linux/fs/libfs.c
<<
>>
Prefs
   1/*
   2 *      fs/libfs.c
   3 *      Library for filesystems writers.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/export.h>
   8#include <linux/pagemap.h>
   9#include <linux/slab.h>
  10#include <linux/cred.h>
  11#include <linux/mount.h>
  12#include <linux/vfs.h>
  13#include <linux/quotaops.h>
  14#include <linux/mutex.h>
  15#include <linux/namei.h>
  16#include <linux/exportfs.h>
  17#include <linux/writeback.h>
  18#include <linux/buffer_head.h> /* sync_mapping_buffers */
  19
  20#include <linux/uaccess.h>
  21
  22#include "internal.h"
  23
  24int simple_getattr(const struct path *path, struct kstat *stat,
  25                   u32 request_mask, unsigned int query_flags)
  26{
  27        struct inode *inode = d_inode(path->dentry);
  28        generic_fillattr(inode, stat);
  29        stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  30        return 0;
  31}
  32EXPORT_SYMBOL(simple_getattr);
  33
  34int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  35{
  36        buf->f_type = dentry->d_sb->s_magic;
  37        buf->f_bsize = PAGE_SIZE;
  38        buf->f_namelen = NAME_MAX;
  39        return 0;
  40}
  41EXPORT_SYMBOL(simple_statfs);
  42
  43/*
  44 * Retaining negative dentries for an in-memory filesystem just wastes
  45 * memory and lookup time: arrange for them to be deleted immediately.
  46 */
  47int always_delete_dentry(const struct dentry *dentry)
  48{
  49        return 1;
  50}
  51EXPORT_SYMBOL(always_delete_dentry);
  52
  53const struct dentry_operations simple_dentry_operations = {
  54        .d_delete = always_delete_dentry,
  55};
  56EXPORT_SYMBOL(simple_dentry_operations);
  57
  58/*
  59 * Lookup the data. This is trivial - if the dentry didn't already
  60 * exist, we know it is negative.  Set d_op to delete negative dentries.
  61 */
  62struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  63{
  64        if (dentry->d_name.len > NAME_MAX)
  65                return ERR_PTR(-ENAMETOOLONG);
  66        if (!dentry->d_sb->s_d_op)
  67                d_set_d_op(dentry, &simple_dentry_operations);
  68        d_add(dentry, NULL);
  69        return NULL;
  70}
  71EXPORT_SYMBOL(simple_lookup);
  72
  73int dcache_dir_open(struct inode *inode, struct file *file)
  74{
  75        file->private_data = d_alloc_cursor(file->f_path.dentry);
  76
  77        return file->private_data ? 0 : -ENOMEM;
  78}
  79EXPORT_SYMBOL(dcache_dir_open);
  80
  81int dcache_dir_close(struct inode *inode, struct file *file)
  82{
  83        dput(file->private_data);
  84        return 0;
  85}
  86EXPORT_SYMBOL(dcache_dir_close);
  87
  88/* parent is locked at least shared */
  89static struct dentry *next_positive(struct dentry *parent,
  90                                    struct list_head *from,
  91                                    int count)
  92{
  93        unsigned *seq = &parent->d_inode->i_dir_seq, n;
  94        struct dentry *res;
  95        struct list_head *p;
  96        bool skipped;
  97        int i;
  98
  99retry:
 100        i = count;
 101        skipped = false;
 102        n = smp_load_acquire(seq) & ~1;
 103        res = NULL;
 104        rcu_read_lock();
 105        for (p = from->next; p != &parent->d_subdirs; p = p->next) {
 106                struct dentry *d = list_entry(p, struct dentry, d_child);
 107                if (!simple_positive(d)) {
 108                        skipped = true;
 109                } else if (!--i) {
 110                        res = d;
 111                        break;
 112                }
 113        }
 114        rcu_read_unlock();
 115        if (skipped) {
 116                smp_rmb();
 117                if (unlikely(*seq != n))
 118                        goto retry;
 119        }
 120        return res;
 121}
 122
 123static void move_cursor(struct dentry *cursor, struct list_head *after)
 124{
 125        struct dentry *parent = cursor->d_parent;
 126        unsigned n, *seq = &parent->d_inode->i_dir_seq;
 127        spin_lock(&parent->d_lock);
 128        for (;;) {
 129                n = *seq;
 130                if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
 131                        break;
 132                cpu_relax();
 133        }
 134        __list_del(cursor->d_child.prev, cursor->d_child.next);
 135        if (after)
 136                list_add(&cursor->d_child, after);
 137        else
 138                list_add_tail(&cursor->d_child, &parent->d_subdirs);
 139        smp_store_release(seq, n + 2);
 140        spin_unlock(&parent->d_lock);
 141}
 142
 143loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 144{
 145        struct dentry *dentry = file->f_path.dentry;
 146        switch (whence) {
 147                case 1:
 148                        offset += file->f_pos;
 149                case 0:
 150                        if (offset >= 0)
 151                                break;
 152                default:
 153                        return -EINVAL;
 154        }
 155        if (offset != file->f_pos) {
 156                file->f_pos = offset;
 157                if (file->f_pos >= 2) {
 158                        struct dentry *cursor = file->private_data;
 159                        struct dentry *to;
 160                        loff_t n = file->f_pos - 2;
 161
 162                        inode_lock_shared(dentry->d_inode);
 163                        to = next_positive(dentry, &dentry->d_subdirs, n);
 164                        move_cursor(cursor, to ? &to->d_child : NULL);
 165                        inode_unlock_shared(dentry->d_inode);
 166                }
 167        }
 168        return offset;
 169}
 170EXPORT_SYMBOL(dcache_dir_lseek);
 171
 172/* Relationship between i_mode and the DT_xxx types */
 173static inline unsigned char dt_type(struct inode *inode)
 174{
 175        return (inode->i_mode >> 12) & 15;
 176}
 177
 178/*
 179 * Directory is locked and all positive dentries in it are safe, since
 180 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 181 * both impossible due to the lock on directory.
