linux/kernel/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/tick.h>
  22#include <linux/sysfs.h>
  23#include <linux/dcache.h>
  24#include <linux/percpu.h>
  25#include <linux/ptrace.h>
  26#include <linux/reboot.h>
  27#include <linux/vmstat.h>
  28#include <linux/device.h>
  29#include <linux/export.h>
  30#include <linux/vmalloc.h>
  31#include <linux/hardirq.h>
  32#include <linux/rculist.h>
  33#include <linux/uaccess.h>
  34#include <linux/syscalls.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/cgroup.h>
  38#include <linux/perf_event.h>
  39#include <linux/trace_events.h>
  40#include <linux/hw_breakpoint.h>
  41#include <linux/mm_types.h>
  42#include <linux/module.h>
  43#include <linux/mman.h>
  44#include <linux/compat.h>
  45#include <linux/bpf.h>
  46#include <linux/filter.h>
  47#include <linux/namei.h>
  48#include <linux/parser.h>
  49#include <linux/sched/clock.h>
  50#include <linux/sched/mm.h>
  51#include <linux/proc_ns.h>
  52#include <linux/mount.h>
  53
  54#include "internal.h"
  55
  56#include <asm/irq_regs.h>
  57
  58typedef int (*remote_function_f)(void *);
  59
  60struct remote_function_call {
  61        struct task_struct      *p;
  62        remote_function_f       func;
  63        void                    *info;
  64        int                     ret;
  65};
  66
  67static void remote_function(void *data)
  68{
  69        struct remote_function_call *tfc = data;
  70        struct task_struct *p = tfc->p;
  71
  72        if (p) {
  73                /* -EAGAIN */
  74                if (task_cpu(p) != smp_processor_id())
  75                        return;
  76
  77                /*
  78                 * Now that we're on right CPU with IRQs disabled, we can test
  79                 * if we hit the right task without races.
  80                 */
  81
  82                tfc->ret = -ESRCH; /* No such (running) process */
  83                if (p != current)
  84                        return;
  85        }
  86
  87        tfc->ret = tfc->func(tfc->info);
  88}
  89
  90/**
  91 * task_function_call - call a function on the cpu on which a task runs
  92 * @p:          the task to evaluate
  93 * @func:       the function to be called
  94 * @info:       the function call argument
  95 *
  96 * Calls the function @func when the task is currently running. This might
  97 * be on the current CPU, which just calls the function directly
  98 *
  99 * returns: @func return value, or
 100 *          -ESRCH  - when the process isn't running
 101 *          -EAGAIN - when the process moved away
 102 */
 103static int
 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
 105{
 106        struct remote_function_call data = {
 107                .p      = p,
 108                .func   = func,
 109                .info   = info,
 110                .ret    = -EAGAIN,
 111        };
 112        int ret;
 113
 114        do {
 115                ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
 116                if (!ret)
 117                        ret = data.ret;
 118        } while (ret == -EAGAIN);
 119
 120        return ret;
 121}
 122
 123/**
 124 * cpu_function_call - call a function on the cpu
 125 * @func:       the function to be called
 126 * @info:       the function call argument
 127 *
 128 * Calls the function @func on the remote cpu.
 129 *
 130 * returns: @func return value or -ENXIO when the cpu is offline
 131 */
 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
 133{
 134        struct remote_function_call data = {
 135                .p      = NULL,
 136                .func   = func,
 137                .info   = info,
 138                .ret    = -ENXIO, /* No such CPU */
 139        };
 140
 141        smp_call_function_single(cpu, remote_function, &data, 1);
 142
 143        return data.ret;
 144}
 145
 146static inline struct perf_cpu_context *
 147__get_cpu_context(struct perf_event_context *ctx)
 148{
 149        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 150}
 151
 152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 153                          struct perf_event_context *ctx)
 154{
 155        raw_spin_lock(&cpuctx->ctx.lock);
 156        if (ctx)
 157                raw_spin_lock(&ctx->lock);
 158}
 159
 160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 161                            struct perf_event_context *ctx)
 162{
 163        if (ctx)
 164                raw_spin_unlock(&ctx->lock);
 165        raw_spin_unlock(&cpuctx->ctx.lock);
 166}
 167
 168#define TASK_TOMBSTONE ((void *)-1L)
 169
 170static bool is_kernel_event(struct perf_event *event)
 171{
 172        return READ_ONCE(event->owner) == TASK_TOMBSTONE;
 173}
 174
 175/*
 176 * On task ctx scheduling...
 177 *
 178 * When !ctx->nr_events a task context will not be scheduled. This means
 179 * we can disable the scheduler hooks (for performance) without leaving
 180 * pending task ctx state.
 181 *
 182 * This however results in two special cases:
 183 *
 184 *  - removing the last event from a task ctx; this is relatively straight
 185 *    forward and is done in __perf_remove_from_context.
 186 *
 187 *  - adding the first event to a task ctx; this is tricky because we cannot
 188 *    rely on ctx->is_active and therefore cannot use event_function_call().
 189 *    See perf_install_in_context().
