linux/kernel/audit.c
<<
>>
Prefs
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *        2) Minimal run-time overhead:
  26 *           a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *           b) Small when syscall auditing is enabled and no audit record
  28 *              is generated (defer as much work as possible to record
  29 *              generation time):
  30 *              i) context is allocated,
  31 *              ii) names from getname are stored without a copy, and
  32 *              iii) inode information stored from path_lookup.
  33 *        3) Ability to disable syscall auditing at boot time (audit=0).
  34 *        4) Usable by other parts of the kernel (if audit_log* is called,
  35 *           then a syscall record will be generated automatically for the
  36 *           current syscall).
  37 *        5) Netlink interface to user-space.
  38 *        6) Support low-overhead kernel-based filtering to minimize the
  39 *           information that must be passed to user-space.
  40 *
  41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/file.h>
  47#include <linux/init.h>
  48#include <linux/types.h>
  49#include <linux/atomic.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/err.h>
  54#include <linux/kthread.h>
  55#include <linux/kernel.h>
  56#include <linux/syscalls.h>
  57#include <linux/spinlock.h>
  58#include <linux/rcupdate.h>
  59#include <linux/mutex.h>
  60#include <linux/gfp.h>
  61#include <linux/pid.h>
  62#include <linux/slab.h>
  63
  64#include <linux/audit.h>
  65
  66#include <net/sock.h>
  67#include <net/netlink.h>
  68#include <linux/skbuff.h>
  69#ifdef CONFIG_SECURITY
  70#include <linux/security.h>
  71#endif
  72#include <linux/freezer.h>
  73#include <linux/pid_namespace.h>
  74#include <net/netns/generic.h>
  75
  76#include "audit.h"
  77
  78/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  79 * (Initialization happens after skb_init is called.) */
  80#define AUDIT_DISABLED          -1
  81#define AUDIT_UNINITIALIZED     0
  82#define AUDIT_INITIALIZED       1
  83static int      audit_initialized;
  84
  85#define AUDIT_OFF       0
  86#define AUDIT_ON        1
  87#define AUDIT_LOCKED    2
  88u32             audit_enabled;
  89u32             audit_ever_enabled;
  90
  91EXPORT_SYMBOL_GPL(audit_enabled);
  92
  93/* Default state when kernel boots without any parameters. */
  94static u32      audit_default;
  95
  96/* If auditing cannot proceed, audit_failure selects what happens. */
  97static u32      audit_failure = AUDIT_FAIL_PRINTK;
  98
  99/* private audit network namespace index */
 100static unsigned int audit_net_id;
 101
 102/**
 103 * struct audit_net - audit private network namespace data
 104 * @sk: communication socket
 105 */
 106struct audit_net {
 107        struct sock *sk;
 108};
 109
 110/**
 111 * struct auditd_connection - kernel/auditd connection state
 112 * @pid: auditd PID
 113 * @portid: netlink portid
 114 * @net: the associated network namespace
 115 * @rcu: RCU head
 116 *
 117 * Description:
 118 * This struct is RCU protected; you must either hold the RCU lock for reading
 119 * or the associated spinlock for writing.
 120 */
 121static struct auditd_connection {
 122        struct pid *pid;
 123        u32 portid;
 124        struct net *net;
 125        struct rcu_head rcu;
 126} *auditd_conn = NULL;
 127static DEFINE_SPINLOCK(auditd_conn_lock);
 128
 129/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 130 * to that number per second.  This prevents DoS attacks, but results in
 131 * audit records being dropped. */
 132static u32      audit_rate_limit;
 133
 134/* Number of outstanding audit_buffers allowed.
 135 * When set to zero, this means unlimited. */
 136static u32      audit_backlog_limit = 64;
 137#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 138static u32      audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 139
 140/* The identity of the user shutting down the audit system. */
 141kuid_t          audit_sig_uid = INVALID_UID;
 142pid_t           audit_sig_pid = -1;
 143u32             audit_sig_sid = 0;
 144
 145/* Records can be lost in several ways:
 146   0) [suppressed in audit_alloc]
 147   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 148   2) out of memory in audit_log_move [alloc_skb]
 149   3) suppressed due to audit_rate_limit
 150   4) suppressed due to audit_backlog_limit
 151*/
 152static atomic_t audit_lost = ATOMIC_INIT(0);
 153
 154/* Hash for inode-based rules */
 155struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 156
 157static struct kmem_cache *audit_buffer_cache;
 158
 159/* queue msgs to send via kauditd_task */
 160static struct sk_buff_head audit_queue;
 161/* queue msgs due to temporary unicast send problems */
 162static struct sk_buff_head audit_retry_queue;
 163/* queue msgs waiting for new auditd connection */
 164static struct sk_buff_head audit_hold_queue;
 165
 166/* queue servicing thread */
 167static struct task_struct *kauditd_task;
 168static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 169
 170/* waitqueue for callers who are blocked on the audit backlog */
 171static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 172
 173static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 174                                   .mask = -1,
 175                                   .features = 0,
 176                                   .lock = 0,};
 177
 178static char *audit_feature_names[2] = {
 179        "only_unset_loginuid",
 180        "loginuid_immutable",
 181};
 182
 183
 184/* Serialize requests from userspace. */
 185DEFINE_MUTEX(audit_cmd_mutex);
 186
 187/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 188 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 189 * should be at least that large. */
 190#define AUDIT_BUFSIZ 1024
 191
 192/* The audit_buffer is used when formatting an audit record.  The caller
 193 * locks briefly to get the record off the freelist or to allocate the
 194 * buffer, and locks briefly to send the buffer to the netlink layer or
 195 * to place it on a transmit queue.  Multiple audit_buffers can be in
 196 * use simultaneously. */
 197struct audit_buffer {
 198        struct sk_buff       *skb;      /* formatted skb ready to send */
 199        struct audit_context *ctx;      /* NULL or associated context */
 200        gfp_t                gfp_mask;
 201};
 202
 203struct audit_reply {
 204        __u32 portid;
 205        struct net *net;
 206        struct sk_buff *skb;
 207};
 208
 209/**
 210 * auditd_test_task - Check to see if a given task is an audit daemon
 211 * @task: the task to check
 212 *
 213 * Description:
 214 * Return 1 if the task is a registered audit daemon, 0 otherwise.
 215 */
 216int auditd_test_task(struct task_struct *task)
 217{
 218        int rc;
 219        struct auditd_connection *ac;
 220
 221        rcu_read_lock();
 222        ac = rcu_dereference(auditd_conn);
 223        rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
 224        rcu_read_unlock();
 225
 226        return rc;
 227}
 228
 229/**
 230 * auditd_pid_vnr - Return the auditd PID relative to the namespace
 231 *
 232 * Description:
 233 * Returns the PID in relation to the namespace, 0 on failure.
 234 */
 235static pid_t auditd_pid_vnr(void)
 236{
 237        pid_t pid;
 238        const struct auditd_connection *ac;
 239
 240        rcu_read_lock();
 241        ac = rcu_dereference(auditd_conn);
 242        if (!ac || !ac->pid)
 243                pid = 0;
 244        else
 245                pid = pid_vnr(ac->pid);
 246        rcu_read_unlock();
 247
 248        return pid;
 249}
 250
 251/**
 252 * audit_get_sk - Return the audit socket for the given network namespace
 253 * @net: the destination network namespace
 254 *
 255 * Description:
 256 * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
 257 * that a reference is held for the network namespace while the sock is in use.
 258 */
 259static struct sock *audit_get_sk(const struct net *net)
 260{
 261        struct audit_net *aunet;
 262
 263        if (!net)
 264                return NULL;
 265
 266        aunet = net_generic(net, audit_net_id);
 267        return aunet->sk;
 268}
 269
 270void audit_panic(const char *message)
 271{
 272        switch (audit_failure) {
 273        case AUDIT_FAIL_SILENT:
 274                break;
 275        case AUDIT_FAIL_PRINTK:
 276                if (printk_ratelimit())
 277                        pr_err("%s\n", message);
 278                break;
 279        case AUDIT_FAIL_PANIC:
 280                panic("audit: %s\n", message);
 281                break;
 282        }
 283}
 284
 285static inline int audit_rate_check(void)
 286{
 287        static unsigned long    last_check = 0;
 288        static int              messages   = 0;
 289        static DEFINE_SPINLOCK(lock);
 290        unsigned long           flags;
 291        unsigned long           now;
 292        unsigned long           elapsed;
 293        int                     retval     = 0;
 294
 295        if (!audit_rate_limit) return 1;
 296
 297        spin_lock_irqsave(&lock, flags);
 298        if (++messages < audit_rate_limit) {
 299                retval = 1;
 300        } else {
 301                now     = jiffies;
 302                elapsed = now - last_check;
 303                if (elapsed > HZ) {
 304                        last_check = now;
 305                        messages   = 0;
 306                        retval     = 1;
 307                }
 308        }
 309        spin_unlock_irqrestore(&lock, flags);
 310
 311        return retval;
 312}
 313
 314/**
 315 * audit_log_lost - conditionally log lost audit message event
 316 * @message: the message stating reason for lost audit message
 317 *
 318 * Emit at least 1 message per second, even if audit_rate_check is
 319 * throttling.
 320 * Always increment the lost messages counter.