 182 */
 183
 184int dcache_readdir(struct file *file, struct dir_context *ctx)
 185{
 186        struct dentry *dentry = file->f_path.dentry;
 187        struct dentry *cursor = file->private_data;
 188        struct list_head *p = &cursor->d_child;
 189        struct dentry *next;
 190        bool moved = false;
 191
 192        if (!dir_emit_dots(file, ctx))
 193                return 0;
 194
 195        if (ctx->pos == 2)
 196                p = &dentry->d_subdirs;
 197        while ((next = next_positive(dentry, p, 1)) != NULL) {
 198                if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 199                              d_inode(next)->i_ino, dt_type(d_inode(next))))
 200                        break;
 201                moved = true;
 202                p = &next->d_child;
 203                ctx->pos++;
 204        }
 205        if (moved)
 206                move_cursor(cursor, p);
 207        return 0;
 208}
 209EXPORT_SYMBOL(dcache_readdir);
 210
 211ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 212{
 213        return -EISDIR;
 214}
 215EXPORT_SYMBOL(generic_read_dir);
 216
 217const struct file_operations simple_dir_operations = {
 218        .open           = dcache_dir_open,
 219        .release        = dcache_dir_close,
 220        .llseek         = dcache_dir_lseek,
 221        .read           = generic_read_dir,
 222        .iterate_shared = dcache_readdir,
 223        .fsync          = noop_fsync,
 224};
 225EXPORT_SYMBOL(simple_dir_operations);
 226
 227const struct inode_operations simple_dir_inode_operations = {
 228        .lookup         = simple_lookup,
 229};
 230EXPORT_SYMBOL(simple_dir_inode_operations);
 231
 232static const struct super_operations simple_super_operations = {
 233        .statfs         = simple_statfs,
 234};
 235
 236/*
 237 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 238 * will never be mountable)
 239 */
 240struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
 241        const struct super_operations *ops, const struct xattr_handler **xattr,
 242        const struct dentry_operations *dops, unsigned long magic)
 243{
 244        struct super_block *s;
 245        struct dentry *dentry;
 246        struct inode *root;
 247        struct qstr d_name = QSTR_INIT(name, strlen(name));
 248
 249        s = sget_userns(fs_type, NULL, set_anon_super, MS_KERNMOUNT|MS_NOUSER,
 250                        &init_user_ns, NULL);
 251        if (IS_ERR(s))
 252                return ERR_CAST(s);
 253
 254        s->s_maxbytes = MAX_LFS_FILESIZE;
 255        s->s_blocksize = PAGE_SIZE;
 256        s->s_blocksize_bits = PAGE_SHIFT;
 257        s->s_magic = magic;
 258        s->s_op = ops ? ops : &simple_super_operations;
 259        s->s_xattr = xattr;
 260        s->s_time_gran = 1;
 261        root = new_inode(s);
 262        if (!root)
 263                goto Enomem;
 264        /*
 265         * since this is the first inode, make it number 1. New inodes created
 266         * after this must take care not to collide with it (by passing
 267         * max_reserved of 1 to iunique).