 190 *
 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 192 */
 193
 194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
 195                        struct perf_event_context *, void *);
 196
 197struct event_function_struct {
 198        struct perf_event *event;
 199        event_f func;
 200        void *data;
 201};
 202
 203static int event_function(void *info)
 204{
 205        struct event_function_struct *efs = info;
 206        struct perf_event *event = efs->event;
 207        struct perf_event_context *ctx = event->ctx;
 208        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 209        struct perf_event_context *task_ctx = cpuctx->task_ctx;
 210        int ret = 0;
 211
 212        WARN_ON_ONCE(!irqs_disabled());
 213
 214        perf_ctx_lock(cpuctx, task_ctx);
 215        /*
 216         * Since we do the IPI call without holding ctx->lock things can have
 217         * changed, double check we hit the task we set out to hit.
 218         */
 219        if (ctx->task) {
 220                if (ctx->task != current) {
 221                        ret = -ESRCH;
 222                        goto unlock;
 223                }
 224
 225                /*
 226                 * We only use event_function_call() on established contexts,
 227                 * and event_function() is only ever called when active (or
 228                 * rather, we'll have bailed in task_function_call() or the
 229                 * above ctx->task != current test), therefore we must have
 230                 * ctx->is_active here.
 231                 */
 232                WARN_ON_ONCE(!ctx->is_active);
 233                /*
 234                 * And since we have ctx->is_active, cpuctx->task_ctx must
 235                 * match.
 236                 */
 237                WARN_ON_ONCE(task_ctx != ctx);
 238        } else {
 239                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 240        }
 241
 242        efs->func(event, cpuctx, ctx, efs->data);
 243unlock:
 244        perf_ctx_unlock(cpuctx, task_ctx);
 245
 246        return ret;
 247}
 248
 249static void event_function_call(struct perf_event *event, event_f func, void *data)
 250{
 251        struct perf_event_context *ctx = event->ctx;
 252        struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
 253        struct event_function_struct efs = {
 254                .event = event,
 255                .func = func,
 256                .data = data,
 257        };
 258
 259        if (!event->parent) {
 260                /*
 261                 * If this is a !child event, we must hold ctx::mutex to
 262                 * stabilize the the event->ctx relation. See
 263                 * perf_event_ctx_lock().
 264                 */
 265                lockdep_assert_held(&ctx->mutex);
 266        }
 267
 268        if (!task) {
 269                cpu_function_call(event->cpu, event_function, &efs);
 270                return;
 271        }
 272
 273        if (task == TASK_TOMBSTONE)
 274                return;
 275
 276again:
 277        if (!task_function_call(task, event_function, &efs))
 278                return;
 279
 280        raw_spin_lock_irq(&ctx->lock);
 281        /*
 282         * Reload the task pointer, it might have been changed by
 283         * a concurrent perf_event_context_sched_out().
 284         */
 285        task = ctx->task;
 286        if (task == TASK_TOMBSTONE) {
 287                raw_spin_unlock_irq(&ctx->lock);
 288                return;
 289        }
 290        if (ctx->is_active) {
 291                raw_spin_unlock_irq(&ctx->lock);
 292                goto again;
 293        }
 294        func(event, NULL, ctx, data);
 295        raw_spin_unlock_irq(&ctx->lock);
 296}
 297
 298/*
 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 300 * are already disabled and we're on the right CPU.
 301 */
 302static void event_function_local(struct perf_event *event, event_f func, void *data)
 303{
 304        struct perf_event_context *ctx = event->ctx;
 305        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 306        struct task_struct *task = READ_ONCE(ctx->task);
 307        struct perf_event_context *task_ctx = NULL;
 308
 309        WARN_ON_ONCE(!irqs_disabled());
 310
 311        if (task) {
 312                if (task == TASK_TOMBSTONE)
 313                        return;
 314
 315                task_ctx = ctx;
 316        }
 317
 318        perf_ctx_lock(cpuctx, task_ctx);
 319
 320        task = ctx->task;
 321        if (task == TASK_TOMBSTONE)
 322                goto unlock;
 323
 324        if (task) {
 325                /*
 326                 * We must be either inactive or active and the right task,
 327                 * otherwise we're screwed, since we cannot IPI to somewhere
 328                 * else.
