linux/fs/reiserfs/stree.c
<<
>>
Prefs
   1/*
   2 *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5/*
   6 *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
   7 *  Programm System Institute
   8 *  Pereslavl-Zalessky Russia
   9 */
  10
  11#include <linux/time.h>
  12#include <linux/string.h>
  13#include <linux/pagemap.h>
  14#include <linux/bio.h>
  15#include "reiserfs.h"
  16#include <linux/buffer_head.h>
  17#include <linux/quotaops.h>
  18
  19/* Does the buffer contain a disk block which is in the tree. */
  20inline int B_IS_IN_TREE(const struct buffer_head *bh)
  21{
  22
  23        RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
  24               "PAP-1010: block (%b) has too big level (%z)", bh, bh);
  25
  26        return (B_LEVEL(bh) != FREE_LEVEL);
  27}
  28
  29/* to get item head in le form */
  30inline void copy_item_head(struct item_head *to,
  31                           const struct item_head *from)
  32{
  33        memcpy(to, from, IH_SIZE);
  34}
  35
  36/*
  37 * k1 is pointer to on-disk structure which is stored in little-endian
  38 * form. k2 is pointer to cpu variable. For key of items of the same
  39 * object this returns 0.
  40 * Returns: -1 if key1 < key2
  41 * 0 if key1 == key2
  42 * 1 if key1 > key2
  43 */
  44inline int comp_short_keys(const struct reiserfs_key *le_key,
  45                           const struct cpu_key *cpu_key)
  46{
  47        __u32 n;
  48        n = le32_to_cpu(le_key->k_dir_id);
  49        if (n < cpu_key->on_disk_key.k_dir_id)
  50                return -1;
  51        if (n > cpu_key->on_disk_key.k_dir_id)
  52                return 1;
  53        n = le32_to_cpu(le_key->k_objectid);
  54        if (n < cpu_key->on_disk_key.k_objectid)
  55                return -1;
  56        if (n > cpu_key->on_disk_key.k_objectid)
  57                return 1;
  58        return 0;
  59}
  60
  61/*
  62 * k1 is pointer to on-disk structure which is stored in little-endian
  63 * form. k2 is pointer to cpu variable.
  64 * Compare keys using all 4 key fields.
  65 * Returns: -1 if key1 < key2 0
  66 * if key1 = key2 1 if key1 > key2
  67 */
  68static inline int comp_keys(const struct reiserfs_key *le_key,
  69                            const struct cpu_key *cpu_key)
  70{
  71        int retval;
  72
  73        retval = comp_short_keys(le_key, cpu_key);
  74        if (retval)
  75                return retval;
  76        if (le_key_k_offset(le_key_version(le_key), le_key) <
  77            cpu_key_k_offset(cpu_key))
  78                return -1;
  79        if (le_key_k_offset(le_key_version(le_key), le_key) >
  80            cpu_key_k_offset(cpu_key))
  81                return 1;
  82
  83        if (cpu_key->key_length == 3)
  84                return 0;
  85
  86        /* this part is needed only when tail conversion is in progress */
  87        if (le_key_k_type(le_key_version(le_key), le_key) <
  88            cpu_key_k_type(cpu_key))
  89                return -1;
  90
  91        if (le_key_k_type(le_key_version(le_key), le_key) >
  92            cpu_key_k_type(cpu_key))
  93                return 1;
  94
  95        return 0;
  96}
  97
  98inline int comp_short_le_keys(const struct reiserfs_key *key1,
  99                              const struct reiserfs_key *key2)
 100{
 101        __u32 *k1_u32, *k2_u32;
 102        int key_length = REISERFS_SHORT_KEY_LEN;
 103
 104        k1_u32 = (__u32 *) key1;
 105        k2_u32 = (__u32 *) key2;
 106        for (; key_length--; ++k1_u32, ++k2_u32) {
 107                if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
 108                        return -1;
 109                if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
 110                        return 1;
 111        }
 112        return 0;
 113}
 114
 115inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
 116{
 117        int version;
 118        to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
 119        to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
 120
 121        /* find out version of the key */
 122        version = le_key_version(from);
 123        to->version = version;
 124        to->on_disk_key.k_offset = le_key_k_offset(version, from);
 125        to->on_disk_key.k_type = le_key_k_type(version, from);
 126}
 127
 128/*
 129 * this does not say which one is bigger, it only returns 1 if keys
 130 * are not equal, 0 otherwise
 131 */
 132inline int comp_le_keys(const struct reiserfs_key *k1,
 133                        const struct reiserfs_key *k2)
 134{
 135        return memcmp(k1, k2, sizeof(struct reiserfs_key));
 136}
 137
 138/**************************************************************************
 139 *  Binary search toolkit function                                        *
 140 *  Search for an item in the array by the item key                       *
 141 *  Returns:    1 if found,  0 if not found;                              *
 142 *        *pos = number of the searched element if found, else the        *
 143 *        number of the first element that is larger than key.            *
 144 **************************************************************************/
 145/*
 146 * For those not familiar with binary search: lbound is the leftmost item
 147 * that it could be, rbound the rightmost item that it could be.  We examine
 148 * the item halfway between lbound and rbound, and that tells us either
 149 * that we can increase lbound, or decrease rbound, or that we have found it,
 150 * or if lbound <= rbound that there are no possible items, and we have not
 151 * found it. With each examination we cut the number of possible items it
 152 * could be by one more than half rounded down, or we find it.
 153 */
 154static inline int bin_search(const void *key,   /* Key to search for. */
 155                             const void *base,  /* First item in the array. */
 156                             int num,   /* Number of items in the array. */
 157                             /*
 158                              * Item size in the array.  searched. Lest the
 159                              * reader be confused, note that this is crafted
 160                              * as a general function, and when it is applied
 161                              * specifically to the array of item headers in a
 162                              * node, width is actually the item header size
 163                              * not the item size.
 164                              */
 165                             int width,
 166                             int *pos /* Number of the searched for element. */
 167    )
 168{
 169        int rbound, lbound, j;
 170
 171        for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
 172             lbound <= rbound; j = (rbound + lbound) / 2)
 173                switch (comp_keys
 174                        ((struct reiserfs_key *)((char *)base + j * width),
 175                         (struct cpu_key *)key)) {
 176                case -1:
 177                        lbound = j + 1;
 178                        continue;
 179                case 1:
 180                        rbound = j - 1;
 181                        continue;
 182                case 0:
 183                        *pos = j;
 184                        return ITEM_FOUND;      /* Key found in the array.  */
 185                }
 186
 187        /*
 188         * bin_search did not find given key, it returns position of key,
 189         * that is minimal and greater than the given one.
 190         */
 191        *pos = lbound;
 192        return ITEM_NOT_FOUND;
 193}
 194
 195
 196/* Minimal possible key. It is never in the tree. */
 197const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
 198
 199/* Maximal possible key. It is never in the tree. */
 200static const struct reiserfs_key MAX_KEY = {
 201        cpu_to_le32(0xffffffff),
 202        cpu_to_le32(0xffffffff),
 203        {{cpu_to_le32(0xffffffff),
 204          cpu_to_le32(0xffffffff)},}
 205};
 206
 207/*
 208 * Get delimiting key of the buffer by looking for it in the buffers in the
 209 * path, starting from the bottom of the path, and going upwards.  We must
 210 * check the path's validity at each step.  If the key is not in the path,
 211 * there is no delimiting key in the tree (buffer is first or last buffer
 212 * in tree), and in this case we return a special key, either MIN_KEY or
 213 * MAX_KEY.
 214 */
 215static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
 216                                                  const struct super_block *sb)
 217{
 218        int position, path_offset = chk_path->path_length;
 219        struct buffer_head *parent;
 220
 221        RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
 222               "PAP-5010: invalid offset in the path");
 223
 224        /* While not higher in path than first element. */
 225        while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
 226
 227                RFALSE(!buffer_uptodate
 228                       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
 229                       "PAP-5020: parent is not uptodate");
 230
 231                /* Parent at the path is not in the tree now. */
 232                if (!B_IS_IN_TREE
 233                    (parent =
 234                     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
 235                        return &MAX_KEY;
 236                /* Check whether position in the parent is correct. */
 237                if ((position =
 238                     PATH_OFFSET_POSITION(chk_path,
 239                                          path_offset)) >
 240                    B_NR_ITEMS(parent))
 241                        return &MAX_KEY;
 242                /* Check whether parent at the path really points to the child. */
 243                if (B_N_CHILD_NUM(parent, position) !=
 244                    PATH_OFFSET_PBUFFER(chk_path,
 245                                        path_offset + 1)->b_blocknr)
 246                        return &MAX_KEY;
 247                /*
 248                 * Return delimiting key if position in the parent
 249                 * is not equal to zero.
 250                 */
 251                if (position)
 252                        return internal_key(parent, position - 1);
 253        }
 254        /* Return MIN_KEY if we are in the root of the buffer tree. */
 255        if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
 256            b_blocknr == SB_ROOT_BLOCK(sb))
 257                return &MIN_KEY;
 258        return &MAX_KEY;
 259}
 260
 261/* Get delimiting key of the buffer at the path and its right neighbor. */
 262inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
 263                                           const struct super_block *sb)
 264{
 265        int position, path_offset = chk_path->path_length;
 266        struct buffer_head *parent;
 267
 268        RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
 269               "PAP-5030: invalid offset in the path");
 270
 271        while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
 272
 273                RFALSE(!buffer_uptodate
 274                       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
 275                       "PAP-5040: parent is not uptodate");
 276
 277                /* Parent at the path is not in the tree now. */
 278                if (!B_IS_IN_TREE
 279                    (parent =
 280                     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
 281                        return &MIN_KEY;
 282                /* Check whether position in the parent is correct. */
 283                if ((position =
 284                     PATH_OFFSET_POSITION(chk_path,
 285                                          path_offset)) >
 286                    B_NR_ITEMS(parent))
 287                        return &MIN_KEY;
 288                /*
 289                 * Check whether parent at the path really points
 290                 * to the child.