 321*/
 322void audit_log_lost(const char *message)
 323{
 324        static unsigned long    last_msg = 0;
 325        static DEFINE_SPINLOCK(lock);
 326        unsigned long           flags;
 327        unsigned long           now;
 328        int                     print;
 329
 330        atomic_inc(&audit_lost);
 331
 332        print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 333
 334        if (!print) {
 335                spin_lock_irqsave(&lock, flags);
 336                now = jiffies;
 337                if (now - last_msg > HZ) {
 338                        print = 1;
 339                        last_msg = now;
 340                }
 341                spin_unlock_irqrestore(&lock, flags);
 342        }
 343
 344        if (print) {
 345                if (printk_ratelimit())
 346                        pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 347                                atomic_read(&audit_lost),
 348                                audit_rate_limit,
 349                                audit_backlog_limit);
 350                audit_panic(message);
 351        }
 352}
 353
 354static int audit_log_config_change(char *function_name, u32 new, u32 old,
 355                                   int allow_changes)
 356{
 357        struct audit_buffer *ab;
 358        int rc = 0;
 359
 360        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 361        if (unlikely(!ab))
 362                return rc;
 363        audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 364        audit_log_session_info(ab);
 365        rc = audit_log_task_context(ab);
 366        if (rc)
 367                allow_changes = 0; /* Something weird, deny request */
 368        audit_log_format(ab, " res=%d", allow_changes);
 369        audit_log_end(ab);
 370        return rc;
 371}
 372
 373static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 374{
 375        int allow_changes, rc = 0;
 376        u32 old = *to_change;
 377
 378        /* check if we are locked */
 379        if (audit_enabled == AUDIT_LOCKED)
 380                allow_changes = 0;
 381        else
 382                allow_changes = 1;
 383
 384        if (audit_enabled != AUDIT_OFF) {
 385                rc = audit_log_config_change(function_name, new, old, allow_changes);
 386                if (rc)
 387                        allow_changes = 0;
 388        }
 389
 390        /* If we are allowed, make the change */
 391        if (allow_changes == 1)
 392                *to_change = new;
 393        /* Not allowed, update reason */
 394        else if (rc == 0)
 395                rc = -EPERM;
 396        return rc;
 397}
 398
 399static int audit_set_rate_limit(u32 limit)
 400{
 401        return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 402}
 403
 404static int audit_set_backlog_limit(u32 limit)
 405{
 406        return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 407}
 408
 409static int audit_set_backlog_wait_time(u32 timeout)
 410{
 411        return audit_do_config_change("audit_backlog_wait_time",
 412                                      &audit_backlog_wait_time, timeout);
 413}
 414
 415static int audit_set_enabled(u32 state)
 416{
 417        int rc;
 418        if (state > AUDIT_LOCKED)
 419                return -EINVAL;
 420
 421        rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 422        if (!rc)
 423                audit_ever_enabled |= !!state;
 424
 425        return rc;
 426}
 427
 428static int audit_set_failure(u32 state)
 429{
 430        if (state != AUDIT_FAIL_SILENT
 431            && state != AUDIT_FAIL_PRINTK
 432            && state != AUDIT_FAIL_PANIC)
 433                return -EINVAL;
 434
 435        return audit_do_config_change("audit_failure", &audit_failure, state);
 436}
 437
 438/**
 439 * auditd_conn_free - RCU helper to release an auditd connection struct
 440 * @rcu: RCU head
 441 *
 442 * Description:
 443 * Drop any references inside the auditd connection tracking struct and free
 444 * the memory.
 445 */
 446 static void auditd_conn_free(struct rcu_head *rcu)
 447 {
 448        struct auditd_connection *ac;
 449
 450        ac = container_of(rcu, struct auditd_connection, rcu);
 451        put_pid(ac->pid);
 452        put_net(ac->net);
 453        kfree(ac);
 454 }
 455
 456/**
 457 * auditd_set - Set/Reset the auditd connection state
 458 * @pid: auditd PID
 459 * @portid: auditd netlink portid
 460 * @net: auditd network namespace pointer
 461 *
 462 * Description:
 463 * This function will obtain and drop network namespace references as
 464 * necessary.  Returns zero on success, negative values on failure.
 465 */
 466static int auditd_set(struct pid *pid, u32 portid, struct net *net)
 467{
 468        unsigned long flags;
 469        struct auditd_connection *ac_old, *ac_new;
 470
 471        if (!pid || !net)
 472                return -EINVAL;
 473
 474        ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
 475        if (!ac_new)
 476                return -ENOMEM;
 477        ac_new->pid = get_pid(pid);
 478        ac_new->portid = portid;
 479        ac_new->net = get_net(net);
 480
 481        spin_lock_irqsave(&auditd_conn_lock, flags);
 482        ac_old = rcu_dereference_protected(auditd_conn,
 483                                           lockdep_is_held(&auditd_conn_lock));
 484        rcu_assign_pointer(auditd_conn, ac_new);
 485        spin_unlock_irqrestore(&auditd_conn_lock, flags);
 486
 487        if (ac_old)
 488                call_rcu(&ac_old->rcu, auditd_conn_free);
 489
 490        return 0;
 491}
 492
 493/**
 494 * kauditd_print_skb - Print the audit record to the ring buffer
 495 * @skb: audit record
 496 *
 497 * Whatever the reason, this packet may not make it to the auditd connection
 498 * so write it via printk so the information isn't completely lost.
 499 */
 500static void kauditd_printk_skb(struct sk_buff *skb)
 501{
 502        struct nlmsghdr *nlh = nlmsg_hdr(skb);
 503        char *data = nlmsg_data(nlh);
 504
 505        if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
 506                pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 507}
 508
 509/**
 510 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
 511 * @skb: audit record
 512 *
 513 * Description:
 514 * This should only be used by the kauditd_thread when it fails to flush the
 515 * hold queue.
 516 */
 517static void kauditd_rehold_skb(struct sk_buff *skb)
 518{
 519        /* put the record back in the queue at the same place */
 520        skb_queue_head(&audit_hold_queue, skb);
 521}
 522
 523/**
 524 * kauditd_hold_skb - Queue an audit record, waiting for auditd
 525 * @skb: audit record
 526 *
 527 * Description:
 528 * Queue the audit record, waiting for an instance of auditd.  When this
 529 * function is called we haven't given up yet on sending the record, but things
 530 * are not looking good.  The first thing we want to do is try to write the
 531 * record via printk and then see if we want to try and hold on to the record
 532 * and queue it, if we have room.  If we want to hold on to the record, but we
 533 * don't have room, record a record lost message.
 534 */
 535static void kauditd_hold_skb(struct sk_buff *skb)
 536{
 537        /* at this point it is uncertain if we will ever send this to auditd so
 538         * try to send the message via printk before we go any further */
 539        kauditd_printk_skb(skb);
 540
 541        /* can we just silently drop the message? */
 542        if (!audit_default) {
 543                kfree_skb(skb);
 544                return;
 545        }
 546
 547        /* if we have room, queue the message */
 548        if (!audit_backlog_limit ||
 549            skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
 550                skb_queue_tail(&audit_hold_queue, skb);
 551                return;
 552        }
 553
 554        /* we have no other options - drop the message */
 555        audit_log_lost("kauditd hold queue overflow");
 556        kfree_skb(skb);
 557}
 558
 559/**
 560 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
 561 * @skb: audit record
 562 *
 563 * Description:
 564 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
 565 * but for some reason we are having problems sending it audit records so
 566 * queue the given record and attempt to resend.
 567 */
 568static void kauditd_retry_skb(struct sk_buff *skb)
 569{
 570        /* NOTE: because records should only live in the retry queue for a
 571         * short period of time, before either being sent or moved to the hold
 572         * queue, we don't currently enforce a limit on this queue */
 573        skb_queue_tail(&audit_retry_queue, skb);
 574}
 575
 576/**
 577 * auditd_reset - Disconnect the auditd connection
 578 * @ac: auditd connection state
 579 *
 580 * Description:
 581 * Break the auditd/kauditd connection and move all the queued records into the
 582 * hold queue in case auditd reconnects.  It is important to note that the @ac
 583 * pointer should never be dereferenced inside this function as it may be NULL
 584 * or invalid, you can only compare the memory address!  If @ac is NULL then
 585 * the connection will always be reset.
 586 */
 587static void auditd_reset(const struct auditd_connection *ac)
 588{
 589        unsigned long flags;
 590        struct sk_buff *skb;
 591        struct auditd_connection *ac_old;
 592
 593        /* if it isn't already broken, break the connection */
 594        spin_lock_irqsave(&auditd_conn_lock, flags);
 595        ac_old = rcu_dereference_protected(auditd_conn,
 596                                           lockdep_is_held(&auditd_conn_lock));
 597        if (ac && ac != ac_old) {
 598                /* someone already registered a new auditd connection */
 599                spin_unlock_irqrestore(&auditd_conn_lock, flags);
 600                return;
 601        }
 602        rcu_assign_pointer(auditd_conn, NULL);
 603        spin_unlock_irqrestore(&auditd_conn_lock, flags);
 604
 605        if (ac_old)
 606                call_rcu(&ac_old->rcu, auditd_conn_free);
 607
 608        /* flush the retry queue to the hold queue, but don't touch the main
 609         * queue since we need to process that normally for multicast */
 610        while ((skb = skb_dequeue(&audit_retry_queue)))
 611                kauditd_hold_skb(skb);
 612}
 613
 614/**
 615 * auditd_send_unicast_skb - Send a record via unicast to auditd
 616 * @skb: audit record
 617 *
 618 * Description:
 619 * Send a skb to the audit daemon, returns positive/zero values on success and
 620 * negative values on failure; in all cases the skb will be consumed by this
 621 * function.  If the send results in -ECONNREFUSED the connection with auditd
 622 * will be reset.  This function may sleep so callers should not hold any locks
 623 * where this would cause a problem.
