linux/fs/ubifs/lpt_commit.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements commit-related functionality of the LEB properties
  25 * subsystem.
  26 */
  27
  28#include <linux/crc16.h>
  29#include <linux/slab.h>
  30#include <linux/random.h>
  31#include "ubifs.h"
  32
  33static int dbg_populate_lsave(struct ubifs_info *c);
  34
  35/**
  36 * first_dirty_cnode - find first dirty cnode.
  37 * @nnode: nnode at which to start
  38 *
  39 * This function returns the first dirty cnode or %NULL if there is not one.
  40 */
  41static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
  42{
  43        ubifs_assert(nnode);
  44        while (1) {
  45                int i, cont = 0;
  46
  47                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
  48                        struct ubifs_cnode *cnode;
  49
  50                        cnode = nnode->nbranch[i].cnode;
  51                        if (cnode &&
  52                            test_bit(DIRTY_CNODE, &cnode->flags)) {
  53                                if (cnode->level == 0)
  54                                        return cnode;
  55                                nnode = (struct ubifs_nnode *)cnode;
  56                                cont = 1;
  57                                break;
  58                        }
  59                }
  60                if (!cont)
  61                        return (struct ubifs_cnode *)nnode;
  62        }
  63}
  64
  65/**
  66 * next_dirty_cnode - find next dirty cnode.
  67 * @cnode: cnode from which to begin searching
  68 *
  69 * This function returns the next dirty cnode or %NULL if there is not one.
  70 */
  71static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
  72{
  73        struct ubifs_nnode *nnode;
  74        int i;
  75
  76        ubifs_assert(cnode);
  77        nnode = cnode->parent;
  78        if (!nnode)
  79                return NULL;
  80        for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
  81                cnode = nnode->nbranch[i].cnode;
  82                if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
  83                        if (cnode->level == 0)
  84                                return cnode; /* cnode is a pnode */
  85                        /* cnode is a nnode */
  86                        return first_dirty_cnode((struct ubifs_nnode *)cnode);
  87                }
  88        }
  89        return (struct ubifs_cnode *)nnode;
  90}
  91
  92/**
  93 * get_cnodes_to_commit - create list of dirty cnodes to commit.
  94 * @c: UBIFS file-system description object
  95 *
  96 * This function returns the number of cnodes to commit.
  97 */
  98static int get_cnodes_to_commit(struct ubifs_info *c)
  99{
 100        struct ubifs_cnode *cnode, *cnext;
 101        int cnt = 0;
 102
 103        if (!c->nroot)
 104                return 0;
 105
 106        if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
 107                return 0;
 108
 109        c->lpt_cnext = first_dirty_cnode(c->nroot);
 110        cnode = c->lpt_cnext;
 111        if (!cnode)
 112                return 0;
 113        cnt += 1;
 114        while (1) {
 115                ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
 116                __set_bit(COW_CNODE, &cnode->flags);
 117                cnext = next_dirty_cnode(cnode);
 118                if (!cnext) {
 119                        cnode->cnext = c->lpt_cnext;
 120                        break;
 121                }
 122                cnode->cnext = cnext;
 123                cnode = cnext;
 124                cnt += 1;
 125        }
 126        dbg_cmt("committing %d cnodes", cnt);
 127        dbg_lp("committing %d cnodes", cnt);
 128        ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
 129        return cnt;
 130}
 131
 132/**
 133 * upd_ltab - update LPT LEB properties.
 134 * @c: UBIFS file-system description object
 135 * @lnum: LEB number
 136 * @free: amount of free space
 137 * @dirty: amount of dirty space to add
 138 */
 139static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
 140{
 141        dbg_lp("LEB %d free %d dirty %d to %d +%d",
 142               lnum, c->ltab[lnum - c->lpt_first].free,
 143               c->ltab[lnum - c->lpt_first].dirty, free, dirty);
 144        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 145        c->ltab[lnum - c->lpt_first].free = free;
 146        c->ltab[lnum - c->lpt_first].dirty += dirty;
 147}
 148
 149/**
 150 * alloc_lpt_leb - allocate an LPT LEB that is empty.
 151 * @c: UBIFS file-system description object
 152 * @lnum: LEB number is passed and returned here
 153 *
 154 * This function finds the next empty LEB in the ltab starting from @lnum. If a
 155 * an empty LEB is found it is returned in @lnum and the function returns %0.
 156 * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
 157 * never to run out of space.
 158 */
 159static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
 160{
 161        int i, n;
 162
 163        n = *lnum - c->lpt_first + 1;
 164        for (i = n; i < c->lpt_lebs; i++) {
 165                if (c->ltab[i].tgc || c->ltab[i].cmt)
 166                        continue;
 167                if (c->ltab[i].free == c->leb_size) {
 168                        c->ltab[i].cmt = 1;
 169                        *lnum = i + c->lpt_first;
 170                        return 0;
 171                }
 172        }
 173
 174        for (i = 0; i < n; i++) {
 175                if (c->ltab[i].tgc || c->ltab[i].cmt)
 176                        continue;
 177                if (c->ltab[i].free == c->leb_size) {
 178                        c->ltab[i].cmt = 1;
 179                        *lnum = i + c->lpt_first;
 180                        return 0;
 181                }
 182        }
 183        return -ENOSPC;
 184}
 185
 186/**
 187 * layout_cnodes - layout cnodes for commit.
 188 * @c: UBIFS file-system description object
 189 *
 190 * This function returns %0 on success and a negative error code on failure.
 191 */
 192static int layout_cnodes(struct ubifs_info *c)
 193{
 194        int lnum, offs, len, alen, done_lsave, done_ltab, err;
 195        struct ubifs_cnode *cnode;
 196
 197        err = dbg_chk_lpt_sz(c, 0, 0);
 198        if (err)
 199                return err;
 200        cnode = c->lpt_cnext;
 201        if (!cnode)
 202                return 0;
 203        lnum = c->nhead_lnum;
 204        offs = c->nhead_offs;
 205        /* Try to place lsave and ltab nicely */
 206        done_lsave = !c->big_lpt;
 207        done_ltab = 0;
 208        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 209                done_lsave = 1;
 210                c->lsave_lnum = lnum;
 211                c->lsave_offs = offs;
 212                offs += c->lsave_sz;
 213                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 214        }
 215
 216        if (offs + c->ltab_sz <= c->leb_size) {
 217                done_ltab = 1;
 218                c->ltab_lnum = lnum;
 219                c->ltab_offs = offs;
 220                offs += c->ltab_sz;
 221                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 222        }
 223
 224        do {
 225                if (cnode->level) {
 226                        len = c->nnode_sz;
 227                        c->dirty_nn_cnt -= 1;
 228                } else {
 229                        len = c->pnode_sz;
 230                        c->dirty_pn_cnt -= 1;
 231                }
 232                while (offs + len > c->leb_size) {
 233                        alen = ALIGN(offs, c->min_io_size);
 234                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 235                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 236                        err = alloc_lpt_leb(c, &lnum);
 237                        if (err)
 238                                goto no_space;
 239                        offs = 0;
 240                        ubifs_assert(lnum >= c->lpt_first &&
 241                                     lnum <= c->lpt_last);
 242                        /* Try to place lsave and ltab nicely */
 243                        if (!done_lsave) {
 244                                done_lsave = 1;
 245                                c->lsave_lnum = lnum;
 246                                c->lsave_offs = offs;
 247                                offs += c->lsave_sz;
 248                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 249                                continue;
 250                        }
 251                        if (!done_ltab) {
 252                                done_ltab = 1;
 253                                c->ltab_lnum = lnum;
 254                                c->ltab_offs = offs;
 255                                offs += c->ltab_sz;
 256                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 257                                continue;
 258                        }
 259                        break;
 260                }
 261                if (cnode->parent) {
 262                        cnode->parent->nbranch[cnode->iip].lnum = lnum;
 263                        cnode->parent->nbranch[cnode->iip].offs = offs;
 264                } else {
 265                        c->lpt_lnum = lnum;
 266                        c->lpt_offs = offs;
 267                }
 268                offs += len;
 269                dbg_chk_lpt_sz(c, 1, len);
 270                cnode = cnode->cnext;
 271        } while (cnode && cnode != c->lpt_cnext);
 272
 273        /* Make sure to place LPT's save table */
 274        if (!done_lsave) {
 275                if (offs + c->lsave_sz > c->leb_size) {
 276                        alen = ALIGN(offs, c->min_io_size);
 277                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 278                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 279                        err = alloc_lpt_leb(c, &lnum);
 280                        if (err)
 281                                goto no_space;
 282                        offs = 0;
 283                        ubifs_assert(lnum >= c->lpt_first &&
 284                                     lnum <= c->lpt_last);
 285                }
 286                done_lsave = 1;
 287                c->lsave_lnum = lnum;
 288                c->lsave_offs = offs;
 289                offs += c->lsave_sz;
 290                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 291        }
 292
 293        /* Make sure to place LPT's own lprops table */
 294        if (!done_ltab) {
 295                if (offs + c->ltab_sz > c->leb_size) {
 296                        alen = ALIGN(offs, c->min_io_size);
 297                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 298                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 299                        err = alloc_lpt_leb(c, &lnum);
 300                        if (err)
 301                                goto no_space;
 302                        offs = 0;
 303                        ubifs_assert(lnum >= c->lpt_first &&
 304                                     lnum <= c->lpt_last);
 305                }
 306                c->ltab_lnum = lnum;
 307                c->ltab_offs = offs;
 308                offs += c->ltab_sz;
 309                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 310        }
 311
 312        alen = ALIGN(offs, c->min_io_size);
 313        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 314        dbg_chk_lpt_sz(c, 4, alen - offs);
 315        err = dbg_chk_lpt_sz(c, 3, alen);
 316        if (err)
 317                return err;
 318        return 0;
 319
 320no_space:
 321        ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
 322                  lnum, offs, len, done_ltab, done_lsave);
 323        ubifs_dump_lpt_info(c);
 324        ubifs_dump_lpt_lebs(c);
 325        dump_stack();
 326        return err;
 327}
 328
 329/**
 330 * realloc_lpt_leb - allocate an LPT LEB that is empty.
