linux/fs/fs-writeback.c
<<
>>
Prefs
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002    Andrew Morton
  12 *              Split out of fs/inode.c
  13 *              Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
  37
  38struct wb_completion {
  39        atomic_t                cnt;
  40};
  41
  42/*
  43 * Passed into wb_writeback(), essentially a subset of writeback_control
  44 */
  45struct wb_writeback_work {
  46        long nr_pages;
  47        struct super_block *sb;
  48        unsigned long *older_than_this;
  49        enum writeback_sync_modes sync_mode;
  50        unsigned int tagged_writepages:1;
  51        unsigned int for_kupdate:1;
  52        unsigned int range_cyclic:1;
  53        unsigned int for_background:1;
  54        unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
  55        unsigned int auto_free:1;       /* free on completion */
  56        enum wb_reason reason;          /* why was writeback initiated? */
  57
  58        struct list_head list;          /* pending work list */
  59        struct wb_completion *done;     /* set if the caller waits */
  60};
  61
  62/*
  63 * If one wants to wait for one or more wb_writeback_works, each work's
  64 * ->done should be set to a wb_completion defined using the following
  65 * macro.  Once all work items are issued with wb_queue_work(), the caller
  66 * can wait for the completion of all using wb_wait_for_completion().  Work
  67 * items which are waited upon aren't freed automatically on completion.
  68 */
  69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
  70        struct wb_completion cmpl = {                                   \
  71                .cnt            = ATOMIC_INIT(1),                       \
  72        }
  73
  74
  75/*
  76 * If an inode is constantly having its pages dirtied, but then the
  77 * updates stop dirtytime_expire_interval seconds in the past, it's
  78 * possible for the worst case time between when an inode has its
  79 * timestamps updated and when they finally get written out to be two
  80 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  81 * seconds), which means most of the time inodes will have their
  82 * timestamps written to disk after 12 hours, but in the worst case a
  83 * few inodes might not their timestamps updated for 24 hours.
  84 */
  85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  86
  87static inline struct inode *wb_inode(struct list_head *head)
  88{
  89        return list_entry(head, struct inode, i_io_list);
  90}
  91
  92/*
  93 * Include the creation of the trace points after defining the
  94 * wb_writeback_work structure and inline functions so that the definition
  95 * remains local to this file.
  96 */
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/writeback.h>
  99
 100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
 101
 102static bool wb_io_lists_populated(struct bdi_writeback *wb)
 103{
 104        if (wb_has_dirty_io(wb)) {
 105                return false;
 106        } else {
 107                set_bit(WB_has_dirty_io, &wb->state);
 108                WARN_ON_ONCE(!wb->avg_write_bandwidth);
 109                atomic_long_add(wb->avg_write_bandwidth,
 110                                &wb->bdi->tot_write_bandwidth);
 111                return true;
 112        }
 113}
 114
 115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 116{
 117        if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 118            list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 119                clear_bit(WB_has_dirty_io, &wb->state);
 120                WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 121                                        &wb->bdi->tot_write_bandwidth) < 0);
 122        }
 123}
 124
 125/**
 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 127 * @inode: inode to be moved
 128 * @wb: target bdi_writeback
 129 * @head: one of @wb->b_{dirty|io|more_io}
 130 *
 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 132 * Returns %true if @inode is the first occupant of the !dirty_time IO
 133 * lists; otherwise, %false.
 134 */
 135static bool inode_io_list_move_locked(struct inode *inode,
 136                                      struct bdi_writeback *wb,
 137                                      struct list_head *head)
 138{
 139        assert_spin_locked(&wb->list_lock);
 140
 141        list_move(&inode->i_io_list, head);
 142
 143        /* dirty_time doesn't count as dirty_io until expiration */
 144        if (head != &wb->b_dirty_time)
 145                return wb_io_lists_populated(wb);
 146
 147        wb_io_lists_depopulated(wb);
 148        return false;
 149}
 150
 151/**
 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 153 * @inode: inode to be removed
 154 * @wb: bdi_writeback @inode is being removed from
 155 *
 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 157 * clear %WB_has_dirty_io if all are empty afterwards.
 158 */
 159static void inode_io_list_del_locked(struct inode *inode,
 160                                     struct bdi_writeback *wb)
 161{
 162        assert_spin_locked(&wb->list_lock);
 163
 164        list_del_init(&inode->i_io_list);
 165        wb_io_lists_depopulated(wb);
 166}
 167
 168static void wb_wakeup(struct bdi_writeback *wb)
 169{
 170        spin_lock_bh(&wb->work_lock);
 171        if (test_bit(WB_registered, &wb->state))
 172                mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173        spin_unlock_bh(&wb->work_lock);
 174}
 175
 176static void finish_writeback_work(struct bdi_writeback *wb,
 177                                  struct wb_writeback_work *work)
 178{
 179        struct wb_completion *done = work->done;
 180
 181        if (work->auto_free)
 182                kfree(work);
 183        if (done && atomic_dec_and_test(&done->cnt))
 184                wake_up_all(&wb->bdi->wb_waitq);
 185}
 186
 187static void wb_queue_work(struct bdi_writeback *wb,
 188                          struct wb_writeback_work *work)
 189{
 190        trace_writeback_queue(wb, work);
 191
 192        if (work->done)
 193                atomic_inc(&work->done->cnt);
 194
 195        spin_lock_bh(&wb->work_lock);
 196
 197        if (test_bit(WB_registered, &wb->state)) {
 198                list_add_tail(&work->list, &wb->work_list);
 199                mod_delayed_work(bdi_wq, &wb->dwork, 0);
 200        } else
 201                finish_writeback_work(wb, work);
 202
 203        spin_unlock_bh(&wb->work_lock);
 204}
 205
 206/**
 207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 208 * @bdi: bdi work items were issued to
 209 * @done: target wb_completion
 210 *
 211 * Wait for one or more work items issued to @bdi with their ->done field
 212 * set to @done, which should have been defined with
 213 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 214 * work items are completed.  Work items which are waited upon aren't freed
 215 * automatically on completion.
 216 */
 217static void wb_wait_for_completion(struct backing_dev_info *bdi,
 218                                   struct wb_completion *done)
 219{
 220        atomic_dec(&done->cnt);         /* put down the initial count */
 221        wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
 222}
 223
 224#ifdef CONFIG_CGROUP_WRITEBACK
 225
 226/* parameters for foreign inode detection, see wb_detach_inode() */
 227#define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
 228#define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
 229#define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
 230#define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
 231
 232#define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
 233#define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 234                                        /* each slot's duration is 2s / 16 */
 235#define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
 236                                        /* if foreign slots >= 8, switch */
 237#define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
 238                                        /* one round can affect upto 5 slots */
 239
 240static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 241static struct workqueue_struct *isw_wq;
 242
 243void __inode_attach_wb(struct inode *inode, struct page *page)
 244{
 245        struct backing_dev_info *bdi = inode_to_bdi(inode);
 246        struct bdi_writeback *wb = NULL;
 247
 248        if (inode_cgwb_enabled(inode)) {
 249                struct cgroup_subsys_state *memcg_css;
 250
 251                if (page) {
 252                        memcg_css = mem_cgroup_css_from_page(page);
 253                        wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 254                } else {
 255                        /* must pin memcg_css, see wb_get_create() */
 256                        memcg_css = task_get_css(current, memory_cgrp_id);
 257                        wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 258                        css_put(memcg_css);
 259                }
 260        }
 261
 262        if (!wb)
 263                wb = &bdi->wb;
 264
 265        /*
 266         * There may be multiple instances of this function racing to
 267         * update the same inode.  Use cmpxchg() to tell the winner.
 268         */
 269        if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 270                wb_put(wb);
 271}
 272
 273/**
 274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 275 * @inode: inode of interest with i_lock held
 276 *
 277 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 278 * held on entry and is released on return.  The returned wb is guaranteed
 279 * to stay @inode's associated wb until its list_lock is released.
 280 */
 281static struct bdi_writeback *
 282locked_inode_to_wb_and_lock_list(struct inode *inode)
 283        __releases(&inode->i_lock)
 284        __acquires(&wb->list_lock)
 285{
 286        while (true) {
 287                struct bdi_writeback *wb = inode_to_wb(inode);
 288
 289                /*
 290                 * inode_to_wb() association is protected by both
 291                 * @inode->i_lock and @wb->list_lock but list_lock nests
 292                 * outside i_lock.  Drop i_lock and verify that the
 293                 * association hasn't changed after acquiring list_lock.
 294                 */
 295                wb_get(wb);
 296                spin_unlock(&inode->i_lock);
 297                spin_lock(&wb->list_lock);
 298
 299                /* i_wb may have changed inbetween, can't use inode_to_wb() */
 300                if (likely(wb == inode->i_wb)) {
 301                        wb_put(wb);     /* @inode already has ref */
 302                        return wb;
 303                }
 304
 305                spin_unlock(&wb->list_lock);
 306                wb_put(wb);
 307                cpu_relax();
 308                spin_lock(&inode->i_lock);
 309        }
 310}
 311
 312/**
 313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 314 * @inode: inode of interest
 315 *
 316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 317 * on entry.
 318 */
 319static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 320        __acquires(&wb->list_lock)
 321{
 322        spin_lock(&inode->i_lock);
 323        return locked_inode_to_wb_and_lock_list(inode);
 324}
 325
 326struct inode_switch_wbs_context {
 327        struct inode            *inode;
 328        struct bdi_writeback    *new_wb;
 329
 330        struct rcu_head         rcu_head;
 331        struct work_struct      work;
 332};
 333
 334static void inode_switch_wbs_work_fn(struct work_struct *work)
 335{
 336        struct inode_switch_wbs_context *isw =
 337                container_of(work, struct inode_switch_wbs_context, work);
 338        struct inode *inode = isw->inode;
 339        struct address_space *mapping = inode->i_mapping;
 340        struct bdi_writeback *old_wb = inode->i_wb;
 341        struct bdi_writeback *new_wb = isw->new_wb;
 342        struct radix_tree_iter iter;
 343        bool switched = false;
 344        void **slot;
 345
 346        /*
 347         * By the time control reaches here, RCU grace period has passed
 348         * since I_WB_SWITCH assertion and all wb stat update transactions
 349         * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 350         * synchronizing against mapping->tree_lock.