 624 */
 625static int auditd_send_unicast_skb(struct sk_buff *skb)
 626{
 627        int rc;
 628        u32 portid;
 629        struct net *net;
 630        struct sock *sk;
 631        struct auditd_connection *ac;
 632
 633        /* NOTE: we can't call netlink_unicast while in the RCU section so
 634         *       take a reference to the network namespace and grab local
 635         *       copies of the namespace, the sock, and the portid; the
 636         *       namespace and sock aren't going to go away while we hold a
 637         *       reference and if the portid does become invalid after the RCU
 638         *       section netlink_unicast() should safely return an error */
 639
 640        rcu_read_lock();
 641        ac = rcu_dereference(auditd_conn);
 642        if (!ac) {
 643                rcu_read_unlock();
 644                kfree_skb(skb);
 645                rc = -ECONNREFUSED;
 646                goto err;
 647        }
 648        net = get_net(ac->net);
 649        sk = audit_get_sk(net);
 650        portid = ac->portid;
 651        rcu_read_unlock();
 652
 653        rc = netlink_unicast(sk, skb, portid, 0);
 654        put_net(net);
 655        if (rc < 0)
 656                goto err;
 657
 658        return rc;
 659
 660err:
 661        if (ac && rc == -ECONNREFUSED)
 662                auditd_reset(ac);
 663        return rc;
 664}
 665
 666/**
 667 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
 668 * @sk: the sending sock
 669 * @portid: the netlink destination
 670 * @queue: the skb queue to process
 671 * @retry_limit: limit on number of netlink unicast failures
 672 * @skb_hook: per-skb hook for additional processing
 673 * @err_hook: hook called if the skb fails the netlink unicast send
 674 *
 675 * Description:
 676 * Run through the given queue and attempt to send the audit records to auditd,
 677 * returns zero on success, negative values on failure.  It is up to the caller
 678 * to ensure that the @sk is valid for the duration of this function.
 679 *
 680 */
 681static int kauditd_send_queue(struct sock *sk, u32 portid,
 682                              struct sk_buff_head *queue,
 683                              unsigned int retry_limit,
 684                              void (*skb_hook)(struct sk_buff *skb),
 685                              void (*err_hook)(struct sk_buff *skb))
 686{
 687        int rc = 0;
 688        struct sk_buff *skb;
 689        static unsigned int failed = 0;
 690
 691        /* NOTE: kauditd_thread takes care of all our locking, we just use
 692         *       the netlink info passed to us (e.g. sk and portid) */
 693
 694        while ((skb = skb_dequeue(queue))) {
 695                /* call the skb_hook for each skb we touch */
 696                if (skb_hook)
 697                        (*skb_hook)(skb);
 698
 699                /* can we send to anyone via unicast? */
 700                if (!sk) {
 701                        if (err_hook)
 702                                (*err_hook)(skb);
 703                        continue;
 704                }
 705
 706                /* grab an extra skb reference in case of error */
 707                skb_get(skb);
 708                rc = netlink_unicast(sk, skb, portid, 0);
 709                if (rc < 0) {
 710                        /* fatal failure for our queue flush attempt? */
 711                        if (++failed >= retry_limit ||
 712                            rc == -ECONNREFUSED || rc == -EPERM) {
 713                                /* yes - error processing for the queue */
 714                                sk = NULL;
 715                                if (err_hook)
 716                                        (*err_hook)(skb);
 717                                if (!skb_hook)
 718                                        goto out;
 719                                /* keep processing with the skb_hook */
 720                                continue;
 721                        } else
 722                                /* no - requeue to preserve ordering */
 723                                skb_queue_head(queue, skb);
 724                } else {
 725                        /* it worked - drop the extra reference and continue */
 726                        consume_skb(skb);
 727                        failed = 0;
 728                }
 729        }
 730
 731out:
 732        return (rc >= 0 ? 0 : rc);
 733}
 734
 735/*
 736 * kauditd_send_multicast_skb - Send a record to any multicast listeners
 737 * @skb: audit record
 738 *
 739 * Description:
 740 * Write a multicast message to anyone listening in the initial network
 741 * namespace.  This function doesn't consume an skb as might be expected since
 742 * it has to copy it anyways.
 743 */
 744static void kauditd_send_multicast_skb(struct sk_buff *skb)
 745{
 746        struct sk_buff *copy;
 747        struct sock *sock = audit_get_sk(&init_net);
 748        struct nlmsghdr *nlh;
 749
 750        /* NOTE: we are not taking an additional reference for init_net since
 751         *       we don't have to worry about it going away */
 752
 753        if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 754                return;
 755
 756        /*
 757         * The seemingly wasteful skb_copy() rather than bumping the refcount
 758         * using skb_get() is necessary because non-standard mods are made to
 759         * the skb by the original kaudit unicast socket send routine.  The
 760         * existing auditd daemon assumes this breakage.  Fixing this would
 761         * require co-ordinating a change in the established protocol between
 762         * the kaudit kernel subsystem and the auditd userspace code.  There is
 763         * no reason for new multicast clients to continue with this
 764         * non-compliance.
 765         */
 766        copy = skb_copy(skb, GFP_KERNEL);
 767        if (!copy)
 768                return;
 769        nlh = nlmsg_hdr(copy);
 770        nlh->nlmsg_len = skb->len;
 771
 772        nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
 773}
 774
 775/**
 776 * kauditd_thread - Worker thread to send audit records to userspace
 777 * @dummy: unused
 778 */
 779static int kauditd_thread(void *dummy)
 780{
 781        int rc;
 782        u32 portid = 0;
 783        struct net *net = NULL;
 784        struct sock *sk = NULL;
 785        struct auditd_connection *ac;
 786
 787#define UNICAST_RETRIES 5
 788
 789        set_freezable();
 790        while (!kthread_should_stop()) {
 791                /* NOTE: see the lock comments in auditd_send_unicast_skb() */
 792                rcu_read_lock();
 793                ac = rcu_dereference(auditd_conn);
 794                if (!ac) {
 795                        rcu_read_unlock();
 796                        goto main_queue;
 797                }
 798                net = get_net(ac->net);
 799                sk = audit_get_sk(net);
 800                portid = ac->portid;
 801                rcu_read_unlock();
 802
 803                /* attempt to flush the hold queue */
 804                rc = kauditd_send_queue(sk, portid,
 805                                        &audit_hold_queue, UNICAST_RETRIES,
 806                                        NULL, kauditd_rehold_skb);
 807                if (ac && rc < 0) {
 808                        sk = NULL;
 809                        auditd_reset(ac);
 810                        goto main_queue;
 811                }
 812
 813                /* attempt to flush the retry queue */
 814                rc = kauditd_send_queue(sk, portid,
 815                                        &audit_retry_queue, UNICAST_RETRIES,
 816                                        NULL, kauditd_hold_skb);
 817                if (ac && rc < 0) {
 818                        sk = NULL;
 819                        auditd_reset(ac);
 820                        goto main_queue;
 821                }
 822
 823main_queue:
 824                /* process the main queue - do the multicast send and attempt
 825                 * unicast, dump failed record sends to the retry queue; if
 826                 * sk == NULL due to previous failures we will just do the
 827                 * multicast send and move the record to the hold queue */
 828                rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
 829                                        kauditd_send_multicast_skb,
 830                                        (sk ?
 831                                         kauditd_retry_skb : kauditd_hold_skb));
 832                if (ac && rc < 0)
 833                        auditd_reset(ac);
 834                sk = NULL;
 835
 836                /* drop our netns reference, no auditd sends past this line */
 837                if (net) {
 838                        put_net(net);
 839                        net = NULL;
 840                }
 841
 842                /* we have processed all the queues so wake everyone */
 843                wake_up(&audit_backlog_wait);
 844
 845                /* NOTE: we want to wake up if there is anything on the queue,
 846                 *       regardless of if an auditd is connected, as we need to
 847                 *       do the multicast send and rotate records from the
 848                 *       main queue to the retry/hold queues */
 849                wait_event_freezable(kauditd_wait,
 850                                     (skb_queue_len(&audit_queue) ? 1 : 0));
 851        }
 852
 853        return 0;
 854}
 855
 856int audit_send_list(void *_dest)
 857{
 858        struct audit_netlink_list *dest = _dest;
 859        struct sk_buff *skb;
 860        struct sock *sk = audit_get_sk(dest->net);
 861
 862        /* wait for parent to finish and send an ACK */
 863        mutex_lock(&audit_cmd_mutex);
 864        mutex_unlock(&audit_cmd_mutex);
 865
 866        while ((skb = __skb_dequeue(&dest->q)) != NULL)
 867                netlink_unicast(sk, skb, dest->portid, 0);
 868
 869        put_net(dest->net);
 870        kfree(dest);
 871
 872        return 0;
 873}
 874
 875struct sk_buff *audit_make_reply(int seq, int type, int done,
 876                                 int multi, const void *payload, int size)
 877{
 878        struct sk_buff  *skb;
 879        struct nlmsghdr *nlh;
 880        void            *data;
 881        int             flags = multi ? NLM_F_MULTI : 0;
 882        int             t     = done  ? NLMSG_DONE  : type;
 883
 884        skb = nlmsg_new(size, GFP_KERNEL);
 885        if (!skb)
 886                return NULL;
 887
 888        nlh     = nlmsg_put(skb, 0, seq, t, size, flags);
 889        if (!nlh)
 890                goto out_kfree_skb;
 891        data = nlmsg_data(nlh);
 892        memcpy(data, payload, size);
 893        return skb;
 894
 895out_kfree_skb:
 896        kfree_skb(skb);
 897        return NULL;
 898}
 899
 900static int audit_send_reply_thread(void *arg)
 901{
 902        struct audit_reply *reply = (struct audit_reply *)arg;
 903        struct sock *sk = audit_get_sk(reply->net);
 904
 905        mutex_lock(&audit_cmd_mutex);
 906        mutex_unlock(&audit_cmd_mutex);
 907
 908        /* Ignore failure. It'll only happen if the sender goes away,
 909           because our timeout is set to infinite. */
 910        netlink_unicast(sk, reply->skb, reply->portid, 0);
 911        put_net(reply->net);
 912        kfree(reply);
 913        return 0;
 914}
 915
 916/**
 917 * audit_send_reply - send an audit reply message via netlink
 918 * @request_skb: skb of request we are replying to (used to target the reply)
 919 * @seq: sequence number
 920 * @type: audit message type
 921 * @done: done (last) flag
 922 * @multi: multi-part message flag
 923 * @payload: payload data
 924 * @size: payload size
 925 *
 926 * Allocates an skb, builds the netlink message, and sends it to the port id.