 268         */
 269        root->i_ino = 1;
 270        root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 271        root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 272        dentry = __d_alloc(s, &d_name);
 273        if (!dentry) {
 274                iput(root);
 275                goto Enomem;
 276        }
 277        d_instantiate(dentry, root);
 278        s->s_root = dentry;
 279        s->s_d_op = dops;
 280        s->s_flags |= MS_ACTIVE;
 281        return dget(s->s_root);
 282
 283Enomem:
 284        deactivate_locked_super(s);
 285        return ERR_PTR(-ENOMEM);
 286}
 287EXPORT_SYMBOL(mount_pseudo_xattr);
 288
 289int simple_open(struct inode *inode, struct file *file)
 290{
 291        if (inode->i_private)
 292                file->private_data = inode->i_private;
 293        return 0;
 294}
 295EXPORT_SYMBOL(simple_open);
 296
 297int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 298{
 299        struct inode *inode = d_inode(old_dentry);
 300
 301        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 302        inc_nlink(inode);
 303        ihold(inode);
 304        dget(dentry);
 305        d_instantiate(dentry, inode);
 306        return 0;
 307}
 308EXPORT_SYMBOL(simple_link);
 309
 310int simple_empty(struct dentry *dentry)
 311{
 312        struct dentry *child;
 313        int ret = 0;
 314
 315        spin_lock(&dentry->d_lock);
 316        list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 317                spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 318                if (simple_positive(child)) {
 319                        spin_unlock(&child->d_lock);
 320                        goto out;
 321                }
 322                spin_unlock(&child->d_lock);
 323        }
 324        ret = 1;
 325out:
 326        spin_unlock(&dentry->d_lock);
 327        return ret;
 328}
 329EXPORT_SYMBOL(simple_empty);
 330
 331int simple_unlink(struct inode *dir, struct dentry *dentry)
 332{
 333        struct inode *inode = d_inode(dentry);
 334
 335        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 336        drop_nlink(inode);
 337        dput(dentry);
 338        return 0;
 339}
 340EXPORT_SYMBOL(simple_unlink);
 341
 342int simple_rmdir(struct inode *dir, struct dentry *dentry)
 343{
 344        if (!simple_empty(dentry))
 345                return -ENOTEMPTY;
 346
 347        drop_nlink(d_inode(dentry));
 348        simple_unlink(dir, dentry);
 349        drop_nlink(dir);
 350        return 0;
 351}
 352EXPORT_SYMBOL(simple_rmdir);
 353
 354int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 355                  struct inode *new_dir, struct dentry *new_dentry,
 356                  unsigned int flags)
 357{
 358        struct inode *inode = d_inode(old_dentry);
 359        int they_are_dirs = d_is_dir(old_dentry);
 360
 361        if (flags & ~RENAME_NOREPLACE)
 362                return -EINVAL;
 363
 364        if (!simple_empty(new_dentry))
 365                return -ENOTEMPTY;
 366
 367        if (d_really_is_positive(new_dentry)) {
 368                simple_unlink(new_dir, new_dentry);
 369                if (they_are_dirs) {
 370                        drop_nlink(d_inode(new_dentry));
 371                        drop_nlink(old_dir);
 372                }
 373        } else if (they_are_dirs) {
 374                drop_nlink(old_dir);
 375                inc_nlink(new_dir);
 376        }
 377
 378        old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 379                new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 380
 381        return 0;
 382}
 383EXPORT_SYMBOL(simple_rename);
 384
 385/**
 386 * simple_setattr - setattr for simple filesystem
 387 * @dentry: dentry
 388 * @iattr: iattr structure
 389 *
 390 * Returns 0 on success, -error on failure.
 391 *
 392 * simple_setattr is a simple ->setattr implementation without a proper
 393 * implementation of size changes.
 394 *
 395 * It can either be used for in-memory filesystems or special files
 396 * on simple regular filesystems.  Anything that needs to change on-disk
 397 * or wire state on size changes needs its own setattr method.
 398 */
 399int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 400{
 401        struct inode *inode = d_inode(dentry);
 402        int error;
 403
 404        error = setattr_prepare(dentry, iattr);
 405        if (error)
 406                return error;
 407
 408        if (iattr->ia_valid & ATTR_SIZE)
 409                truncate_setsize(inode, iattr->ia_size);
 410        setattr_copy(inode, iattr);
 411        mark_inode_dirty(inode);
 412        return 0;
 413}
 414EXPORT_SYMBOL(simple_setattr);
 415
 416int simple_readpage(struct file *file, struct page *page)
 417{
 418        clear_highpage(page);
 419        flush_dcache_page(page);
 420        SetPageUptodate(page);
 421        unlock_page(page);
 422        return 0;
 423}
 424EXPORT_SYMBOL(simple_readpage);
 425
 426int simple_write_begin(struct file *file, struct address_space *mapping,
 427                        loff_t pos, unsigned len, unsigned flags,
 428                        struct page **pagep, void **fsdata)
 429{
 430        struct page *page;
 431        pgoff_t index;
 432
 433        index = pos >> PAGE_SHIFT;
 434
 435        page = grab_cache_page_write_begin(mapping, index, flags);
 436        if (!page)
 437                return -ENOMEM;
 438
 439        *pagep = page;
 440
 441        if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 442                unsigned from = pos & (PAGE_SIZE - 1);
 443
 444                zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 445        }
 446        return 0;
 447}
 448EXPORT_SYMBOL(simple_write_begin);
 449
 450/**
 451 * simple_write_end - .write_end helper for non-block-device FSes
 452 * @available: See .write_end of address_space_operations
 453 * @file:               "
 454 * @mapping:            "
 455 * @pos:                "
 456 * @len:                "
 457 * @copied:             "
 458 * @page:               "
 459 * @fsdata:             "
 460 *
 461 * simple_write_end does the minimum needed for updating a page after writing is
 462 * done. It has the same API signature as the .write_end of
 463 * address_space_operations vector. So it can just be set onto .write_end for
 464 * FSes that don't need any other processing. i_mutex is assumed to be held.