 351         *
 352         * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
 353         * gives us exclusion against all wb related operations on @inode
 354         * including IO list manipulations and stat updates.
 355         */
 356        if (old_wb < new_wb) {
 357                spin_lock(&old_wb->list_lock);
 358                spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 359        } else {
 360                spin_lock(&new_wb->list_lock);
 361                spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 362        }
 363        spin_lock(&inode->i_lock);
 364        spin_lock_irq(&mapping->tree_lock);
 365
 366        /*
 367         * Once I_FREEING is visible under i_lock, the eviction path owns
 368         * the inode and we shouldn't modify ->i_io_list.
 369         */
 370        if (unlikely(inode->i_state & I_FREEING))
 371                goto skip_switch;
 372
 373        /*
 374         * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 375         * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 376         * pages actually under underwriteback.
 377         */
 378        radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 379                                   PAGECACHE_TAG_DIRTY) {
 380                struct page *page = radix_tree_deref_slot_protected(slot,
 381                                                        &mapping->tree_lock);
 382                if (likely(page) && PageDirty(page)) {
 383                        dec_wb_stat(old_wb, WB_RECLAIMABLE);
 384                        inc_wb_stat(new_wb, WB_RECLAIMABLE);
 385                }
 386        }
 387
 388        radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 389                                   PAGECACHE_TAG_WRITEBACK) {
 390                struct page *page = radix_tree_deref_slot_protected(slot,
 391                                                        &mapping->tree_lock);
 392                if (likely(page)) {
 393                        WARN_ON_ONCE(!PageWriteback(page));
 394                        dec_wb_stat(old_wb, WB_WRITEBACK);
 395                        inc_wb_stat(new_wb, WB_WRITEBACK);
 396                }
 397        }
 398
 399        wb_get(new_wb);
 400
 401        /*
 402         * Transfer to @new_wb's IO list if necessary.  The specific list
 403         * @inode was on is ignored and the inode is put on ->b_dirty which
 404         * is always correct including from ->b_dirty_time.  The transfer
 405         * preserves @inode->dirtied_when ordering.
 406         */
 407        if (!list_empty(&inode->i_io_list)) {
 408                struct inode *pos;
 409
 410                inode_io_list_del_locked(inode, old_wb);
 411                inode->i_wb = new_wb;
 412                list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 413                        if (time_after_eq(inode->dirtied_when,
 414                                          pos->dirtied_when))
 415                                break;
 416                inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 417        } else {
 418                inode->i_wb = new_wb;
 419        }
 420
 421        /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 422        inode->i_wb_frn_winner = 0;
 423        inode->i_wb_frn_avg_time = 0;
 424        inode->i_wb_frn_history = 0;
 425        switched = true;
 426skip_switch:
 427        /*
 428         * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 429         * ensures that the new wb is visible if they see !I_WB_SWITCH.
 430         */
 431        smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 432
 433        spin_unlock_irq(&mapping->tree_lock);
 434        spin_unlock(&inode->i_lock);
 435        spin_unlock(&new_wb->list_lock);
 436        spin_unlock(&old_wb->list_lock);
 437
 438        if (switched) {
 439                wb_wakeup(new_wb);
 440                wb_put(old_wb);
 441        }
 442        wb_put(new_wb);
 443
 444        iput(inode);
 445        kfree(isw);
 446
 447        atomic_dec(&isw_nr_in_flight);
 448}
 449
 450static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 451{
 452        struct inode_switch_wbs_context *isw = container_of(rcu_head,
 453                                struct inode_switch_wbs_context, rcu_head);
 454
 455        /* needs to grab bh-unsafe locks, bounce to work item */
 456        INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 457        queue_work(isw_wq, &isw->work);
 458}
 459
 460/**
 461 * inode_switch_wbs - change the wb association of an inode
 462 * @inode: target inode
 463 * @new_wb_id: ID of the new wb
 464 *
 465 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 466 * switching is performed asynchronously and may fail silently.
 467 */
 468static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 469{
 470        struct backing_dev_info *bdi = inode_to_bdi(inode);
 471        struct cgroup_subsys_state *memcg_css;
 472        struct inode_switch_wbs_context *isw;
 473
 474        /* noop if seems to be already in progress */
 475        if (inode->i_state & I_WB_SWITCH)
 476                return;
 477
 478        isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 479        if (!isw)
 480                return;
 481
 482        /* find and pin the new wb */
 483        rcu_read_lock();
 484        memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 485        if (memcg_css)
 486                isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 487        rcu_read_unlock();
 488        if (!isw->new_wb)
 489                goto out_free;
 490
 491        /* while holding I_WB_SWITCH, no one else can update the association */
 492        spin_lock(&inode->i_lock);
 493        if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
 494            inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 495            inode_to_wb(inode) == isw->new_wb) {
 496                spin_unlock(&inode->i_lock);
 497                goto out_free;
 498        }
 499        inode->i_state |= I_WB_SWITCH;
 500        __iget(inode);
 501        spin_unlock(&inode->i_lock);
 502
 503        isw->inode = inode;
 504
 505        atomic_inc(&isw_nr_in_flight);
 506
 507        /*
 508         * In addition to synchronizing among switchers, I_WB_SWITCH tells
 509         * the RCU protected stat update paths to grab the mapping's
 510         * tree_lock so that stat transfer can synchronize against them.
 511         * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 512         */
 513        call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 514        return;
 515
 516out_free:
 517        if (isw->new_wb)
 518                wb_put(isw->new_wb);
 519        kfree(isw);
 520}
 521
 522/**
 523 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 524 * @wbc: writeback_control of interest
 525 * @inode: target inode
 526 *
 527 * @inode is locked and about to be written back under the control of @wbc.
 528 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 529 * writeback completion, wbc_detach_inode() should be called.  This is used
 530 * to track the cgroup writeback context.
 531 */
 532void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 533                                 struct inode *inode)
 534{
 535        if (!inode_cgwb_enabled(inode)) {
 536                spin_unlock(&inode->i_lock);
 537                return;
 538        }
 539
 540        wbc->wb = inode_to_wb(inode);
 541        wbc->inode = inode;
 542
 543        wbc->wb_id = wbc->wb->memcg_css->id;
 544        wbc->wb_lcand_id = inode->i_wb_frn_winner;
 545        wbc->wb_tcand_id = 0;
 546        wbc->wb_bytes = 0;
 547        wbc->wb_lcand_bytes = 0;
 548        wbc->wb_tcand_bytes = 0;
 549
 550        wb_get(wbc->wb);
 551        spin_unlock(&inode->i_lock);
 552
 553        /*
 554         * A dying wb indicates that the memcg-blkcg mapping has changed
 555         * and a new wb is already serving the memcg.  Switch immediately.
 556         */
 557        if (unlikely(wb_dying(wbc->wb)))
 558                inode_switch_wbs(inode, wbc->wb_id);
 559}
 560
 561/**
 562 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 563 * @wbc: writeback_control of the just finished writeback
 564 *
 565 * To be called after a writeback attempt of an inode finishes and undoes
 566 * wbc_attach_and_unlock_inode().  Can be called under any context.
 567 *
 568 * As concurrent write sharing of an inode is expected to be very rare and
 569 * memcg only tracks page ownership on first-use basis severely confining
 570 * the usefulness of such sharing, cgroup writeback tracks ownership
 571 * per-inode.  While the support for concurrent write sharing of an inode
 572 * is deemed unnecessary, an inode being written to by different cgroups at
 573 * different points in time is a lot more common, and, more importantly,
 574 * charging only by first-use can too readily lead to grossly incorrect
 575 * behaviors (single foreign page can lead to gigabytes of writeback to be
 576 * incorrectly attributed).
 577 *
 578 * To resolve this issue, cgroup writeback detects the majority dirtier of
 579 * an inode and transfers the ownership to it.  To avoid unnnecessary
 580 * oscillation, the detection mechanism keeps track of history and gives
 581 * out the switch verdict only if the foreign usage pattern is stable over
 582 * a certain amount of time and/or writeback attempts.
 583 *
 584 * On each writeback attempt, @wbc tries to detect the majority writer
 585 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 586 * count from the majority voting, it also counts the bytes written for the
 587 * current wb and the last round's winner wb (max of last round's current
 588 * wb, the winner from two rounds ago, and the last round's majority
 589 * candidate).  Keeping track of the historical winner helps the algorithm
 590 * to semi-reliably detect the most active writer even when it's not the
 591 * absolute majority.
 592 *
 593 * Once the winner of the round is determined, whether the winner is
 594 * foreign or not and how much IO time the round consumed is recorded in
 595 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 596 * over a certain threshold, the switch verdict is given.
 597 */
 598void wbc_detach_inode(struct writeback_control *wbc)
 599{
 600        struct bdi_writeback *wb = wbc->wb;
 601        struct inode *inode = wbc->inode;
 602        unsigned long avg_time, max_bytes, max_time;
 603        u16 history;
 604        int max_id;
 605
 606        if (!wb)
 607                return;
 608
 609        history = inode->i_wb_frn_history;
 610        avg_time = inode->i_wb_frn_avg_time;
 611
 612        /* pick the winner of this round */
 613        if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 614            wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 615                max_id = wbc->wb_id;
 616                max_bytes = wbc->wb_bytes;
 617        } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 618                max_id = wbc->wb_lcand_id;
 619                max_bytes = wbc->wb_lcand_bytes;
 620        } else {
 621                max_id = wbc->wb_tcand_id;
 622                max_bytes = wbc->wb_tcand_bytes;
 623        }
 624
 625        /*
 626         * Calculate the amount of IO time the winner consumed and fold it
 627         * into the running average kept per inode.  If the consumed IO
 628         * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 629         * deciding whether to switch or not.  This is to prevent one-off
 630         * small dirtiers from skewing the verdict.