 331 * @c: UBIFS file-system description object
 332 * @lnum: LEB number is passed and returned here
 333 *
 334 * This function duplicates exactly the results of the function alloc_lpt_leb.
 335 * It is used during end commit to reallocate the same LEB numbers that were
 336 * allocated by alloc_lpt_leb during start commit.
 337 *
 338 * This function finds the next LEB that was allocated by the alloc_lpt_leb
 339 * function starting from @lnum. If a LEB is found it is returned in @lnum and
 340 * the function returns %0. Otherwise the function returns -ENOSPC.
 341 * Note however, that LPT is designed never to run out of space.
 342 */
 343static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
 344{
 345        int i, n;
 346
 347        n = *lnum - c->lpt_first + 1;
 348        for (i = n; i < c->lpt_lebs; i++)
 349                if (c->ltab[i].cmt) {
 350                        c->ltab[i].cmt = 0;
 351                        *lnum = i + c->lpt_first;
 352                        return 0;
 353                }
 354
 355        for (i = 0; i < n; i++)
 356                if (c->ltab[i].cmt) {
 357                        c->ltab[i].cmt = 0;
 358                        *lnum = i + c->lpt_first;
 359                        return 0;
 360                }
 361        return -ENOSPC;
 362}
 363
 364/**
 365 * write_cnodes - write cnodes for commit.
 366 * @c: UBIFS file-system description object
 367 *
 368 * This function returns %0 on success and a negative error code on failure.
 369 */
 370static int write_cnodes(struct ubifs_info *c)
 371{
 372        int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
 373        struct ubifs_cnode *cnode;
 374        void *buf = c->lpt_buf;
 375
 376        cnode = c->lpt_cnext;
 377        if (!cnode)
 378                return 0;
 379        lnum = c->nhead_lnum;
 380        offs = c->nhead_offs;
 381        from = offs;
 382        /* Ensure empty LEB is unmapped */
 383        if (offs == 0) {
 384                err = ubifs_leb_unmap(c, lnum);
 385                if (err)
 386                        return err;
 387        }
 388        /* Try to place lsave and ltab nicely */
 389        done_lsave = !c->big_lpt;
 390        done_ltab = 0;
 391        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 392                done_lsave = 1;
 393                ubifs_pack_lsave(c, buf + offs, c->lsave);
 394                offs += c->lsave_sz;
 395                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 396        }
 397
 398        if (offs + c->ltab_sz <= c->leb_size) {
 399                done_ltab = 1;
 400                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 401                offs += c->ltab_sz;
 402                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 403        }
 404
 405        /* Loop for each cnode */
 406        do {
 407                if (cnode->level)
 408                        len = c->nnode_sz;
 409                else
 410                        len = c->pnode_sz;
 411                while (offs + len > c->leb_size) {
 412                        wlen = offs - from;
 413                        if (wlen) {
 414                                alen = ALIGN(wlen, c->min_io_size);
 415                                memset(buf + offs, 0xff, alen - wlen);
 416                                err = ubifs_leb_write(c, lnum, buf + from, from,
 417                                                       alen);
 418                                if (err)
 419                                        return err;
 420                        }
 421                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 422                        err = realloc_lpt_leb(c, &lnum);
 423                        if (err)
 424                                goto no_space;
 425                        offs = from = 0;
 426                        ubifs_assert(lnum >= c->lpt_first &&
 427                                     lnum <= c->lpt_last);
 428                        err = ubifs_leb_unmap(c, lnum);
 429                        if (err)
 430                                return err;
 431                        /* Try to place lsave and ltab nicely */
 432                        if (!done_lsave) {
 433                                done_lsave = 1;
 434                                ubifs_pack_lsave(c, buf + offs, c->lsave);
 435                                offs += c->lsave_sz;
 436                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 437                                continue;
 438                        }
 439                        if (!done_ltab) {
 440                                done_ltab = 1;
 441                                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 442                                offs += c->ltab_sz;
 443                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 444                                continue;
 445                        }
 446                        break;
 447                }
 448                if (cnode->level)
 449                        ubifs_pack_nnode(c, buf + offs,
 450                                         (struct ubifs_nnode *)cnode);
 451                else
 452                        ubifs_pack_pnode(c, buf + offs,
 453                                         (struct ubifs_pnode *)cnode);
 454                /*
 455                 * The reason for the barriers is the same as in case of TNC.
 456                 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
 457                 * 'dirty_cow_pnode()' are the functions for which this is
 458                 * important.