 291                 */
 292                if (B_N_CHILD_NUM(parent, position) !=
 293                    PATH_OFFSET_PBUFFER(chk_path,
 294                                        path_offset + 1)->b_blocknr)
 295                        return &MIN_KEY;
 296
 297                /*
 298                 * Return delimiting key if position in the parent
 299                 * is not the last one.
 300                 */
 301                if (position != B_NR_ITEMS(parent))
 302                        return internal_key(parent, position);
 303        }
 304
 305        /* Return MAX_KEY if we are in the root of the buffer tree. */
 306        if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
 307            b_blocknr == SB_ROOT_BLOCK(sb))
 308                return &MAX_KEY;
 309        return &MIN_KEY;
 310}
 311
 312/*
 313 * Check whether a key is contained in the tree rooted from a buffer at a path.
 314 * This works by looking at the left and right delimiting keys for the buffer
 315 * in the last path_element in the path.  These delimiting keys are stored
 316 * at least one level above that buffer in the tree. If the buffer is the
 317 * first or last node in the tree order then one of the delimiting keys may
 318 * be absent, and in this case get_lkey and get_rkey return a special key
 319 * which is MIN_KEY or MAX_KEY.
 320 */
 321static inline int key_in_buffer(
 322                                /* Path which should be checked. */
 323                                struct treepath *chk_path,
 324                                /* Key which should be checked. */
 325                                const struct cpu_key *key,
 326                                struct super_block *sb
 327    )
 328{
 329
 330        RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
 331               || chk_path->path_length > MAX_HEIGHT,
 332               "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
 333               key, chk_path->path_length);
 334        RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
 335               "PAP-5060: device must not be NODEV");
 336
 337        if (comp_keys(get_lkey(chk_path, sb), key) == 1)
 338                /* left delimiting key is bigger, that the key we look for */
 339                return 0;
 340        /*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
 341        if (comp_keys(get_rkey(chk_path, sb), key) != 1)
 342                /* key must be less than right delimitiing key */
 343                return 0;
 344        return 1;
 345}
 346
 347int reiserfs_check_path(struct treepath *p)
 348{
 349        RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
 350               "path not properly relsed");
 351        return 0;
 352}
 353
 354/*
 355 * Drop the reference to each buffer in a path and restore
 356 * dirty bits clean when preparing the buffer for the log.
 357 * This version should only be called from fix_nodes()
 358 */
 359void pathrelse_and_restore(struct super_block *sb,
 360                           struct treepath *search_path)
 361{
 362        int path_offset = search_path->path_length;
 363
 364        RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
 365               "clm-4000: invalid path offset");
 366
 367        while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
 368                struct buffer_head *bh;
 369                bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
 370                reiserfs_restore_prepared_buffer(sb, bh);
 371                brelse(bh);
 372        }
 373        search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
 374}
 375
 376/* Drop the reference to each buffer in a path */
 377void pathrelse(struct treepath *search_path)
 378{
 379        int path_offset = search_path->path_length;
 380
 381        RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
 382               "PAP-5090: invalid path offset");
 383
 384        while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
 385                brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
 386
 387        search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
 388}
 389
 390static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
 391{
 392        struct block_head *blkh;
 393        struct item_head *ih;
 394        int used_space;
 395        int prev_location;
 396        int i;
 397        int nr;
 398
 399        blkh = (struct block_head *)buf;
 400        if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
 401                reiserfs_warning(NULL, "reiserfs-5080",
 402                                 "this should be caught earlier");
 403                return 0;
 404        }
 405
 406        nr = blkh_nr_item(blkh);
 407        if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
 408                /* item number is too big or too small */
 409                reiserfs_warning(NULL, "reiserfs-5081",
 410                                 "nr_item seems wrong: %z", bh);
 411                return 0;
 412        }
 413        ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
 414        used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
 415
 416        /* free space does not match to calculated amount of use space */
 417        if (used_space != blocksize - blkh_free_space(blkh)) {
 418                reiserfs_warning(NULL, "reiserfs-5082",
 419                                 "free space seems wrong: %z", bh);
 420                return 0;
 421        }
 422        /*
 423         * FIXME: it is_leaf will hit performance too much - we may have
 424         * return 1 here
 425         */
 426
 427        /* check tables of item heads */
 428        ih = (struct item_head *)(buf + BLKH_SIZE);
 429        prev_location = blocksize;
 430        for (i = 0; i < nr; i++, ih++) {
 431                if (le_ih_k_type(ih) == TYPE_ANY) {
 432                        reiserfs_warning(NULL, "reiserfs-5083",
 433                                         "wrong item type for item %h",
 434                                         ih);
 435                        return 0;
 436                }
 437                if (ih_location(ih) >= blocksize
 438                    || ih_location(ih) < IH_SIZE * nr) {
 439                        reiserfs_warning(NULL, "reiserfs-5084",
 440                                         "item location seems wrong: %h",
 441                                         ih);
 442                        return 0;
 443                }
 444                if (ih_item_len(ih) < 1
 445                    || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
 446                        reiserfs_warning(NULL, "reiserfs-5085",
 447                                         "item length seems wrong: %h",
 448                                         ih);
 449                        return 0;
 450                }
 451                if (prev_location - ih_location(ih) != ih_item_len(ih)) {
 452                        reiserfs_warning(NULL, "reiserfs-5086",
 453                                         "item location seems wrong "
 454                                         "(second one): %h", ih);
 455                        return 0;
 456                }
 457                prev_location = ih_location(ih);
 458        }
 459
 460        /* one may imagine many more checks */
 461        return 1;
 462}
 463
 464/* returns 1 if buf looks like an internal node, 0 otherwise */
 465static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
 466{
 467        struct block_head *blkh;
 468        int nr;
 469        int used_space;
 470
 471        blkh = (struct block_head *)buf;
 472        nr = blkh_level(blkh);
 473        if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
 474                /* this level is not possible for internal nodes */
 475                reiserfs_warning(NULL, "reiserfs-5087",
 476                                 "this should be caught earlier");
 477                return 0;
 478        }
 479
 480        nr = blkh_nr_item(blkh);
 481        /* for internal which is not root we might check min number of keys */
 482        if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
 483                reiserfs_warning(NULL, "reiserfs-5088",
 484                                 "number of key seems wrong: %z", bh);
 485                return 0;
 486        }
 487
 488        used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
 489        if (used_space != blocksize - blkh_free_space(blkh)) {
 490                reiserfs_warning(NULL, "reiserfs-5089",
 491                                 "free space seems wrong: %z", bh);
 492                return 0;
 493        }
 494
 495        /* one may imagine many more checks */
 496        return 1;
 497}
 498
 499/*
 500 * make sure that bh contains formatted node of reiserfs tree of
 501 * 'level'-th level
 502 */
 503static int is_tree_node(struct buffer_head *bh, int level)
 504{
 505        if (B_LEVEL(bh) != level) {
 506                reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
 507                                 "not match to the expected one %d",
 508                                 B_LEVEL(bh), level);
 509                return 0;
 510        }
 511        if (level == DISK_LEAF_NODE_LEVEL)
 512                return is_leaf(bh->b_data, bh->b_size, bh);
 513
 514        return is_internal(bh->b_data, bh->b_size, bh);
 515}
 516
 517#define SEARCH_BY_KEY_READA 16
 518
 519/*
 520 * The function is NOT SCHEDULE-SAFE!
 521 * It might unlock the write lock if we needed to wait for a block
 522 * to be read. Note that in this case it won't recover the lock to avoid
 523 * high contention resulting from too much lock requests, especially
 524 * the caller (search_by_key) will perform other schedule-unsafe
 525 * operations just after calling this function.
 526 *
 527 * @return depth of lock to be restored after read completes
 528 */
 529static int search_by_key_reada(struct super_block *s,
 530                                struct buffer_head **bh,
 531                                b_blocknr_t *b, int num)
 532{
 533        int i, j;
 534        int depth = -1;
 535
 536        for (i = 0; i < num; i++) {
 537                bh[i] = sb_getblk(s, b[i]);
 538        }
 539        /*
 540         * We are going to read some blocks on which we
 541         * have a reference. It's safe, though we might be
 542         * reading blocks concurrently changed if we release
 543         * the lock. But it's still fine because we check later
 544         * if the tree changed
 545         */
 546        for (j = 0; j < i; j++) {
 547                /*
 548                 * note, this needs attention if we are getting rid of the BKL
 549                 * you have to make sure the prepared bit isn't set on this
 550                 * buffer
 551                 */
 552                if (!buffer_uptodate(bh[j])) {
 553                        if (depth == -1)
 554                                depth = reiserfs_write_unlock_nested(s);
 555                        ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j);
 556                }
 557                brelse(bh[j]);
 558        }
 559        return depth;
 560}
 561
 562/*
 563 * This function fills up the path from the root to the leaf as it
 564 * descends the tree looking for the key.  It uses reiserfs_bread to
 565 * try to find buffers in the cache given their block number.  If it
 566 * does not find them in the cache it reads them from disk.  For each
 567 * node search_by_key finds using reiserfs_bread it then uses
 568 * bin_search to look through that node.  bin_search will find the
 569 * position of the block_number of the next node if it is looking
 570 * through an internal node.  If it is looking through a leaf node
 571 * bin_search will find the position of the item which has key either
 572 * equal to given key, or which is the maximal key less than the given
 573 * key.  search_by_key returns a path that must be checked for the
 574 * correctness of the top of the path but need not be checked for the
 575 * correctness of the bottom of the path
 576 */
 577/*
 578 * search_by_key - search for key (and item) in stree
 579 * @sb: superblock
 580 * @key: pointer to key to search for
 581 * @search_path: Allocated and initialized struct treepath; Returned filled
 582 *               on success.