 631         */
 632        max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 633                                wb->avg_write_bandwidth);
 634        if (avg_time)
 635                avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 636                            (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 637        else
 638                avg_time = max_time;    /* immediate catch up on first run */
 639
 640        if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 641                int slots;
 642
 643                /*
 644                 * The switch verdict is reached if foreign wb's consume
 645                 * more than a certain proportion of IO time in a
 646                 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 647                 * history mask where each bit represents one sixteenth of
 648                 * the period.  Determine the number of slots to shift into
 649                 * history from @max_time.
 650                 */
 651                slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 652                            (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 653                history <<= slots;
 654                if (wbc->wb_id != max_id)
 655                        history |= (1U << slots) - 1;
 656
 657                /*
 658                 * Switch if the current wb isn't the consistent winner.
 659                 * If there are multiple closely competing dirtiers, the
 660                 * inode may switch across them repeatedly over time, which
 661                 * is okay.  The main goal is avoiding keeping an inode on
 662                 * the wrong wb for an extended period of time.
 663                 */
 664                if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 665                        inode_switch_wbs(inode, max_id);
 666        }
 667
 668        /*
 669         * Multiple instances of this function may race to update the
 670         * following fields but we don't mind occassional inaccuracies.
 671         */
 672        inode->i_wb_frn_winner = max_id;
 673        inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 674        inode->i_wb_frn_history = history;
 675
 676        wb_put(wbc->wb);
 677        wbc->wb = NULL;
 678}
 679
 680/**
 681 * wbc_account_io - account IO issued during writeback
 682 * @wbc: writeback_control of the writeback in progress
 683 * @page: page being written out
 684 * @bytes: number of bytes being written out
 685 *
 686 * @bytes from @page are about to written out during the writeback
 687 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 688 * wbc_detach_inode().
 689 */
 690void wbc_account_io(struct writeback_control *wbc, struct page *page,
 691                    size_t bytes)
 692{
 693        int id;
 694
 695        /*
 696         * pageout() path doesn't attach @wbc to the inode being written
 697         * out.  This is intentional as we don't want the function to block
 698         * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 699         * regular writeback instead of writing things out itself.
 700         */
 701        if (!wbc->wb)
 702                return;
 703
 704        id = mem_cgroup_css_from_page(page)->id;
 705
 706        if (id == wbc->wb_id) {
 707                wbc->wb_bytes += bytes;
 708                return;
 709        }
 710
 711        if (id == wbc->wb_lcand_id)
 712                wbc->wb_lcand_bytes += bytes;
 713
 714        /* Boyer-Moore majority vote algorithm */
 715        if (!wbc->wb_tcand_bytes)
 716                wbc->wb_tcand_id = id;
 717        if (id == wbc->wb_tcand_id)
 718                wbc->wb_tcand_bytes += bytes;
 719        else
 720                wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 721}
 722EXPORT_SYMBOL_GPL(wbc_account_io);
 723
 724/**
 725 * inode_congested - test whether an inode is congested
 726 * @inode: inode to test for congestion (may be NULL)
 727 * @cong_bits: mask of WB_[a]sync_congested bits to test
 728 *
 729 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 730 * bits to test and the return value is the mask of set bits.
 731 *
 732 * If cgroup writeback is enabled for @inode, the congestion state is
 733 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 734 * associated with @inode is congested; otherwise, the root wb's congestion
 735 * state is used.
 736 *
 737 * @inode is allowed to be NULL as this function is often called on
 738 * mapping->host which is NULL for the swapper space.
 739 */
 740int inode_congested(struct inode *inode, int cong_bits)
 741{
 742        /*
 743         * Once set, ->i_wb never becomes NULL while the inode is alive.
 744         * Start transaction iff ->i_wb is visible.
 745         */
 746        if (inode && inode_to_wb_is_valid(inode)) {
 747                struct bdi_writeback *wb;
 748                bool locked, congested;
 749
 750                wb = unlocked_inode_to_wb_begin(inode, &locked);
 751                congested = wb_congested(wb, cong_bits);
 752                unlocked_inode_to_wb_end(inode, locked);
 753                return congested;
 754        }
 755
 756        return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 757}
 758EXPORT_SYMBOL_GPL(inode_congested);
 759
 760/**
 761 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 762 * @wb: target bdi_writeback to split @nr_pages to
 763 * @nr_pages: number of pages to write for the whole bdi
 764 *
 765 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 766 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 767 * @wb->bdi.
 768 */
 769static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 770{
 771        unsigned long this_bw = wb->avg_write_bandwidth;
 772        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 773
 774        if (nr_pages == LONG_MAX)
 775                return LONG_MAX;
 776
 777        /*
 778         * This may be called on clean wb's and proportional distribution
 779         * may not make sense, just use the original @nr_pages in those
 780         * cases.  In general, we wanna err on the side of writing more.
 781         */
 782        if (!tot_bw || this_bw >= tot_bw)
 783                return nr_pages;
 784        else
 785                return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 786}
 787
 788/**
 789 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 790 * @bdi: target backing_dev_info
 791 * @base_work: wb_writeback_work to issue
 792 * @skip_if_busy: skip wb's which already have writeback in progress
 793 *
 794 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 795 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 796 * distributed to the busy wbs according to each wb's proportion in the
 797 * total active write bandwidth of @bdi.
 798 */
 799static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 800                                  struct wb_writeback_work *base_work,
 801                                  bool skip_if_busy)
 802{
 803        struct bdi_writeback *last_wb = NULL;
 804        struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 805                                              struct bdi_writeback, bdi_node);
 806
 807        might_sleep();
 808restart:
 809        rcu_read_lock();
 810        list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 811                DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
 812                struct wb_writeback_work fallback_work;
 813                struct wb_writeback_work *work;
 814                long nr_pages;
 815
 816                if (last_wb) {
 817                        wb_put(last_wb);
 818                        last_wb = NULL;
 819                }
 820
 821                /* SYNC_ALL writes out I_DIRTY_TIME too */
 822                if (!wb_has_dirty_io(wb) &&
 823                    (base_work->sync_mode == WB_SYNC_NONE ||
 824                     list_empty(&wb->b_dirty_time)))
 825                        continue;
 826                if (skip_if_busy && writeback_in_progress(wb))
 827                        continue;
 828
 829                nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 830
 831                work = kmalloc(sizeof(*work), GFP_ATOMIC);
 832                if (work) {
 833                        *work = *base_work;
 834                        work->nr_pages = nr_pages;
 835                        work->auto_free = 1;
 836                        wb_queue_work(wb, work);
 837                        continue;
 838                }
 839
 840                /* alloc failed, execute synchronously using on-stack fallback */
 841                work = &fallback_work;
 842                *work = *base_work;
 843                work->nr_pages = nr_pages;
 844                work->auto_free = 0;
 845                work->done = &fallback_work_done;
 846
 847                wb_queue_work(wb, work);
 848
 849                /*
 850                 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 851                 * continuing iteration from @wb after dropping and
 852                 * regrabbing rcu read lock.
 853                 */
 854                wb_get(wb);
 855                last_wb = wb;
 856
 857                rcu_read_unlock();
 858                wb_wait_for_completion(bdi, &fallback_work_done);
 859                goto restart;
 860        }
 861        rcu_read_unlock();
 862
 863        if (last_wb)
 864                wb_put(last_wb);
 865}
 866
 867/**
 868 * cgroup_writeback_umount - flush inode wb switches for umount
 869 *
 870 * This function is called when a super_block is about to be destroyed and
 871 * flushes in-flight inode wb switches.  An inode wb switch goes through
 872 * RCU and then workqueue, so the two need to be flushed in order to ensure
 873 * that all previously scheduled switches are finished.  As wb switches are
 874 * rare occurrences and synchronize_rcu() can take a while, perform
 875 * flushing iff wb switches are in flight.
 876 */
 877void cgroup_writeback_umount(void)
 878{
 879        if (atomic_read(&isw_nr_in_flight)) {
 880                synchronize_rcu();
 881                flush_workqueue(isw_wq);
 882        }
 883}
 884
 885static int __init cgroup_writeback_init(void)
 886{
 887        isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
 888        if (!isw_wq)
 889                return -ENOMEM;
 890        return 0;
 891}
 892fs_initcall(cgroup_writeback_init);
 893
 894#else   /* CONFIG_CGROUP_WRITEBACK */
 895
 896static struct bdi_writeback *
 897locked_inode_to_wb_and_lock_list(struct inode *inode)
 898        __releases(&inode->i_lock)
 899        __acquires(&wb->list_lock)
 900{
 901        struct bdi_writeback *wb = inode_to_wb(inode);
 902
 903        spin_unlock(&inode->i_lock);
 904        spin_lock(&wb->list_lock);
 905        return wb;
 906}
 907
 908static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 909        __acquires(&wb->list_lock)
 910{
 911        struct bdi_writeback *wb = inode_to_wb(inode);
 912
 913        spin_lock(&wb->list_lock);
 914        return wb;
 915}
 916
 917static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 918{
 919        return nr_pages;
 920}
 921
 922static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 923                                  struct wb_writeback_work *base_work,
 924                                  bool skip_if_busy)
 925{
 926        might_sleep();
 927
 928        if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
 929                base_work->auto_free = 0;
 930                wb_queue_work(&bdi->wb, base_work);
 931        }
 932}
 933
 934#endif  /* CONFIG_CGROUP_WRITEBACK */
 935
 936void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
 937                        bool range_cyclic, enum wb_reason reason)
 938{
 939        struct wb_writeback_work *work;
 940
 941        if (!wb_has_dirty_io(wb))
 942                return;
 943
 944        /*
 945         * This is WB_SYNC_NONE writeback, so if allocation fails just
 946         * wakeup the thread for old dirty data writeback
 947         */
 948        work = kzalloc(sizeof(*work),
 949                       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 950        if (!work) {
 951                trace_writeback_nowork(wb);
 952                wb_wakeup(wb);
 953                return;
 954        }
 955
 956        work->sync_mode = WB_SYNC_NONE;
 957        work->nr_pages  = nr_pages;
 958        work->range_cyclic = range_cyclic;
 959        work->reason    = reason;
 960        work->auto_free = 1;
 961
 962        wb_queue_work(wb, work);
 963}
 964
 965/**
 966 * wb_start_background_writeback - start background writeback
 967 * @wb: bdi_writback to write from
 968 *
 969 * Description:
 970 *   This makes sure WB_SYNC_NONE background writeback happens. When
 971 *   this function returns, it is only guaranteed that for given wb
 972 *   some IO is happening if we are over background dirty threshold.