 459                 */
 460                clear_bit(DIRTY_CNODE, &cnode->flags);
 461                smp_mb__before_atomic();
 462                clear_bit(COW_CNODE, &cnode->flags);
 463                smp_mb__after_atomic();
 464                offs += len;
 465                dbg_chk_lpt_sz(c, 1, len);
 466                cnode = cnode->cnext;
 467        } while (cnode && cnode != c->lpt_cnext);
 468
 469        /* Make sure to place LPT's save table */
 470        if (!done_lsave) {
 471                if (offs + c->lsave_sz > c->leb_size) {
 472                        wlen = offs - from;
 473                        alen = ALIGN(wlen, c->min_io_size);
 474                        memset(buf + offs, 0xff, alen - wlen);
 475                        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 476                        if (err)
 477                                return err;
 478                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 479                        err = realloc_lpt_leb(c, &lnum);
 480                        if (err)
 481                                goto no_space;
 482                        offs = from = 0;
 483                        ubifs_assert(lnum >= c->lpt_first &&
 484                                     lnum <= c->lpt_last);
 485                        err = ubifs_leb_unmap(c, lnum);
 486                        if (err)
 487                                return err;
 488                }
 489                done_lsave = 1;
 490                ubifs_pack_lsave(c, buf + offs, c->lsave);
 491                offs += c->lsave_sz;
 492                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 493        }
 494
 495        /* Make sure to place LPT's own lprops table */
 496        if (!done_ltab) {
 497                if (offs + c->ltab_sz > c->leb_size) {
 498                        wlen = offs - from;
 499                        alen = ALIGN(wlen, c->min_io_size);
 500                        memset(buf + offs, 0xff, alen - wlen);
 501                        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 502                        if (err)
 503                                return err;
 504                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 505                        err = realloc_lpt_leb(c, &lnum);
 506                        if (err)
 507                                goto no_space;
 508                        offs = from = 0;
 509                        ubifs_assert(lnum >= c->lpt_first &&
 510                                     lnum <= c->lpt_last);
 511                        err = ubifs_leb_unmap(c, lnum);
 512                        if (err)
 513                                return err;
 514                }
 515                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 516                offs += c->ltab_sz;
 517                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 518        }
 519
 520        /* Write remaining data in buffer */
 521        wlen = offs - from;
 522        alen = ALIGN(wlen, c->min_io_size);
 523        memset(buf + offs, 0xff, alen - wlen);
 524        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 525        if (err)
 526                return err;
 527
 528        dbg_chk_lpt_sz(c, 4, alen - wlen);
 529        err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
 530        if (err)
 531                return err;
 532
 533        c->nhead_lnum = lnum;
 534        c->nhead_offs = ALIGN(offs, c->min_io_size);
 535
 536        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
 537        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
 538        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
 539        if (c->big_lpt)
 540                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
 541
 542        return 0;
 543
 544no_space:
 545        ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
 546                  lnum, offs, len, done_ltab, done_lsave);
 547        ubifs_dump_lpt_info(c);
 548        ubifs_dump_lpt_lebs(c);
 549        dump_stack();
 550        return err;
 551}
 552
 553/**
 554 * next_pnode_to_dirty - find next pnode to dirty.
 555 * @c: UBIFS file-system description object
 556 * @pnode: pnode
 557 *
 558 * This function returns the next pnode to dirty or %NULL if there are no more
 559 * pnodes.  Note that pnodes that have never been written (lnum == 0) are
 560 * skipped.
 561 */
 562static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
 563                                               struct ubifs_pnode *pnode)
 564{
 565        struct ubifs_nnode *nnode;
 566        int iip;
 567
 568        /* Try to go right */
 569        nnode = pnode->parent;
 570        for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
 571                if (nnode->nbranch[iip].lnum)
 572                        return ubifs_get_pnode(c, nnode, iip);
 573        }
 574
 575        /* Go up while can't go right */
 576        do {
 577                iip = nnode->iip + 1;
 578                nnode = nnode->parent;
 579                if (!nnode)
 580                        return NULL;
 581                for (; iip < UBIFS_LPT_FANOUT; iip++) {
 582                        if (nnode->nbranch[iip].lnum)
 583                                break;
 584                }
 585        } while (iip >= UBIFS_LPT_FANOUT);
 586
 587        /* Go right */
 588        nnode = ubifs_get_nnode(c, nnode, iip);
 589        if (IS_ERR(nnode))
 590                return (void *)nnode;
 591
 592        /* Go down to level 1 */
 593        while (nnode->level > 1) {
 594                for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
 595                        if (nnode->nbranch[iip].lnum)
 596                                break;
 597                }
 598                if (iip >= UBIFS_LPT_FANOUT) {
 599                        /*
 600                         * Should not happen, but we need to keep going
 601                         * if it does.
 602                         */
 603                        iip = 0;
 604                }
 605                nnode = ubifs_get_nnode(c, nnode, iip);
 606                if (IS_ERR(nnode))
 607                        return (void *)nnode;
 608        }
 609
 610        for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
 611                if (nnode->nbranch[iip].lnum)
 612                        break;
 613        if (iip >= UBIFS_LPT_FANOUT)
 614                /* Should not happen, but we need to keep going if it does */
 615                iip = 0;
 616        return ubifs_get_pnode(c, nnode, iip);
 617}
 618
 619/**
 620 * pnode_lookup - lookup a pnode in the LPT.
 621 * @c: UBIFS file-system description object
 622 * @i: pnode number (0 to main_lebs - 1)
 623 *
 624 * This function returns a pointer to the pnode on success or a negative
 625 * error code on failure.
 626 */
 627static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
 628{
 629        int err, h, iip, shft;
 630        struct ubifs_nnode *nnode;
 631
 632        if (!c->nroot) {
 633                err = ubifs_read_nnode(c, NULL, 0);
 634                if (err)
 635                        return ERR_PTR(err);
 636        }
 637        i <<= UBIFS_LPT_FANOUT_SHIFT;
 638        nnode = c->nroot;
 639        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
 640        for (h = 1; h < c->lpt_hght; h++) {
 641                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 642                shft -= UBIFS_LPT_FANOUT_SHIFT;
 643                nnode = ubifs_get_nnode(c, nnode, iip);
 644                if (IS_ERR(nnode))
 645                        return ERR_CAST(nnode);
 646        }
 647        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 648        return ubifs_get_pnode(c, nnode, iip);
 649}
 650
 651/**
 652 * add_pnode_dirt - add dirty space to LPT LEB properties.
 653 * @c: UBIFS file-system description object
 654 * @pnode: pnode for which to add dirt
 655 */
 656static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
 657{
 658        ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
 659                           c->pnode_sz);
 660}
 661
 662/**
 663 * do_make_pnode_dirty - mark a pnode dirty.
 664 * @c: UBIFS file-system description object
 665 * @pnode: pnode to mark dirty
 666 */
 667static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
 668{
 669        /* Assumes cnext list is empty i.e. not called during commit */
 670        if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
 671                struct ubifs_nnode *nnode;
 672
 673                c->dirty_pn_cnt += 1;
 674                add_pnode_dirt(c, pnode);
 675                /* Mark parent and ancestors dirty too */
 676                nnode = pnode->parent;
 677                while (nnode) {
 678                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 679                                c->dirty_nn_cnt += 1;
 680                                ubifs_add_nnode_dirt(c, nnode);
 681                                nnode = nnode->parent;
 682                        } else
 683                                break;
 684                }
 685        }
 686}
 687
 688/**
 689 * make_tree_dirty - mark the entire LEB properties tree dirty.
 690 * @c: UBIFS file-system description object
 691 *
 692 * This function is used by the "small" LPT model to cause the entire LEB
 693 * properties tree to be written.  The "small" LPT model does not use LPT
 694 * garbage collection because it is more efficient to write the entire tree
 695 * (because it is small).
 696 *
 697 * This function returns %0 on success and a negative error code on failure.
 698 */
 699static int make_tree_dirty(struct ubifs_info *c)
 700{
 701        struct ubifs_pnode *pnode;
 702
 703        pnode = pnode_lookup(c, 0);
 704        if (IS_ERR(pnode))
 705                return PTR_ERR(pnode);
 706
 707        while (pnode) {
 708                do_make_pnode_dirty(c, pnode);
 709                pnode = next_pnode_to_dirty(c, pnode);
 710                if (IS_ERR(pnode))
 711                        return PTR_ERR(pnode);
 712        }
 713        return 0;
 714}
 715
 716/**
 717 * need_write_all - determine if the LPT area is running out of free space.
 718 * @c: UBIFS file-system description object
 719 *
 720 * This function returns %1 if the LPT area is running out of free space and %0
 721 * if it is not.
 722 */
 723static int need_write_all(struct ubifs_info *c)
 724{
 725        long long free = 0;
 726        int i;
 727
 728        for (i = 0; i < c->lpt_lebs; i++) {
 729                if (i + c->lpt_first == c->nhead_lnum)
 730                        free += c->leb_size - c->nhead_offs;
 731                else if (c->ltab[i].free == c->leb_size)
 732                        free += c->leb_size;
 733                else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
 734                        free += c->leb_size;
 735        }
 736        /* Less than twice the size left */
 737        if (free <= c->lpt_sz * 2)
 738                return 1;
 739        return 0;
 740}
 741
 742/**
 743 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
 744 * @c: UBIFS file-system description object
 745 *
 746 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 747 * free space and so may be reused as soon as the next commit is completed.