 465 * Block based filesystems should use generic_write_end().
 466 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 467 * is not called, so a filesystem that actually does store data in .write_inode
 468 * should extend on what's done here with a call to mark_inode_dirty() in the
 469 * case that i_size has changed.
 470 *
 471 * Use *ONLY* with simple_readpage()
 472 */
 473int simple_write_end(struct file *file, struct address_space *mapping,
 474                        loff_t pos, unsigned len, unsigned copied,
 475                        struct page *page, void *fsdata)
 476{
 477        struct inode *inode = page->mapping->host;
 478        loff_t last_pos = pos + copied;
 479
 480        /* zero the stale part of the page if we did a short copy */
 481        if (!PageUptodate(page)) {
 482                if (copied < len) {
 483                        unsigned from = pos & (PAGE_SIZE - 1);
 484
 485                        zero_user(page, from + copied, len - copied);
 486                }
 487                SetPageUptodate(page);
 488        }
 489        /*
 490         * No need to use i_size_read() here, the i_size
 491         * cannot change under us because we hold the i_mutex.
 492         */
 493        if (last_pos > inode->i_size)
 494                i_size_write(inode, last_pos);
 495
 496        set_page_dirty(page);
 497        unlock_page(page);
 498        put_page(page);
 499
 500        return copied;
 501}
 502EXPORT_SYMBOL(simple_write_end);
 503
 504/*
 505 * the inodes created here are not hashed. If you use iunique to generate
 506 * unique inode values later for this filesystem, then you must take care
 507 * to pass it an appropriate max_reserved value to avoid collisions.
 508 */
 509int simple_fill_super(struct super_block *s, unsigned long magic,
 510                      const struct tree_descr *files)
 511{
 512        struct inode *inode;
 513        struct dentry *root;
 514        struct dentry *dentry;
 515        int i;
 516
 517        s->s_blocksize = PAGE_SIZE;
 518        s->s_blocksize_bits = PAGE_SHIFT;
 519        s->s_magic = magic;
 520        s->s_op = &simple_super_operations;
 521        s->s_time_gran = 1;
 522
 523        inode = new_inode(s);
 524        if (!inode)
 525                return -ENOMEM;
 526        /*
 527         * because the root inode is 1, the files array must not contain an
 528         * entry at index 1
 529         */
 530        inode->i_ino = 1;
 531        inode->i_mode = S_IFDIR | 0755;
 532        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 533        inode->i_op = &simple_dir_inode_operations;
 534        inode->i_fop = &simple_dir_operations;
 535        set_nlink(inode, 2);
 536        root = d_make_root(inode);
 537        if (!root)
 538                return -ENOMEM;
 539        for (i = 0; !files->name || files->name[0]; i++, files++) {
 540                if (!files->name)
 541                        continue;
 542
 543                /* warn if it tries to conflict with the root inode */
 544                if (unlikely(i == 1))
 545                        printk(KERN_WARNING "%s: %s passed in a files array"
 546                                "with an index of 1!\n", __func__,
 547                                s->s_type->name);
 548
 549                dentry = d_alloc_name(root, files->name);
 550                if (!dentry)
 551                        goto out;
 552                inode = new_inode(s);
 553                if (!inode) {
 554                        dput(dentry);
 555                        goto out;
 556                }
 557                inode->i_mode = S_IFREG | files->mode;
 558                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 559                inode->i_fop = files->ops;
 560                inode->i_ino = i;
 561                d_add(dentry, inode);
 562        }
 563        s->s_root = root;
 564        return 0;
 565out:
 566        d_genocide(root);
 567        shrink_dcache_parent(root);
 568        dput(root);
 569        return -ENOMEM;
 570}
 571EXPORT_SYMBOL(simple_fill_super);
 572
 573static DEFINE_SPINLOCK(pin_fs_lock);
 574
 575int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 576{
 577        struct vfsmount *mnt = NULL;
 578        spin_lock(&pin_fs_lock);
 579        if (unlikely(!*mount)) {
 580                spin_unlock(&pin_fs_lock);
 581                mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
 582                if (IS_ERR(mnt))
 583                        return PTR_ERR(mnt);
 584                spin_lock(&pin_fs_lock);
 585                if (!*mount)
 586                        *mount = mnt;
 587        }
 588        mntget(*mount);
 589        ++*count;
 590        spin_unlock(&pin_fs_lock);
 591        mntput(mnt);
 592        return 0;
 593}
 594EXPORT_SYMBOL(simple_pin_fs);
 595
 596void simple_release_fs(struct vfsmount **mount, int *count)
 597{
 598        struct vfsmount *mnt;
 599        spin_lock(&pin_fs_lock);
 600        mnt = *mount;
 601        if (!--*count)
 602                *mount = NULL;
 603        spin_unlock(&pin_fs_lock);
 604        mntput(mnt);
 605}
 606EXPORT_SYMBOL(simple_release_fs);
 607
 608/**
 609 * simple_read_from_buffer - copy data from the buffer to user space
 610 * @to: the user space buffer to read to
 611 * @count: the maximum number of bytes to read
 612 * @ppos: the current position in the buffer
 613 * @from: the buffer to read from
 614 * @available: the size of the buffer
 615 *
 616 * The simple_read_from_buffer() function reads up to @count bytes from the
 617 * buffer @from at offset @ppos into the user space address starting at @to.