 973 *   Caller need not hold sb s_umount semaphore.
 974 */
 975void wb_start_background_writeback(struct bdi_writeback *wb)
 976{
 977        /*
 978         * We just wake up the flusher thread. It will perform background
 979         * writeback as soon as there is no other work to do.
 980         */
 981        trace_writeback_wake_background(wb);
 982        wb_wakeup(wb);
 983}
 984
 985/*
 986 * Remove the inode from the writeback list it is on.
 987 */
 988void inode_io_list_del(struct inode *inode)
 989{
 990        struct bdi_writeback *wb;
 991
 992        wb = inode_to_wb_and_lock_list(inode);
 993        inode_io_list_del_locked(inode, wb);
 994        spin_unlock(&wb->list_lock);
 995}
 996
 997/*
 998 * mark an inode as under writeback on the sb
 999 */
1000void sb_mark_inode_writeback(struct inode *inode)
1001{
1002        struct super_block *sb = inode->i_sb;
1003        unsigned long flags;
1004
1005        if (list_empty(&inode->i_wb_list)) {
1006                spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1007                if (list_empty(&inode->i_wb_list)) {
1008                        list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1009                        trace_sb_mark_inode_writeback(inode);
1010                }
1011                spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1012        }
1013}
1014
1015/*
1016 * clear an inode as under writeback on the sb
1017 */
1018void sb_clear_inode_writeback(struct inode *inode)
1019{
1020        struct super_block *sb = inode->i_sb;
1021        unsigned long flags;
1022
1023        if (!list_empty(&inode->i_wb_list)) {
1024                spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1025                if (!list_empty(&inode->i_wb_list)) {
1026                        list_del_init(&inode->i_wb_list);
1027                        trace_sb_clear_inode_writeback(inode);
1028                }
1029                spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1030        }
1031}
1032
1033/*
1034 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1035 * furthest end of its superblock's dirty-inode list.
1036 *
1037 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1038 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1039 * the case then the inode must have been redirtied while it was being written
1040 * out and we don't reset its dirtied_when.
1041 */
1042static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1043{
1044        if (!list_empty(&wb->b_dirty)) {
1045                struct inode *tail;
1046
1047                tail = wb_inode(wb->b_dirty.next);
1048                if (time_before(inode->dirtied_when, tail->dirtied_when))
1049                        inode->dirtied_when = jiffies;
1050        }
1051        inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1052}
1053
1054/*
1055 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1056 */
1057static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1058{
1059        inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1060}
1061
1062static void inode_sync_complete(struct inode *inode)
1063{
1064        inode->i_state &= ~I_SYNC;
1065        /* If inode is clean an unused, put it into LRU now... */
1066        inode_add_lru(inode);
1067        /* Waiters must see I_SYNC cleared before being woken up */
1068        smp_mb();
1069        wake_up_bit(&inode->i_state, __I_SYNC);
1070}
1071
1072static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1073{
1074        bool ret = time_after(inode->dirtied_when, t);
1075#ifndef CONFIG_64BIT
1076        /*
1077         * For inodes being constantly redirtied, dirtied_when can get stuck.
1078         * It _appears_ to be in the future, but is actually in distant past.
1079         * This test is necessary to prevent such wrapped-around relative times
1080         * from permanently stopping the whole bdi writeback.
1081         */
1082        ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1083#endif
1084        return ret;
1085}
1086
1087#define EXPIRE_DIRTY_ATIME 0x0001
1088
1089/*
1090 * Move expired (dirtied before work->older_than_this) dirty inodes from
1091 * @delaying_queue to @dispatch_queue.
1092 */
1093static int move_expired_inodes(struct list_head *delaying_queue,
1094                               struct list_head *dispatch_queue,
1095                               int flags,
1096                               struct wb_writeback_work *work)
1097{
1098        unsigned long *older_than_this = NULL;
1099        unsigned long expire_time;
1100        LIST_HEAD(tmp);
1101        struct list_head *pos, *node;
1102        struct super_block *sb = NULL;
1103        struct inode *inode;
1104        int do_sb_sort = 0;
1105        int moved = 0;
1106
1107        if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1108                older_than_this = work->older_than_this;
1109        else if (!work->for_sync) {
1110                expire_time = jiffies - (dirtytime_expire_interval * HZ);
1111                older_than_this = &expire_time;
1112        }
1113        while (!list_empty(delaying_queue)) {
1114                inode = wb_inode(delaying_queue->prev);
1115                if (older_than_this &&
1116                    inode_dirtied_after(inode, *older_than_this))
1117                        break;
1118                list_move(&inode->i_io_list, &tmp);
1119                moved++;
1120                if (flags & EXPIRE_DIRTY_ATIME)
1121                        set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1122                if (sb_is_blkdev_sb(inode->i_sb))
1123                        continue;
1124                if (sb && sb != inode->i_sb)
1125                        do_sb_sort = 1;
1126                sb = inode->i_sb;
1127        }
1128
1129        /* just one sb in list, splice to dispatch_queue and we're done */
1130        if (!do_sb_sort) {
1131                list_splice(&tmp, dispatch_queue);
1132                goto out;
1133        }
1134
1135        /* Move inodes from one superblock together */
1136        while (!list_empty(&tmp)) {
1137                sb = wb_inode(tmp.prev)->i_sb;
1138                list_for_each_prev_safe(pos, node, &tmp) {
1139                        inode = wb_inode(pos);
1140                        if (inode->i_sb == sb)
1141                                list_move(&inode->i_io_list, dispatch_queue);
1142                }
1143        }
1144out:
1145        return moved;
1146}
1147
1148/*
1149 * Queue all expired dirty inodes for io, eldest first.
1150 * Before
1151 *         newly dirtied     b_dirty    b_io    b_more_io
1152 *         =============>    gf         edc     BA
1153 * After
1154 *         newly dirtied     b_dirty    b_io    b_more_io
1155 *         =============>    g          fBAedc
1156 *                                           |
1157 *                                           +--> dequeue for IO
1158 */
1159static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1160{
1161        int moved;
1162
1163        assert_spin_locked(&wb->list_lock);
1164        list_splice_init(&wb->b_more_io, &wb->b_io);
1165        moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1166        moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1167                                     EXPIRE_DIRTY_ATIME, work);
1168        if (moved)
1169                wb_io_lists_populated(wb);
1170        trace_writeback_queue_io(wb, work, moved);
1171}
1172
1173static int write_inode(struct inode *inode, struct writeback_control *wbc)
1174{
1175        int ret;
1176
1177        if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1178                trace_writeback_write_inode_start(inode, wbc);
1179                ret = inode->i_sb->s_op->write_inode(inode, wbc);
1180                trace_writeback_write_inode(inode, wbc);
1181                return ret;
1182        }
1183        return 0;
1184}
1185
1186/*
1187 * Wait for writeback on an inode to complete. Called with i_lock held.
1188 * Caller must make sure inode cannot go away when we drop i_lock.
1189 */
1190static void __inode_wait_for_writeback(struct inode *inode)
1191        __releases(inode->i_lock)
1192        __acquires(inode->i_lock)
1193{
1194        DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1195        wait_queue_head_t *wqh;
1196
1197        wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1198        while (inode->i_state & I_SYNC) {
1199                spin_unlock(&inode->i_lock);
1200                __wait_on_bit(wqh, &wq, bit_wait,
1201                              TASK_UNINTERRUPTIBLE);
1202                spin_lock(&inode->i_lock);
1203        }
1204}
1205
1206/*
1207 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1208 */
1209void inode_wait_for_writeback(struct inode *inode)
1210{
1211        spin_lock(&inode->i_lock);
1212        __inode_wait_for_writeback(inode);
1213        spin_unlock(&inode->i_lock);
1214}
1215
1216/*
1217 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1218 * held and drops it. It is aimed for callers not holding any inode reference
1219 * so once i_lock is dropped, inode can go away.
1220 */
1221static void inode_sleep_on_writeback(struct inode *inode)
1222        __releases(inode->i_lock)
1223{
1224        DEFINE_WAIT(wait);
1225        wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1226        int sleep;
1227
1228        prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1229        sleep = inode->i_state & I_SYNC;
1230        spin_unlock(&inode->i_lock);
1231        if (sleep)
1232                schedule();
1233        finish_wait(wqh, &wait);
1234}
1235
1236/*
1237 * Find proper writeback list for the inode depending on its current state and
1238 * possibly also change of its state while we were doing writeback.  Here we
1239 * handle things such as livelock prevention or fairness of writeback among
1240 * inodes. This function can be called only by flusher thread - noone else
1241 * processes all inodes in writeback lists and requeueing inodes behind flusher
1242 * thread's back can have unexpected consequences.
1243 */
1244static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1245                          struct writeback_control *wbc)
1246{
1247        if (inode->i_state & I_FREEING)
1248                return;
1249
1250        /*
1251         * Sync livelock prevention. Each inode is tagged and synced in one
1252         * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1253         * the dirty time to prevent enqueue and sync it again.
1254         */
1255        if ((inode->i_state & I_DIRTY) &&
1256            (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1257                inode->dirtied_when = jiffies;
1258
1259        if (wbc->pages_skipped) {
1260                /*
1261                 * writeback is not making progress due to locked
1262                 * buffers. Skip this inode for now.
1263                 */
1264                redirty_tail(inode, wb);
1265                return;
1266        }
1267
1268        if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1269                /*
1270                 * We didn't write back all the pages.  nfs_writepages()
1271                 * sometimes bales out without doing anything.
1272                 */
1273                if (wbc->nr_to_write <= 0) {
1274                        /* Slice used up. Queue for next turn. */
1275                        requeue_io(inode, wb);
1276                } else {
1277                        /*
1278                         * Writeback blocked by something other than
1279                         * congestion. Delay the inode for some time to
1280                         * avoid spinning on the CPU (100% iowait)
1281                         * retrying writeback of the dirty page/inode
1282                         * that cannot be performed immediately.