 329                 */
 330                if (ctx->is_active) {
 331                        if (WARN_ON_ONCE(task != current))
 332                                goto unlock;
 333
 334                        if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
 335                                goto unlock;
 336                }
 337        } else {
 338                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 339        }
 340
 341        func(event, cpuctx, ctx, data);
 342unlock:
 343        perf_ctx_unlock(cpuctx, task_ctx);
 344}
 345
 346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 347                       PERF_FLAG_FD_OUTPUT  |\
 348                       PERF_FLAG_PID_CGROUP |\
 349                       PERF_FLAG_FD_CLOEXEC)
 350
 351/*
 352 * branch priv levels that need permission checks
 353 */
 354#define PERF_SAMPLE_BRANCH_PERM_PLM \
 355        (PERF_SAMPLE_BRANCH_KERNEL |\
 356         PERF_SAMPLE_BRANCH_HV)
 357
 358enum event_type_t {
 359        EVENT_FLEXIBLE = 0x1,
 360        EVENT_PINNED = 0x2,
 361        EVENT_TIME = 0x4,
 362        /* see ctx_resched() for details */
 363        EVENT_CPU = 0x8,
 364        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 365};
 366
 367/*
 368 * perf_sched_events : >0 events exist
 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 370 */
 371
 372static void perf_sched_delayed(struct work_struct *work);
 373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
 374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
 375static DEFINE_MUTEX(perf_sched_mutex);
 376static atomic_t perf_sched_count;
 377
 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
 381
 382static atomic_t nr_mmap_events __read_mostly;
 383static atomic_t nr_comm_events __read_mostly;
 384static atomic_t nr_namespaces_events __read_mostly;
 385static atomic_t nr_task_events __read_mostly;
 386static atomic_t nr_freq_events __read_mostly;
 387static atomic_t nr_switch_events __read_mostly;
 388
 389static LIST_HEAD(pmus);
 390static DEFINE_MUTEX(pmus_lock);
 391static struct srcu_struct pmus_srcu;
 392static cpumask_var_t perf_online_mask;
 393
 394/*
 395 * perf event paranoia level:
 396 *  -1 - not paranoid at all
 397 *   0 - disallow raw tracepoint access for unpriv
 398 *   1 - disallow cpu events for unpriv
 399 *   2 - disallow kernel profiling for unpriv
 400 */
 401int sysctl_perf_event_paranoid __read_mostly = 2;
 402
 403/* Minimum for 512 kiB + 1 user control page */
 404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 405
 406/*
 407 * max perf event sample rate
 408 */
 409#define DEFAULT_MAX_SAMPLE_RATE         100000
 410#define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 411#define DEFAULT_CPU_TIME_MAX_PERCENT    25
 412
 413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 414
 415static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 416static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
 417
 418static int perf_sample_allowed_ns __read_mostly =
 419        DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
 420
 421static void update_perf_cpu_limits(void)
 422{
 423        u64 tmp = perf_sample_period_ns;
 424
 425        tmp *= sysctl_perf_cpu_time_max_percent;
 426        tmp = div_u64(tmp, 100);
 427        if (!tmp)
 428                tmp = 1;
 429
 430        WRITE_ONCE(perf_sample_allowed_ns, tmp);
 431}
 432
 433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
 434
 435int perf_proc_update_handler(struct ctl_table *table, int write,
 436                void __user *buffer, size_t *lenp,
 437                loff_t *ppos)
 438{
 439        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 440
 441        if (ret || !write)
 442                return ret;
 443
 444        /*
 445         * If throttling is disabled don't allow the write:
 446         */
 447        if (sysctl_perf_cpu_time_max_percent == 100 ||
 448            sysctl_perf_cpu_time_max_percent == 0)
 449                return -EINVAL;
 450
 451        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 452        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 453        update_perf_cpu_limits();
 454
 455        return 0;
 456}
 457
 458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 459
 460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 461                                void __user *buffer, size_t *lenp,
 462                                loff_t *ppos)
 463{
 464        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 465
 466        if (ret || !write)
 467                return ret;
 468
 469        if (sysctl_perf_cpu_time_max_percent == 100 ||
 470            sysctl_perf_cpu_time_max_percent == 0) {
 471                printk(KERN_WARNING
 472                       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
 473                WRITE_ONCE(perf_sample_allowed_ns, 0);
 474        } else {
 475                update_perf_cpu_limits();
 476        }
 477
 478        return 0;
 479}
 480
 481/*
 482 * perf samples are done in some very critical code paths (NMIs).
 483 * If they take too much CPU time, the system can lock up and not
 484 * get any real work done.  This will drop the sample rate when
 485 * we detect that events are taking too long.
 486 */
 487#define NR_ACCUMULATED_SAMPLES 128
 488static DEFINE_PER_CPU(u64, running_sample_length);
 489
 490static u64 __report_avg;
 491static u64 __report_allowed;
 492
 493static void perf_duration_warn(struct irq_work *w)
 494{
 495        printk_ratelimited(KERN_INFO
 496                "perf: interrupt took too long (%lld > %lld), lowering "
 497                "kernel.perf_event_max_sample_rate to %d\n",
 498                __report_avg, __report_allowed,
 499                sysctl_perf_event_sample_rate);
 500}
 501
 502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
 503
 504void perf_sample_event_took(u64 sample_len_ns)
 505{
 506        u64 max_len = READ_ONCE(perf_sample_allowed_ns);
 507        u64 running_len;
 508        u64 avg_len;
 509        u32 max;
 510
 511        if (max_len == 0)
 512                return;
 513
 514        /* Decay the counter by 1 average sample. */
 515        running_len = __this_cpu_read(running_sample_length);
 516        running_len -= running_len/NR_ACCUMULATED_SAMPLES;
 517        running_len += sample_len_ns;
 518        __this_cpu_write(running_sample_length, running_len);
 519
 520        /*
 521         * Note: this will be biased artifically low until we have
 522         * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
 523         * from having to maintain a count.
 524         */
 525        avg_len = running_len/NR_ACCUMULATED_SAMPLES;
 526        if (avg_len <= max_len)
 527                return;
 528
 529        __report_avg = avg_len;
 530        __report_allowed = max_len;
 531
 532        /*
 533         * Compute a throttle threshold 25% below the current duration.