 748 * This function is called during start commit to mark LPT LEBs for trivial GC.
 749 */
 750static void lpt_tgc_start(struct ubifs_info *c)
 751{
 752        int i;
 753
 754        for (i = 0; i < c->lpt_lebs; i++) {
 755                if (i + c->lpt_first == c->nhead_lnum)
 756                        continue;
 757                if (c->ltab[i].dirty > 0 &&
 758                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
 759                        c->ltab[i].tgc = 1;
 760                        c->ltab[i].free = c->leb_size;
 761                        c->ltab[i].dirty = 0;
 762                        dbg_lp("LEB %d", i + c->lpt_first);
 763                }
 764        }
 765}
 766
 767/**
 768 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
 769 * @c: UBIFS file-system description object
 770 *
 771 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 772 * free space and so may be reused as soon as the next commit is completed.
 773 * This function is called after the commit is completed (master node has been
 774 * written) and un-maps LPT LEBs that were marked for trivial GC.
 775 */
 776static int lpt_tgc_end(struct ubifs_info *c)
 777{
 778        int i, err;
 779
 780        for (i = 0; i < c->lpt_lebs; i++)
 781                if (c->ltab[i].tgc) {
 782                        err = ubifs_leb_unmap(c, i + c->lpt_first);
 783                        if (err)
 784                                return err;
 785                        c->ltab[i].tgc = 0;
 786                        dbg_lp("LEB %d", i + c->lpt_first);
 787                }
 788        return 0;
 789}
 790
 791/**
 792 * populate_lsave - fill the lsave array with important LEB numbers.
 793 * @c: the UBIFS file-system description object
 794 *
 795 * This function is only called for the "big" model. It records a small number
 796 * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
 797 * most important to least important): empty, freeable, freeable index, dirty
 798 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
 799 * their pnodes into memory.  That will stop us from having to scan the LPT
 800 * straight away. For the "small" model we assume that scanning the LPT is no
 801 * big deal.
 802 */
 803static void populate_lsave(struct ubifs_info *c)
 804{
 805        struct ubifs_lprops *lprops;
 806        struct ubifs_lpt_heap *heap;
 807        int i, cnt = 0;
 808
 809        ubifs_assert(c->big_lpt);
 810        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
 811                c->lpt_drty_flgs |= LSAVE_DIRTY;
 812                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
 813        }
 814
 815        if (dbg_populate_lsave(c))
 816                return;
 817
 818        list_for_each_entry(lprops, &c->empty_list, list) {
 819                c->lsave[cnt++] = lprops->lnum;
 820                if (cnt >= c->lsave_cnt)
 821                        return;
 822        }
 823        list_for_each_entry(lprops, &c->freeable_list, list) {
 824                c->lsave[cnt++] = lprops->lnum;
 825                if (cnt >= c->lsave_cnt)
 826                        return;
 827        }
 828        list_for_each_entry(lprops, &c->frdi_idx_list, list) {
 829                c->lsave[cnt++] = lprops->lnum;
 830                if (cnt >= c->lsave_cnt)
 831                        return;
 832        }
 833        heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
 834        for (i = 0; i < heap->cnt; i++) {
 835                c->lsave[cnt++] = heap->arr[i]->lnum;
 836                if (cnt >= c->lsave_cnt)
 837                        return;
 838        }
 839        heap = &c->lpt_heap[LPROPS_DIRTY - 1];
 840        for (i = 0; i < heap->cnt; i++) {
 841                c->lsave[cnt++] = heap->arr[i]->lnum;
 842                if (cnt >= c->lsave_cnt)
 843                        return;
 844        }
 845        heap = &c->lpt_heap[LPROPS_FREE - 1];
 846        for (i = 0; i < heap->cnt; i++) {
 847                c->lsave[cnt++] = heap->arr[i]->lnum;
 848                if (cnt >= c->lsave_cnt)
 849                        return;
 850        }
 851        /* Fill it up completely */
 852        while (cnt < c->lsave_cnt)
 853                c->lsave[cnt++] = c->main_first;
 854}
 855
 856/**
 857 * nnode_lookup - lookup a nnode in the LPT.
 858 * @c: UBIFS file-system description object
 859 * @i: nnode number
 860 *
 861 * This function returns a pointer to the nnode on success or a negative
 862 * error code on failure.
 863 */
 864static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
 865{
 866        int err, iip;
 867        struct ubifs_nnode *nnode;
 868
 869        if (!c->nroot) {
 870                err = ubifs_read_nnode(c, NULL, 0);
 871                if (err)
 872                        return ERR_PTR(err);
 873        }
 874        nnode = c->nroot;
 875        while (1) {
 876                iip = i & (UBIFS_LPT_FANOUT - 1);
 877                i >>= UBIFS_LPT_FANOUT_SHIFT;
 878                if (!i)
 879                        break;
 880                nnode = ubifs_get_nnode(c, nnode, iip);
 881                if (IS_ERR(nnode))
 882                        return nnode;
 883        }
 884        return nnode;
 885}
 886
 887/**
 888 * make_nnode_dirty - find a nnode and, if found, make it dirty.
 889 * @c: UBIFS file-system description object
 890 * @node_num: nnode number of nnode to make dirty
 891 * @lnum: LEB number where nnode was written
 892 * @offs: offset where nnode was written
 893 *
 894 * This function is used by LPT garbage collection.  LPT garbage collection is
 895 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 896 * simply involves marking all the nodes in the LEB being garbage-collected as
 897 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 898 * to be reused.
 899 *
 900 * This function returns %0 on success and a negative error code on failure.
 901 */
 902static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 903                            int offs)
 904{
 905        struct ubifs_nnode *nnode;
 906
 907        nnode = nnode_lookup(c, node_num);
 908        if (IS_ERR(nnode))
 909                return PTR_ERR(nnode);
 910        if (nnode->parent) {
 911                struct ubifs_nbranch *branch;
 912
 913                branch = &nnode->parent->nbranch[nnode->iip];
 914                if (branch->lnum != lnum || branch->offs != offs)
 915                        return 0; /* nnode is obsolete */
 916        } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
 917                        return 0; /* nnode is obsolete */
 918        /* Assumes cnext list is empty i.e. not called during commit */
 919        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 920                c->dirty_nn_cnt += 1;
 921                ubifs_add_nnode_dirt(c, nnode);
 922                /* Mark parent and ancestors dirty too */
 923                nnode = nnode->parent;
 924                while (nnode) {
 925                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 926                                c->dirty_nn_cnt += 1;
 927                                ubifs_add_nnode_dirt(c, nnode);
 928                                nnode = nnode->parent;
 929                        } else
 930                                break;
 931                }
 932        }
 933        return 0;
 934}
 935
 936/**
 937 * make_pnode_dirty - find a pnode and, if found, make it dirty.
 938 * @c: UBIFS file-system description object
 939 * @node_num: pnode number of pnode to make dirty
 940 * @lnum: LEB number where pnode was written
 941 * @offs: offset where pnode was written
 942 *
 943 * This function is used by LPT garbage collection.  LPT garbage collection is
 944 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 945 * simply involves marking all the nodes in the LEB being garbage-collected as
 946 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 947 * to be reused.
 948 *
 949 * This function returns %0 on success and a negative error code on failure.
 950 */
 951static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 952                            int offs)
 953{
 954        struct ubifs_pnode *pnode;
 955        struct ubifs_nbranch *branch;
 956
 957        pnode = pnode_lookup(c, node_num);
 958        if (IS_ERR(pnode))
 959                return PTR_ERR(pnode);
 960        branch = &pnode->parent->nbranch[pnode->iip];
 961        if (branch->lnum != lnum || branch->offs != offs)
 962                return 0;
 963        do_make_pnode_dirty(c, pnode);
 964        return 0;
 965}
 966
 967/**
 968 * make_ltab_dirty - make ltab node dirty.
 969 * @c: UBIFS file-system description object
 970 * @lnum: LEB number where ltab was written
 971 * @offs: offset where ltab was written
 972 *
 973 * This function is used by LPT garbage collection.  LPT garbage collection is
 974 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 975 * simply involves marking all the nodes in the LEB being garbage-collected as
 976 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 977 * to be reused.