1283                         */
1284                        redirty_tail(inode, wb);
1285                }
1286        } else if (inode->i_state & I_DIRTY) {
1287                /*
1288                 * Filesystems can dirty the inode during writeback operations,
1289                 * such as delayed allocation during submission or metadata
1290                 * updates after data IO completion.
1291                 */
1292                redirty_tail(inode, wb);
1293        } else if (inode->i_state & I_DIRTY_TIME) {
1294                inode->dirtied_when = jiffies;
1295                inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1296        } else {
1297                /* The inode is clean. Remove from writeback lists. */
1298                inode_io_list_del_locked(inode, wb);
1299        }
1300}
1301
1302/*
1303 * Write out an inode and its dirty pages. Do not update the writeback list
1304 * linkage. That is left to the caller. The caller is also responsible for
1305 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1306 */
1307static int
1308__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1309{
1310        struct address_space *mapping = inode->i_mapping;
1311        long nr_to_write = wbc->nr_to_write;
1312        unsigned dirty;
1313        int ret;
1314
1315        WARN_ON(!(inode->i_state & I_SYNC));
1316
1317        trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1318
1319        ret = do_writepages(mapping, wbc);
1320
1321        /*
1322         * Make sure to wait on the data before writing out the metadata.
1323         * This is important for filesystems that modify metadata on data
1324         * I/O completion. We don't do it for sync(2) writeback because it has a
1325         * separate, external IO completion path and ->sync_fs for guaranteeing
1326         * inode metadata is written back correctly.
1327         */
1328        if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1329                int err = filemap_fdatawait(mapping);
1330                if (ret == 0)
1331                        ret = err;
1332        }
1333
1334        /*
1335         * Some filesystems may redirty the inode during the writeback
1336         * due to delalloc, clear dirty metadata flags right before
1337         * write_inode()
1338         */
1339        spin_lock(&inode->i_lock);
1340
1341        dirty = inode->i_state & I_DIRTY;
1342        if (inode->i_state & I_DIRTY_TIME) {
1343                if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1344                    wbc->sync_mode == WB_SYNC_ALL ||
1345                    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1346                    unlikely(time_after(jiffies,
1347                                        (inode->dirtied_time_when +
1348                                         dirtytime_expire_interval * HZ)))) {
1349                        dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1350                        trace_writeback_lazytime(inode);
1351                }
1352        } else
1353                inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1354        inode->i_state &= ~dirty;
1355
1356        /*
1357         * Paired with smp_mb() in __mark_inode_dirty().  This allows
1358         * __mark_inode_dirty() to test i_state without grabbing i_lock -
1359         * either they see the I_DIRTY bits cleared or we see the dirtied
1360         * inode.
1361         *
1362         * I_DIRTY_PAGES is always cleared together above even if @mapping
1363         * still has dirty pages.  The flag is reinstated after smp_mb() if
1364         * necessary.  This guarantees that either __mark_inode_dirty()
1365         * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1366         */
1367        smp_mb();
1368
1369        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1370                inode->i_state |= I_DIRTY_PAGES;
1371
1372        spin_unlock(&inode->i_lock);
1373
1374        if (dirty & I_DIRTY_TIME)
1375                mark_inode_dirty_sync(inode);
1376        /* Don't write the inode if only I_DIRTY_PAGES was set */
1377        if (dirty & ~I_DIRTY_PAGES) {
1378                int err = write_inode(inode, wbc);
1379                if (ret == 0)
1380                        ret = err;
1381        }
1382        trace_writeback_single_inode(inode, wbc, nr_to_write);
1383        return ret;
1384}
1385
1386/*
1387 * Write out an inode's dirty pages. Either the caller has an active reference
1388 * on the inode or the inode has I_WILL_FREE set.
1389 *
1390 * This function is designed to be called for writing back one inode which
1391 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1392 * and does more profound writeback list handling in writeback_sb_inodes().
1393 */
1394static int writeback_single_inode(struct inode *inode,
1395                                  struct writeback_control *wbc)
1396{
1397        struct bdi_writeback *wb;
1398        int ret = 0;
1399
1400        spin_lock(&inode->i_lock);
1401        if (!atomic_read(&inode->i_count))
1402                WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1403        else
1404                WARN_ON(inode->i_state & I_WILL_FREE);
1405
1406        if (inode->i_state & I_SYNC) {
1407                if (wbc->sync_mode != WB_SYNC_ALL)
1408                        goto out;
1409                /*
1410                 * It's a data-integrity sync. We must wait. Since callers hold
1411                 * inode reference or inode has I_WILL_FREE set, it cannot go
1412                 * away under us.
1413                 */
1414                __inode_wait_for_writeback(inode);
1415        }
1416        WARN_ON(inode->i_state & I_SYNC);
1417        /*
1418         * Skip inode if it is clean and we have no outstanding writeback in
1419         * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1420         * function since flusher thread may be doing for example sync in
1421         * parallel and if we move the inode, it could get skipped. So here we
1422         * make sure inode is on some writeback list and leave it there unless
1423         * we have completely cleaned the inode.
1424         */
1425        if (!(inode->i_state & I_DIRTY_ALL) &&
1426            (wbc->sync_mode != WB_SYNC_ALL ||
1427             !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1428                goto out;
1429        inode->i_state |= I_SYNC;
1430        wbc_attach_and_unlock_inode(wbc, inode);
1431
1432        ret = __writeback_single_inode(inode, wbc);
1433
1434        wbc_detach_inode(wbc);
1435
1436        wb = inode_to_wb_and_lock_list(inode);
1437        spin_lock(&inode->i_lock);
1438        /*
1439         * If inode is clean, remove it from writeback lists. Otherwise don't
1440         * touch it. See comment above for explanation.
1441         */
1442        if (!(inode->i_state & I_DIRTY_ALL))
1443                inode_io_list_del_locked(inode, wb);
1444        spin_unlock(&wb->list_lock);
1445        inode_sync_complete(inode);
1446out:
1447        spin_unlock(&inode->i_lock);
1448        return ret;
1449}
1450
1451static long writeback_chunk_size(struct bdi_writeback *wb,
1452                                 struct wb_writeback_work *work)
1453{
1454        long pages;
1455
1456        /*
1457         * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1458         * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1459         * here avoids calling into writeback_inodes_wb() more than once.
1460         *
1461         * The intended call sequence for WB_SYNC_ALL writeback is:
1462         *
1463         *      wb_writeback()
1464         *          writeback_sb_inodes()       <== called only once
1465         *              write_cache_pages()     <== called once for each inode
1466         *                   (quickly) tag currently dirty pages
1467         *                   (maybe slowly) sync all tagged pages
1468         */
1469        if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1470                pages = LONG_MAX;
1471        else {
1472                pages = min(wb->avg_write_bandwidth / 2,
1473                            global_wb_domain.dirty_limit / DIRTY_SCOPE);
1474                pages = min(pages, work->nr_pages);
1475                pages = round_down(pages + MIN_WRITEBACK_PAGES,
1476                                   MIN_WRITEBACK_PAGES);
1477        }
1478
1479        return pages;
1480}
1481
1482/*
1483 * Write a portion of b_io inodes which belong to @sb.
1484 *
1485 * Return the number of pages and/or inodes written.
1486 *
1487 * NOTE! This is called with wb->list_lock held, and will
1488 * unlock and relock that for each inode it ends up doing
1489 * IO for.
1490 */
1491static long writeback_sb_inodes(struct super_block *sb,
1492                                struct bdi_writeback *wb,
1493                                struct wb_writeback_work *work)
1494{
1495        struct writeback_control wbc = {
1496                .sync_mode              = work->sync_mode,
1497                .tagged_writepages      = work->tagged_writepages,
1498                .for_kupdate            = work->for_kupdate,
1499                .for_background         = work->for_background,
1500                .for_sync               = work->for_sync,
1501                .range_cyclic           = work->range_cyclic,
1502                .range_start            = 0,
1503                .range_end              = LLONG_MAX,
1504        };
1505        unsigned long start_time = jiffies;
1506        long write_chunk;
1507        long wrote = 0;  /* count both pages and inodes */
1508
1509        while (!list_empty(&wb->b_io)) {
1510                struct inode *inode = wb_inode(wb->b_io.prev);
1511                struct bdi_writeback *tmp_wb;
1512
1513                if (inode->i_sb != sb) {
1514                        if (work->sb) {
1515                                /*
1516                                 * We only want to write back data for this
1517                                 * superblock, move all inodes not belonging
1518                                 * to it back onto the dirty list.
1519                                 */
1520                                redirty_tail(inode, wb);
1521                                continue;
1522                        }
1523
1524                        /*
1525                         * The inode belongs to a different superblock.
1526                         * Bounce back to the caller to unpin this and
1527                         * pin the next superblock.
1528                         */
1529                        break;
1530                }
1531
1532                /*
1533                 * Don't bother with new inodes or inodes being freed, first
1534                 * kind does not need periodic writeout yet, and for the latter
1535                 * kind writeout is handled by the freer.
1536                 */
1537                spin_lock(&inode->i_lock);
1538                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1539                        spin_unlock(&inode->i_lock);
1540                        redirty_tail(inode, wb);
1541                        continue;
1542                }
1543                if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1544                        /*
1545                         * If this inode is locked for writeback and we are not
1546                         * doing writeback-for-data-integrity, move it to
1547                         * b_more_io so that writeback can proceed with the
1548                         * other inodes on s_io.
1549                         *
1550                         * We'll have another go at writing back this inode
1551                         * when we completed a full scan of b_io.
1552                         */
1553                        spin_unlock(&inode->i_lock);
1554                        requeue_io(inode, wb);
1555                        trace_writeback_sb_inodes_requeue(inode);
1556                        continue;
1557                }
1558                spin_unlock(&wb->list_lock);
1559
1560                /*
1561                 * We already requeued the inode if it had I_SYNC set and we
1562                 * are doing WB_SYNC_NONE writeback. So this catches only the
1563                 * WB_SYNC_ALL case.