 927 * No failure notifications.
 928 */
 929static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 930                             int multi, const void *payload, int size)
 931{
 932        struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 933        struct sk_buff *skb;
 934        struct task_struct *tsk;
 935        struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 936                                            GFP_KERNEL);
 937
 938        if (!reply)
 939                return;
 940
 941        skb = audit_make_reply(seq, type, done, multi, payload, size);
 942        if (!skb)
 943                goto out;
 944
 945        reply->net = get_net(net);
 946        reply->portid = NETLINK_CB(request_skb).portid;
 947        reply->skb = skb;
 948
 949        tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 950        if (!IS_ERR(tsk))
 951                return;
 952        kfree_skb(skb);
 953out:
 954        kfree(reply);
 955}
 956
 957/*
 958 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 959 * control messages.
 960 */
 961static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
 962{
 963        int err = 0;
 964
 965        /* Only support initial user namespace for now. */
 966        /*
 967         * We return ECONNREFUSED because it tricks userspace into thinking
 968         * that audit was not configured into the kernel.  Lots of users
 969         * configure their PAM stack (because that's what the distro does)
 970         * to reject login if unable to send messages to audit.  If we return
 971         * ECONNREFUSED the PAM stack thinks the kernel does not have audit
 972         * configured in and will let login proceed.  If we return EPERM
 973         * userspace will reject all logins.  This should be removed when we
 974         * support non init namespaces!!
 975         */
 976        if (current_user_ns() != &init_user_ns)
 977                return -ECONNREFUSED;
 978
 979        switch (msg_type) {
 980        case AUDIT_LIST:
 981        case AUDIT_ADD:
 982        case AUDIT_DEL:
 983                return -EOPNOTSUPP;
 984        case AUDIT_GET:
 985        case AUDIT_SET:
 986        case AUDIT_GET_FEATURE:
 987        case AUDIT_SET_FEATURE:
 988        case AUDIT_LIST_RULES:
 989        case AUDIT_ADD_RULE:
 990        case AUDIT_DEL_RULE:
 991        case AUDIT_SIGNAL_INFO:
 992        case AUDIT_TTY_GET:
 993        case AUDIT_TTY_SET:
 994        case AUDIT_TRIM:
 995        case AUDIT_MAKE_EQUIV:
 996                /* Only support auditd and auditctl in initial pid namespace
 997                 * for now. */
 998                if (task_active_pid_ns(current) != &init_pid_ns)
 999                        return -EPERM;
1000
1001                if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1002                        err = -EPERM;
1003                break;
1004        case AUDIT_USER:
1005        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1006        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1007                if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1008                        err = -EPERM;
1009                break;
1010        default:  /* bad msg */
1011                err = -EINVAL;
1012        }
1013
1014        return err;
1015}
1016
1017static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1018{
1019        uid_t uid = from_kuid(&init_user_ns, current_uid());
1020        pid_t pid = task_tgid_nr(current);
1021
1022        if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1023                *ab = NULL;
1024                return;
1025        }
1026
1027        *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1028        if (unlikely(!*ab))
1029                return;
1030        audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1031        audit_log_session_info(*ab);
1032        audit_log_task_context(*ab);
1033}
1034
1035int is_audit_feature_set(int i)
1036{
1037        return af.features & AUDIT_FEATURE_TO_MASK(i);
1038}
1039
1040
1041static int audit_get_feature(struct sk_buff *skb)
1042{
1043        u32 seq;
1044
1045        seq = nlmsg_hdr(skb)->nlmsg_seq;
1046
1047        audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1048
1049        return 0;
1050}
1051
1052static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1053                                     u32 old_lock, u32 new_lock, int res)
1054{
1055        struct audit_buffer *ab;
1056
1057        if (audit_enabled == AUDIT_OFF)
1058                return;
1059
1060        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1061        audit_log_task_info(ab, current);
1062        audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1063                         audit_feature_names[which], !!old_feature, !!new_feature,
1064                         !!old_lock, !!new_lock, res);
1065        audit_log_end(ab);
1066}
1067
1068static int audit_set_feature(struct sk_buff *skb)
1069{
1070        struct audit_features *uaf;
1071        int i;
1072
1073        BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1074        uaf = nlmsg_data(nlmsg_hdr(skb));
1075
1076        /* if there is ever a version 2 we should handle that here */
1077
1078        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1079                u32 feature = AUDIT_FEATURE_TO_MASK(i);
1080                u32 old_feature, new_feature, old_lock, new_lock;
1081
1082                /* if we are not changing this feature, move along */
1083                if (!(feature & uaf->mask))
1084                        continue;
1085
1086                old_feature = af.features & feature;
1087                new_feature = uaf->features & feature;
1088                new_lock = (uaf->lock | af.lock) & feature;
1089                old_lock = af.lock & feature;
1090
1091                /* are we changing a locked feature? */
1092                if (old_lock && (new_feature != old_feature)) {
1093                        audit_log_feature_change(i, old_feature, new_feature,
1094                                                 old_lock, new_lock, 0);
1095                        return -EPERM;
1096                }
1097        }
1098        /* nothing invalid, do the changes */
1099        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1100                u32 feature = AUDIT_FEATURE_TO_MASK(i);
1101                u32 old_feature, new_feature, old_lock, new_lock;
1102
1103                /* if we are not changing this feature, move along */
1104                if (!(feature & uaf->mask))
1105                        continue;
1106
1107                old_feature = af.features & feature;
1108                new_feature = uaf->features & feature;
1109                old_lock = af.lock & feature;
1110                new_lock = (uaf->lock | af.lock) & feature;
1111
1112                if (new_feature != old_feature)
1113                        audit_log_feature_change(i, old_feature, new_feature,
1114                                                 old_lock, new_lock, 1);
1115
1116                if (new_feature)
1117                        af.features |= feature;
1118                else
1119                        af.features &= ~feature;
1120                af.lock |= new_lock;
1121        }
1122
1123        return 0;
1124}
1125
1126static int audit_replace(struct pid *pid)
1127{
1128        pid_t pvnr;
1129        struct sk_buff *skb;
1130
1131        pvnr = pid_vnr(pid);
1132        skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1133        if (!skb)
1134                return -ENOMEM;
1135        return auditd_send_unicast_skb(skb);
1136}
1137
1138static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1139{
1140        u32                     seq;
1141        void                    *data;
1142        int                     err;
1143        struct audit_buffer     *ab;
1144        u16                     msg_type = nlh->nlmsg_type;
1145        struct audit_sig_info   *sig_data;
1146        char                    *ctx = NULL;
1147        u32                     len;
1148
1149        err = audit_netlink_ok(skb, msg_type);
1150        if (err)
1151                return err;
1152
1153        seq  = nlh->nlmsg_seq;
1154        data = nlmsg_data(nlh);
1155
1156        switch (msg_type) {
1157        case AUDIT_GET: {
1158                struct audit_status     s;
1159                memset(&s, 0, sizeof(s));
1160                s.enabled               = audit_enabled;
1161                s.failure               = audit_failure;
1162                /* NOTE: use pid_vnr() so the PID is relative to the current
1163                 *       namespace */
1164                s.pid                   = auditd_pid_vnr();
1165                s.rate_limit            = audit_rate_limit;
1166                s.backlog_limit         = audit_backlog_limit;
1167                s.lost                  = atomic_read(&audit_lost);
1168                s.backlog               = skb_queue_len(&audit_queue);
1169                s.feature_bitmap        = AUDIT_FEATURE_BITMAP_ALL;
1170                s.backlog_wait_time     = audit_backlog_wait_time;
1171                audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1172                break;
1173        }
1174        case AUDIT_SET: {
1175                struct audit_status     s;
1176                memset(&s, 0, sizeof(s));
1177                /* guard against past and future API changes */
1178                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1179                if (s.mask & AUDIT_STATUS_ENABLED) {
1180                        err = audit_set_enabled(s.enabled);
1181                        if (err < 0)
1182                                return err;
1183                }
1184                if (s.mask & AUDIT_STATUS_FAILURE) {
1185                        err = audit_set_failure(s.failure);
1186                        if (err < 0)
1187                                return err;
1188                }
1189                if (s.mask & AUDIT_STATUS_PID) {
1190                        /* NOTE: we are using the vnr PID functions below
1191                         *       because the s.pid value is relative to the
1192                         *       namespace of the caller; at present this
1193                         *       doesn't matter much since you can really only
1194                         *       run auditd from the initial pid namespace, but
1195                         *       something to keep in mind if this changes */
1196                        pid_t new_pid = s.pid;
1197                        pid_t auditd_pid;
1198                        struct pid *req_pid = task_tgid(current);
1199
1200                        /* sanity check - PID values must match */
1201                        if (new_pid != pid_vnr(req_pid))
1202                                return -EINVAL;
1203
1204                        /* test the auditd connection */
1205                        audit_replace(req_pid);
1206
1207                        auditd_pid = auditd_pid_vnr();
1208                        /* only the current auditd can unregister itself */
1209                        if ((!new_pid) && (new_pid != auditd_pid)) {
1210                                audit_log_config_change("audit_pid", new_pid,