 583 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
 584 *              stop at leaf level.
 585 *
 586 * The function is NOT SCHEDULE-SAFE!
 587 */
 588int search_by_key(struct super_block *sb, const struct cpu_key *key,
 589                  struct treepath *search_path, int stop_level)
 590{
 591        b_blocknr_t block_number;
 592        int expected_level;
 593        struct buffer_head *bh;
 594        struct path_element *last_element;
 595        int node_level, retval;
 596        int right_neighbor_of_leaf_node;
 597        int fs_gen;
 598        struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
 599        b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
 600        int reada_count = 0;
 601
 602#ifdef CONFIG_REISERFS_CHECK
 603        int repeat_counter = 0;
 604#endif
 605
 606        PROC_INFO_INC(sb, search_by_key);
 607
 608        /*
 609         * As we add each node to a path we increase its count.  This means
 610         * that we must be careful to release all nodes in a path before we
 611         * either discard the path struct or re-use the path struct, as we
 612         * do here.
 613         */
 614
 615        pathrelse(search_path);
 616
 617        right_neighbor_of_leaf_node = 0;
 618
 619        /*
 620         * With each iteration of this loop we search through the items in the
 621         * current node, and calculate the next current node(next path element)
 622         * for the next iteration of this loop..
 623         */
 624        block_number = SB_ROOT_BLOCK(sb);
 625        expected_level = -1;
 626        while (1) {
 627
 628#ifdef CONFIG_REISERFS_CHECK
 629                if (!(++repeat_counter % 50000))
 630                        reiserfs_warning(sb, "PAP-5100",
 631                                         "%s: there were %d iterations of "
 632                                         "while loop looking for key %K",
 633                                         current->comm, repeat_counter,
 634                                         key);
 635#endif
 636
 637                /* prep path to have another element added to it. */
 638                last_element =
 639                    PATH_OFFSET_PELEMENT(search_path,
 640                                         ++search_path->path_length);
 641                fs_gen = get_generation(sb);
 642
 643                /*
 644                 * Read the next tree node, and set the last element
 645                 * in the path to have a pointer to it.
 646                 */
 647                if ((bh = last_element->pe_buffer =
 648                     sb_getblk(sb, block_number))) {
 649
 650                        /*
 651                         * We'll need to drop the lock if we encounter any
 652                         * buffers that need to be read. If all of them are
 653                         * already up to date, we don't need to drop the lock.
 654                         */
 655                        int depth = -1;
 656
 657                        if (!buffer_uptodate(bh) && reada_count > 1)
 658                                depth = search_by_key_reada(sb, reada_bh,
 659                                                    reada_blocks, reada_count);
 660
 661                        if (!buffer_uptodate(bh) && depth == -1)
 662                                depth = reiserfs_write_unlock_nested(sb);
 663
 664                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 665                        wait_on_buffer(bh);
 666
 667                        if (depth != -1)
 668                                reiserfs_write_lock_nested(sb, depth);
 669                        if (!buffer_uptodate(bh))
 670                                goto io_error;
 671                } else {
 672io_error:
 673                        search_path->path_length--;
 674                        pathrelse(search_path);
 675                        return IO_ERROR;
 676                }
 677                reada_count = 0;
 678                if (expected_level == -1)
 679                        expected_level = SB_TREE_HEIGHT(sb);
 680                expected_level--;
 681
 682                /*
 683                 * It is possible that schedule occurred. We must check
 684                 * whether the key to search is still in the tree rooted
 685                 * from the current buffer. If not then repeat search
 686                 * from the root.
 687                 */
 688                if (fs_changed(fs_gen, sb) &&
 689                    (!B_IS_IN_TREE(bh) ||
 690                     B_LEVEL(bh) != expected_level ||
 691                     !key_in_buffer(search_path, key, sb))) {
 692                        PROC_INFO_INC(sb, search_by_key_fs_changed);
 693                        PROC_INFO_INC(sb, search_by_key_restarted);
 694                        PROC_INFO_INC(sb,
 695                                      sbk_restarted[expected_level - 1]);
 696                        pathrelse(search_path);
 697
 698                        /*
 699                         * Get the root block number so that we can
 700                         * repeat the search starting from the root.
 701                         */
 702                        block_number = SB_ROOT_BLOCK(sb);
 703                        expected_level = -1;
 704                        right_neighbor_of_leaf_node = 0;
 705
 706                        /* repeat search from the root */
 707                        continue;
 708                }
 709
 710                /*
 711                 * only check that the key is in the buffer if key is not
 712                 * equal to the MAX_KEY. Latter case is only possible in
 713                 * "finish_unfinished()" processing during mount.
 714                 */
 715                RFALSE(comp_keys(&MAX_KEY, key) &&
 716                       !key_in_buffer(search_path, key, sb),
 717                       "PAP-5130: key is not in the buffer");
 718#ifdef CONFIG_REISERFS_CHECK
 719                if (REISERFS_SB(sb)->cur_tb) {
 720                        print_cur_tb("5140");
 721                        reiserfs_panic(sb, "PAP-5140",
 722                                       "schedule occurred in do_balance!");
 723                }
 724#endif
 725
 726                /*
 727                 * make sure, that the node contents look like a node of
 728                 * certain level
 729                 */
 730                if (!is_tree_node(bh, expected_level)) {
 731                        reiserfs_error(sb, "vs-5150",
 732                                       "invalid format found in block %ld. "
 733                                       "Fsck?", bh->b_blocknr);
 734                        pathrelse(search_path);
 735                        return IO_ERROR;
 736                }
 737
 738                /* ok, we have acquired next formatted node in the tree */
 739                node_level = B_LEVEL(bh);
 740
 741                PROC_INFO_BH_STAT(sb, bh, node_level - 1);
 742
 743                RFALSE(node_level < stop_level,
 744                       "vs-5152: tree level (%d) is less than stop level (%d)",
 745                       node_level, stop_level);
 746
 747                retval = bin_search(key, item_head(bh, 0),
 748                                      B_NR_ITEMS(bh),
 749                                      (node_level ==
 750                                       DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
 751                                      KEY_SIZE,
 752                                      &last_element->pe_position);
 753                if (node_level == stop_level) {
 754                        return retval;
 755                }
 756
 757                /* we are not in the stop level */
 758                /*
 759                 * item has been found, so we choose the pointer which
 760                 * is to the right of the found one
 761                 */
 762                if (retval == ITEM_FOUND)
 763                        last_element->pe_position++;
 764
 765                /*
 766                 * if item was not found we choose the position which is to
 767                 * the left of the found item. This requires no code,
 768                 * bin_search did it already.
 769                 */
 770
 771                /*
 772                 * So we have chosen a position in the current node which is
 773                 * an internal node.  Now we calculate child block number by
 774                 * position in the node.
 775                 */
 776                block_number =
 777                    B_N_CHILD_NUM(bh, last_element->pe_position);
 778
 779                /*
 780                 * if we are going to read leaf nodes, try for read
 781                 * ahead as well
 782                 */
 783                if ((search_path->reada & PATH_READA) &&
 784                    node_level == DISK_LEAF_NODE_LEVEL + 1) {
 785                        int pos = last_element->pe_position;
 786                        int limit = B_NR_ITEMS(bh);
 787                        struct reiserfs_key *le_key;
 788
 789                        if (search_path->reada & PATH_READA_BACK)
 790                                limit = 0;
 791                        while (reada_count < SEARCH_BY_KEY_READA) {
 792                                if (pos == limit)
 793                                        break;
 794                                reada_blocks[reada_count++] =
 795                                    B_N_CHILD_NUM(bh, pos);
 796                                if (search_path->reada & PATH_READA_BACK)
 797                                        pos--;
 798                                else
 799                                        pos++;
 800
 801                                /*
 802                                 * check to make sure we're in the same object
 803                                 */
 804                                le_key = internal_key(bh, pos);
 805                                if (le32_to_cpu(le_key->k_objectid) !=
 806                                    key->on_disk_key.k_objectid) {
 807                                        break;
 808                                }
 809                        }
 810                }
 811        }
 812}
 813
 814/*
 815 * Form the path to an item and position in this item which contains
 816 * file byte defined by key. If there is no such item
 817 * corresponding to the key, we point the path to the item with
 818 * maximal key less than key, and *pos_in_item is set to one
 819 * past the last entry/byte in the item.  If searching for entry in a
 820 * directory item, and it is not found, *pos_in_item is set to one
 821 * entry more than the entry with maximal key which is less than the
 822 * sought key.
 823 *
 824 * Note that if there is no entry in this same node which is one more,
 825 * then we point to an imaginary entry.  for direct items, the
 826 * position is in units of bytes, for indirect items the position is
 827 * in units of blocknr entries, for directory items the position is in
 828 * units of directory entries.