 978 *
 979 * This function returns %0 on success and a negative error code on failure.
 980 */
 981static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
 982{
 983        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
 984                return 0; /* This ltab node is obsolete */
 985        if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
 986                c->lpt_drty_flgs |= LTAB_DIRTY;
 987                ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
 988        }
 989        return 0;
 990}
 991
 992/**
 993 * make_lsave_dirty - make lsave node dirty.
 994 * @c: UBIFS file-system description object
 995 * @lnum: LEB number where lsave was written
 996 * @offs: offset where lsave was written
 997 *
 998 * This function is used by LPT garbage collection.  LPT garbage collection is
 999 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1000 * simply involves marking all the nodes in the LEB being garbage-collected as
1001 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1002 * to be reused.
1003 *
1004 * This function returns %0 on success and a negative error code on failure.
1005 */
1006static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1007{
1008        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1009                return 0; /* This lsave node is obsolete */
1010        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1011                c->lpt_drty_flgs |= LSAVE_DIRTY;
1012                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1013        }
1014        return 0;
1015}
1016
1017/**
1018 * make_node_dirty - make node dirty.
1019 * @c: UBIFS file-system description object
1020 * @node_type: LPT node type
1021 * @node_num: node number
1022 * @lnum: LEB number where node was written
1023 * @offs: offset where node was written
1024 *
1025 * This function is used by LPT garbage collection.  LPT garbage collection is
1026 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1027 * simply involves marking all the nodes in the LEB being garbage-collected as
1028 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1029 * to be reused.
1030 *
1031 * This function returns %0 on success and a negative error code on failure.
1032 */
1033static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1034                           int lnum, int offs)
1035{
1036        switch (node_type) {
1037        case UBIFS_LPT_NNODE:
1038                return make_nnode_dirty(c, node_num, lnum, offs);
1039        case UBIFS_LPT_PNODE:
1040                return make_pnode_dirty(c, node_num, lnum, offs);
1041        case UBIFS_LPT_LTAB:
1042                return make_ltab_dirty(c, lnum, offs);
1043        case UBIFS_LPT_LSAVE:
1044                return make_lsave_dirty(c, lnum, offs);
1045        }
1046        return -EINVAL;
1047}
1048
1049/**
1050 * get_lpt_node_len - return the length of a node based on its type.
1051 * @c: UBIFS file-system description object
1052 * @node_type: LPT node type
1053 */
1054static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1055{
1056        switch (node_type) {
1057        case UBIFS_LPT_NNODE:
1058                return c->nnode_sz;
1059        case UBIFS_LPT_PNODE:
1060                return c->pnode_sz;
1061        case UBIFS_LPT_LTAB:
1062                return c->ltab_sz;
1063        case UBIFS_LPT_LSAVE:
1064                return c->lsave_sz;
1065        }
1066        return 0;
1067}
1068
1069/**
1070 * get_pad_len - return the length of padding in a buffer.
1071 * @c: UBIFS file-system description object
1072 * @buf: buffer
1073 * @len: length of buffer
1074 */
1075static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1076{
1077        int offs, pad_len;
1078
1079        if (c->min_io_size == 1)
1080                return 0;
1081        offs = c->leb_size - len;
1082        pad_len = ALIGN(offs, c->min_io_size) - offs;
1083        return pad_len;
1084}
1085
1086/**
1087 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1088 * @c: UBIFS file-system description object
1089 * @buf: buffer
1090 * @node_num: node number is returned here
1091 */
1092static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1093                             int *node_num)
1094{
1095        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1096        int pos = 0, node_type;
1097
1098        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1099        *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1100        return node_type;
1101}
1102
1103/**
1104 * is_a_node - determine if a buffer contains a node.
1105 * @c: UBIFS file-system description object
1106 * @buf: buffer
1107 * @len: length of buffer
1108 *
1109 * This function returns %1 if the buffer contains a node or %0 if it does not.
1110 */
1111static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1112{
1113        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1114        int pos = 0, node_type, node_len;
1115        uint16_t crc, calc_crc;
1116
1117        if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1118                return 0;
1119        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1120        if (node_type == UBIFS_LPT_NOT_A_NODE)
1121                return 0;
1122        node_len = get_lpt_node_len(c, node_type);
1123        if (!node_len || node_len > len)
1124                return 0;
1125        pos = 0;
1126        addr = buf;
1127        crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1128        calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1129                         node_len - UBIFS_LPT_CRC_BYTES);
1130        if (crc != calc_crc)
1131                return 0;
1132        return 1;
1133}
1134
1135/**
1136 * lpt_gc_lnum - garbage collect a LPT LEB.
1137 * @c: UBIFS file-system description object
1138 * @lnum: LEB number to garbage collect
1139 *
1140 * LPT garbage collection is used only for the "big" LPT model
1141 * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1142 * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1143 * next commit, after which the LEB is free to be reused.
1144 *
1145 * This function returns %0 on success and a negative error code on failure.
1146 */
1147static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1148{
1149        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1150        void *buf = c->lpt_buf;
1151
1152        dbg_lp("LEB %d", lnum);
1153
1154        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1155        if (err)
1156                return err;
1157
1158        while (1) {
1159                if (!is_a_node(c, buf, len)) {
1160                        int pad_len;
1161
1162                        pad_len = get_pad_len(c, buf, len);
1163                        if (pad_len) {
1164                                buf += pad_len;
1165                                len -= pad_len;
1166                                continue;
1167                        }
1168                        return 0;
1169                }
1170                node_type = get_lpt_node_type(c, buf, &node_num);
1171                node_len = get_lpt_node_len(c, node_type);
1172                offs = c->leb_size - len;
1173                ubifs_assert(node_len != 0);
1174                mutex_lock(&c->lp_mutex);
1175                err = make_node_dirty(c, node_type, node_num, lnum, offs);
1176                mutex_unlock(&c->lp_mutex);
1177                if (err)
1178                        return err;
1179                buf += node_len;
1180                len -= node_len;
1181        }
1182        return 0;
1183}
1184
1185/**
1186 * lpt_gc - LPT garbage collection.
1187 * @c: UBIFS file-system description object
1188 *
1189 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1190 * Returns %0 on success and a negative error code on failure.
1191 */
1192static int lpt_gc(struct ubifs_info *c)
1193{
1194        int i, lnum = -1, dirty = 0;
1195
1196        mutex_lock(&c->lp_mutex);
1197        for (i = 0; i < c->lpt_lebs; i++) {
1198                ubifs_assert(!c->ltab[i].tgc);
1199                if (i + c->lpt_first == c->nhead_lnum ||
1200                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1201                        continue;
1202                if (c->ltab[i].dirty > dirty) {
1203                        dirty = c->ltab[i].dirty;
1204                        lnum = i + c->lpt_first;
1205                }
1206        }
1207        mutex_unlock(&c->lp_mutex);
1208        if (lnum == -1)
1209                return -ENOSPC;
1210        return lpt_gc_lnum(c, lnum);
1211}
1212
1213/**
1214 * ubifs_lpt_start_commit - UBIFS commit starts.
1215 * @c: the UBIFS file-system description object
1216 *
1217 * This function has to be called when UBIFS starts the commit operation.
1218 * This function "freezes" all currently dirty LEB properties and does not
1219 * change them anymore. Further changes are saved and tracked separately
1220 * because they are not part of this commit. This function returns zero in case
1221 * of success and a negative error code in case of failure.
1222 */
1223int ubifs_lpt_start_commit(struct ubifs_info *c)
1224{
1225        int err, cnt;
1226
1227        dbg_lp("");
1228
1229        mutex_lock(&c->lp_mutex);
1230        err = dbg_chk_lpt_free_spc(c);
1231        if (err)
1232                goto out;
1233        err = dbg_check_ltab(c);
1234        if (err)
1235                goto out;
1236
1237        if (c->check_lpt_free) {
1238                /*
1239                 * We ensure there is enough free space in
1240                 * ubifs_lpt_post_commit() by marking nodes dirty. That
1241                 * information is lost when we unmount, so we also need
1242                 * to check free space once after mounting also.