1564                 */
1565                if (inode->i_state & I_SYNC) {
1566                        /* Wait for I_SYNC. This function drops i_lock... */
1567                        inode_sleep_on_writeback(inode);
1568                        /* Inode may be gone, start again */
1569                        spin_lock(&wb->list_lock);
1570                        continue;
1571                }
1572                inode->i_state |= I_SYNC;
1573                wbc_attach_and_unlock_inode(&wbc, inode);
1574
1575                write_chunk = writeback_chunk_size(wb, work);
1576                wbc.nr_to_write = write_chunk;
1577                wbc.pages_skipped = 0;
1578
1579                /*
1580                 * We use I_SYNC to pin the inode in memory. While it is set
1581                 * evict_inode() will wait so the inode cannot be freed.
1582                 */
1583                __writeback_single_inode(inode, &wbc);
1584
1585                wbc_detach_inode(&wbc);
1586                work->nr_pages -= write_chunk - wbc.nr_to_write;
1587                wrote += write_chunk - wbc.nr_to_write;
1588
1589                if (need_resched()) {
1590                        /*
1591                         * We're trying to balance between building up a nice
1592                         * long list of IOs to improve our merge rate, and
1593                         * getting those IOs out quickly for anyone throttling
1594                         * in balance_dirty_pages().  cond_resched() doesn't
1595                         * unplug, so get our IOs out the door before we
1596                         * give up the CPU.
1597                         */
1598                        blk_flush_plug(current);
1599                        cond_resched();
1600                }
1601
1602                /*
1603                 * Requeue @inode if still dirty.  Be careful as @inode may
1604                 * have been switched to another wb in the meantime.
1605                 */
1606                tmp_wb = inode_to_wb_and_lock_list(inode);
1607                spin_lock(&inode->i_lock);
1608                if (!(inode->i_state & I_DIRTY_ALL))
1609                        wrote++;
1610                requeue_inode(inode, tmp_wb, &wbc);
1611                inode_sync_complete(inode);
1612                spin_unlock(&inode->i_lock);
1613
1614                if (unlikely(tmp_wb != wb)) {
1615                        spin_unlock(&tmp_wb->list_lock);
1616                        spin_lock(&wb->list_lock);
1617                }
1618
1619                /*
1620                 * bail out to wb_writeback() often enough to check
1621                 * background threshold and other termination conditions.
1622                 */
1623                if (wrote) {
1624                        if (time_is_before_jiffies(start_time + HZ / 10UL))
1625                                break;
1626                        if (work->nr_pages <= 0)
1627                                break;
1628                }
1629        }
1630        return wrote;
1631}
1632
1633static long __writeback_inodes_wb(struct bdi_writeback *wb,
1634                                  struct wb_writeback_work *work)
1635{
1636        unsigned long start_time = jiffies;
1637        long wrote = 0;
1638
1639        while (!list_empty(&wb->b_io)) {
1640                struct inode *inode = wb_inode(wb->b_io.prev);
1641                struct super_block *sb = inode->i_sb;
1642
1643                if (!trylock_super(sb)) {
1644                        /*
1645                         * trylock_super() may fail consistently due to
1646                         * s_umount being grabbed by someone else. Don't use
1647                         * requeue_io() to avoid busy retrying the inode/sb.
1648                         */
1649                        redirty_tail(inode, wb);
1650                        continue;
1651                }
1652                wrote += writeback_sb_inodes(sb, wb, work);
1653                up_read(&sb->s_umount);
1654
1655                /* refer to the same tests at the end of writeback_sb_inodes */
1656                if (wrote) {
1657                        if (time_is_before_jiffies(start_time + HZ / 10UL))
1658                                break;
1659                        if (work->nr_pages <= 0)
1660                                break;
1661                }
1662        }
1663        /* Leave any unwritten inodes on b_io */
1664        return wrote;
1665}
1666
1667static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1668                                enum wb_reason reason)
1669{
1670        struct wb_writeback_work work = {
1671                .nr_pages       = nr_pages,
1672                .sync_mode      = WB_SYNC_NONE,
1673                .range_cyclic   = 1,
1674                .reason         = reason,
1675        };
1676        struct blk_plug plug;
1677
1678        blk_start_plug(&plug);
1679        spin_lock(&wb->list_lock);
1680        if (list_empty(&wb->b_io))
1681                queue_io(wb, &work);
1682        __writeback_inodes_wb(wb, &work);
1683        spin_unlock(&wb->list_lock);
1684        blk_finish_plug(&plug);
1685
1686        return nr_pages - work.nr_pages;
1687}
1688
1689/*
1690 * Explicit flushing or periodic writeback of "old" data.
1691 *
1692 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1693 * dirtying-time in the inode's address_space.  So this periodic writeback code
1694 * just walks the superblock inode list, writing back any inodes which are
1695 * older than a specific point in time.
1696 *
1697 * Try to run once per dirty_writeback_interval.  But if a writeback event
1698 * takes longer than a dirty_writeback_interval interval, then leave a
1699 * one-second gap.
1700 *
1701 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1702 * all dirty pages if they are all attached to "old" mappings.
1703 */
1704static long wb_writeback(struct bdi_writeback *wb,
1705                         struct wb_writeback_work *work)
1706{
1707        unsigned long wb_start = jiffies;
1708        long nr_pages = work->nr_pages;
1709        unsigned long oldest_jif;
1710        struct inode *inode;
1711        long progress;
1712        struct blk_plug plug;
1713
1714        oldest_jif = jiffies;
1715        work->older_than_this = &oldest_jif;
1716
1717        blk_start_plug(&plug);
1718        spin_lock(&wb->list_lock);
1719        for (;;) {
1720                /*
1721                 * Stop writeback when nr_pages has been consumed
1722                 */
1723                if (work->nr_pages <= 0)
1724                        break;
1725
1726                /*
1727                 * Background writeout and kupdate-style writeback may
1728                 * run forever. Stop them if there is other work to do
1729                 * so that e.g. sync can proceed. They'll be restarted
1730                 * after the other works are all done.
1731                 */
1732                if ((work->for_background || work->for_kupdate) &&
1733                    !list_empty(&wb->work_list))
1734                        break;
1735
1736                /*
1737                 * For background writeout, stop when we are below the
1738                 * background dirty threshold
1739                 */
1740                if (work->for_background && !wb_over_bg_thresh(wb))
1741                        break;
1742
1743                /*
1744                 * Kupdate and background works are special and we want to
1745                 * include all inodes that need writing. Livelock avoidance is
1746                 * handled by these works yielding to any other work so we are
1747                 * safe.
1748                 */
1749                if (work->for_kupdate) {
1750                        oldest_jif = jiffies -
1751                                msecs_to_jiffies(dirty_expire_interval * 10);
1752                } else if (work->for_background)
1753                        oldest_jif = jiffies;
1754
1755                trace_writeback_start(wb, work);
1756                if (list_empty(&wb->b_io))
1757                        queue_io(wb, work);
1758                if (work->sb)
1759                        progress = writeback_sb_inodes(work->sb, wb, work);
1760                else
1761                        progress = __writeback_inodes_wb(wb, work);
1762                trace_writeback_written(wb, work);
1763
1764                wb_update_bandwidth(wb, wb_start);
1765
1766                /*
1767                 * Did we write something? Try for more
1768                 *
1769                 * Dirty inodes are moved to b_io for writeback in batches.
1770                 * The completion of the current batch does not necessarily
1771                 * mean the overall work is done. So we keep looping as long
1772                 * as made some progress on cleaning pages or inodes.
1773                 */
1774                if (progress)
1775                        continue;
1776                /*
1777                 * No more inodes for IO, bail
1778                 */
1779                if (list_empty(&wb->b_more_io))
1780                        break;
1781                /*
1782                 * Nothing written. Wait for some inode to
1783                 * become available for writeback. Otherwise
1784                 * we'll just busyloop.
1785                 */
1786                trace_writeback_wait(wb, work);
1787                inode = wb_inode(wb->b_more_io.prev);
1788                spin_lock(&inode->i_lock);
1789                spin_unlock(&wb->list_lock);
1790                /* This function drops i_lock... */
1791                inode_sleep_on_writeback(inode);
1792                spin_lock(&wb->list_lock);
1793        }
1794        spin_unlock(&wb->list_lock);
1795        blk_finish_plug(&plug);
1796
1797        return nr_pages - work->nr_pages;
1798}
1799
1800/*
1801 * Return the next wb_writeback_work struct that hasn't been processed yet.
1802 */
1803static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1804{
1805        struct wb_writeback_work *work = NULL;
1806
1807        spin_lock_bh(&wb->work_lock);
1808        if (!list_empty(&wb->work_list)) {
1809                work = list_entry(wb->work_list.next,
1810                                  struct wb_writeback_work, list);
1811                list_del_init(&work->list);
1812        }
1813        spin_unlock_bh(&wb->work_lock);
1814        return work;
1815}
1816
1817/*
1818 * Add in the number of potentially dirty inodes, because each inode
1819 * write can dirty pagecache in the underlying blockdev.