 618 *
 619 * On success, the number of bytes read is returned and the offset @ppos is
 620 * advanced by this number, or negative value is returned on error.
 621 **/
 622ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 623                                const void *from, size_t available)
 624{
 625        loff_t pos = *ppos;
 626        size_t ret;
 627
 628        if (pos < 0)
 629                return -EINVAL;
 630        if (pos >= available || !count)
 631                return 0;
 632        if (count > available - pos)
 633                count = available - pos;
 634        ret = copy_to_user(to, from + pos, count);
 635        if (ret == count)
 636                return -EFAULT;
 637        count -= ret;
 638        *ppos = pos + count;
 639        return count;
 640}
 641EXPORT_SYMBOL(simple_read_from_buffer);
 642
 643/**
 644 * simple_write_to_buffer - copy data from user space to the buffer
 645 * @to: the buffer to write to
 646 * @available: the size of the buffer
 647 * @ppos: the current position in the buffer
 648 * @from: the user space buffer to read from
 649 * @count: the maximum number of bytes to read
 650 *
 651 * The simple_write_to_buffer() function reads up to @count bytes from the user
 652 * space address starting at @from into the buffer @to at offset @ppos.
 653 *
 654 * On success, the number of bytes written is returned and the offset @ppos is
 655 * advanced by this number, or negative value is returned on error.
 656 **/
 657ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 658                const void __user *from, size_t count)
 659{
 660        loff_t pos = *ppos;
 661        size_t res;
 662
 663        if (pos < 0)
 664                return -EINVAL;
 665        if (pos >= available || !count)
 666                return 0;
 667        if (count > available - pos)
 668                count = available - pos;
 669        res = copy_from_user(to + pos, from, count);
 670        if (res == count)
 671                return -EFAULT;
 672        count -= res;
 673        *ppos = pos + count;
 674        return count;
 675}
 676EXPORT_SYMBOL(simple_write_to_buffer);
 677
 678/**
 679 * memory_read_from_buffer - copy data from the buffer
 680 * @to: the kernel space buffer to read to
 681 * @count: the maximum number of bytes to read
 682 * @ppos: the current position in the buffer
 683 * @from: the buffer to read from
 684 * @available: the size of the buffer
 685 *
 686 * The memory_read_from_buffer() function reads up to @count bytes from the
 687 * buffer @from at offset @ppos into the kernel space address starting at @to.
 688 *
 689 * On success, the number of bytes read is returned and the offset @ppos is
 690 * advanced by this number, or negative value is returned on error.
 691 **/
 692ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 693                                const void *from, size_t available)
 694{
 695        loff_t pos = *ppos;
 696
 697        if (pos < 0)
 698                return -EINVAL;
 699        if (pos >= available)
 700                return 0;
 701        if (count > available - pos)
 702                count = available - pos;
 703        memcpy(to, from + pos, count);
 704        *ppos = pos + count;
 705
 706        return count;
 707}
 708EXPORT_SYMBOL(memory_read_from_buffer);
 709
 710/*
 711 * Transaction based IO.
 712 * The file expects a single write which triggers the transaction, and then
 713 * possibly a read which collects the result - which is stored in a
 714 * file-local buffer.
 715 */
 716
 717void simple_transaction_set(struct file *file, size_t n)
 718{
 719        struct simple_transaction_argresp *ar = file->private_data;
 720
 721        BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 722
 723        /*
 724         * The barrier ensures that ar->size will really remain zero until
 725         * ar->data is ready for reading.