1211                                                        auditd_pid, 0);
1212                                return -EACCES;
1213                        }
1214                        /* replacing a healthy auditd is not allowed */
1215                        if (auditd_pid && new_pid) {
1216                                audit_log_config_change("audit_pid", new_pid,
1217                                                        auditd_pid, 0);
1218                                return -EEXIST;
1219                        }
1220
1221                        if (new_pid) {
1222                                /* register a new auditd connection */
1223                                err = auditd_set(req_pid,
1224                                                 NETLINK_CB(skb).portid,
1225                                                 sock_net(NETLINK_CB(skb).sk));
1226                                if (audit_enabled != AUDIT_OFF)
1227                                        audit_log_config_change("audit_pid",
1228                                                                new_pid,
1229                                                                auditd_pid,
1230                                                                err ? 0 : 1);
1231                                if (err)
1232                                        return err;
1233
1234                                /* try to process any backlog */
1235                                wake_up_interruptible(&kauditd_wait);
1236                        } else {
1237                                if (audit_enabled != AUDIT_OFF)
1238                                        audit_log_config_change("audit_pid",
1239                                                                new_pid,
1240                                                                auditd_pid, 1);
1241
1242                                /* unregister the auditd connection */
1243                                auditd_reset(NULL);
1244                        }
1245                }
1246                if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1247                        err = audit_set_rate_limit(s.rate_limit);
1248                        if (err < 0)
1249                                return err;
1250                }
1251                if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1252                        err = audit_set_backlog_limit(s.backlog_limit);
1253                        if (err < 0)
1254                                return err;
1255                }
1256                if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1257                        if (sizeof(s) > (size_t)nlh->nlmsg_len)
1258                                return -EINVAL;
1259                        if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1260                                return -EINVAL;
1261                        err = audit_set_backlog_wait_time(s.backlog_wait_time);
1262                        if (err < 0)
1263                                return err;
1264                }
1265                if (s.mask == AUDIT_STATUS_LOST) {
1266                        u32 lost = atomic_xchg(&audit_lost, 0);
1267
1268                        audit_log_config_change("lost", 0, lost, 1);
1269                        return lost;
1270                }
1271                break;
1272        }
1273        case AUDIT_GET_FEATURE:
1274                err = audit_get_feature(skb);
1275                if (err)
1276                        return err;
1277                break;
1278        case AUDIT_SET_FEATURE:
1279                err = audit_set_feature(skb);
1280                if (err)
1281                        return err;
1282                break;
1283        case AUDIT_USER:
1284        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1285        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1286                if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1287                        return 0;
1288
1289                err = audit_filter(msg_type, AUDIT_FILTER_USER);
1290                if (err == 1) { /* match or error */
1291                        err = 0;
1292                        if (msg_type == AUDIT_USER_TTY) {
1293                                err = tty_audit_push();
1294                                if (err)
1295                                        break;
1296                        }
1297                        audit_log_common_recv_msg(&ab, msg_type);
1298                        if (msg_type != AUDIT_USER_TTY)
1299                                audit_log_format(ab, " msg='%.*s'",
1300                                                 AUDIT_MESSAGE_TEXT_MAX,
1301                                                 (char *)data);
1302                        else {
1303                                int size;
1304
1305                                audit_log_format(ab, " data=");
1306                                size = nlmsg_len(nlh);
1307                                if (size > 0 &&
1308                                    ((unsigned char *)data)[size - 1] == '\0')
1309                                        size--;
1310                                audit_log_n_untrustedstring(ab, data, size);
1311                        }
1312                        audit_log_end(ab);
1313                }
1314                break;
1315        case AUDIT_ADD_RULE:
1316        case AUDIT_DEL_RULE:
1317                if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1318                        return -EINVAL;
1319                if (audit_enabled == AUDIT_LOCKED) {
1320                        audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1321                        audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1322                        audit_log_end(ab);
1323                        return -EPERM;
1324                }
1325                err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1326                break;
1327        case AUDIT_LIST_RULES:
1328                err = audit_list_rules_send(skb, seq);
1329                break;
1330        case AUDIT_TRIM:
1331                audit_trim_trees();
1332                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1333                audit_log_format(ab, " op=trim res=1");
1334                audit_log_end(ab);
1335                break;
1336        case AUDIT_MAKE_EQUIV: {
1337                void *bufp = data;
1338                u32 sizes[2];
1339                size_t msglen = nlmsg_len(nlh);
1340                char *old, *new;
1341
1342                err = -EINVAL;
1343                if (msglen < 2 * sizeof(u32))
1344                        break;
1345                memcpy(sizes, bufp, 2 * sizeof(u32));
1346                bufp += 2 * sizeof(u32);
1347                msglen -= 2 * sizeof(u32);
1348                old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1349                if (IS_ERR(old)) {
1350                        err = PTR_ERR(old);
1351                        break;
1352                }
1353                new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1354                if (IS_ERR(new)) {
1355                        err = PTR_ERR(new);
1356                        kfree(old);
1357                        break;
1358                }
1359                /* OK, here comes... */
1360                err = audit_tag_tree(old, new);
1361
1362                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1363
1364                audit_log_format(ab, " op=make_equiv old=");
1365                audit_log_untrustedstring(ab, old);
1366                audit_log_format(ab, " new=");
1367                audit_log_untrustedstring(ab, new);
1368                audit_log_format(ab, " res=%d", !err);
1369                audit_log_end(ab);
1370                kfree(old);
1371                kfree(new);
1372                break;
1373        }
1374        case AUDIT_SIGNAL_INFO:
1375                len = 0;
1376                if (audit_sig_sid) {
1377                        err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1378                        if (err)
1379                                return err;
1380                }
1381                sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1382                if (!sig_data) {
1383                        if (audit_sig_sid)
1384                                security_release_secctx(ctx, len);
1385                        return -ENOMEM;
1386                }
1387                sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1388                sig_data->pid = audit_sig_pid;
1389                if (audit_sig_sid) {
1390                        memcpy(sig_data->ctx, ctx, len);
1391                        security_release_secctx(ctx, len);
1392                }
1393                audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1394                                 sig_data, sizeof(*sig_data) + len);
1395                kfree(sig_data);
1396                break;
1397        case AUDIT_TTY_GET: {
1398                struct audit_tty_status s;
1399                unsigned int t;
1400
1401                t = READ_ONCE(current->signal->audit_tty);
1402                s.enabled = t & AUDIT_TTY_ENABLE;
1403                s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1404
1405                audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1406                break;
1407        }
1408        case AUDIT_TTY_SET: {
1409                struct audit_tty_status s, old;
1410                struct audit_buffer     *ab;
1411                unsigned int t;
1412
1413                memset(&s, 0, sizeof(s));
1414                /* guard against past and future API changes */
1415                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1416                /* check if new data is valid */
1417                if ((s.enabled != 0 && s.enabled != 1) ||
1418                    (s.log_passwd != 0 && s.log_passwd != 1))
1419                        err = -EINVAL;
1420
1421                if (err)
1422                        t = READ_ONCE(current->signal->audit_tty);
1423                else {
1424                        t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1425                        t = xchg(&current->signal->audit_tty, t);
1426                }
1427                old.enabled = t & AUDIT_TTY_ENABLE;
1428                old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1429
1430                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1431                audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1432                                 " old-log_passwd=%d new-log_passwd=%d res=%d",
1433                                 old.enabled, s.enabled, old.log_passwd,
1434                                 s.log_passwd, !err);
1435                audit_log_end(ab);
1436                break;
1437        }
1438        default:
1439                err = -EINVAL;
1440                break;
1441        }
1442
1443        return err < 0 ? err : 0;
1444}
1445
1446/**
1447 * audit_receive - receive messages from a netlink control socket
1448 * @skb: the message buffer
1449 *
1450 * Parse the provided skb and deal with any messages that may be present,
1451 * malformed skbs are discarded.