 829 */
 830/* The function is NOT SCHEDULE-SAFE! */
 831int search_for_position_by_key(struct super_block *sb,
 832                               /* Key to search (cpu variable) */
 833                               const struct cpu_key *p_cpu_key,
 834                               /* Filled up by this function. */
 835                               struct treepath *search_path)
 836{
 837        struct item_head *p_le_ih;      /* pointer to on-disk structure */
 838        int blk_size;
 839        loff_t item_offset, offset;
 840        struct reiserfs_dir_entry de;
 841        int retval;
 842
 843        /* If searching for directory entry. */
 844        if (is_direntry_cpu_key(p_cpu_key))
 845                return search_by_entry_key(sb, p_cpu_key, search_path,
 846                                           &de);
 847
 848        /* If not searching for directory entry. */
 849
 850        /* If item is found. */
 851        retval = search_item(sb, p_cpu_key, search_path);
 852        if (retval == IO_ERROR)
 853                return retval;
 854        if (retval == ITEM_FOUND) {
 855
 856                RFALSE(!ih_item_len
 857                       (item_head
 858                        (PATH_PLAST_BUFFER(search_path),
 859                         PATH_LAST_POSITION(search_path))),
 860                       "PAP-5165: item length equals zero");
 861
 862                pos_in_item(search_path) = 0;
 863                return POSITION_FOUND;
 864        }
 865
 866        RFALSE(!PATH_LAST_POSITION(search_path),
 867               "PAP-5170: position equals zero");
 868
 869        /* Item is not found. Set path to the previous item. */
 870        p_le_ih =
 871            item_head(PATH_PLAST_BUFFER(search_path),
 872                           --PATH_LAST_POSITION(search_path));
 873        blk_size = sb->s_blocksize;
 874
 875        if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
 876                return FILE_NOT_FOUND;
 877
 878        /* FIXME: quite ugly this far */
 879
 880        item_offset = le_ih_k_offset(p_le_ih);
 881        offset = cpu_key_k_offset(p_cpu_key);
 882
 883        /* Needed byte is contained in the item pointed to by the path. */
 884        if (item_offset <= offset &&
 885            item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
 886                pos_in_item(search_path) = offset - item_offset;
 887                if (is_indirect_le_ih(p_le_ih)) {
 888                        pos_in_item(search_path) /= blk_size;
 889                }
 890                return POSITION_FOUND;
 891        }
 892
 893        /*
 894         * Needed byte is not contained in the item pointed to by the
 895         * path. Set pos_in_item out of the item.
 896         */
 897        if (is_indirect_le_ih(p_le_ih))
 898                pos_in_item(search_path) =
 899                    ih_item_len(p_le_ih) / UNFM_P_SIZE;
 900        else
 901                pos_in_item(search_path) = ih_item_len(p_le_ih);
 902
 903        return POSITION_NOT_FOUND;
 904}
 905
 906/* Compare given item and item pointed to by the path. */
 907int comp_items(const struct item_head *stored_ih, const struct treepath *path)
 908{
 909        struct buffer_head *bh = PATH_PLAST_BUFFER(path);
 910        struct item_head *ih;
 911
 912        /* Last buffer at the path is not in the tree. */
 913        if (!B_IS_IN_TREE(bh))
 914                return 1;
 915
 916        /* Last path position is invalid. */
 917        if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
 918                return 1;
 919
 920        /* we need only to know, whether it is the same item */
 921        ih = tp_item_head(path);
 922        return memcmp(stored_ih, ih, IH_SIZE);
 923}
 924
 925/* unformatted nodes are not logged anymore, ever.  This is safe now */
 926#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
 927
 928/* block can not be forgotten as it is in I/O or held by someone */
 929#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
 930
 931/* prepare for delete or cut of direct item */
 932static inline int prepare_for_direct_item(struct treepath *path,
 933                                          struct item_head *le_ih,
 934                                          struct inode *inode,
 935                                          loff_t new_file_length, int *cut_size)
 936{
 937        loff_t round_len;
 938
 939        if (new_file_length == max_reiserfs_offset(inode)) {
 940                /* item has to be deleted */
 941                *cut_size = -(IH_SIZE + ih_item_len(le_ih));
 942                return M_DELETE;
 943        }
 944        /* new file gets truncated */
 945        if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
 946                round_len = ROUND_UP(new_file_length);
 947                /* this was new_file_length < le_ih ... */
 948                if (round_len < le_ih_k_offset(le_ih)) {
 949                        *cut_size = -(IH_SIZE + ih_item_len(le_ih));
 950                        return M_DELETE;        /* Delete this item. */
 951                }
 952                /* Calculate first position and size for cutting from item. */
 953                pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
 954                *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
 955
 956                return M_CUT;   /* Cut from this item. */
 957        }
 958
 959        /* old file: items may have any length */
 960
 961        if (new_file_length < le_ih_k_offset(le_ih)) {
 962                *cut_size = -(IH_SIZE + ih_item_len(le_ih));
 963                return M_DELETE;        /* Delete this item. */
 964        }
 965
 966        /* Calculate first position and size for cutting from item. */
 967        *cut_size = -(ih_item_len(le_ih) -
 968                      (pos_in_item(path) =
 969                       new_file_length + 1 - le_ih_k_offset(le_ih)));
 970        return M_CUT;           /* Cut from this item. */
 971}
 972
 973static inline int prepare_for_direntry_item(struct treepath *path,
 974                                            struct item_head *le_ih,
 975                                            struct inode *inode,
 976                                            loff_t new_file_length,
 977                                            int *cut_size)
 978{
 979        if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
 980            new_file_length == max_reiserfs_offset(inode)) {
 981                RFALSE(ih_entry_count(le_ih) != 2,
 982                       "PAP-5220: incorrect empty directory item (%h)", le_ih);
 983                *cut_size = -(IH_SIZE + ih_item_len(le_ih));
 984                /* Delete the directory item containing "." and ".." entry. */
 985                return M_DELETE;
 986        }
 987
 988        if (ih_entry_count(le_ih) == 1) {
 989                /*
 990                 * Delete the directory item such as there is one record only
 991                 * in this item
 992                 */
 993                *cut_size = -(IH_SIZE + ih_item_len(le_ih));
 994                return M_DELETE;
 995        }
 996
 997        /* Cut one record from the directory item. */
 998        *cut_size =
 999            -(DEH_SIZE +
1000              entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1001        return M_CUT;
1002}
1003
1004#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1005
1006/*
1007 * If the path points to a directory or direct item, calculate mode
1008 * and the size cut, for balance.
1009 * If the path points to an indirect item, remove some number of its
1010 * unformatted nodes.
1011 * In case of file truncate calculate whether this item must be
1012 * deleted/truncated or last unformatted node of this item will be
1013 * converted to a direct item.
1014 * This function returns a determination of what balance mode the
1015 * calling function should employ.
1016 */
1017static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1018                                      struct inode *inode,
1019                                      struct treepath *path,
1020                                      const struct cpu_key *item_key,
1021                                      /*
1022                                       * Number of unformatted nodes
1023                                       * which were removed from end
1024                                       * of the file.
1025                                       */
1026                                      int *removed,
1027                                      int *cut_size,
1028                                      /* MAX_KEY_OFFSET in case of delete. */
1029                                      unsigned long long new_file_length
1030    )
1031{
1032        struct super_block *sb = inode->i_sb;
1033        struct item_head *p_le_ih = tp_item_head(path);
1034        struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1035
1036        BUG_ON(!th->t_trans_id);
1037
1038        /* Stat_data item. */
1039        if (is_statdata_le_ih(p_le_ih)) {
1040
1041                RFALSE(new_file_length != max_reiserfs_offset(inode),
1042                       "PAP-5210: mode must be M_DELETE");
1043
1044                *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1045                return M_DELETE;
1046        }
1047
1048        /* Directory item. */
1049        if (is_direntry_le_ih(p_le_ih))
1050                return prepare_for_direntry_item(path, p_le_ih, inode,
1051                                                 new_file_length,
1052                                                 cut_size);
1053
1054        /* Direct item. */
1055        if (is_direct_le_ih(p_le_ih))
1056                return prepare_for_direct_item(path, p_le_ih, inode,
1057                                               new_file_length, cut_size);
1058
1059        /* Case of an indirect item. */
1060        {
1061            int blk_size = sb->s_blocksize;
1062            struct item_head s_ih;
1063            int need_re_search;
1064            int delete = 0;
1065            int result = M_CUT;
1066            int pos = 0;
1067
1068            if ( new_file_length == max_reiserfs_offset (inode) ) {
1069                /*
1070                 * prepare_for_delete_or_cut() is called by
1071                 * reiserfs_delete_item()
1072                 */
1073                new_file_length = 0;
1074                delete = 1;
1075            }
1076
1077            do {
1078                need_re_search = 0;
1079                *cut_size = 0;
1080                bh = PATH_PLAST_BUFFER(path);
1081                copy_item_head(&s_ih, tp_item_head(path));
1082                pos = I_UNFM_NUM(&s_ih);
1083
1084                while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1085                    __le32 *unfm;
1086                    __u32 block;
1087
1088                    /*
1089                     * Each unformatted block deletion may involve
1090                     * one additional bitmap block into the transaction,
1091                     * thereby the initial journal space reservation
1092                     * might not be enough.