1820 */
1821static unsigned long get_nr_dirty_pages(void)
1822{
1823        return global_node_page_state(NR_FILE_DIRTY) +
1824                global_node_page_state(NR_UNSTABLE_NFS) +
1825                get_nr_dirty_inodes();
1826}
1827
1828static long wb_check_background_flush(struct bdi_writeback *wb)
1829{
1830        if (wb_over_bg_thresh(wb)) {
1831
1832                struct wb_writeback_work work = {
1833                        .nr_pages       = LONG_MAX,
1834                        .sync_mode      = WB_SYNC_NONE,
1835                        .for_background = 1,
1836                        .range_cyclic   = 1,
1837                        .reason         = WB_REASON_BACKGROUND,
1838                };
1839
1840                return wb_writeback(wb, &work);
1841        }
1842
1843        return 0;
1844}
1845
1846static long wb_check_old_data_flush(struct bdi_writeback *wb)
1847{
1848        unsigned long expired;
1849        long nr_pages;
1850
1851        /*
1852         * When set to zero, disable periodic writeback
1853         */
1854        if (!dirty_writeback_interval)
1855                return 0;
1856
1857        expired = wb->last_old_flush +
1858                        msecs_to_jiffies(dirty_writeback_interval * 10);
1859        if (time_before(jiffies, expired))
1860                return 0;
1861
1862        wb->last_old_flush = jiffies;
1863        nr_pages = get_nr_dirty_pages();
1864
1865        if (nr_pages) {
1866                struct wb_writeback_work work = {
1867                        .nr_pages       = nr_pages,
1868                        .sync_mode      = WB_SYNC_NONE,
1869                        .for_kupdate    = 1,
1870                        .range_cyclic   = 1,
1871                        .reason         = WB_REASON_PERIODIC,
1872                };
1873
1874                return wb_writeback(wb, &work);
1875        }
1876
1877        return 0;
1878}
1879
1880/*
1881 * Retrieve work items and do the writeback they describe
1882 */
1883static long wb_do_writeback(struct bdi_writeback *wb)
1884{
1885        struct wb_writeback_work *work;
1886        long wrote = 0;
1887
1888        set_bit(WB_writeback_running, &wb->state);
1889        while ((work = get_next_work_item(wb)) != NULL) {
1890                trace_writeback_exec(wb, work);
1891                wrote += wb_writeback(wb, work);
1892                finish_writeback_work(wb, work);
1893        }
1894
1895        /*
1896         * Check for periodic writeback, kupdated() style
1897         */
1898        wrote += wb_check_old_data_flush(wb);
1899        wrote += wb_check_background_flush(wb);
1900        clear_bit(WB_writeback_running, &wb->state);
1901
1902        return wrote;
1903}
1904
1905/*
1906 * Handle writeback of dirty data for the device backed by this bdi. Also
1907 * reschedules periodically and does kupdated style flushing.
1908 */
1909void wb_workfn(struct work_struct *work)
1910{
1911        struct bdi_writeback *wb = container_of(to_delayed_work(work),
1912                                                struct bdi_writeback, dwork);
1913        long pages_written;
1914
1915        set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1916        current->flags |= PF_SWAPWRITE;
1917
1918        if (likely(!current_is_workqueue_rescuer() ||
1919                   !test_bit(WB_registered, &wb->state))) {
1920                /*
1921                 * The normal path.  Keep writing back @wb until its
1922                 * work_list is empty.  Note that this path is also taken
1923                 * if @wb is shutting down even when we're running off the
1924                 * rescuer as work_list needs to be drained.
1925                 */
1926                do {
1927                        pages_written = wb_do_writeback(wb);
1928                        trace_writeback_pages_written(pages_written);
1929                } while (!list_empty(&wb->work_list));
1930        } else {
1931                /*
1932                 * bdi_wq can't get enough workers and we're running off
1933                 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1934                 * enough for efficient IO.
1935                 */
1936                pages_written = writeback_inodes_wb(wb, 1024,
1937                                                    WB_REASON_FORKER_THREAD);
1938                trace_writeback_pages_written(pages_written);
1939        }
1940
1941        if (!list_empty(&wb->work_list))
1942                mod_delayed_work(bdi_wq, &wb->dwork, 0);
1943        else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1944                wb_wakeup_delayed(wb);
1945
1946        current->flags &= ~PF_SWAPWRITE;
1947}
1948
1949/*
1950 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1951 * the whole world.
1952 */
1953void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1954{
1955        struct backing_dev_info *bdi;
1956
1957        /*
1958         * If we are expecting writeback progress we must submit plugged IO.
1959         */
1960        if (blk_needs_flush_plug(current))
1961                blk_schedule_flush_plug(current);
1962
1963        if (!nr_pages)
1964                nr_pages = get_nr_dirty_pages();
1965
1966        rcu_read_lock();
1967        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1968                struct bdi_writeback *wb;
1969
1970                if (!bdi_has_dirty_io(bdi))
1971                        continue;
1972
1973                list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1974                        wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1975                                           false, reason);
1976        }
1977        rcu_read_unlock();
1978}
1979
1980/*
1981 * Wake up bdi's periodically to make sure dirtytime inodes gets
1982 * written back periodically.  We deliberately do *not* check the
1983 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1984 * kernel to be constantly waking up once there are any dirtytime
1985 * inodes on the system.  So instead we define a separate delayed work
1986 * function which gets called much more rarely.  (By default, only
1987 * once every 12 hours.)
1988 *
1989 * If there is any other write activity going on in the file system,
1990 * this function won't be necessary.  But if the only thing that has
1991 * happened on the file system is a dirtytime inode caused by an atime
1992 * update, we need this infrastructure below to make sure that inode
1993 * eventually gets pushed out to disk.
1994 */
1995static void wakeup_dirtytime_writeback(struct work_struct *w);
1996static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1997
1998static void wakeup_dirtytime_writeback(struct work_struct *w)
1999{
2000        struct backing_dev_info *bdi;
2001
2002        rcu_read_lock();
2003        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2004                struct bdi_writeback *wb;
2005
2006                list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2007                        if (!list_empty(&wb->b_dirty_time))
2008                                wb_wakeup(wb);
2009        }
2010        rcu_read_unlock();
2011        schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2012}
2013
2014static int __init start_dirtytime_writeback(void)
2015{
2016        schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2017        return 0;
2018}
2019__initcall(start_dirtytime_writeback);
2020
2021int dirtytime_interval_handler(struct ctl_table *table, int write,
2022                               void __user *buffer, size_t *lenp, loff_t *ppos)
2023{
2024        int ret;
2025
2026        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2027        if (ret == 0 && write)
2028                mod_delayed_work(system_wq, &dirtytime_work, 0);
2029        return ret;
2030}
2031
2032static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2033{
2034        if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2035                struct dentry *dentry;
2036                const char *name = "?";
2037
2038                dentry = d_find_alias(inode);
2039                if (dentry) {
2040                        spin_lock(&dentry->d_lock);
2041                        name = (const char *) dentry->d_name.name;
2042                }
2043                printk(KERN_DEBUG
2044                       "%s(%d): dirtied inode %lu (%s) on %s\n",
2045                       current->comm, task_pid_nr(current), inode->i_ino,
2046                       name, inode->i_sb->s_id);
2047                if (dentry) {
2048                        spin_unlock(&dentry->d_lock);
2049                        dput(dentry);
2050                }
2051        }
2052}
2053
2054/**
2055 * __mark_inode_dirty - internal function
2056 *
2057 * @inode: inode to mark
2058 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2059 *
2060 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2061 * mark_inode_dirty_sync.
2062 *
2063 * Put the inode on the super block's dirty list.
2064 *
2065 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2066 * dirty list only if it is hashed or if it refers to a blockdev.
2067 * If it was not hashed, it will never be added to the dirty list
2068 * even if it is later hashed, as it will have been marked dirty already.
2069 *
2070 * In short, make sure you hash any inodes _before_ you start marking
2071 * them dirty.
2072 *
2073 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2074 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2075 * the kernel-internal blockdev inode represents the dirtying time of the
2076 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2077 * page->mapping->host, so the page-dirtying time is recorded in the internal
2078 * blockdev inode.
2079 */
2080void __mark_inode_dirty(struct inode *inode, int flags)
2081{
2082#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2083        struct super_block *sb = inode->i_sb;
2084        int dirtytime;
2085
2086        trace_writeback_mark_inode_dirty(inode, flags);
2087
2088        /*
2089         * Don't do this for I_DIRTY_PAGES - that doesn't actually
2090         * dirty the inode itself
2091         */
2092        if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2093                trace_writeback_dirty_inode_start(inode, flags);
2094
2095                if (sb->s_op->dirty_inode)
2096                        sb->s_op->dirty_inode(inode, flags);
2097
2098                trace_writeback_dirty_inode(inode, flags);
2099        }
2100        if (flags & I_DIRTY_INODE)
2101                flags &= ~I_DIRTY_TIME;
2102        dirtytime = flags & I_DIRTY_TIME;
2103
2104        /*
2105         * Paired with smp_mb() in __writeback_single_inode() for the
2106         * following lockless i_state test.  See there for details.
2107         */
2108        smp_mb();
2109
2110        if (((inode->i_state & flags) == flags) ||
2111            (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2112                return;
2113
2114        if (unlikely(block_dump))
2115                block_dump___mark_inode_dirty(inode);
2116
2117        spin_lock(&inode->i_lock);
2118        if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2119                goto out_unlock_inode;
2120        if ((inode->i_state & flags) != flags) {
2121                const int was_dirty = inode->i_state & I_DIRTY;
2122
2123                inode_attach_wb(inode, NULL);
2124
2125                if (flags & I_DIRTY_INODE)
2126                        inode->i_state &= ~I_DIRTY_TIME;
2127                inode->i_state |= flags;
2128
2129                /*
2130                 * If the inode is being synced, just update its dirty state.
2131                 * The unlocker will place the inode on the appropriate
2132                 * superblock list, based upon its state.
2133                 */
2134                if (inode->i_state & I_SYNC)
2135                        goto out_unlock_inode;
2136
2137                /*
2138                 * Only add valid (hashed) inodes to the superblock's
2139                 * dirty list.  Add blockdev inodes as well.
2140                 */
2141                if (!S_ISBLK(inode->i_mode)) {
2142                        if (inode_unhashed(inode))
2143                                goto out_unlock_inode;
2144                }
2145                if (inode->i_state & I_FREEING)
2146                        goto out_unlock_inode;
2147
2148                /*
2149                 * If the inode was already on b_dirty/b_io/b_more_io, don't
2150                 * reposition it (that would break b_dirty time-ordering).
2151                 */
2152                if (!was_dirty) {
2153                        struct bdi_writeback *wb;
2154                        struct list_head *dirty_list;
2155                        bool wakeup_bdi = false;
2156
2157                        wb = locked_inode_to_wb_and_lock_list(inode);
2158
2159                        WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2160                             !test_bit(WB_registered, &wb->state),
2161                             "bdi-%s not registered\n", wb->bdi->name);
2162
2163                        inode->dirtied_when = jiffies;
2164                        if (dirtytime)
2165                                inode->dirtied_time_when = jiffies;
2166
2167                        if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2168                                dirty_list = &wb->b_dirty;
2169                        else
2170                                dirty_list = &wb->b_dirty_time;
2171
2172                        wakeup_bdi = inode_io_list_move_locked(inode, wb,
2173                                                               dirty_list);
2174
2175                        spin_unlock(&wb->list_lock);
2176                        trace_writeback_dirty_inode_enqueue(inode);
2177
2178                        /*
2179                         * If this is the first dirty inode for this bdi,
2180                         * we have to wake-up the corresponding bdi thread
2181                         * to make sure background write-back happens
2182                         * later.