 726         */
 727        smp_mb();
 728        ar->size = n;
 729}
 730EXPORT_SYMBOL(simple_transaction_set);
 731
 732char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 733{
 734        struct simple_transaction_argresp *ar;
 735        static DEFINE_SPINLOCK(simple_transaction_lock);
 736
 737        if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 738                return ERR_PTR(-EFBIG);
 739
 740        ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 741        if (!ar)
 742                return ERR_PTR(-ENOMEM);
 743
 744        spin_lock(&simple_transaction_lock);
 745
 746        /* only one write allowed per open */
 747        if (file->private_data) {
 748                spin_unlock(&simple_transaction_lock);
 749                free_page((unsigned long)ar);
 750                return ERR_PTR(-EBUSY);
 751        }
 752
 753        file->private_data = ar;
 754
 755        spin_unlock(&simple_transaction_lock);
 756
 757        if (copy_from_user(ar->data, buf, size))
 758                return ERR_PTR(-EFAULT);
 759
 760        return ar->data;
 761}
 762EXPORT_SYMBOL(simple_transaction_get);
 763
 764ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 765{
 766        struct simple_transaction_argresp *ar = file->private_data;
 767
 768        if (!ar)
 769                return 0;
 770        return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 771}
 772EXPORT_SYMBOL(simple_transaction_read);
 773
 774int simple_transaction_release(struct inode *inode, struct file *file)
 775{
 776        free_page((unsigned long)file->private_data);
 777        return 0;
 778}
 779EXPORT_SYMBOL(simple_transaction_release);
 780
 781/* Simple attribute files */
 782
 783struct simple_attr {
 784        int (*get)(void *, u64 *);
 785        int (*set)(void *, u64);
 786        char get_buf[24];       /* enough to store a u64 and "\n\0" */
 787        char set_buf[24];
 788        void *data;
 789        const char *fmt;        /* format for read operation */
 790        struct mutex mutex;     /* protects access to these buffers */
 791};
 792
 793/* simple_attr_open is called by an actual attribute open file operation
 794 * to set the attribute specific access operations. */
 795int simple_attr_open(struct inode *inode, struct file *file,
 796                     int (*get)(void *, u64 *), int (*set)(void *, u64),
 797                     const char *fmt)
 798{
 799        struct simple_attr *attr;
 800
 801        attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 802        if (!attr)
 803                return -ENOMEM;
 804
 805        attr->get = get;
 806        attr->set = set;
 807        attr->data = inode->i_private;
 808        attr->fmt = fmt;
 809        mutex_init(&attr->mutex);
 810
 811        file->private_data = attr;
 812
 813        return nonseekable_open(inode, file);
 814}
 815EXPORT_SYMBOL_GPL(simple_attr_open);
 816
 817int simple_attr_release(struct inode *inode, struct file *file)
 818{
 819        kfree(file->private_data);
 820        return 0;
 821}
 822EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only?  This?  Really? */
 823
 824/* read from the buffer that is filled with the get function */
 825ssize_t simple_attr_read(struct file *file, char __user *buf,
 826                         size_t len, loff_t *ppos)
 827{
 828        struct simple_attr *attr;
 829        size_t size;
 830        ssize_t ret;
 831
 832        attr = file->private_data;
 833
 834        if (!attr->get)
 835                return -EACCES;
 836
 837        ret = mutex_lock_interruptible(&attr->mutex);
 838        if (ret)
 839                return ret;
 840
 841        if (*ppos) {            /* continued read */
 842                size = strlen(attr->get_buf);
 843        } else {                /* first read */
 844                u64 val;
 845                ret = attr->get(attr->data, &val);
 846                if (ret)
 847                        goto out;
 848
 849                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 850                                 attr->fmt, (unsigned long long)val);
 851        }
 852
 853        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 854out:
 855        mutex_unlock(&attr->mutex);
 856        return ret;
 857}
 858EXPORT_SYMBOL_GPL(simple_attr_read);
 859
 860/* interpret the buffer as a number to call the set function with */
 861ssize_t simple_attr_write(struct file *file, const char __user *buf,
 862                          size_t len, loff_t *ppos)
 863{
 864        struct simple_attr *attr;
 865        u64 val;
 866        size_t size;
 867        ssize_t ret;
 868
 869        attr = file->private_data;
 870        if (!attr->set)
 871                return -EACCES;
 872
 873        ret = mutex_lock_interruptible(&attr->mutex);
 874        if (ret)
 875                return ret;
 876
 877        ret = -EFAULT;
 878        size = min(sizeof(attr->set_buf) - 1, len);
 879        if (copy_from_user(attr->set_buf, buf, size))
 880                goto out;
 881
 882        attr->set_buf[size] = '\0';
 883        val = simple_strtoll(attr->set_buf, NULL, 0);
 884        ret = attr->set(attr->data, val);
 885        if (ret == 0)
 886                ret = len; /* on success, claim we got the whole input */
 887out:
 888        mutex_unlock(&attr->mutex);
 889        return ret;
 890}
 891EXPORT_SYMBOL_GPL(simple_attr_write);
 892
 893/**
 894 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 895 * @sb:         filesystem to do the file handle conversion on
 896 * @fid:        file handle to convert
 897 * @fh_len:     length of the file handle in bytes
 898 * @fh_type:    type of file handle
 899 * @get_inode:  filesystem callback to retrieve inode
 900 *
 901 * This function decodes @fid as long as it has one of the well-known
 902 * Linux filehandle types and calls @get_inode on it to retrieve the
 903 * inode for the object specified in the file handle.