1093                     */
1094                    if (!delete && (*cut_size) != 0 &&
1095                        reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1096                        break;
1097
1098                    unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1099                    block = get_block_num(unfm, 0);
1100
1101                    if (block != 0) {
1102                        reiserfs_prepare_for_journal(sb, bh, 1);
1103                        put_block_num(unfm, 0, 0);
1104                        journal_mark_dirty(th, bh);
1105                        reiserfs_free_block(th, inode, block, 1);
1106                    }
1107
1108                    reiserfs_cond_resched(sb);
1109
1110                    if (item_moved (&s_ih, path))  {
1111                        need_re_search = 1;
1112                        break;
1113                    }
1114
1115                    pos --;
1116                    (*removed)++;
1117                    (*cut_size) -= UNFM_P_SIZE;
1118
1119                    if (pos == 0) {
1120                        (*cut_size) -= IH_SIZE;
1121                        result = M_DELETE;
1122                        break;
1123                    }
1124                }
1125                /*
1126                 * a trick.  If the buffer has been logged, this will
1127                 * do nothing.  If we've broken the loop without logging
1128                 * it, it will restore the buffer
1129                 */
1130                reiserfs_restore_prepared_buffer(sb, bh);
1131            } while (need_re_search &&
1132                     search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1133            pos_in_item(path) = pos * UNFM_P_SIZE;
1134
1135            if (*cut_size == 0) {
1136                /*
1137                 * Nothing was cut. maybe convert last unformatted node to the
1138                 * direct item?
1139                 */
1140                result = M_CONVERT;
1141            }
1142            return result;
1143        }
1144}
1145
1146/* Calculate number of bytes which will be deleted or cut during balance */
1147static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1148{
1149        int del_size;
1150        struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1151
1152        if (is_statdata_le_ih(p_le_ih))
1153                return 0;
1154
1155        del_size =
1156            (mode ==
1157             M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1158        if (is_direntry_le_ih(p_le_ih)) {
1159                /*
1160                 * return EMPTY_DIR_SIZE; We delete emty directories only.
1161                 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1162                 * different empty size.  ick. FIXME, is this right?
1163                 */
1164                return del_size;
1165        }
1166
1167        if (is_indirect_le_ih(p_le_ih))
1168                del_size = (del_size / UNFM_P_SIZE) *
1169                                (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1170        return del_size;
1171}
1172
1173static void init_tb_struct(struct reiserfs_transaction_handle *th,
1174                           struct tree_balance *tb,
1175                           struct super_block *sb,
1176                           struct treepath *path, int size)
1177{
1178
1179        BUG_ON(!th->t_trans_id);
1180
1181        memset(tb, '\0', sizeof(struct tree_balance));
1182        tb->transaction_handle = th;
1183        tb->tb_sb = sb;
1184        tb->tb_path = path;
1185        PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1186        PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1187        tb->insert_size[0] = size;
1188}
1189
1190void padd_item(char *item, int total_length, int length)
1191{
1192        int i;
1193
1194        for (i = total_length; i > length;)
1195                item[--i] = 0;
1196}
1197
1198#ifdef REISERQUOTA_DEBUG
1199char key2type(struct reiserfs_key *ih)
1200{
1201        if (is_direntry_le_key(2, ih))
1202                return 'd';
1203        if (is_direct_le_key(2, ih))
1204                return 'D';
1205        if (is_indirect_le_key(2, ih))
1206                return 'i';
1207        if (is_statdata_le_key(2, ih))
1208                return 's';
1209        return 'u';
1210}
1211
1212char head2type(struct item_head *ih)
1213{
1214        if (is_direntry_le_ih(ih))
1215                return 'd';
1216        if (is_direct_le_ih(ih))
1217                return 'D';
1218        if (is_indirect_le_ih(ih))
1219                return 'i';
1220        if (is_statdata_le_ih(ih))
1221                return 's';
1222        return 'u';
1223}
1224#endif
1225
1226/*
1227 * Delete object item.
1228 * th       - active transaction handle
1229 * path     - path to the deleted item
1230 * item_key - key to search for the deleted item
1231 * indode   - used for updating i_blocks and quotas
1232 * un_bh    - NULL or unformatted node pointer
1233 */
1234int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1235                         struct treepath *path, const struct cpu_key *item_key,
1236                         struct inode *inode, struct buffer_head *un_bh)
1237{
1238        struct super_block *sb = inode->i_sb;
1239        struct tree_balance s_del_balance;
1240        struct item_head s_ih;
1241        struct item_head *q_ih;
1242        int quota_cut_bytes;
1243        int ret_value, del_size, removed;
1244        int depth;
1245
1246#ifdef CONFIG_REISERFS_CHECK
1247        char mode;
1248        int iter = 0;
1249#endif
1250
1251        BUG_ON(!th->t_trans_id);
1252
1253        init_tb_struct(th, &s_del_balance, sb, path,
1254                       0 /*size is unknown */ );
1255
1256        while (1) {
1257                removed = 0;
1258
1259#ifdef CONFIG_REISERFS_CHECK
1260                iter++;
1261                mode =
1262#endif
1263                    prepare_for_delete_or_cut(th, inode, path,
1264                                              item_key, &removed,
1265                                              &del_size,
1266                                              max_reiserfs_offset(inode));
1267
1268                RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1269
1270                copy_item_head(&s_ih, tp_item_head(path));
1271                s_del_balance.insert_size[0] = del_size;
1272
1273                ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1274                if (ret_value != REPEAT_SEARCH)
1275                        break;
1276
1277                PROC_INFO_INC(sb, delete_item_restarted);
1278
1279                /* file system changed, repeat search */
1280                ret_value =
1281                    search_for_position_by_key(sb, item_key, path);
1282                if (ret_value == IO_ERROR)
1283                        break;
1284                if (ret_value == FILE_NOT_FOUND) {
1285                        reiserfs_warning(sb, "vs-5340",
1286                                         "no items of the file %K found",
1287                                         item_key);
1288                        break;
1289                }
1290        }                       /* while (1) */
1291
1292        if (ret_value != CARRY_ON) {
1293                unfix_nodes(&s_del_balance);
1294                return 0;
1295        }
1296
1297        /* reiserfs_delete_item returns item length when success */
1298        ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1299        q_ih = tp_item_head(path);
1300        quota_cut_bytes = ih_item_len(q_ih);
1301
1302        /*
1303         * hack so the quota code doesn't have to guess if the file has a
1304         * tail.  On tail insert, we allocate quota for 1 unformatted node.
1305         * We test the offset because the tail might have been
1306         * split into multiple items, and we only want to decrement for
1307         * the unfm node once
1308         */
1309        if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1310                if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1311                        quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1312                } else {
1313                        quota_cut_bytes = 0;
1314                }
1315        }
1316
1317        if (un_bh) {
1318                int off;
1319                char *data;
1320
1321                /*
1322                 * We are in direct2indirect conversion, so move tail contents
1323                 * to the unformatted node
1324                 */
1325                /*
1326                 * note, we do the copy before preparing the buffer because we
1327                 * don't care about the contents of the unformatted node yet.
1328                 * the only thing we really care about is the direct item's
1329                 * data is in the unformatted node.
1330                 *
1331                 * Otherwise, we would have to call
1332                 * reiserfs_prepare_for_journal on the unformatted node,
1333                 * which might schedule, meaning we'd have to loop all the
1334                 * way back up to the start of the while loop.
1335                 *
1336                 * The unformatted node must be dirtied later on.  We can't be
1337                 * sure here if the entire tail has been deleted yet.
1338                 *
1339                 * un_bh is from the page cache (all unformatted nodes are
1340                 * from the page cache) and might be a highmem page.  So, we
1341                 * can't use un_bh->b_data.
1342                 * -clm
1343                 */
1344
1345                data = kmap_atomic(un_bh->b_page);
1346                off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1347                memcpy(data + off,
1348                       ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1349                       ret_value);
1350                kunmap_atomic(data);
1351        }
1352
1353        /* Perform balancing after all resources have been collected at once. */
1354        do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1355
1356#ifdef REISERQUOTA_DEBUG
1357        reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1358                       "reiserquota delete_item(): freeing %u, id=%u type=%c",
1359                       quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1360#endif
1361        depth = reiserfs_write_unlock_nested(inode->i_sb);
1362        dquot_free_space_nodirty(inode, quota_cut_bytes);
1363        reiserfs_write_lock_nested(inode->i_sb, depth);
1364
1365        /* Return deleted body length */
1366        return ret_value;
1367}
1368
1369/*
1370 * Summary Of Mechanisms For Handling Collisions Between Processes:
1371 *
1372 *  deletion of the body of the object is performed by iput(), with the
1373 *  result that if multiple processes are operating on a file, the
1374 *  deletion of the body of the file is deferred until the last process
1375 *  that has an open inode performs its iput().
1376 *
1377 *  writes and truncates are protected from collisions by use of
1378 *  semaphores.
1379 *
1380 *  creates, linking, and mknod are protected from collisions with other
1381 *  processes by making the reiserfs_add_entry() the last step in the
1382 *  creation, and then rolling back all changes if there was a collision.
1383 *  - Hans
1384*/
1385
1386/* this deletes item which never gets split */
1387void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1388                                struct inode *inode, struct reiserfs_key *key)
1389{
1390        struct super_block *sb = th->t_super;
1391        struct tree_balance tb;
1392        INITIALIZE_PATH(path);
1393        int item_len = 0;
1394        int tb_init = 0;
1395        struct cpu_key cpu_key;
1396        int retval;
1397        int quota_cut_bytes = 0;
1398
1399        BUG_ON(!th->t_trans_id);
1400
1401        le_key2cpu_key(&cpu_key, key);
1402
1403        while (1) {
1404                retval = search_item(th->t_super, &cpu_key, &path);
1405                if (retval == IO_ERROR) {
1406                        reiserfs_error(th->t_super, "vs-5350",
1407                                       "i/o failure occurred trying "
1408                                       "to delete %K", &cpu_key);
1409                        break;
1410                }
1411                if (retval != ITEM_FOUND) {
1412                        pathrelse(&path);
1413                        /*
1414                         * No need for a warning, if there is just no free
1415                         * space to insert '..' item into the
1416                         * newly-created subdir
1417                         */
1418                        if (!