 534         */
 535        avg_len += avg_len / 4;
 536        max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
 537        if (avg_len < max)
 538                max /= (u32)avg_len;
 539        else
 540                max = 1;
 541
 542        WRITE_ONCE(perf_sample_allowed_ns, avg_len);
 543        WRITE_ONCE(max_samples_per_tick, max);
 544
 545        sysctl_perf_event_sample_rate = max * HZ;
 546        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 547
 548        if (!irq_work_queue(&perf_duration_work)) {
 549                early_printk("perf: interrupt took too long (%lld > %lld), lowering "
 550                             "kernel.perf_event_max_sample_rate to %d\n",
 551                             __report_avg, __report_allowed,
 552                             sysctl_perf_event_sample_rate);
 553        }
 554}
 555
 556static atomic64_t perf_event_id;
 557
 558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 559                              enum event_type_t event_type);
 560
 561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 562                             enum event_type_t event_type,
 563                             struct task_struct *task);
 564
 565static void update_context_time(struct perf_event_context *ctx);
 566static u64 perf_event_time(struct perf_event *event);
 567
 568void __weak perf_event_print_debug(void)        { }
 569
 570extern __weak const char *perf_pmu_name(void)
 571{
 572        return "pmu";
 573}
 574
 575static inline u64 perf_clock(void)
 576{
 577        return local_clock();
 578}
 579
 580static inline u64 perf_event_clock(struct perf_event *event)
 581{
 582        return event->clock();
 583}
 584
 585#ifdef CONFIG_CGROUP_PERF
 586
 587static inline bool
 588perf_cgroup_match(struct perf_event *event)
 589{
 590        struct perf_event_context *ctx = event->ctx;
 591        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 592
 593        /* @event doesn't care about cgroup */
 594        if (!event->cgrp)
 595                return true;
 596
 597        /* wants specific cgroup scope but @cpuctx isn't associated with any */
 598        if (!cpuctx->cgrp)
 599                return false;
 600
 601        /*
 602         * Cgroup scoping is recursive.  An event enabled for a cgroup is
 603         * also enabled for all its descendant cgroups.  If @cpuctx's
 604         * cgroup is a descendant of @event's (the test covers identity
 605         * case), it's a match.
 606         */
 607        return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 608                                    event->cgrp->css.cgroup);
 609}
 610
 611static inline void perf_detach_cgroup(struct perf_event *event)
 612{
 613        css_put(&event->cgrp->css);
 614        event->cgrp = NULL;
 615}
 616
 617static inline int is_cgroup_event(struct perf_event *event)
 618{
 619        return event->cgrp != NULL;
 620}
 621
 622static inline u64 perf_cgroup_event_time(struct perf_event *event)
 623{
 624        struct perf_cgroup_info *t;
 625
 626        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 627        return t->time;
 628}
 629
 630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 631{
 632        struct perf_cgroup_info *info;
 633        u64 now;
 634
 635        now = perf_clock();
 636
 637        info = this_cpu_ptr(cgrp->info);
 638
 639        info->time += now - info->timestamp;
 640        info->timestamp = now;
 641}
 642
 643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 644{
 645        struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 646        if (cgrp_out)
 647                __update_cgrp_time(cgrp_out);
 648}
 649
 650static inline void update_cgrp_time_from_event(struct perf_event *event)
 651{
 652        struct perf_cgroup *cgrp;
 653
 654        /*
 655         * ensure we access cgroup data only when needed and
 656         * when we know the cgroup is pinned (css_get)
 657         */
 658        if (!is_cgroup_event(event))
 659                return;
 660
 661        cgrp = perf_cgroup_from_task(current, event->ctx);
 662        /*
 663         * Do not update time when cgroup is not active
 664         */
 665       if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
 666                __update_cgrp_time(event->cgrp);
 667}
 668
 669static inline void
 670perf_cgroup_set_timestamp(struct task_struct *task,
 671                          struct perf_event_context *ctx)
 672{
 673        struct perf_cgroup *cgrp;
 674        struct perf_cgroup_info *info;
 675
 676        /*
 677         * ctx->lock held by caller
 678         * ensure we do not access cgroup data
 679         * unless we have the cgroup pinned (css_get)
 680         */
 681        if (!task || !ctx->nr_cgroups)
 682                return;
 683
 684        cgrp = perf_cgroup_from_task(task, ctx);
 685        info = this_cpu_ptr(cgrp->info);
 686        info->timestamp = ctx->timestamp;
 687}
 688
 689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
 690
 691#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 692#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 693
 694/*
 695 * reschedule events based on the cgroup constraint of task.
 696 *
 697 * mode SWOUT : schedule out everything
 698 * mode SWIN : schedule in based on cgroup for next
 699 */
 700static void perf_cgroup_switch(struct task_struct *task, int mode)
 701{
 702        struct perf_cpu_context *cpuctx;
 703        struct list_head *list;
 704        unsigned long flags;
 705
 706        /*
 707         * Disable interrupts and preemption to avoid this CPU's
 708         * cgrp_cpuctx_entry to change under us.