 904 */
 905struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 906                int fh_len, int fh_type, struct inode *(*get_inode)
 907                        (struct super_block *sb, u64 ino, u32 gen))
 908{
 909        struct inode *inode = NULL;
 910
 911        if (fh_len < 2)
 912                return NULL;
 913
 914        switch (fh_type) {
 915        case FILEID_INO32_GEN:
 916        case FILEID_INO32_GEN_PARENT:
 917                inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 918                break;
 919        }
 920
 921        return d_obtain_alias(inode);
 922}
 923EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 924
 925/**
 926 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 927 * @sb:         filesystem to do the file handle conversion on
 928 * @fid:        file handle to convert
 929 * @fh_len:     length of the file handle in bytes
 930 * @fh_type:    type of file handle
 931 * @get_inode:  filesystem callback to retrieve inode
 932 *
 933 * This function decodes @fid as long as it has one of the well-known
 934 * Linux filehandle types and calls @get_inode on it to retrieve the
 935 * inode for the _parent_ object specified in the file handle if it
 936 * is specified in the file handle, or NULL otherwise.
 937 */
 938struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 939                int fh_len, int fh_type, struct inode *(*get_inode)
 940                        (struct super_block *sb, u64 ino, u32 gen))
 941{
 942        struct inode *inode = NULL;
 943
 944        if (fh_len <= 2)
 945                return NULL;
 946
 947        switch (fh_type) {
 948        case FILEID_INO32_GEN_PARENT:
 949                inode = get_inode(sb, fid->i32.parent_ino,
 950                                  (fh_len > 3 ? fid->i32.parent_gen : 0));
 951                break;
 952        }
 953
 954        return d_obtain_alias(inode);
 955}
 956EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 957
 958/**
 959 * __generic_file_fsync - generic fsync implementation for simple filesystems
 960 *
 961 * @file:       file to synchronize
 962 * @start:      start offset in bytes
 963 * @end:        end offset in bytes (inclusive)
 964 * @datasync:   only synchronize essential metadata if true
 965 *
 966 * This is a generic implementation of the fsync method for simple
 967 * filesystems which track all non-inode metadata in the buffers list
 968 * hanging off the address_space structure.
 969 */
 970int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 971                                 int datasync)
 972{
 973        struct inode *inode = file->f_mapping->host;
 974        int err;
 975        int ret;
 976
 977        err = file_write_and_wait_range(file, start, end);
 978        if (err)
 979                return err;
 980
 981        inode_lock(inode);
 982        ret = sync_mapping_buffers(inode->i_mapping);
 983        if (!(inode->i_state & I_DIRTY_ALL))
 984                goto out;
 985        if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 986                goto out;
 987
 988        err = sync_inode_metadata(inode, 1);
 989        if (ret == 0)
 990                ret = err;
 991
 992out:
 993        inode_unlock(inode);
 994        /* check and advance again to catch errors after syncing out buffers */
 995        err = file_check_and_advance_wb_err(file);
 996        if (ret == 0)
 997                ret = err;
 998        return ret;
 999}
1000EXPORT_SYMBOL(__generic_file_fsync);
1001
1002/**
1003 * generic_file_fsync - generic fsync implementation for simple filesystems
1004 *                      with flush
1005 * @file:       file to synchronize
1006 * @start:      start offset in bytes
1007 * @end:        end offset in bytes (inclusive)
1008 * @datasync:   only synchronize essential metadata if true
1009 *
1010 */
1011
1012int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1013                       int datasync)
1014{
1015        struct inode *inode = file->f_mapping->host;
1016        int err;
1017
1018        err = __generic_file_fsync(file, start, end, datasync);
1019        if (err)
1020                return err;
1021        return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1022}
1023EXPORT_SYMBOL(generic_file_fsync);
1024
1025/**
1026 * generic_check_addressable - Check addressability of file system
1027 * @blocksize_bits:     log of file system block size
1028 * @num_blocks:         number of blocks in file system
1029 *
1030 * Determine whether a file system with @num_blocks blocks (and a
1031 * block size of 2**@blocksize_bits) is addressable by the sector_t
1032 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1033 */
1034int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1035{
1036        u64 last_fs_block = num_blocks - 1;
1037        u64 last_fs_page =
1038                last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1039
1040        if (unlikely(num_blocks == 0))
1041                return 0;
1042
1043        if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1044                return -EINVAL;
1045
1046        if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1047            (last_fs_page > (pgoff_t)(~0ULL))) {
1048                return -EFBIG;
1049        }
1050        return 0;
1051}
1052EXPORT_SYMBOL(generic_check_addressable);
1053
1054/*
1055 * No-op implementation of ->fsync for in-memory filesystems.