1243                 */
1244                c->check_lpt_free = 0;
1245                while (need_write_all(c)) {
1246                        mutex_unlock(&c->lp_mutex);
1247                        err = lpt_gc(c);
1248                        if (err)
1249                                return err;
1250                        mutex_lock(&c->lp_mutex);
1251                }
1252        }
1253
1254        lpt_tgc_start(c);
1255
1256        if (!c->dirty_pn_cnt) {
1257                dbg_cmt("no cnodes to commit");
1258                err = 0;
1259                goto out;
1260        }
1261
1262        if (!c->big_lpt && need_write_all(c)) {
1263                /* If needed, write everything */
1264                err = make_tree_dirty(c);
1265                if (err)
1266                        goto out;
1267                lpt_tgc_start(c);
1268        }
1269
1270        if (c->big_lpt)
1271                populate_lsave(c);
1272
1273        cnt = get_cnodes_to_commit(c);
1274        ubifs_assert(cnt != 0);
1275
1276        err = layout_cnodes(c);
1277        if (err)
1278                goto out;
1279
1280        /* Copy the LPT's own lprops for end commit to write */
1281        memcpy(c->ltab_cmt, c->ltab,
1282               sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1283        c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1284
1285out:
1286        mutex_unlock(&c->lp_mutex);
1287        return err;
1288}
1289
1290/**
1291 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1292 * @c: UBIFS file-system description object
1293 */
1294static void free_obsolete_cnodes(struct ubifs_info *c)
1295{
1296        struct ubifs_cnode *cnode, *cnext;
1297
1298        cnext = c->lpt_cnext;
1299        if (!cnext)
1300                return;
1301        do {
1302                cnode = cnext;
1303                cnext = cnode->cnext;
1304                if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1305                        kfree(cnode);
1306                else
1307                        cnode->cnext = NULL;
1308        } while (cnext != c->lpt_cnext);
1309        c->lpt_cnext = NULL;
1310}
1311
1312/**
1313 * ubifs_lpt_end_commit - finish the commit operation.
1314 * @c: the UBIFS file-system description object
1315 *
1316 * This function has to be called when the commit operation finishes. It
1317 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1318 * the media. Returns zero in case of success and a negative error code in case
1319 * of failure.
1320 */
1321int ubifs_lpt_end_commit(struct ubifs_info *c)
1322{
1323        int err;
1324
1325        dbg_lp("");
1326
1327        if (!c->lpt_cnext)
1328                return 0;
1329
1330        err = write_cnodes(c);
1331        if (err)
1332                return err;
1333
1334        mutex_lock(&c->lp_mutex);
1335        free_obsolete_cnodes(c);
1336        mutex_unlock(&c->lp_mutex);
1337
1338        return 0;
1339}
1340
1341/**
1342 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1343 * @c: UBIFS file-system description object
1344 *
1345 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1346 * commit for the "big" LPT model.
1347 */
1348int ubifs_lpt_post_commit(struct ubifs_info *c)
1349{
1350        int err;
1351
1352        mutex_lock(&c->lp_mutex);
1353        err = lpt_tgc_end(c);
1354        if (err)
1355                goto out;
1356        if (c->big_lpt)
1357                while (need_write_all(c)) {
1358                        mutex_unlock(&c->lp_mutex);
1359                        err = lpt_gc(c);
1360                        if (err)
1361                                return err;
1362                        mutex_lock(&c->lp_mutex);
1363                }
1364out:
1365        mutex_unlock(&c->lp_mutex);
1366        return err;
1367}
1368
1369/**
1370 * first_nnode - find the first nnode in memory.
1371 * @c: UBIFS file-system description object
1372 * @hght: height of tree where nnode found is returned here
1373 *
1374 * This function returns a pointer to the nnode found or %NULL if no nnode is
1375 * found. This function is a helper to 'ubifs_lpt_free()'.
1376 */
1377static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1378{
1379        struct ubifs_nnode *nnode;
1380        int h, i, found;
1381
1382        nnode = c->nroot;
1383        *hght = 0;
1384        if (!nnode)
1385                return NULL;
1386        for (h = 1; h < c->lpt_hght; h++) {
1387                found = 0;
1388                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1389                        if (nnode->nbranch[i].nnode) {
1390                                found = 1;
1391                                nnode = nnode->nbranch[i].nnode;
1392                                *hght = h;
1393                                break;
1394                        }
1395                }
1396                if (!found)
1397                        break;
1398        }
1399        return nnode;
1400}
1401
1402/**
1403 * next_nnode - find the next nnode in memory.
1404 * @c: UBIFS file-system description object
1405 * @nnode: nnode from which to start.
1406 * @hght: height of tree where nnode is, is passed and returned here
1407 *
1408 * This function returns a pointer to the nnode found or %NULL if no nnode is
1409 * found. This function is a helper to 'ubifs_lpt_free()'.
1410 */
1411static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1412                                      struct ubifs_nnode *nnode, int *hght)
1413{
1414        struct ubifs_nnode *parent;
1415        int iip, h, i, found;
1416
1417        parent = nnode->parent;
1418        if (!parent)
1419                return NULL;
1420        if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1421                *hght -= 1;
1422                return parent;
1423        }
1424        for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1425                nnode = parent->nbranch[iip].nnode;
1426                if (nnode)
1427                        break;
1428        }
1429        if (!nnode) {
1430                *hght -= 1;
1431                return parent;
1432        }
1433        for (h = *hght + 1; h < c->lpt_hght; h++) {
1434                found = 0;
1435                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1436                        if (nnode->nbranch[i].nnode) {
1437                                found = 1;
1438                                nnode = nnode->nbranch[i].nnode;
1439                                *hght = h;
1440                                break;
1441                        }
1442                }
1443                if (!found)
1444                        break;
1445        }
1446        return nnode;
1447}
1448
1449/**
1450 * ubifs_lpt_free - free resources owned by the LPT.
1451 * @c: UBIFS file-system description object
1452 * @wr_only: free only resources used for writing
1453 */
1454void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1455{
1456        struct ubifs_nnode *nnode;
1457        int i, hght;
1458
1459        /* Free write-only things first */
1460
1461        free_obsolete_cnodes(c); /* Leftover from a failed commit */
1462
1463        vfree(c->ltab_cmt);
1464        c->ltab_cmt = NULL;
1465        vfree(c->lpt_buf);
1466        c->lpt_buf = NULL;
1467        kfree(c->lsave);
1468        c->lsave = NULL;
1469
1470        if (wr_only)
1471                return;
1472
1473        /* Now free the rest */
1474
1475        nnode = first_nnode(c, &hght);
1476        while (nnode) {
1477                for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1478                        kfree(nnode->nbranch[i].nnode);
1479                nnode = next_nnode(c, nnode, &hght);
1480        }
1481        for (i = 0; i < LPROPS_HEAP_CNT; i++)
1482                kfree(c->lpt_heap[i].arr);
1483        kfree(c->dirty_idx.arr);
1484        kfree(c->nroot);
1485        vfree(c->ltab);
1486        kfree(c->lpt_nod_buf);
1487}
1488
1489/*
1490 * Everything below is related to debugging.
