
1420                 * The fault is done by now and there's no way back (other
1421                 * thread may be already happily using PMD we have installed).
1422                 * Just ignore error from ->iomap_end since we cannot do much
1423                 * with it.
1424                 */
1425                ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1426                                &iomap);
1427        }
1428 unlock_entry:
1429        put_locked_mapping_entry(mapping, pgoff);
1430 fallback:
1431        if (result == VM_FAULT_FALLBACK) {
1432                split_huge_pmd(vma, vmf->pmd, vmf->address);
1433                count_vm_event(THP_FAULT_FALLBACK);
1434        }
1435out:
1436        trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1437        return result;
1438}
1439#else
1440static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1441                               const struct iomap_ops *ops)
1442{
1443        return VM_FAULT_FALLBACK;
1444}
1445#endif /* CONFIG_FS_DAX_PMD */
1446
1447/**
1448 * dax_iomap_fault - handle a page fault on a DAX file
1449 * @vmf: The description of the fault
1450 * @ops: iomap ops passed from the file system
1451 *
1452 * When a page fault occurs, filesystems may call this helper in
1453 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1454 * has done all the necessary locking for page fault to proceed
1455 * successfully.
1456 */
1457int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1458                    const struct iomap_ops *ops)
1459{
1460        switch (pe_size) {
1461        case PE_SIZE_PTE:
1462                return dax_iomap_pte_fault(vmf, ops);
1463        case PE_SIZE_PMD:
1464                return dax_iomap_pmd_fault(vmf, ops);
1465        default:
1466                return VM_FAULT_FALLBACK;
1467        }
1468}
1469EXPORT_SYMBOL_GPL(dax_iomap_fault);
1470