 709         */
 710        local_irq_save(flags);
 711
 712        list = this_cpu_ptr(&cgrp_cpuctx_list);
 713        list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
 714                WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
 715
 716                perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 717                perf_pmu_disable(cpuctx->ctx.pmu);
 718
 719                if (mode & PERF_CGROUP_SWOUT) {
 720                        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 721                        /*
 722                         * must not be done before ctxswout due
 723                         * to event_filter_match() in event_sched_out()
 724                         */
 725                        cpuctx->cgrp = NULL;
 726                }
 727
 728                if (mode & PERF_CGROUP_SWIN) {
 729                        WARN_ON_ONCE(cpuctx->cgrp);
 730                        /*
 731                         * set cgrp before ctxsw in to allow
 732                         * event_filter_match() to not have to pass
 733                         * task around
 734                         * we pass the cpuctx->ctx to perf_cgroup_from_task()
 735                         * because cgorup events are only per-cpu
 736                         */
 737                        cpuctx->cgrp = perf_cgroup_from_task(task,
 738                                                             &cpuctx->ctx);
 739                        cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 740                }
 741                perf_pmu_enable(cpuctx->ctx.pmu);
 742                perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 743        }
 744
 745        local_irq_restore(flags);
 746}
 747
 748static inline void perf_cgroup_sched_out(struct task_struct *task,
 749                                         struct task_struct *next)
 750{
 751        struct perf_cgroup *cgrp1;
 752        struct perf_cgroup *cgrp2 = NULL;
 753
 754        rcu_read_lock();
 755        /*
 756         * we come here when we know perf_cgroup_events > 0
 757         * we do not need to pass the ctx here because we know
 758         * we are holding the rcu lock
 759         */
 760        cgrp1 = perf_cgroup_from_task(task, NULL);
 761        cgrp2 = perf_cgroup_from_task(next, NULL);
 762
 763        /*
 764         * only schedule out current cgroup events if we know
 765         * that we are switching to a different cgroup. Otherwise,
 766         * do no touch the cgroup events.
 767         */
 768        if (cgrp1 != cgrp2)
 769                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 770
 771        rcu_read_unlock();
 772}
 773
 774static inline void perf_cgroup_sched_in(struct task_struct *prev,
 775                                        struct task_struct *task)
 776{
 777        struct perf_cgroup *cgrp1;
 778        struct perf_cgroup *cgrp2 = NULL;
 779
 780        rcu_read_lock();
 781        /*
 782         * we come here when we know perf_cgroup_events > 0
 783         * we do not need to pass the ctx here because we know
 784         * we are holding the rcu lock
 785         */
 786        cgrp1 = perf_cgroup_from_task(task, NULL);
 787        cgrp2 = perf_cgroup_from_task(prev, NULL);
 788
 789        /*
 790         * only need to schedule in cgroup events if we are changing
 791         * cgroup during ctxsw. Cgroup events were not scheduled
 792         * out of ctxsw out if that was not the case.
 793         */
 794        if (cgrp1 != cgrp2)
 795                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 796
 797        rcu_read_unlock();
 798}
 799
 800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 801                                      struct perf_event_attr *attr,
 802                                      struct perf_event *group_leader)
 803{
 804        struct perf_cgroup *cgrp;
 805        struct cgroup_subsys_state *css;
 806        struct fd f = fdget(fd);
 807        int ret = 0;
 808
 809        if (!f.file)
 810                return -EBADF;
 811
 812        css = css_tryget_online_from_dir(f.file->f_path.dentry,
 813                                         &perf_event_cgrp_subsys);
 814        if (IS_ERR(css)) {
 815                ret = PTR_ERR(css);
 816                goto out;
 817        }
 818
 819        cgrp = container_of(css, struct perf_cgroup, css);
 820        event->cgrp = cgrp;
 821
 822        /*
 823         * all events in a group must monitor
 824         * the same cgroup because a task belongs
 825         * to only one perf cgroup at a time
 826         */
 827        if (group_leader && group_leader->cgrp != cgrp) {
 828                perf_detach_cgroup(event);
 829                ret = -EINVAL;
 830        }
 831out:
 832        fdput(f);
 833        return ret;
 834}
 835
 836static inline void
 837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 838{
 839        struct perf_cgroup_info *t;
 840        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 841        event->shadow_ctx_time = now - t->timestamp;
 842}
 843
 844static inline void
 845perf_cgroup_defer_enabled(struct perf_event *event)
 846{
 847        /*
 848         * when the current task's perf cgroup does not match
 849         * the event's, we need to remember to call the
 850         * perf_mark_enable() function the first time a task with
 851         * a matching perf cgroup is scheduled in.
 852         */
 853        if (is_cgroup_event(event) && !perf_cgroup_match(event))
 854                event->cgrp_defer_enabled = 1;
 855}
 856
 857static inline void
 858perf_cgroup_mark_enabled(struct perf_event *event,
 859                         struct perf_event_context *ctx)
 860{
 861        struct perf_event *sub;
 862        u64 tstamp = perf_event_time(event);
 863
 864        if (!event->cgrp_defer_enabled)
 865                return;
 866
 867        event->cgrp_defer_enabled = 0;
 868
 869        event->tstamp_enabled = tstamp - event->total_time_enabled;
 870        list_for_each_entry(sub, &event->sibling_list, group_entry) {
 871                if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 872                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 873                        sub->cgrp_defer_enabled = 0;
 874                }
 875        }
 876}
 877
 878/*
 879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 880 * cleared when last cgroup event is removed.