1419                            ((unsigned long long)
1420                             GET_HASH_VALUE(le_key_k_offset
1421                                            (le_key_version(key), key)) == 0
1422                             && (unsigned long long)
1423                             GET_GENERATION_NUMBER(le_key_k_offset
1424                                                   (le_key_version(key),
1425                                                    key)) == 1))
1426                                reiserfs_warning(th->t_super, "vs-5355",
1427                                                 "%k not found", key);
1428                        break;
1429                }
1430                if (!tb_init) {
1431                        tb_init = 1;
1432                        item_len = ih_item_len(tp_item_head(&path));
1433                        init_tb_struct(th, &tb, th->t_super, &path,
1434                                       -(IH_SIZE + item_len));
1435                }
1436                quota_cut_bytes = ih_item_len(tp_item_head(&path));
1437
1438                retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1439                if (retval == REPEAT_SEARCH) {
1440                        PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1441                        continue;
1442                }
1443
1444                if (retval == CARRY_ON) {
1445                        do_balance(&tb, NULL, NULL, M_DELETE);
1446                        /*
1447                         * Should we count quota for item? (we don't
1448                         * count quotas for save-links)
1449                         */
1450                        if (inode) {
1451                                int depth;
1452#ifdef REISERQUOTA_DEBUG
1453                                reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1454                                               "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1455                                               quota_cut_bytes, inode->i_uid,
1456                                               key2type(key));
1457#endif
1458                                depth = reiserfs_write_unlock_nested(sb);
1459                                dquot_free_space_nodirty(inode,
1460                                                         quota_cut_bytes);
1461                                reiserfs_write_lock_nested(sb, depth);
1462                        }
1463                        break;
1464                }
1465
1466                /* IO_ERROR, NO_DISK_SPACE, etc */
1467                reiserfs_warning(th->t_super, "vs-5360",
1468                                 "could not delete %K due to fix_nodes failure",
1469                                 &cpu_key);
1470                unfix_nodes(&tb);
1471                break;
1472        }
1473
1474        reiserfs_check_path(&path);
1475}
1476
1477int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1478                           struct inode *inode)
1479{
1480        int err;
1481        inode->i_size = 0;
1482        BUG_ON(!th->t_trans_id);
1483
1484        /* for directory this deletes item containing "." and ".." */
1485        err =
1486            reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1487        if (err)
1488                return err;
1489
1490#if defined( USE_INODE_GENERATION_COUNTER )
1491        if (!old_format_only(th->t_super)) {
1492                __le32 *inode_generation;
1493
1494                inode_generation =
1495                    &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1496                le32_add_cpu(inode_generation, 1);
1497        }
1498/* USE_INODE_GENERATION_COUNTER */
1499#endif
1500        reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1501
1502        return err;
1503}
1504
1505static void unmap_buffers(struct page *page, loff_t pos)
1506{
1507        struct buffer_head *bh;
1508        struct buffer_head *head;
1509        struct buffer_head *next;
1510        unsigned long tail_index;
1511        unsigned long cur_index;
1512
1513        if (page) {
1514                if (page_has_buffers(page)) {
1515                        tail_index = pos & (PAGE_SIZE - 1);
1516                        cur_index = 0;
1517                        head = page_buffers(page);
1518                        bh = head;
1519                        do {
1520                                next = bh->b_this_page;
1521
1522                                /*
1523                                 * we want to unmap the buffers that contain
1524                                 * the tail, and all the buffers after it
1525                                 * (since the tail must be at the end of the
1526                                 * file).  We don't want to unmap file data
1527                                 * before the tail, since it might be dirty
1528                                 * and waiting to reach disk
1529                                 */
1530                                cur_index += bh->b_size;
1531                                if (cur_index > tail_index) {
1532                                        reiserfs_unmap_buffer(bh);
1533                                }
1534                                bh = next;
1535                        } while (bh != head);
1536                }
1537        }
1538}
1539
1540static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1541                                    struct inode *inode,
1542                                    struct page *page,
1543                                    struct treepath *path,
1544                                    const struct cpu_key *item_key,
1545                                    loff_t new_file_size, char *mode)
1546{
1547        struct super_block *sb = inode->i_sb;
1548        int block_size = sb->s_blocksize;
1549        int cut_bytes;
1550        BUG_ON(!th->t_trans_id);
1551        BUG_ON(new_file_size != inode->i_size);
1552
1553        /*
1554         * the page being sent in could be NULL if there was an i/o error
1555         * reading in the last block.  The user will hit problems trying to
1556         * read the file, but for now we just skip the indirect2direct
1557         */
1558        if (atomic_read(&inode->i_count) > 1 ||
1559            !tail_has_to_be_packed(inode) ||
1560            !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1561                /* leave tail in an unformatted node */
1562                *mode = M_SKIP_BALANCING;
1563                cut_bytes =
1564                    block_size - (new_file_size & (block_size - 1));
1565                pathrelse(path);
1566                return cut_bytes;
1567        }
1568
1569        /* Perform the conversion to a direct_item. */
1570        return indirect2direct(th, inode, page, path, item_key,
1571                               new_file_size, mode);
1572}
1573
1574/*
1575 * we did indirect_to_direct conversion. And we have inserted direct
1576 * item successesfully, but there were no disk space to cut unfm
1577 * pointer being converted. Therefore we have to delete inserted
1578 * direct item(s)
1579 */
1580static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1581                                         struct inode *inode, struct treepath *path)
1582{
1583        struct cpu_key tail_key;
1584        int tail_len;
1585        int removed;
1586        BUG_ON(!th->t_trans_id);
1587
1588        make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1589        tail_key.key_length = 4;
1590
1591        tail_len =
1592            (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1593        while (tail_len) {
1594                /* look for the last byte of the tail */
1595                if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1596                    POSITION_NOT_FOUND)
1597                        reiserfs_panic(inode->i_sb, "vs-5615",
1598                                       "found invalid item");
1599                RFALSE(path->pos_in_item !=
1600                       ih_item_len(tp_item_head(path)) - 1,
1601                       "vs-5616: appended bytes found");
1602                PATH_LAST_POSITION(path)--;
1603
1604                removed =
1605                    reiserfs_delete_item(th, path, &tail_key, inode,
1606                                         NULL /*unbh not needed */ );
1607                RFALSE(removed <= 0
1608                       || removed > tail_len,
1609                       "vs-5617: there was tail %d bytes, removed item length %d bytes",
1610                       tail_len, removed);
1611                tail_len -= removed;
1612                set_cpu_key_k_offset(&tail_key,
1613                                     cpu_key_k_offset(&tail_key) - removed);
1614        }
1615        reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1616                         "conversion has been rolled back due to "
1617                         "lack of disk space");
1618        mark_inode_dirty(inode);
1619}
1620
1621/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1622int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1623                           struct treepath *path,
1624                           struct cpu_key *item_key,
1625                           struct inode *inode,
1626                           struct page *page, loff_t new_file_size)
1627{
1628        struct super_block *sb = inode->i_sb;
1629        /*
1630         * Every function which is going to call do_balance must first
1631         * create a tree_balance structure.  Then it must fill up this
1632         * structure by using the init_tb_struct and fix_nodes functions.
1633         * After that we can make tree balancing.
1634         */
1635        struct tree_balance s_cut_balance;
1636        struct item_head *p_le_ih;
1637        int cut_size = 0;       /* Amount to be cut. */
1638        int ret_value = CARRY_ON;
1639        int removed = 0;        /* Number of the removed unformatted nodes. */
1640        int is_inode_locked = 0;
1641        char mode;              /* Mode of the balance. */
1642        int retval2 = -1;
1643        int quota_cut_bytes;
1644        loff_t tail_pos = 0;
1645        int depth;
1646
1647        BUG_ON(!th->t_trans_id);
1648
1649        init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1650                       cut_size);
1651
1652        /*
1653         * Repeat this loop until we either cut the item without needing
1654         * to balance, or we fix_nodes without schedule occurring
1655         */
1656        while (1) {
1657                /*
1658                 * Determine the balance mode, position of the first byte to
1659                 * be cut, and size to be cut.  In case of the indirect item
1660                 * free unformatted nodes which are pointed to by the cut
1661                 * pointers.
1662                 */
1663
1664                mode =
1665                    prepare_for_delete_or_cut(th, inode, path,
1666                                              item_key, &removed,
1667                                              &cut_size, new_file_size);
1668                if (mode == M_CONVERT) {
1669                        /*
1670                         * convert last unformatted node to direct item or
1671                         * leave tail in the unformatted node
1672                         */
1673                        RFALSE(ret_value != CARRY_ON,
1674                               "PAP-5570: can not convert twice");
1675
1676                        ret_value =
1677                            maybe_indirect_to_direct(th, inode, page,
1678                                                     path, item_key,
1679                                                     new_file_size, &mode);
1680                        if (mode == M_SKIP_BALANCING)
1681                                /* tail has been left in the unformatted node */
1682                                return ret_value;
1683
1684                        is_inode_locked = 1;
1685
1686                        /*
1687                         * removing of last unformatted node will
1688                         * change value we have to return to truncate.
1689                         * Save it
1690                         */
1691                        retval2 = ret_value;
1692
1693                        /*
1694                         * So, we have performed the first part of the
1695                         * conversion:
1696                         * inserting the new direct item.  Now we are
1697                         * removing the last unformatted node pointer.
1698                         * Set key to search for it.