1056 */
1057int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1058{
1059        return 0;
1060}
1061EXPORT_SYMBOL(noop_fsync);
1062
1063/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1064void kfree_link(void *p)
1065{
1066        kfree(p);
1067}
1068EXPORT_SYMBOL(kfree_link);
1069
1070/*
1071 * nop .set_page_dirty method so that people can use .page_mkwrite on
1072 * anon inodes.
1073 */
1074static int anon_set_page_dirty(struct page *page)
1075{
1076        return 0;
1077};
1078
1079/*
1080 * A single inode exists for all anon_inode files. Contrary to pipes,
1081 * anon_inode inodes have no associated per-instance data, so we need
1082 * only allocate one of them.
1083 */
1084struct inode *alloc_anon_inode(struct super_block *s)
1085{
1086        static const struct address_space_operations anon_aops = {
1087                .set_page_dirty = anon_set_page_dirty,
1088        };
1089        struct inode *inode = new_inode_pseudo(s);
1090
1091        if (!inode)
1092                return ERR_PTR(-ENOMEM);
1093
1094        inode->i_ino = get_next_ino();
1095        inode->i_mapping->a_ops = &anon_aops;
1096
1097        /*
1098         * Mark the inode dirty from the very beginning,
1099         * that way it will never be moved to the dirty
1100         * list because mark_inode_dirty() will think
1101         * that it already _is_ on the dirty list.
1102         */
1103        inode->i_state = I_DIRTY;
1104        inode->i_mode = S_IRUSR | S_IWUSR;
1105        inode->i_uid = current_fsuid();
1106        inode->i_gid = current_fsgid();
1107        inode->i_flags |= S_PRIVATE;
1108        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1109        return inode;
1110}
1111EXPORT_SYMBOL(alloc_anon_inode);
1112
1113/**
1114 * simple_nosetlease - generic helper for prohibiting leases
1115 * @filp: file pointer
1116 * @arg: type of lease to obtain
1117 * @flp: new lease supplied for insertion
1118 * @priv: private data for lm_setup operation
1119 *
1120 * Generic helper for filesystems that do not wish to allow leases to be set.
1121 * All arguments are ignored and it just returns -EINVAL.
1122 */
1123int
1124simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1125                  void **priv)
1126{
1127        return -EINVAL;
1128}
1129EXPORT_SYMBOL(simple_nosetlease);
1130
1131const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1132                            struct delayed_call *done)
1133{
1134        return inode->i_link;
1135}
1136EXPORT_SYMBOL(simple_get_link);
1137
1138const struct inode_operations simple_symlink_inode_operations = {
1139        .get_link = simple_get_link,
1140};
1141EXPORT_SYMBOL(simple_symlink_inode_operations);
1142
1143/*
1144 * Operations for a permanently empty directory.
1145 */
1146static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1147{
1148        return ERR_PTR(-ENOENT);
1149}
1150
1151static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1152                             u32 request_mask, unsigned int query_flags)
1153{
1154        struct inode *inode = d_inode(path->dentry);
1155        generic_fillattr(inode, stat);
1156        return 0;
1157}
1158
1159static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1160{
1161        return -EPERM;
1162}
1163
1164static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1165{
1166        return -EOPNOTSUPP;
1167}
1168
1169static const struct inode_operations empty_dir_inode_operations = {
1170        .lookup         = empty_dir_lookup,
1171        .permission     = generic_permission,
1172        .setattr        = empty_dir_setattr,
1173        .getattr        = empty_dir_getattr,
1174        .listxattr      = empty_dir_listxattr,
1175};
1176
1177static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1178{
1179        /* An empty directory has two entries . and .. at offsets 0 and 1 */
1180        return generic_file_llseek_size(file, offset, whence, 2, 2);
1181}
1182
1183static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1184{
1185        dir_emit_dots(file, ctx);
1186        return 0;
1187}
1188
1189static const struct file_operations empty_dir_operations = {
1190        .llseek         = empty_dir_llseek,
1191        .read           = generic_read_dir,
1192        .iterate_shared = empty_dir_readdir,
1193        .fsync          = noop_fsync,
1194};
1195
1196
1197void make_empty_dir_inode(struct inode *inode)
1198{
1199        set_nlink(inode, 2);
1200        inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1201        inode->i_uid = GLOBAL_ROOT_UID;
1202        inode->i_gid = GLOBAL_ROOT_GID;
1203        inode->i_rdev = 0;
1204        inode->i_size = 0;
1205        inode->i_blkbits = PAGE_SHIFT;
1206        inode->i_blocks = 0;
1207
1208        inode->i_op = &empty_dir_inode_operations;
1209        inode->i_opflags &= ~IOP_XATTR;
1210        inode->i_fop = &empty_dir_operations;
1211}
1212
1213bool is_empty_dir_inode(struct inode *inode)
1214{
1215        return (inode->i_fop == &empty_dir_operations) &&
1216                (inode->i_op == &empty_dir_inode_operations);
1217}
1218