 881 */
 882static inline void
 883list_update_cgroup_event(struct perf_event *event,
 884                         struct perf_event_context *ctx, bool add)
 885{
 886        struct perf_cpu_context *cpuctx;
 887        struct list_head *cpuctx_entry;
 888
 889        if (!is_cgroup_event(event))
 890                return;
 891
 892        if (add && ctx->nr_cgroups++)
 893                return;
 894        else if (!add && --ctx->nr_cgroups)
 895                return;
 896        /*
 897         * Because cgroup events are always per-cpu events,
 898         * this will always be called from the right CPU.
 899         */
 900        cpuctx = __get_cpu_context(ctx);
 901        cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
 902        /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
 903        if (add) {
 904                struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
 905
 906                list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
 907                if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
 908                        cpuctx->cgrp = cgrp;
 909        } else {
 910                list_del(cpuctx_entry);
 911                cpuctx->cgrp = NULL;
 912        }
 913}
 914
 915#else /* !CONFIG_CGROUP_PERF */
 916
 917static inline bool
 918perf_cgroup_match(struct perf_event *event)
 919{
 920        return true;
 921}
 922
 923static inline void perf_detach_cgroup(struct perf_event *event)
 924{}
 925
 926static inline int is_cgroup_event(struct perf_event *event)
 927{
 928        return 0;
 929}
 930
 931static inline void update_cgrp_time_from_event(struct perf_event *event)
 932{
 933}
 934
 935static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 936{
 937}
 938
 939static inline void perf_cgroup_sched_out(struct task_struct *task,
 940                                         struct task_struct *next)
 941{
 942}
 943
 944static inline void perf_cgroup_sched_in(struct task_struct *prev,
 945                                        struct task_struct *task)
 946{
 947}
 948
 949static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 950                                      struct perf_event_attr *attr,
 951                                      struct perf_event *group_leader)
 952{
 953        return -EINVAL;
 954}
 955
 956static inline void
 957perf_cgroup_set_timestamp(struct task_struct *task,
 958                          struct perf_event_context *ctx)
 959{
 960}
 961
 962void
 963perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 964{
 965}
 966
 967static inline void
 968perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 969{
 970}
 971
 972static inline u64 perf_cgroup_event_time(struct perf_event *event)
 973{
 974        return 0;
 975}
 976
 977static inline void
 978perf_cgroup_defer_enabled(struct perf_event *event)
 979{
 980}
 981
 982static inline void
 983perf_cgroup_mark_enabled(struct perf_event *event,
 984                         struct perf_event_context *ctx)
 985{
 986}
 987
 988static inline void
 989list_update_cgroup_event(struct perf_event *event,
 990                         struct perf_event_context *ctx, bool add)
 991{
 992}
 993
 994#endif
 995
 996/*
 997 * set default to be dependent on timer tick just
 998 * like original code
 999 */
1000#define PERF_CPU_HRTIMER (1000 / HZ)
1001/*
1002 * function must be called with interrupts disabled
1003 */
1004static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1005{
1006        struct perf_cpu_context *cpuctx;
1007        int rotations = 0;
1008
1009        WARN_ON(!irqs_disabled());
1010
1011        cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1012        rotations = perf_rotate_context(cpuctx);
1013
1014        raw_spin_lock(&cpuctx->hrtimer_lock);
1015        if (rotations)
1016                hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1017        else
1018                cpuctx->hrtimer_active = 0;
1019        raw_spin_unlock(&cpuctx->hrtimer_lock);
1020
1021        return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1022}
1023
1024static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1025{
1026        struct hrtimer *timer = &cpuctx->hrtimer;
1027        struct pmu *pmu = cpuctx->ctx.pmu;
1028        u64 interval;
1029
1030        /* no multiplexing needed for SW PMU */
1031        if (pmu->task_ctx_nr == perf_sw_context)
1032                return;
1033
1034        /*
1035         * check default is sane, if not set then force to
1036         * default interval (1/tick)
1037         */
1038        interval = pmu->hrtimer_interval_ms;
1039        if (interval < 1)
1040                interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1041
1042        cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1043
1044        raw_spin_lock_init(&cpuctx->hrtimer_lock);
1045        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1046        timer->function = perf_mux_hrtimer_handler;
1047}
1048
1049static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1050{
1051        struct hrtimer *timer = &cpuctx->hrtimer;
1052        struct pmu *pmu = cpuctx->ctx.pmu;
1053        unsigned long flags;
1054
1055        /* not for SW PMU */
1056        if (pmu->task_ctx_nr == perf_sw_context)
1057                return 0;
1058
1059        raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1060        if (!cpuctx->hrtimer_active) {
1061                cpuctx->hrtimer_active = 1;
1062                hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1063                hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1064        }
1065        raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1066
1067        return 0;
1068}
1069
1070void perf_pmu_disable(struct pmu *pmu)
1071{
1072        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1073        if (!(*count)++)
1074                pmu->pmu_disable(pmu);
1075}
1076
1077void perf_pmu_enable(struct pmu *pmu)
1078{
1079        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1080        if (!--(*count))
1081                pmu->pmu_enable(pmu);
1082}
1083
1084static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1085
1086/*
1087 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1088 * perf_event_task_tick() are fully serialized because they're strictly cpu
1089 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1090 * disabled, while perf_event_task_tick is called from IRQ context.