1699                         */
1700                        set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1701                        item_key->key_length = 4;
1702                        new_file_size -=
1703                            (new_file_size & (sb->s_blocksize - 1));
1704                        tail_pos = new_file_size;
1705                        set_cpu_key_k_offset(item_key, new_file_size + 1);
1706                        if (search_for_position_by_key
1707                            (sb, item_key,
1708                             path) == POSITION_NOT_FOUND) {
1709                                print_block(PATH_PLAST_BUFFER(path), 3,
1710                                            PATH_LAST_POSITION(path) - 1,
1711                                            PATH_LAST_POSITION(path) + 1);
1712                                reiserfs_panic(sb, "PAP-5580", "item to "
1713                                               "convert does not exist (%K)",
1714                                               item_key);
1715                        }
1716                        continue;
1717                }
1718                if (cut_size == 0) {
1719                        pathrelse(path);
1720                        return 0;
1721                }
1722
1723                s_cut_balance.insert_size[0] = cut_size;
1724
1725                ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1726                if (ret_value != REPEAT_SEARCH)
1727                        break;
1728
1729                PROC_INFO_INC(sb, cut_from_item_restarted);
1730
1731                ret_value =
1732                    search_for_position_by_key(sb, item_key, path);
1733                if (ret_value == POSITION_FOUND)
1734                        continue;
1735
1736                reiserfs_warning(sb, "PAP-5610", "item %K not found",
1737                                 item_key);
1738                unfix_nodes(&s_cut_balance);
1739                return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1740        }                       /* while */
1741
1742        /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1743        if (ret_value != CARRY_ON) {
1744                if (is_inode_locked) {
1745                        /*
1746                         * FIXME: this seems to be not needed: we are always
1747                         * able to cut item
1748                         */
1749                        indirect_to_direct_roll_back(th, inode, path);
1750                }
1751                if (ret_value == NO_DISK_SPACE)
1752                        reiserfs_warning(sb, "reiserfs-5092",
1753                                         "NO_DISK_SPACE");
1754                unfix_nodes(&s_cut_balance);
1755                return -EIO;
1756        }
1757
1758        /* go ahead and perform balancing */
1759
1760        RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1761
1762        /* Calculate number of bytes that need to be cut from the item. */
1763        quota_cut_bytes =
1764            (mode ==
1765             M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1766            insert_size[0];
1767        if (retval2 == -1)
1768                ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1769        else
1770                ret_value = retval2;
1771
1772        /*
1773         * For direct items, we only change the quota when deleting the last
1774         * item.
1775         */
1776        p_le_ih = tp_item_head(s_cut_balance.tb_path);
1777        if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1778                if (mode == M_DELETE &&
1779                    (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1780                    1) {
1781                        /* FIXME: this is to keep 3.5 happy */
1782                        REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1783                        quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1784                } else {
1785                        quota_cut_bytes = 0;
1786                }
1787        }
1788#ifdef CONFIG_REISERFS_CHECK
1789        if (is_inode_locked) {
1790                struct item_head *le_ih =
1791                    tp_item_head(s_cut_balance.tb_path);
1792                /*
1793                 * we are going to complete indirect2direct conversion. Make
1794                 * sure, that we exactly remove last unformatted node pointer
1795                 * of the item
1796                 */
1797                if (!is_indirect_le_ih(le_ih))
1798                        reiserfs_panic(sb, "vs-5652",
1799                                       "item must be indirect %h", le_ih);
1800
1801                if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1802                        reiserfs_panic(sb, "vs-5653", "completing "
1803                                       "indirect2direct conversion indirect "
1804                                       "item %h being deleted must be of "
1805                                       "4 byte long", le_ih);
1806
1807                if (mode == M_CUT
1808                    && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1809                        reiserfs_panic(sb, "vs-5654", "can not complete "
1810                                       "indirect2direct conversion of %h "
1811                                       "(CUT, insert_size==%d)",
1812                                       le_ih, s_cut_balance.insert_size[0]);
1813                }
1814                /*
1815                 * it would be useful to make sure, that right neighboring
1816                 * item is direct item of this file
1817                 */
1818        }
1819#endif
1820
1821        do_balance(&s_cut_balance, NULL, NULL, mode);
1822        if (is_inode_locked) {
1823                /*
1824                 * we've done an indirect->direct conversion.  when the
1825                 * data block was freed, it was removed from the list of
1826                 * blocks that must be flushed before the transaction
1827                 * commits, make sure to unmap and invalidate it
1828                 */
1829                unmap_buffers(page, tail_pos);
1830                REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1831        }
1832#ifdef REISERQUOTA_DEBUG
1833        reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1834                       "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1835                       quota_cut_bytes, inode->i_uid, '?');
1836#endif
1837        depth = reiserfs_write_unlock_nested(sb);
1838        dquot_free_space_nodirty(inode, quota_cut_bytes);
1839        reiserfs_write_lock_nested(sb, depth);
1840        return ret_value;
1841}
1842
1843static void truncate_directory(struct reiserfs_transaction_handle *th,
1844                               struct inode *inode)
1845{
1846        BUG_ON(!th->t_trans_id);
1847        if (inode->i_nlink)
1848                reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1849
1850        set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1851        set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1852        reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1853        reiserfs_update_sd(th, inode);
1854        set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1855        set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1856}
1857
1858/*
1859 * Truncate file to the new size. Note, this must be called with a
1860 * transaction already started
1861 */
1862int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1863                         struct inode *inode,   /* ->i_size contains new size */
1864                         struct page *page,     /* up to date for last block */
1865                         /*
1866                          * when it is called by file_release to convert
1867                          * the tail - no timestamps should be updated
1868                          */
1869                         int update_timestamps
1870    )
1871{
1872        INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1873        struct item_head *p_le_ih;      /* Pointer to an item header. */
1874
1875        /* Key to search for a previous file item. */
1876        struct cpu_key s_item_key;
1877        loff_t file_size,       /* Old file size. */
1878         new_file_size; /* New file size. */
1879        int deleted;            /* Number of deleted or truncated bytes. */
1880        int retval;
1881        int err = 0;
1882
1883        BUG_ON(!th->t_trans_id);
1884        if (!
1885            (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1886             || S_ISLNK(inode->i_mode)))
1887                return 0;
1888
1889        /* deletion of directory - no need to update timestamps */
1890        if (S_ISDIR(inode->i_mode)) {
1891                truncate_directory(th, inode);
1892                return 0;
1893        }
1894
1895        /* Get new file size. */
1896        new_file_size = inode->i_size;
1897
1898        /* FIXME: note, that key type is unimportant here */
1899        make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1900                     TYPE_DIRECT, 3);
1901
1902        retval =
1903            search_for_position_by_key(inode->i_sb, &s_item_key,
1904                                       &s_search_path);
1905        if (retval == IO_ERROR) {
1906                reiserfs_error(inode->i_sb, "vs-5657",
1907                               "i/o failure occurred trying to truncate %K",
1908                               &s_item_key);
1909                err = -EIO;
1910                goto out;
1911        }
1912        if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1913                reiserfs_error(inode->i_sb, "PAP-5660",
1914                               "wrong result %d of search for %K", retval,
1915                               &s_item_key);
1916
1917                err = -EIO;
1918                goto out;
1919        }
1920
1921        s_search_path.pos_in_item--;
1922
1923        /* Get real file size (total length of all file items) */
1924        p_le_ih = tp_item_head(&s_search_path);
1925        if (is_statdata_le_ih(p_le_ih))
1926                file_size = 0;
1927        else {
1928                loff_t offset = le_ih_k_offset(p_le_ih);
1929                int bytes =
1930                    op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1931
1932                /*
1933                 * this may mismatch with real file size: if last direct item
1934                 * had no padding zeros and last unformatted node had no free
1935                 * space, this file would have this file size
1936                 */
1937                file_size = offset + bytes - 1;
1938        }
1939        /*
1940         * are we doing a full truncate or delete, if so
1941         * kick in the reada code
1942         */
1943        if (new_file_size == 0)
1944                s_search_path.reada = PATH_READA | PATH_READA_BACK;
1945
1946        if (file_size == 0 || file_size < new_file_size) {
1947                goto update_and_out;
1948        }
1949
1950        /* Update key to search for the last file item. */
1951        set_cpu_key_k_offset(&s_item_key, file_size);
1952
1953        do {
1954                /* Cut or delete file item. */
1955                deleted =
1956                    reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1957                                           inode, page, new_file_size);
1958                if (deleted < 0) {
1959                        reiserfs_warning(inode->i_sb, "vs-5665",
1960                                         "reiserfs_cut_from_item failed");
1961                        reiserfs_check_path(&s_search_path);
1962                        return 0;
1963                }
1964
1965                RFALSE(deleted > file_size,
1966                       "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1967                       deleted, file_size, &s_item_key);
1968
1969                /* Change key to search the last file item. */
1970                file_size -= deleted;
1971
1972                set_cpu_key_k_offset(&s_item_key, file_size);
1973
1974                /*
1975                 * While there are bytes to truncate and previous
1976                 * file item is presented in the tree.