1491 */
1492
1493/**
1494 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1495 * @buf: buffer
1496 * @len: buffer length
1497 */
1498static int dbg_is_all_ff(uint8_t *buf, int len)
1499{
1500        int i;
1501
1502        for (i = 0; i < len; i++)
1503                if (buf[i] != 0xff)
1504                        return 0;
1505        return 1;
1506}
1507
1508/**
1509 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1510 * @c: the UBIFS file-system description object
1511 * @lnum: LEB number where nnode was written
1512 * @offs: offset where nnode was written
1513 */
1514static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1515{
1516        struct ubifs_nnode *nnode;
1517        int hght;
1518
1519        /* Entire tree is in memory so first_nnode / next_nnode are OK */
1520        nnode = first_nnode(c, &hght);
1521        for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1522                struct ubifs_nbranch *branch;
1523
1524                cond_resched();
1525                if (nnode->parent) {
1526                        branch = &nnode->parent->nbranch[nnode->iip];
1527                        if (branch->lnum != lnum || branch->offs != offs)
1528                                continue;
1529                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1530                                return 1;
1531                        return 0;
1532                } else {
1533                        if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1534                                continue;
1535                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1536                                return 1;
1537                        return 0;
1538                }
1539        }
1540        return 1;
1541}
1542
1543/**
1544 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1545 * @c: the UBIFS file-system description object
1546 * @lnum: LEB number where pnode was written
1547 * @offs: offset where pnode was written
1548 */
1549static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1550{
1551        int i, cnt;
1552
1553        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1554        for (i = 0; i < cnt; i++) {
1555                struct ubifs_pnode *pnode;
1556                struct ubifs_nbranch *branch;
1557
1558                cond_resched();
1559                pnode = pnode_lookup(c, i);
1560                if (IS_ERR(pnode))
1561                        return PTR_ERR(pnode);
1562                branch = &pnode->parent->nbranch[pnode->iip];
1563                if (branch->lnum != lnum || branch->offs != offs)
1564                        continue;
1565                if (test_bit(DIRTY_CNODE, &pnode->flags))
1566                        return 1;
1567                return 0;
1568        }
1569        return 1;
1570}
1571
1572/**
1573 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1574 * @c: the UBIFS file-system description object
1575 * @lnum: LEB number where ltab node was written
1576 * @offs: offset where ltab node was written
1577 */
1578static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1579{
1580        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1581                return 1;
1582        return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1583}
1584
1585/**
1586 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1587 * @c: the UBIFS file-system description object
1588 * @lnum: LEB number where lsave node was written
1589 * @offs: offset where lsave node was written
1590 */
1591static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1592{
1593        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1594                return 1;
1595        return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1596}
1597
1598/**
1599 * dbg_is_node_dirty - determine if a node is dirty.
1600 * @c: the UBIFS file-system description object
1601 * @node_type: node type
1602 * @lnum: LEB number where node was written
1603 * @offs: offset where node was written
1604 */
1605static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1606                             int offs)
1607{
1608        switch (node_type) {
1609        case UBIFS_LPT_NNODE:
1610                return dbg_is_nnode_dirty(c, lnum, offs);
1611        case UBIFS_LPT_PNODE:
1612                return dbg_is_pnode_dirty(c, lnum, offs);
1613        case UBIFS_LPT_LTAB:
1614                return dbg_is_ltab_dirty(c, lnum, offs);
1615        case UBIFS_LPT_LSAVE:
1616                return dbg_is_lsave_dirty(c, lnum, offs);
1617        }
1618        return 1;
1619}
1620
1621/**
1622 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1623 * @c: the UBIFS file-system description object
1624 * @lnum: LEB number where node was written
1625 *
1626 * This function returns %0 on success and a negative error code on failure.
1627 */
1628static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1629{
1630        int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1631        int ret;
1632        void *buf, *p;
1633
1634        if (!dbg_is_chk_lprops(c))
1635                return 0;
1636
1637        buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1638        if (!buf) {
1639                ubifs_err(c, "cannot allocate memory for ltab checking");
1640                return 0;
1641        }
1642
1643        dbg_lp("LEB %d", lnum);
1644
1645        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1646        if (err)
1647                goto out;
1648
1649        while (1) {
1650                if (!is_a_node(c, p, len)) {
1651                        int i, pad_len;
1652
1653                        pad_len = get_pad_len(c, p, len);
1654                        if (pad_len) {
1655                                p += pad_len;
1656                                len -= pad_len;
1657                                dirty += pad_len;
1658                                continue;
1659                        }
1660                        if (!dbg_is_all_ff(p, len)) {
1661                                ubifs_err(c, "invalid empty space in LEB %d at %d",
1662                                          lnum, c->leb_size - len);
1663                                err = -EINVAL;
1664                        }
1665                        i = lnum - c->lpt_first;
1666                        if (len != c->ltab[i].free) {
1667                                ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)",
1668                                          lnum, len, c->ltab[i].free);
1669                                err = -EINVAL;
1670                        }
1671                        if (dirty != c->ltab[i].dirty) {
1672                                ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1673                                          lnum, dirty, c->ltab[i].dirty);
1674                                err = -EINVAL;
1675                        }
1676                        goto out;
1677                }
1678                node_type = get_lpt_node_type(c, p, &node_num);
1679                node_len = get_lpt_node_len(c, node_type);
1680                ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1681                if (ret == 1)
1682                        dirty += node_len;
1683                p += node_len;
1684                len -= node_len;
1685        }
1686
1687        err = 0;
1688out:
1689        vfree(buf);
1690        return err;
1691}
1692
1693/**
1694 * dbg_check_ltab - check the free and dirty space in the ltab.
1695 * @c: the UBIFS file-system description object
1696 *
1697 * This function returns %0 on success and a negative error code on failure.
1698 */
1699int dbg_check_ltab(struct ubifs_info *c)
1700{
1701        int lnum, err, i, cnt;
1702
1703        if (!dbg_is_chk_lprops(c))
1704                return 0;
1705
1706        /* Bring the entire tree into memory */
1707        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1708        for (i = 0; i < cnt; i++) {
1709                struct ubifs_pnode *pnode;
1710
1711                pnode = pnode_lookup(c, i);
1712                if (IS_ERR(pnode))
1713                        return PTR_ERR(pnode);
1714                cond_resched();
1715        }
1716
1717        /* Check nodes */
1718        err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1719        if (err)
1720                return err;
1721
1722        /* Check each LEB */
1723        for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1724                err = dbg_check_ltab_lnum(c, lnum);
1725                if (err) {
1726                        ubifs_err(c, "failed at LEB %d", lnum);
1727                        return err;
1728                }
1729        }
1730
1731        dbg_lp("succeeded");
1732        return 0;
1733}
1734
1735/**
1736 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1737 * @c: the UBIFS file-system description object
1738 *
1739 * This function returns %0 on success and a negative error code on failure.
1740 */
1741int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1742{
1743        long long free = 0;
1744        int i;
1745
1746        if (!dbg_is_chk_lprops(c))
1747                return 0;
1748
1749        for (i = 0; i < c->lpt_lebs; i++) {
1750                if (c->ltab[i].tgc || c->ltab[i].cmt)
1751                        continue;
1752                if (i + c->lpt_first == c->nhead_lnum)
1753                        free += c->leb_size - c->nhead_offs;
1754                else if (c->ltab[i].free == c->leb_size)
1755                        free += c->leb_size;
1756        }
1757        if (free < c->lpt_sz) {
1758                ubifs_err(c, "LPT space error: free %lld lpt_sz %lld",
1759                          free, c->lpt_sz);
1760                ubifs_dump_lpt_info(c);
1761                ubifs_dump_lpt_lebs(c);
1762                dump_stack();
1763                return -EINVAL;
1764        }
1765        return 0;
1766}
1767
1768/**
1769 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1770 * @c: the UBIFS file-system description object
1771 * @action: what to do
1772 * @len: length written
1773 *
1774 * This function returns %0 on success and a negative error code on failure.
1775 * The @action argument may be one of:
1776 *   o %0 - LPT debugging checking starts, initialize debugging variables;
1777 *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1778 *   o %2 - switched to a different LEB and wasted @len bytes;
1779 *   o %3 - check that we've written the right number of bytes.