1452 */
1453static void audit_receive(struct sk_buff  *skb)
1454{
1455        struct nlmsghdr *nlh;
1456        /*
1457         * len MUST be signed for nlmsg_next to be able to dec it below 0
1458         * if the nlmsg_len was not aligned
1459         */
1460        int len;
1461        int err;
1462
1463        nlh = nlmsg_hdr(skb);
1464        len = skb->len;
1465
1466        mutex_lock(&audit_cmd_mutex);
1467        while (nlmsg_ok(nlh, len)) {
1468                err = audit_receive_msg(skb, nlh);
1469                /* if err or if this message says it wants a response */
1470                if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1471                        netlink_ack(skb, nlh, err, NULL);
1472
1473                nlh = nlmsg_next(nlh, &len);
1474        }
1475        mutex_unlock(&audit_cmd_mutex);
1476}
1477
1478/* Run custom bind function on netlink socket group connect or bind requests. */
1479static int audit_bind(struct net *net, int group)
1480{
1481        if (!capable(CAP_AUDIT_READ))
1482                return -EPERM;
1483
1484        return 0;
1485}
1486
1487static int __net_init audit_net_init(struct net *net)
1488{
1489        struct netlink_kernel_cfg cfg = {
1490                .input  = audit_receive,
1491                .bind   = audit_bind,
1492                .flags  = NL_CFG_F_NONROOT_RECV,
1493                .groups = AUDIT_NLGRP_MAX,
1494        };
1495
1496        struct audit_net *aunet = net_generic(net, audit_net_id);
1497
1498        aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1499        if (aunet->sk == NULL) {
1500                audit_panic("cannot initialize netlink socket in namespace");
1501                return -ENOMEM;
1502        }
1503        aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1504
1505        return 0;
1506}
1507
1508static void __net_exit audit_net_exit(struct net *net)
1509{
1510        struct audit_net *aunet = net_generic(net, audit_net_id);
1511
1512        /* NOTE: you would think that we would want to check the auditd
1513         * connection and potentially reset it here if it lives in this
1514         * namespace, but since the auditd connection tracking struct holds a
1515         * reference to this namespace (see auditd_set()) we are only ever
1516         * going to get here after that connection has been released */
1517
1518        netlink_kernel_release(aunet->sk);
1519}
1520
1521static struct pernet_operations audit_net_ops __net_initdata = {
1522        .init = audit_net_init,
1523        .exit = audit_net_exit,
1524        .id = &audit_net_id,
1525        .size = sizeof(struct audit_net),
1526};
1527
1528/* Initialize audit support at boot time. */
1529static int __init audit_init(void)
1530{
1531        int i;
1532
1533        if (audit_initialized == AUDIT_DISABLED)
1534                return 0;
1535
1536        audit_buffer_cache = kmem_cache_create("audit_buffer",
1537                                               sizeof(struct audit_buffer),
1538                                               0, SLAB_PANIC, NULL);
1539
1540        skb_queue_head_init(&audit_queue);
1541        skb_queue_head_init(&audit_retry_queue);
1542        skb_queue_head_init(&audit_hold_queue);
1543
1544        for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1545                INIT_LIST_HEAD(&audit_inode_hash[i]);
1546
1547        pr_info("initializing netlink subsys (%s)\n",
1548                audit_default ? "enabled" : "disabled");
1549        register_pernet_subsys(&audit_net_ops);
1550
1551        audit_initialized = AUDIT_INITIALIZED;
1552        audit_enabled = audit_default;
1553        audit_ever_enabled |= !!audit_default;
1554
1555        kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1556        if (IS_ERR(kauditd_task)) {
1557                int err = PTR_ERR(kauditd_task);
1558                panic("audit: failed to start the kauditd thread (%d)\n", err);
1559        }
1560
1561        audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1562                "state=initialized audit_enabled=%u res=1",
1563                 audit_enabled);
1564
1565        return 0;
1566}
1567__initcall(audit_init);
1568
1569/* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1570static int __init audit_enable(char *str)
1571{
1572        audit_default = !!simple_strtol(str, NULL, 0);
1573        if (!audit_default)
1574                audit_initialized = AUDIT_DISABLED;
1575
1576        pr_info("%s\n", audit_default ?
1577                "enabled (after initialization)" : "disabled (until reboot)");
1578
1579        return 1;
1580}
1581__setup("audit=", audit_enable);
1582
1583/* Process kernel command-line parameter at boot time.
1584 * audit_backlog_limit=<n> */
1585static int __init audit_backlog_limit_set(char *str)
1586{
1587        u32 audit_backlog_limit_arg;
1588
1589        pr_info("audit_backlog_limit: ");
1590        if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1591                pr_cont("using default of %u, unable to parse %s\n",
1592                        audit_backlog_limit, str);
1593                return 1;
1594        }
1595
1596        audit_backlog_limit = audit_backlog_limit_arg;
1597        pr_cont("%d\n", audit_backlog_limit);
1598
1599        return 1;
1600}
1601__setup("audit_backlog_limit=", audit_backlog_limit_set);
1602
1603static void audit_buffer_free(struct audit_buffer *ab)
1604{
1605        if (!ab)
1606                return;
1607
1608        kfree_skb(ab->skb);
1609        kmem_cache_free(audit_buffer_cache, ab);
1610}
1611
1612static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1613                                               gfp_t gfp_mask, int type)
1614{
1615        struct audit_buffer *ab;
1616
1617        ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1618        if (!ab)
1619                return NULL;
1620
1621        ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1622        if (!ab->skb)
1623                goto err;
1624        if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1625                goto err;
1626
1627        ab->ctx = ctx;
1628        ab->gfp_mask = gfp_mask;
1629
1630        return ab;
1631
1632err:
1633        audit_buffer_free(ab);
1634        return NULL;
1635}
1636
1637/**
1638 * audit_serial - compute a serial number for the audit record
1639 *
1640 * Compute a serial number for the audit record.  Audit records are
1641 * written to user-space as soon as they are generated, so a complete
1642 * audit record may be written in several pieces.  The timestamp of the
1643 * record and this serial number are used by the user-space tools to
1644 * determine which pieces belong to the same audit record.  The
1645 * (timestamp,serial) tuple is unique for each syscall and is live from
1646 * syscall entry to syscall exit.
1647 *
1648 * NOTE: Another possibility is to store the formatted records off the
1649 * audit context (for those records that have a context), and emit them
1650 * all at syscall exit.  However, this could delay the reporting of
1651 * significant errors until syscall exit (or never, if the system
1652 * halts).
1653 */
1654unsigned int audit_serial(void)
1655{
1656        static atomic_t serial = ATOMIC_INIT(0);
1657
1658        return atomic_add_return(1, &serial);
1659}
1660
1661static inline void audit_get_stamp(struct audit_context *ctx,
1662                                   struct timespec64 *t, unsigned int *serial)
1663{
1664        if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1665                *t = current_kernel_time64();
1666                *serial = audit_serial();
1667        }
1668}
1669
1670/**
1671 * audit_log_start - obtain an audit buffer
1672 * @ctx: audit_context (may be NULL)
1673 * @gfp_mask: type of allocation
1674 * @type: audit message type
1675 *
1676 * Returns audit_buffer pointer on success or NULL on error.
1677 *
1678 * Obtain an audit buffer.  This routine does locking to obtain the
1679 * audit buffer, but then no locking is required for calls to
1680 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1681 * syscall, then the syscall is marked as auditable and an audit record
1682 * will be written at syscall exit.  If there is no associated task, then
1683 * task context (ctx) should be NULL.
1684 */
1685struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1686                                     int type)
1687{
1688        struct audit_buffer *ab;
1689        struct timespec64 t;
1690        unsigned int uninitialized_var(serial);
1691
1692        if (audit_initialized != AUDIT_INITIALIZED)
1693                return NULL;
1694
1695        if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1696                return NULL;
1697
1698        /* NOTE: don't ever fail/sleep on these two conditions:
1699         * 1. auditd generated record - since we need auditd to drain the
1700         *    queue; also, when we are checking for auditd, compare PIDs using
1701         *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1702         *    using a PID anchored in the caller's namespace
1703         * 2. generator holding the audit_cmd_mutex - we don't want to block
1704         *    while holding the mutex */
1705        if (!(auditd_test_task(current) ||
1706              (current == __mutex_owner(&audit_cmd_mutex)))) {
1707                long stime = audit_backlog_wait_time;
1708
1709                while (audit_backlog_limit &&
1710                       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1711                        /* wake kauditd to try and flush the queue */
1712                        wake_up_interruptible(&kauditd_wait);
1713
1714                        /* sleep if we are allowed and we haven't exhausted our
1715                         * backlog wait limit */
1716                        if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1717                                DECLARE_WAITQUEUE(wait, current);
1718
1719                                add_wait_queue_exclusive(&audit_backlog_wait,
1720                                                         &wait);
1721                                set_current_state(TASK_UNINTERRUPTIBLE);
1722                                stime = schedule_timeout(stime);
1723                                remove_wait_queue(&audit_backlog_wait, &wait);
1724                        } else {
1725                                if (audit_rate_check() && printk_ratelimit())
1726                                        pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1727                                                skb_queue_len(&audit_queue),
1728                                                audit_backlog_limit);
1729                                audit_log_lost("backlog limit exceeded");
1730                                return NULL;
1731                        }
1732                }
1733        }
1734
1735        ab = audit_buffer_alloc(ctx, gfp_mask, type);
1736        if (!ab) {
1737                audit_log_lost("out of memory in audit_log_start");
1738                return NULL;
1739        }
1740
1741        audit_get_stamp(ab->ctx, &t, &serial);
1742        audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1743                         (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1744
1745        return ab;
1746}
1747
1748/**
1749 * audit_expand - expand skb in the audit buffer
1750 * @ab: audit_buffer
1751 * @extra: space to add at tail of the skb
1752 *
1753 * Returns 0 (no space) on failed expansion, or available space if
1754 * successful.
1755 */
1756static inline int audit_expand(struct audit_buffer *ab, int extra)
1757{
1758        struct sk_buff *skb = ab->skb;
1759        int oldtail = skb_tailroom(skb);
1760        int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1761        int newtail = skb_tailroom(skb);
1762
1763        if (ret < 0) {
1764                audit_log_lost("out of memory in audit_expand");
1765                return 0;
1766        }
1767
1768        skb->truesize += newtail - oldtail;
1769        return newtail;
1770}
1771
1772/*
1773 * Format an audit message into the audit buffer.  If there isn't enough
1774 * room in the audit buffer, more room will be allocated and vsnprint
1775 * will be called a second time.  Currently, we assume that a printk
1776 * can't format message larger than 1024 bytes, so we don't either.