2183                         */
2184                        if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2185                                wb_wakeup_delayed(wb);
2186                        return;
2187                }
2188        }
2189out_unlock_inode:
2190        spin_unlock(&inode->i_lock);
2191
2192#undef I_DIRTY_INODE
2193}
2194EXPORT_SYMBOL(__mark_inode_dirty);
2195
2196/*
2197 * The @s_sync_lock is used to serialise concurrent sync operations
2198 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2199 * Concurrent callers will block on the s_sync_lock rather than doing contending
2200 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2201 * has been issued up to the time this function is enter is guaranteed to be
2202 * completed by the time we have gained the lock and waited for all IO that is
2203 * in progress regardless of the order callers are granted the lock.
2204 */
2205static void wait_sb_inodes(struct super_block *sb)
2206{
2207        LIST_HEAD(sync_list);
2208
2209        /*
2210         * We need to be protected against the filesystem going from
2211         * r/o to r/w or vice versa.
2212         */
2213        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2214
2215        mutex_lock(&sb->s_sync_lock);
2216
2217        /*
2218         * Splice the writeback list onto a temporary list to avoid waiting on
2219         * inodes that have started writeback after this point.
2220         *
2221         * Use rcu_read_lock() to keep the inodes around until we have a
2222         * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2223         * the local list because inodes can be dropped from either by writeback
2224         * completion.
2225         */
2226        rcu_read_lock();
2227        spin_lock_irq(&sb->s_inode_wblist_lock);
2228        list_splice_init(&sb->s_inodes_wb, &sync_list);
2229
2230        /*
2231         * Data integrity sync. Must wait for all pages under writeback, because
2232         * there may have been pages dirtied before our sync call, but which had
2233         * writeout started before we write it out.  In which case, the inode
2234         * may not be on the dirty list, but we still have to wait for that
2235         * writeout.
2236         */
2237        while (!list_empty(&sync_list)) {
2238                struct inode *inode = list_first_entry(&sync_list, struct inode,
2239                                                       i_wb_list);
2240                struct address_space *mapping = inode->i_mapping;
2241
2242                /*
2243                 * Move each inode back to the wb list before we drop the lock
2244                 * to preserve consistency between i_wb_list and the mapping
2245                 * writeback tag. Writeback completion is responsible to remove
2246                 * the inode from either list once the writeback tag is cleared.
2247                 */
2248                list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2249
2250                /*
2251                 * The mapping can appear untagged while still on-list since we
2252                 * do not have the mapping lock. Skip it here, wb completion
2253                 * will remove it.
2254                 */
2255                if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2256                        continue;
2257
2258                spin_unlock_irq(&sb->s_inode_wblist_lock);
2259
2260                spin_lock(&inode->i_lock);
2261                if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2262                        spin_unlock(&inode->i_lock);
2263
2264                        spin_lock_irq(&sb->s_inode_wblist_lock);
2265                        continue;
2266                }
2267                __iget(inode);
2268                spin_unlock(&inode->i_lock);
2269                rcu_read_unlock();
2270
2271                /*
2272                 * We keep the error status of individual mapping so that
2273                 * applications can catch the writeback error using fsync(2).
2274                 * See filemap_fdatawait_keep_errors() for details.
2275                 */
2276                filemap_fdatawait_keep_errors(mapping);
2277
2278                cond_resched();
2279
2280                iput(inode);
2281
2282                rcu_read_lock();
2283                spin_lock_irq(&sb->s_inode_wblist_lock);
2284        }
2285        spin_unlock_irq(&sb->s_inode_wblist_lock);
2286        rcu_read_unlock();
2287        mutex_unlock(&sb->s_sync_lock);
2288}
2289
2290static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2291                                     enum wb_reason reason, bool skip_if_busy)
2292{
2293        DEFINE_WB_COMPLETION_ONSTACK(done);
2294        struct wb_writeback_work work = {
2295                .sb                     = sb,
2296                .sync_mode              = WB_SYNC_NONE,
2297                .tagged_writepages      = 1,
2298                .done                   = &done,
2299                .nr_pages               = nr,
2300                .reason                 = reason,
2301        };
2302        struct backing_dev_info *bdi = sb->s_bdi;
2303
2304        if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2305                return;
2306        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2307
2308        bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2309        wb_wait_for_completion(bdi, &done);
2310}
2311
2312/**
2313 * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2314 * @sb: the superblock
2315 * @nr: the number of pages to write
2316 * @reason: reason why some writeback work initiated
2317 *
2318 * Start writeback on some inodes on this super_block. No guarantees are made
2319 * on how many (if any) will be written, and this function does not wait
2320 * for IO completion of submitted IO.
2321 */
2322void writeback_inodes_sb_nr(struct super_block *sb,
2323                            unsigned long nr,
2324                            enum wb_reason reason)
2325{
2326        __writeback_inodes_sb_nr(sb, nr, reason, false);
2327}
2328EXPORT_SYMBOL(writeback_inodes_sb_nr);
2329
2330/**
2331 * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2332 * @sb: the superblock
2333 * @reason: reason why some writeback work was initiated
2334 *
2335 * Start writeback on some inodes on this super_block. No guarantees are made
2336 * on how many (if any) will be written, and this function does not wait
2337 * for IO completion of submitted IO.
2338 */
2339void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2340{
2341        return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2342}
2343EXPORT_SYMBOL(writeback_inodes_sb);
2344
2345/**
2346 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2347 * @sb: the superblock
2348 * @nr: the number of pages to write
2349 * @reason: the reason of writeback
2350 *
2351 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2352 * Returns 1 if writeback was started, 0 if not.
2353 */
2354bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2355                                   enum wb_reason reason)
2356{
2357        if (!down_read_trylock(&sb->s_umount))
2358                return false;
2359
2360        __writeback_inodes_sb_nr(sb, nr, reason, true);
2361        up_read(&sb->s_umount);
2362        return true;
2363}
2364EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2365
2366/**
2367 * try_to_writeback_inodes_sb - try to start writeback if none underway
2368 * @sb: the superblock
2369 * @reason: reason why some writeback work was initiated
2370 *
2371 * Implement by try_to_writeback_inodes_sb_nr()
2372 * Returns 1 if writeback was started, 0 if not.
2373 */
2374bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2375{
2376        return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2377}
2378EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2379
2380/**
2381 * sync_inodes_sb       -       sync sb inode pages
2382 * @sb: the superblock
2383 *
2384 * This function writes and waits on any dirty inode belonging to this
2385 * super_block.
2386 */
2387void sync_inodes_sb(struct super_block *sb)
2388{
2389        DEFINE_WB_COMPLETION_ONSTACK(done);
2390        struct wb_writeback_work work = {
2391                .sb             = sb,
2392                .sync_mode      = WB_SYNC_ALL,
2393                .nr_pages       = LONG_MAX,
2394                .range_cyclic   = 0,
2395                .done           = &done,
2396                .reason         = WB_REASON_SYNC,
2397                .for_sync       = 1,
2398        };
2399        struct backing_dev_info *bdi = sb->s_bdi;
2400
2401        /*
2402         * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2403         * inodes under writeback and I_DIRTY_TIME inodes ignored by
2404         * bdi_has_dirty() need to be written out too.
2405         */
2406        if (bdi == &noop_backing_dev_info)
2407                return;
2408        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2409
2410        bdi_split_work_to_wbs(bdi, &work, false);
2411        wb_wait_for_completion(bdi, &done);
2412
2413        wait_sb_inodes(sb);
2414}
2415EXPORT_SYMBOL(sync_inodes_sb);
2416
2417/**
2418 * write_inode_now      -       write an inode to disk
2419 * @inode: inode to write to disk
2420 * @sync: whether the write should be synchronous or not
2421 *
2422 * This function commits an inode to disk immediately if it is dirty. This is
2423 * primarily needed by knfsd.
2424 *
2425 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2426 */
2427int write_inode_now(struct inode *inode, int sync)
2428{
2429        struct writeback_control wbc = {
2430                .nr_to_write = LONG_MAX,
2431                .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2432                .range_start = 0,
2433                .range_end = LLONG_MAX,
2434        };
2435
2436        if (!mapping_cap_writeback_dirty(inode->i_mapping))
2437                wbc.nr_to_write = 0;
2438
2439        might_sleep();
2440        return writeback_single_inode(inode, &wbc);
2441}
2442EXPORT_SYMBOL(write_inode_now);
2443
2444/**
2445 * sync_inode - write an inode and its pages to disk.
2446 * @inode: the inode to sync
2447 * @wbc: controls the writeback mode
2448 *
2449 * sync_inode() will write an inode and its pages to disk.  It will also
2450 * correctly update the inode on its superblock's dirty inode lists and will
2451 * update inode->i_state.
2452 *
2453 * The caller must have a ref on the inode.
2454 */
2455int sync_inode(struct inode *inode, struct writeback_control *wbc)
2456{
2457        return writeback_single_inode(inode, wbc);
2458}
2459EXPORT_SYMBOL(sync_inode);
2460
2461/**
2462 * sync_inode_metadata - write an inode to disk
2463 * @inode: the inode to sync
2464 * @wait: wait for I/O to complete.
2465 *
2466 * Write an inode to disk and adjust its dirty state after completion.
2467 *
2468 * Note: only writes the actual inode, no associated data or other metadata.
2469 */
2470int sync_inode_metadata(struct inode *inode, int wait)
2471{
2472        struct writeback_control wbc = {
2473                .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2474                .nr_to_write = 0, /* metadata-only */
2475        };
2476
2477        return sync_inode(inode, &wbc);
2478}
2479EXPORT_SYMBOL(sync_inode_metadata);
2480