1780 *   o %4 - wasted @len bytes;
1781 */
1782int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1783{
1784        struct ubifs_debug_info *d = c->dbg;
1785        long long chk_lpt_sz, lpt_sz;
1786        int err = 0;
1787
1788        if (!dbg_is_chk_lprops(c))
1789                return 0;
1790
1791        switch (action) {
1792        case 0:
1793                d->chk_lpt_sz = 0;
1794                d->chk_lpt_sz2 = 0;
1795                d->chk_lpt_lebs = 0;
1796                d->chk_lpt_wastage = 0;
1797                if (c->dirty_pn_cnt > c->pnode_cnt) {
1798                        ubifs_err(c, "dirty pnodes %d exceed max %d",
1799                                  c->dirty_pn_cnt, c->pnode_cnt);
1800                        err = -EINVAL;
1801                }
1802                if (c->dirty_nn_cnt > c->nnode_cnt) {
1803                        ubifs_err(c, "dirty nnodes %d exceed max %d",
1804                                  c->dirty_nn_cnt, c->nnode_cnt);
1805                        err = -EINVAL;
1806                }
1807                return err;
1808        case 1:
1809                d->chk_lpt_sz += len;
1810                return 0;
1811        case 2:
1812                d->chk_lpt_sz += len;
1813                d->chk_lpt_wastage += len;
1814                d->chk_lpt_lebs += 1;
1815                return 0;
1816        case 3:
1817                chk_lpt_sz = c->leb_size;
1818                chk_lpt_sz *= d->chk_lpt_lebs;
1819                chk_lpt_sz += len - c->nhead_offs;
1820                if (d->chk_lpt_sz != chk_lpt_sz) {
1821                        ubifs_err(c, "LPT wrote %lld but space used was %lld",
1822                                  d->chk_lpt_sz, chk_lpt_sz);
1823                        err = -EINVAL;
1824                }
1825                if (d->chk_lpt_sz > c->lpt_sz) {
1826                        ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld",
1827                                  d->chk_lpt_sz, c->lpt_sz);
1828                        err = -EINVAL;
1829                }
1830                if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1831                        ubifs_err(c, "LPT layout size %lld but wrote %lld",
1832                                  d->chk_lpt_sz, d->chk_lpt_sz2);
1833                        err = -EINVAL;
1834                }
1835                if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1836                        ubifs_err(c, "LPT new nhead offs: expected %d was %d",
1837                                  d->new_nhead_offs, len);
1838                        err = -EINVAL;
1839                }
1840                lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1841                lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1842                lpt_sz += c->ltab_sz;
1843                if (c->big_lpt)
1844                        lpt_sz += c->lsave_sz;
1845                if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1846                        ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1847                                  d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1848                        err = -EINVAL;
1849                }
1850                if (err) {
1851                        ubifs_dump_lpt_info(c);
1852                        ubifs_dump_lpt_lebs(c);
1853                        dump_stack();
1854                }
1855                d->chk_lpt_sz2 = d->chk_lpt_sz;
1856                d->chk_lpt_sz = 0;
1857                d->chk_lpt_wastage = 0;
1858                d->chk_lpt_lebs = 0;
1859                d->new_nhead_offs = len;
1860                return err;
1861        case 4:
1862                d->chk_lpt_sz += len;
1863                d->chk_lpt_wastage += len;
1864                return 0;
1865        default:
1866                return -EINVAL;
1867        }
1868}
1869
1870/**
1871 * dump_lpt_leb - dump an LPT LEB.
1872 * @c: UBIFS file-system description object
1873 * @lnum: LEB number to dump
1874 *
1875 * This function dumps an LEB from LPT area. Nodes in this area are very
1876 * different to nodes in the main area (e.g., they do not have common headers,
1877 * they do not have 8-byte alignments, etc), so we have a separate function to
1878 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1879 */
1880static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1881{
1882        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1883        void *buf, *p;
1884
1885        pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1886        buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1887        if (!buf) {
1888                ubifs_err(c, "cannot allocate memory to dump LPT");
1889                return;
1890        }
1891
1892        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1893        if (err)
1894                goto out;
1895
1896        while (1) {
1897                offs = c->leb_size - len;
1898                if (!is_a_node(c, p, len)) {
1899                        int pad_len;
1900
1901                        pad_len = get_pad_len(c, p, len);
1902                        if (pad_len) {
1903                                pr_err("LEB %d:%d, pad %d bytes\n",
1904                                       lnum, offs, pad_len);
1905                                p += pad_len;
1906                                len -= pad_len;
1907                                continue;
1908                        }
1909                        if (len)
1910                                pr_err("LEB %d:%d, free %d bytes\n",
1911                                       lnum, offs, len);
1912                        break;
1913                }
1914
1915                node_type = get_lpt_node_type(c, p, &node_num);
1916                switch (node_type) {
1917                case UBIFS_LPT_PNODE:
1918                {
1919                        node_len = c->pnode_sz;
1920                        if (c->big_lpt)
1921                                pr_err("LEB %d:%d, pnode num %d\n",
1922                                       lnum, offs, node_num);
1923                        else
1924                                pr_err("LEB %d:%d, pnode\n", lnum, offs);
1925                        break;
1926                }
1927                case UBIFS_LPT_NNODE:
1928                {
1929                        int i;
1930                        struct ubifs_nnode nnode;
1931
1932                        node_len = c->nnode_sz;
1933                        if (c->big_lpt)
1934                                pr_err("LEB %d:%d, nnode num %d, ",
1935                                       lnum, offs, node_num);
1936                        else
1937                                pr_err("LEB %d:%d, nnode, ",
1938                                       lnum, offs);
1939                        err = ubifs_unpack_nnode(c, p, &nnode);
1940                        if (err) {
1941                                pr_err("failed to unpack_node, error %d\n",
1942                                       err);
1943                                break;
1944                        }
1945                        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1946                                pr_cont("%d:%d", nnode.nbranch[i].lnum,
1947                                       nnode.nbranch[i].offs);
1948                                if (i != UBIFS_LPT_FANOUT - 1)
1949                                        pr_cont(", ");
1950                        }
1951                        pr_cont("\n");
1952                        break;
1953                }
1954                case UBIFS_LPT_LTAB:
1955                        node_len = c->ltab_sz;
1956                        pr_err("LEB %d:%d, ltab\n", lnum, offs);
1957                        break;
1958                case UBIFS_LPT_LSAVE:
1959                        node_len = c->lsave_sz;
1960                        pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1961                        break;
1962                default:
1963                        ubifs_err(c, "LPT node type %d not recognized", node_type);
1964                        goto out;
1965                }
1966
1967                p += node_len;
1968                len -= node_len;
1969        }
1970
1971        pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1972out:
1973        vfree(buf);
1974        return;
1975}
1976
1977/**
1978 * ubifs_dump_lpt_lebs - dump LPT lebs.
1979 * @c: UBIFS file-system description object
1980 *
1981 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1982 * locked.
1983 */
1984void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1985{
1986        int i;
1987
1988        pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1989        for (i = 0; i < c->lpt_lebs; i++)
1990                dump_lpt_leb(c, i + c->lpt_first);
1991        pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1992}
1993
1994/**
1995 * dbg_populate_lsave - debugging version of 'populate_lsave()'
1996 * @c: UBIFS file-system description object
1997 *
1998 * This is a debugging version for 'populate_lsave()' which populates lsave
1999 * with random LEBs instead of useful LEBs, which is good for test coverage.
2000 * Returns zero if lsave has not been populated (this debugging feature is
2001 * disabled) an non-zero if lsave has been populated.
2002 */
2003static int dbg_populate_lsave(struct ubifs_info *c)
2004{
2005        struct ubifs_lprops *lprops;
2006        struct ubifs_lpt_heap *heap;
2007        int i;
2008
2009        if (!dbg_is_chk_gen(c))
2010                return 0;
2011        if (prandom_u32() & 3)
2012                return 0;
2013
2014        for (i = 0; i < c->lsave_cnt; i++)
2015                c->lsave[i] = c->main_first;
2016
2017        list_for_each_entry(lprops, &c->empty_list, list)
2018                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2019        list_for_each_entry(lprops, &c->freeable_list, list)
2020                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2021        list_for_each_entry(lprops, &c->frdi_idx_list, list)
2022                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2023
2024        heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2025        for (i = 0; i < heap->cnt; i++)
2026                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2027        heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2028        for (i = 0; i < heap->cnt; i++)
2029                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2030        heap = &c->lpt_heap[LPROPS_FREE - 1];
2031        for (i = 0; i < heap->cnt; i++)
2032                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2033
2034        return 1;
2035}
2036