1091 */
1092static void perf_event_ctx_activate(struct perf_event_context *ctx)
1093{
1094        struct list_head *head = this_cpu_ptr(&active_ctx_list);
1095
1096        WARN_ON(!irqs_disabled());
1097
1098        WARN_ON(!list_empty(&ctx->active_ctx_list));
1099
1100        list_add(&ctx->active_ctx_list, head);
1101}
1102
1103static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1104{
1105        WARN_ON(!irqs_disabled());
1106
1107        WARN_ON(list_empty(&ctx->active_ctx_list));
1108
1109        list_del_init(&ctx->active_ctx_list);
1110}
1111
1112static void get_ctx(struct perf_event_context *ctx)
1113{
1114        WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1115}
1116
1117static void free_ctx(struct rcu_head *head)
1118{
1119        struct perf_event_context *ctx;
1120
1121        ctx = container_of(head, struct perf_event_context, rcu_head);
1122        kfree(ctx->task_ctx_data);
1123        kfree(ctx);
1124}
1125
1126static void put_ctx(struct perf_event_context *ctx)
1127{
1128        if (atomic_dec_and_test(&ctx->refcount)) {
1129                if (ctx->parent_ctx)
1130                        put_ctx(ctx->parent_ctx);
1131                if (ctx->task && ctx->task != TASK_TOMBSTONE)
1132                        put_task_struct(ctx->task);
1133                call_rcu(&ctx->rcu_head, free_ctx);
1134        }
1135}
1136
1137/*
1138 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1139 * perf_pmu_migrate_context() we need some magic.
1140 *
1141 * Those places that change perf_event::ctx will hold both
1142 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1143 *
1144 * Lock ordering is by mutex address. There are two other sites where
1145 * perf_event_context::mutex nests and those are:
1146 *
1147 *  - perf_event_exit_task_context()    [ child , 0 ]
1148 *      perf_event_exit_event()
1149 *        put_event()                   [ parent, 1 ]
1150 *
1151 *  - perf_event_init_context()         [ parent, 0 ]
1152 *      inherit_task_group()
1153 *        inherit_group()
1154 *          inherit_event()
1155 *            perf_event_alloc()
1156 *              perf_init_event()
1157 *                perf_try_init_event() [ child , 1 ]
1158 *
1159 * While it appears there is an obvious deadlock here -- the parent and child
1160 * nesting levels are inverted between the two. This is in fact safe because
1161 * life-time rules separate them. That is an exiting task cannot fork, and a
1162 * spawning task cannot (yet) exit.
1163 *
1164 * But remember that that these are parent<->child context relations, and
1165 * migration does not affect children, therefore these two orderings should not
1166 * interact.
1167 *
1168 * The change in perf_event::ctx does not affect children (as claimed above)
1169 * because the sys_perf_event_open() case will install a new event and break
1170 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1171 * concerned with cpuctx and that doesn't have children.
1172 *
1173 * The places that change perf_event::ctx will issue:
1174 *
1175 *   perf_remove_from_context();
1176 *   synchronize_rcu();
1177 *   perf_install_in_context();
1178 *
1179 * to affect the change. The remove_from_context() + synchronize_rcu() should
1180 * quiesce the event, after which we can install it in the new location. This
1181 * means that only external vectors (perf_fops, prctl) can perturb the event
1182 * while in transit. Therefore all such accessors should also acquire
1183 * perf_event_context::mutex to serialize against this.
1184 *
1185 * However; because event->ctx can change while we're waiting to acquire
1186 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1187 * function.
1188 *
1189 * Lock order:
1190 *    cred_guard_mutex
1191 *      task_struct::perf_event_mutex
1192 *        perf_event_context::mutex
1193 *          perf_event::child_mutex;
1194 *            perf_event_context::lock
1195 *          perf_event::mmap_mutex
1196 *          mmap_sem
1197 */
1198static struct perf_event_context *
1199perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1200{
1201        struct perf_event_context *ctx;
1202
1203again:
1204        rcu_read_lock();
1205        ctx = ACCESS_ONCE(event->ctx);
1206        if (!atomic_inc_not_zero(&ctx->refcount)) {
1207                rcu_read_unlock();
1208                goto again;
1209        }
1210        rcu_read_unlock();
1211
1212        mutex_lock_nested(&ctx->mutex, nesting);
1213        if (event->ctx != ctx) {
1214                mutex_unlock(&ctx->mutex);
1215                put_ctx(ctx);
1216                goto again;
1217        }
1218
1219        return ctx;
1220}
1221
1222static inline struct perf_event_context *
1223perf_event_ctx_lock(struct perf_event *event)
1224{
1225        return perf_event_ctx_lock_nested(event, 0);
1226}
1227
1228static void perf_event_ctx_unlock(struct perf_event *event,
1229                                  struct perf_event_context *ctx)
1230{
1231        mutex_unlock(&ctx->mutex);
1232        put_ctx(ctx);
1233}
1234
1235/*
1236 * This must be done under the ctx->lock, such as to serialize against
1237 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1238 * calling scheduler related locks and ctx->lock nests inside those.