1777 */
1778static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1779                              va_list args)
1780{
1781        int len, avail;
1782        struct sk_buff *skb;
1783        va_list args2;
1784
1785        if (!ab)
1786                return;
1787
1788        BUG_ON(!ab->skb);
1789        skb = ab->skb;
1790        avail = skb_tailroom(skb);
1791        if (avail == 0) {
1792                avail = audit_expand(ab, AUDIT_BUFSIZ);
1793                if (!avail)
1794                        goto out;
1795        }
1796        va_copy(args2, args);
1797        len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1798        if (len >= avail) {
1799                /* The printk buffer is 1024 bytes long, so if we get
1800                 * here and AUDIT_BUFSIZ is at least 1024, then we can
1801                 * log everything that printk could have logged. */
1802                avail = audit_expand(ab,
1803                        max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1804                if (!avail)
1805                        goto out_va_end;
1806                len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1807        }
1808        if (len > 0)
1809                skb_put(skb, len);
1810out_va_end:
1811        va_end(args2);
1812out:
1813        return;
1814}
1815
1816/**
1817 * audit_log_format - format a message into the audit buffer.
1818 * @ab: audit_buffer
1819 * @fmt: format string
1820 * @...: optional parameters matching @fmt string
1821 *
1822 * All the work is done in audit_log_vformat.
1823 */
1824void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1825{
1826        va_list args;
1827
1828        if (!ab)
1829                return;
1830        va_start(args, fmt);
1831        audit_log_vformat(ab, fmt, args);
1832        va_end(args);
1833}
1834
1835/**
1836 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1837 * @ab: the audit_buffer
1838 * @buf: buffer to convert to hex
1839 * @len: length of @buf to be converted
1840 *
1841 * No return value; failure to expand is silently ignored.
1842 *
1843 * This function will take the passed buf and convert it into a string of
1844 * ascii hex digits. The new string is placed onto the skb.
1845 */
1846void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1847                size_t len)
1848{
1849        int i, avail, new_len;
1850        unsigned char *ptr;
1851        struct sk_buff *skb;
1852
1853        if (!ab)
1854                return;
1855
1856        BUG_ON(!ab->skb);
1857        skb = ab->skb;
1858        avail = skb_tailroom(skb);
1859        new_len = len<<1;
1860        if (new_len >= avail) {
1861                /* Round the buffer request up to the next multiple */
1862                new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1863                avail = audit_expand(ab, new_len);
1864                if (!avail)
1865                        return;
1866        }
1867
1868        ptr = skb_tail_pointer(skb);
1869        for (i = 0; i < len; i++)
1870                ptr = hex_byte_pack_upper(ptr, buf[i]);
1871        *ptr = 0;
1872        skb_put(skb, len << 1); /* new string is twice the old string */
1873}
1874
1875/*
1876 * Format a string of no more than slen characters into the audit buffer,
1877 * enclosed in quote marks.
1878 */
1879void audit_log_n_string(struct audit_buffer *ab, const char *string,
1880                        size_t slen)
1881{
1882        int avail, new_len;
1883        unsigned char *ptr;
1884        struct sk_buff *skb;
1885
1886        if (!ab)
1887                return;
1888
1889        BUG_ON(!ab->skb);
1890        skb = ab->skb;
1891        avail = skb_tailroom(skb);
1892        new_len = slen + 3;     /* enclosing quotes + null terminator */
1893        if (new_len > avail) {
1894                avail = audit_expand(ab, new_len);
1895                if (!avail)
1896                        return;
1897        }
1898        ptr = skb_tail_pointer(skb);
1899        *ptr++ = '"';
1900        memcpy(ptr, string, slen);
1901        ptr += slen;
1902        *ptr++ = '"';
1903        *ptr = 0;
1904        skb_put(skb, slen + 2); /* don't include null terminator */
1905}
1906
1907/**
1908 * audit_string_contains_control - does a string need to be logged in hex
1909 * @string: string to be checked
1910 * @len: max length of the string to check
1911 */
1912bool audit_string_contains_control(const char *string, size_t len)
1913{
1914        const unsigned char *p;
1915        for (p = string; p < (const unsigned char *)string + len; p++) {
1916                if (*p == '"' || *p < 0x21 || *p > 0x7e)
1917                        return true;
1918        }
1919        return false;
1920}
1921
1922/**
1923 * audit_log_n_untrustedstring - log a string that may contain random characters
1924 * @ab: audit_buffer
1925 * @len: length of string (not including trailing null)
1926 * @string: string to be logged
1927 *
1928 * This code will escape a string that is passed to it if the string
1929 * contains a control character, unprintable character, double quote mark,
1930 * or a space. Unescaped strings will start and end with a double quote mark.
1931 * Strings that are escaped are printed in hex (2 digits per char).
1932 *
1933 * The caller specifies the number of characters in the string to log, which may
1934 * or may not be the entire string.
1935 */
1936void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1937                                 size_t len)
1938{
1939        if (audit_string_contains_control(string, len))
1940                audit_log_n_hex(ab, string, len);
1941        else
1942                audit_log_n_string(ab, string, len);
1943}
1944
1945/**
1946 * audit_log_untrustedstring - log a string that may contain random characters
1947 * @ab: audit_buffer
1948 * @string: string to be logged
1949 *
1950 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1951 * determine string length.
1952 */
1953void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1954{
1955        audit_log_n_untrustedstring(ab, string, strlen(string));
1956}
1957
1958/* This is a helper-function to print the escaped d_path */
1959void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1960                      const struct path *path)
1961{
1962        char *p, *pathname;
1963
1964        if (prefix)
1965                audit_log_format(ab, "%s", prefix);
1966
1967        /* We will allow 11 spaces for ' (deleted)' to be appended */
1968        pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1969        if (!pathname) {
1970                audit_log_string(ab, "<no_memory>");
1971                return;
1972        }
1973        p = d_path(path, pathname, PATH_MAX+11);
1974        if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1975                /* FIXME: can we save some information here? */
1976                audit_log_string(ab, "<too_long>");
1977        } else
1978                audit_log_untrustedstring(ab, p);
1979        kfree(pathname);
1980}
1981
1982void audit_log_session_info(struct audit_buffer *ab)
1983{
1984        unsigned int sessionid = audit_get_sessionid(current);
1985        uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1986
1987        audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1988}
1989
1990void audit_log_key(struct audit_buffer *ab, char *key)
1991{
1992        audit_log_format(ab, " key=");
1993        if (key)
1994                audit_log_untrustedstring(ab, key);
1995        else
1996                audit_log_format(ab, "(null)");
1997}
1998
1999void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2000{
2001        int i;
2002
2003        audit_log_format(ab, " %s=", prefix);
2004        CAP_FOR_EACH_U32(i) {
2005                audit_log_format(ab, "%08x",
2006                                 cap->cap[CAP_LAST_U32 - i]);
2007        }
2008}
2009
2010static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2011{
2012        audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2013        audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2014        audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2015                         name->fcap.fE, name->fcap_ver);
2016}
2017
2018static inline int audit_copy_fcaps(struct audit_names *name,
2019                                   const struct dentry *dentry)
2020{
2021        struct cpu_vfs_cap_data caps;
2022        int rc;
2023
2024        if (!dentry)
2025                return 0;
2026
2027        rc = get_vfs_caps_from_disk(dentry, &caps);
2028        if (rc)
2029                return rc;
2030
2031        name->fcap.permitted = caps.permitted;
2032        name->fcap.inheritable = caps.inheritable;
2033        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2034        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2035                                VFS_CAP_REVISION_SHIFT;
2036
2037        return 0;
2038}
2039
2040/* Copy inode data into an audit_names. */
2041void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2042                      struct inode *inode)
2043{
2044        name->ino   = inode->i_ino;
2045        name->dev   = inode->i_sb->s_dev;
2046        name->mode  = inode->i_mode;
2047        name->uid   = inode->i_uid;
2048        name->gid   = inode->i_gid;
2049        name->rdev  = inode->i_rdev;
2050        security_inode_getsecid(inode, &name->osid);
2051        audit_copy_fcaps(name, dentry);
2052}
2053
2054/**
2055 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2056 * @context: audit_context for the task
2057 * @n: audit_names structure with reportable details
2058 * @path: optional path to report instead of audit_names->name
2059 * @record_num: record number to report when handling a list of names
2060 * @call_panic: optional pointer to int that will be updated if secid fails
2061 */
2062void audit_log_name(struct audit_context *context, struct audit_names *n,
2063                    const struct path *path, int record_num, int *call_panic)
2064{
2065        struct audit_buffer *ab;
2066        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2067        if (!ab)
2068                return;
2069
2070        audit_log_format(ab, "item=%d", record_num);
2071
2072        if (path)
2073                audit_log_d_path(ab, " name=", path);
2074        else if (n->name) {
2075                switch (n->name_len) {
2076                case AUDIT_NAME_FULL:
2077                        /* log the full path */
2078                        audit_log_format(ab, " name=");
2079                        audit_log_untrustedstring(ab, n->name->name);