1977                 */
1978
1979                /*
1980                 * This loop could take a really long time, and could log
1981                 * many more blocks than a transaction can hold.  So, we do
1982                 * a polite journal end here, and if the transaction needs
1983                 * ending, we make sure the file is consistent before ending
1984                 * the current trans and starting a new one
1985                 */
1986                if (journal_transaction_should_end(th, 0) ||
1987                    reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1988                        pathrelse(&s_search_path);
1989
1990                        if (update_timestamps) {
1991                                inode->i_mtime = current_time(inode);
1992                                inode->i_ctime = current_time(inode);
1993                        }
1994                        reiserfs_update_sd(th, inode);
1995
1996                        err = journal_end(th);
1997                        if (err)
1998                                goto out;
1999                        err = journal_begin(th, inode->i_sb,
2000                                            JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2001                        if (err)
2002                                goto out;
2003                        reiserfs_update_inode_transaction(inode);
2004                }
2005        } while (file_size > ROUND_UP(new_file_size) &&
2006                 search_for_position_by_key(inode->i_sb, &s_item_key,
2007                                            &s_search_path) == POSITION_FOUND);
2008
2009        RFALSE(file_size > ROUND_UP(new_file_size),
2010               "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2011               new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2012
2013update_and_out:
2014        if (update_timestamps) {
2015                /* this is truncate, not file closing */
2016                inode->i_mtime = current_time(inode);
2017                inode->i_ctime = current_time(inode);
2018        }
2019        reiserfs_update_sd(th, inode);
2020
2021out:
2022        pathrelse(&s_search_path);
2023        return err;
2024}
2025
2026#ifdef CONFIG_REISERFS_CHECK
2027/* this makes sure, that we __append__, not overwrite or add holes */
2028static void check_research_for_paste(struct treepath *path,
2029                                     const struct cpu_key *key)
2030{
2031        struct item_head *found_ih = tp_item_head(path);
2032
2033        if (is_direct_le_ih(found_ih)) {
2034                if (le_ih_k_offset(found_ih) +
2035                    op_bytes_number(found_ih,
2036                                    get_last_bh(path)->b_size) !=
2037                    cpu_key_k_offset(key)
2038                    || op_bytes_number(found_ih,
2039                                       get_last_bh(path)->b_size) !=
2040                    pos_in_item(path))
2041                        reiserfs_panic(NULL, "PAP-5720", "found direct item "
2042                                       "%h or position (%d) does not match "
2043                                       "to key %K", found_ih,
2044                                       pos_in_item(path), key);
2045        }
2046        if (is_indirect_le_ih(found_ih)) {
2047                if (le_ih_k_offset(found_ih) +
2048                    op_bytes_number(found_ih,
2049                                    get_last_bh(path)->b_size) !=
2050                    cpu_key_k_offset(key)
2051                    || I_UNFM_NUM(found_ih) != pos_in_item(path)
2052                    || get_ih_free_space(found_ih) != 0)
2053                        reiserfs_panic(NULL, "PAP-5730", "found indirect "
2054                                       "item (%h) or position (%d) does not "
2055                                       "match to key (%K)",
2056                                       found_ih, pos_in_item(path), key);
2057        }
2058}
2059#endif                          /* config reiserfs check */
2060
2061/*
2062 * Paste bytes to the existing item.
2063 * Returns bytes number pasted into the item.
2064 */
2065int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2066                             /* Path to the pasted item. */
2067                             struct treepath *search_path,
2068                             /* Key to search for the needed item. */
2069                             const struct cpu_key *key,
2070                             /* Inode item belongs to */
2071                             struct inode *inode,
2072                             /* Pointer to the bytes to paste. */
2073                             const char *body,
2074                             /* Size of pasted bytes. */
2075                             int pasted_size)
2076{
2077        struct super_block *sb = inode->i_sb;
2078        struct tree_balance s_paste_balance;
2079        int retval;
2080        int fs_gen;
2081        int depth;
2082
2083        BUG_ON(!th->t_trans_id);
2084
2085        fs_gen = get_generation(inode->i_sb);
2086
2087#ifdef REISERQUOTA_DEBUG
2088        reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2089                       "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2090                       pasted_size, inode->i_uid,
2091                       key2type(&key->on_disk_key));
2092#endif
2093
2094        depth = reiserfs_write_unlock_nested(sb);
2095        retval = dquot_alloc_space_nodirty(inode, pasted_size);
2096        reiserfs_write_lock_nested(sb, depth);
2097        if (retval) {
2098                pathrelse(search_path);
2099                return retval;
2100        }
2101        init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2102                       pasted_size);
2103#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2104        s_paste_balance.key = key->on_disk_key;
2105#endif
2106
2107        /* DQUOT_* can schedule, must check before the fix_nodes */
2108        if (fs_changed(fs_gen, inode->i_sb)) {
2109                goto search_again;
2110        }
2111
2112        while ((retval =
2113                fix_nodes(M_PASTE, &s_paste_balance, NULL,
2114                          body)) == REPEAT_SEARCH) {
2115search_again:
2116                /* file system changed while we were in the fix_nodes */
2117                PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2118                retval =
2119                    search_for_position_by_key(th->t_super, key,
2120                                               search_path);
2121                if (retval == IO_ERROR) {
2122                        retval = -EIO;
2123                        goto error_out;
2124                }
2125                if (retval == POSITION_FOUND) {
2126                        reiserfs_warning(inode->i_sb, "PAP-5710",
2127                                         "entry or pasted byte (%K) exists",
2128                                         key);
2129                        retval = -EEXIST;
2130                        goto error_out;
2131                }
2132#ifdef CONFIG_REISERFS_CHECK
2133                check_research_for_paste(search_path, key);
2134#endif
2135        }
2136
2137        /*
2138         * Perform balancing after all resources are collected by fix_nodes,
2139         * and accessing them will not risk triggering schedule.
2140         */
2141        if (retval == CARRY_ON) {
2142                do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2143                return 0;
2144        }
2145        retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2146error_out:
2147        /* this also releases the path */
2148        unfix_nodes(&s_paste_balance);
2149#ifdef REISERQUOTA_DEBUG
2150        reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2151                       "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2152                       pasted_size, inode->i_uid,
2153                       key2type(&key->on_disk_key));
2154#endif
2155        depth = reiserfs_write_unlock_nested(sb);
2156        dquot_free_space_nodirty(inode, pasted_size);
2157        reiserfs_write_lock_nested(sb, depth);
2158        return retval;
2159}
2160
2161/*
2162 * Insert new item into the buffer at the path.
2163 * th   - active transaction handle
2164 * path - path to the inserted item
2165 * ih   - pointer to the item header to insert
2166 * body - pointer to the bytes to insert
2167 */
2168int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2169                         struct treepath *path, const struct cpu_key *key,
2170                         struct item_head *ih, struct inode *inode,
2171                         const char *body)
2172{
2173        struct tree_balance s_ins_balance;
2174        int retval;
2175        int fs_gen = 0;
2176        int quota_bytes = 0;
2177
2178        BUG_ON(!th->t_trans_id);
2179
2180        if (inode) {            /* Do we count quotas for item? */
2181                int depth;
2182                fs_gen = get_generation(inode->i_sb);
2183                quota_bytes = ih_item_len(ih);
2184
2185                /*
2186                 * hack so the quota code doesn't have to guess
2187                 * if the file has a tail, links are always tails,
2188                 * so there's no guessing needed
2189                 */
2190                if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2191                        quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2192#ifdef REISERQUOTA_DEBUG
2193                reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2194                               "reiserquota insert_item(): allocating %u id=%u type=%c",
2195                               quota_bytes, inode->i_uid, head2type(ih));
2196#endif
2197                /*
2198                 * We can't dirty inode here. It would be immediately
2199                 * written but appropriate stat item isn't inserted yet...
2200                 */
2201                depth = reiserfs_write_unlock_nested(inode->i_sb);
2202                retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2203                reiserfs_write_lock_nested(inode->i_sb, depth);
2204                if (retval) {
2205                        pathrelse(path);
2206                        return retval;
2207                }
2208        }
2209        init_tb_struct(th, &s_ins_balance, th->t_super, path,
2210                       IH_SIZE + ih_item_len(ih));
2211#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2212        s_ins_balance.key = key->on_disk_key;
2213#endif
2214        /*
2215         * DQUOT_* can schedule, must check to be sure calling
2216         * fix_nodes is safe
2217         */
2218        if (inode && fs_changed(fs_gen, inode->i_sb)) {
2219                goto search_again;
2220        }
2221
2222        while ((retval =
2223                fix_nodes(M_INSERT, &s_ins_balance, ih,
2224                          body)) == REPEAT_SEARCH) {
2225search_again:
2226                /* file system changed while we were in the fix_nodes */
2227                PROC_INFO_INC(th->t_super, insert_item_restarted);
2228                retval = search_item(th->t_super, key, path);
2229                if (retval == IO_ERROR) {
2230                        retval = -EIO;
2231                        goto error_out;
2232                }
2233                if (retval == ITEM_FOUND) {
2234                        reiserfs_warning(th->t_super, "PAP-5760",
2235                                         "key %K already exists in the tree",
2236                                         key);
2237                        retval = -EEXIST;
2238                        goto error_out;
2239                }
2240        }
2241
2242        /* make balancing after all resources will be collected at a time */
2243        if (retval == CARRY_ON) {
2244                do_balance(&s_ins_balance, ih, body, M_INSERT);
2245                return 0;
2246        }
2247
2248        retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2249error_out:
2250        /* also releases the path */
2251        unfix_nodes(&s_ins_balance);
2252#ifdef REISERQUOTA_DEBUG
2253        reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2254                       "reiserquota insert_item(): freeing %u id=%u type=%c",
2255                       quota_bytes, inode->i_uid, head2type(ih));
2256#endif
2257        if (inode) {
2258                int depth = reiserfs_write_unlock_nested(inode->i_sb);
2259                dquot_free_space_nodirty(inode, quota_bytes);
2260                reiserfs_write_lock_nested(inode->i_sb, depth);
2261        }
2262        return retval;
2263}
2264