2080                        break;
2081                case 0:
2082                        /* name was specified as a relative path and the
2083                         * directory component is the cwd */
2084                        audit_log_d_path(ab, " name=", &context->pwd);
2085                        break;
2086                default:
2087                        /* log the name's directory component */
2088                        audit_log_format(ab, " name=");
2089                        audit_log_n_untrustedstring(ab, n->name->name,
2090                                                    n->name_len);
2091                }
2092        } else
2093                audit_log_format(ab, " name=(null)");
2094
2095        if (n->ino != AUDIT_INO_UNSET)
2096                audit_log_format(ab, " inode=%lu"
2097                                 " dev=%02x:%02x mode=%#ho"
2098                                 " ouid=%u ogid=%u rdev=%02x:%02x",
2099                                 n->ino,
2100                                 MAJOR(n->dev),
2101                                 MINOR(n->dev),
2102                                 n->mode,
2103                                 from_kuid(&init_user_ns, n->uid),
2104                                 from_kgid(&init_user_ns, n->gid),
2105                                 MAJOR(n->rdev),
2106                                 MINOR(n->rdev));
2107        if (n->osid != 0) {
2108                char *ctx = NULL;
2109                u32 len;
2110                if (security_secid_to_secctx(
2111                        n->osid, &ctx, &len)) {
2112                        audit_log_format(ab, " osid=%u", n->osid);
2113                        if (call_panic)
2114                                *call_panic = 2;
2115                } else {
2116                        audit_log_format(ab, " obj=%s", ctx);
2117                        security_release_secctx(ctx, len);
2118                }
2119        }
2120
2121        /* log the audit_names record type */
2122        audit_log_format(ab, " nametype=");
2123        switch(n->type) {
2124        case AUDIT_TYPE_NORMAL:
2125                audit_log_format(ab, "NORMAL");
2126                break;
2127        case AUDIT_TYPE_PARENT:
2128                audit_log_format(ab, "PARENT");
2129                break;
2130        case AUDIT_TYPE_CHILD_DELETE:
2131                audit_log_format(ab, "DELETE");
2132                break;
2133        case AUDIT_TYPE_CHILD_CREATE:
2134                audit_log_format(ab, "CREATE");
2135                break;
2136        default:
2137                audit_log_format(ab, "UNKNOWN");
2138                break;
2139        }
2140
2141        audit_log_fcaps(ab, n);
2142        audit_log_end(ab);
2143}
2144
2145int audit_log_task_context(struct audit_buffer *ab)
2146{
2147        char *ctx = NULL;
2148        unsigned len;
2149        int error;
2150        u32 sid;
2151
2152        security_task_getsecid(current, &sid);
2153        if (!sid)
2154                return 0;
2155
2156        error = security_secid_to_secctx(sid, &ctx, &len);
2157        if (error) {
2158                if (error != -EINVAL)
2159                        goto error_path;
2160                return 0;
2161        }
2162
2163        audit_log_format(ab, " subj=%s", ctx);
2164        security_release_secctx(ctx, len);
2165        return 0;
2166
2167error_path:
2168        audit_panic("error in audit_log_task_context");
2169        return error;
2170}
2171EXPORT_SYMBOL(audit_log_task_context);
2172
2173void audit_log_d_path_exe(struct audit_buffer *ab,
2174                          struct mm_struct *mm)
2175{
2176        struct file *exe_file;
2177
2178        if (!mm)
2179                goto out_null;
2180
2181        exe_file = get_mm_exe_file(mm);
2182        if (!exe_file)
2183                goto out_null;
2184
2185        audit_log_d_path(ab, " exe=", &exe_file->f_path);
2186        fput(exe_file);
2187        return;
2188out_null:
2189        audit_log_format(ab, " exe=(null)");
2190}
2191
2192struct tty_struct *audit_get_tty(struct task_struct *tsk)
2193{
2194        struct tty_struct *tty = NULL;
2195        unsigned long flags;
2196
2197        spin_lock_irqsave(&tsk->sighand->siglock, flags);
2198        if (tsk->signal)
2199                tty = tty_kref_get(tsk->signal->tty);
2200        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2201        return tty;
2202}
2203
2204void audit_put_tty(struct tty_struct *tty)
2205{
2206        tty_kref_put(tty);
2207}
2208
2209void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2210{
2211        const struct cred *cred;
2212        char comm[sizeof(tsk->comm)];
2213        struct tty_struct *tty;
2214
2215        if (!ab)
2216                return;
2217
2218        /* tsk == current */
2219        cred = current_cred();
2220        tty = audit_get_tty(tsk);
2221        audit_log_format(ab,
2222                         " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2223                         " euid=%u suid=%u fsuid=%u"
2224                         " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2225                         task_ppid_nr(tsk),
2226                         task_tgid_nr(tsk),
2227                         from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2228                         from_kuid(&init_user_ns, cred->uid),
2229                         from_kgid(&init_user_ns, cred->gid),
2230                         from_kuid(&init_user_ns, cred->euid),
2231                         from_kuid(&init_user_ns, cred->suid),
2232                         from_kuid(&init_user_ns, cred->fsuid),
2233                         from_kgid(&init_user_ns, cred->egid),
2234                         from_kgid(&init_user_ns, cred->sgid),
2235                         from_kgid(&init_user_ns, cred->fsgid),
2236                         tty ? tty_name(tty) : "(none)",
2237                         audit_get_sessionid(tsk));
2238        audit_put_tty(tty);
2239        audit_log_format(ab, " comm=");
2240        audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2241        audit_log_d_path_exe(ab, tsk->mm);
2242        audit_log_task_context(ab);
2243}
2244EXPORT_SYMBOL(audit_log_task_info);
2245
2246/**
2247 * audit_log_link_denied - report a link restriction denial
2248 * @operation: specific link operation
2249 * @link: the path that triggered the restriction
2250 */
2251void audit_log_link_denied(const char *operation, const struct path *link)
2252{
2253        struct audit_buffer *ab;
2254        struct audit_names *name;
2255
2256        name = kzalloc(sizeof(*name), GFP_NOFS);
2257        if (!name)
2258                return;
2259
2260        /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2261        ab = audit_log_start(current->audit_context, GFP_KERNEL,
2262                             AUDIT_ANOM_LINK);
2263        if (!ab)
2264                goto out;
2265        audit_log_format(ab, "op=%s", operation);
2266        audit_log_task_info(ab, current);
2267        audit_log_format(ab, " res=0");
2268        audit_log_end(ab);
2269
2270        /* Generate AUDIT_PATH record with object. */
2271        name->type = AUDIT_TYPE_NORMAL;
2272        audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2273        audit_log_name(current->audit_context, name, link, 0, NULL);
2274out:
2275        kfree(name);
2276}
2277
2278/**
2279 * audit_log_end - end one audit record
2280 * @ab: the audit_buffer
2281 *
2282 * We can not do a netlink send inside an irq context because it blocks (last
2283 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2284 * queue and a tasklet is scheduled to remove them from the queue outside the
2285 * irq context.  May be called in any context.
2286 */
2287void audit_log_end(struct audit_buffer *ab)
2288{
2289        struct sk_buff *skb;
2290        struct nlmsghdr *nlh;
2291
2292        if (!ab)
2293                return;
2294
2295        if (audit_rate_check()) {
2296                skb = ab->skb;
2297                ab->skb = NULL;
2298
2299                /* setup the netlink header, see the comments in
2300                 * kauditd_send_multicast_skb() for length quirks */
2301                nlh = nlmsg_hdr(skb);
2302                nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2303
2304                /* queue the netlink packet and poke the kauditd thread */
2305                skb_queue_tail(&audit_queue, skb);
2306                wake_up_interruptible(&kauditd_wait);
2307        } else
2308                audit_log_lost("rate limit exceeded");
2309
2310        audit_buffer_free(ab);
2311}
2312
2313/**
2314 * audit_log - Log an audit record
2315 * @ctx: audit context
2316 * @gfp_mask: type of allocation
2317 * @type: audit message type
2318 * @fmt: format string to use
2319 * @...: variable parameters matching the format string
2320 *
2321 * This is a convenience function that calls audit_log_start,
2322 * audit_log_vformat, and audit_log_end.  It may be called
2323 * in any context.
2324 */
2325void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2326               const char *fmt, ...)
2327{
2328        struct audit_buffer *ab;
2329        va_list args;
2330
2331        ab = audit_log_start(ctx, gfp_mask, type);
2332        if (ab) {
2333                va_start(args, fmt);
2334                audit_log_vformat(ab, fmt, args);
2335                va_end(args);
2336                audit_log_end(ab);
2337        }
2338}
2339
2340#ifdef CONFIG_SECURITY
2341/**
2342 * audit_log_secctx - Converts and logs SELinux context
2343 * @ab: audit_buffer
2344 * @secid: security number
2345 *
2346 * This is a helper function that calls security_secid_to_secctx to convert
2347 * secid to secctx and then adds the (converted) SELinux context to the audit
2348 * log by calling audit_log_format, thus also preventing leak of internal secid
2349 * to userspace. If secid cannot be converted audit_panic is called.
2350 */
2351void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2352{
2353        u32 len;
2354        char *secctx;
2355
2356        if (security_secid_to_secctx(secid, &secctx, &len)) {
2357                audit_panic("Cannot convert secid to context");
2358        } else {
2359                audit_log_format(ab, " obj=%s", secctx);
2360                security_release_secctx(secctx, len);
2361        }
2362}
2363EXPORT_SYMBOL(audit_log_secctx);
2364#endif
2365
2366EXPORT_SYMBOL(audit_log_start);
2367EXPORT_SYMBOL(audit_log_end);
2368EXPORT_SYMBOL(audit_log_format);
2369EXPORT_SYMBOL(audit_log);
2370