1239 */
1240static __must_check struct perf_event_context *
1241unclone_ctx(struct perf_event_context *ctx)
1242{
1243        struct perf_event_context *parent_ctx = ctx->parent_ctx;
1244
1245        lockdep_assert_held(&ctx->lock);
1246
1247        if (parent_ctx)
1248                ctx->parent_ctx = NULL;
1249        ctx->generation++;
1250
1251        return parent_ctx;
1252}
1253
1254static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1255                                enum pid_type type)
1256{
1257        u32 nr;
1258        /*
1259         * only top level events have the pid namespace they were created in
1260         */
1261        if (event->parent)
1262                event = event->parent;
1263
1264        nr = __task_pid_nr_ns(p, type, event->ns);
1265        /* avoid -1 if it is idle thread or runs in another ns */
1266        if (!nr && !pid_alive(p))
1267                nr = -1;
1268        return nr;
1269}
1270
1271static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1272{
1273        return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1274}
1275
1276static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1277{
1278        return perf_event_pid_type(event, p, PIDTYPE_PID);
1279}
1280
1281/*
1282 * If we inherit events we want to return the parent event id
1283 * to userspace.
1284 */
1285static u64 primary_event_id(struct perf_event *event)
1286{
1287        u64 id = event->id;
1288
1289        if (event->parent)
1290                id = event->parent->id;
1291
1292        return id;
1293}
1294
1295/*
1296 * Get the perf_event_context for a task and lock it.
1297 *
1298 * This has to cope with with the fact that until it is locked,
1299 * the context could get moved to another task.
1300 */
1301static struct perf_event_context *
1302perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1303{
1304        struct perf_event_context *ctx;
1305
1306retry:
1307        /*
1308         * One of the few rules of preemptible RCU is that one cannot do
1309         * rcu_read_unlock() while holding a scheduler (or nested) lock when
1310         * part of the read side critical section was irqs-enabled -- see
1311         * rcu_read_unlock_special().
1312         *
1313         * Since ctx->lock nests under rq->lock we must ensure the entire read
1314         * side critical section has interrupts disabled.
1315         */
1316        local_irq_save(*flags);
1317        rcu_read_lock();
1318        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1319        if (ctx) {
1320                /*
1321                 * If this context is a clone of another, it might
1322                 * get swapped for another underneath us by
1323                 * perf_event_task_sched_out, though the
1324                 * rcu_read_lock() protects us from any context
1325                 * getting freed.  Lock the context and check if it
1326                 * got swapped before we could get the lock, and retry
1327                 * if so.  If we locked the right context, then it
1328                 * can't get swapped on us any more.
1329                 */
1330                raw_spin_lock(&ctx->lock);
1331                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1332                        raw_spin_unlock(&ctx->lock);
1333                        rcu_read_unlock();
1334                        local_irq_restore(*flags);
1335                        goto retry;
1336                }
1337
1338                if (ctx->task == TASK_TOMBSTONE ||
1339                    !atomic_inc_not_zero(&ctx->refcount)) {
1340                        raw_spin_unlock(&ctx->lock);
1341                        ctx = NULL;
1342                } else {
1343                        WARN_ON_ONCE(ctx->task != task);
1344                }
1345        }
1346        rcu_read_unlock();
1347        if (!ctx)
1348                local_irq_restore(*flags);
1349        return ctx;
1350}
1351
1352/*
1353 * Get the context for a task and increment its pin_count so it
1354 * can't get swapped to another task.  This also increments its
1355 * reference count so that the context can't get freed.
1356 */
1357static struct perf_event_context *
1358perf_pin_task_context(struct task_struct *task, int ctxn)
1359{
1360        struct perf_event_context *ctx;
1361        unsigned long flags;
1362
1363        ctx = perf_lock_task_context(task, ctxn, &flags);
1364        if (ctx) {
1365                ++ctx->pin_count;
1366                raw_spin_unlock_irqrestore(&ctx->lock, flags);
1367        }
1368        return ctx;
1369}
1370
1371static void perf_unpin_context(struct perf_event_context *ctx)
1372{
1373        unsigned long flags;
1374
1375        raw_spin_lock_irqsave(&ctx->lock, flags);
1376        --ctx->pin_count;
1377        raw_spin_unlock_irqrestore(&ctx->lock, flags);
1378}
1379
1380/*
1381 * Update the record of the current time in a context.
1382 */
1383static void update_context_time(struct perf_event_context *ctx)
1384{
1385        u64 now = perf_clock();
1386
1387        ctx->time += now - ctx->timestamp;
1388        ctx->timestamp = now;
1389}
1390
1391static u64 perf_event_time(struct perf_event *event)
1392{
1393        struct perf_event_context *ctx = event->ctx;
1394
1395        if (is_cgroup_event(event))
1396                return perf_cgroup_event_time(event);
1397
1398        return ctx ? ctx->time : 0;
1399}
1400
1401/*
1402 * Update the total_time_enabled and total_time_running fields for a event.
1403 */
1404static void update_event_times(struct perf_event *event)
1405{
1406        struct perf_event_context *ctx = event->ctx;
1407        u64 run_end;
1408
1409        lockdep_assert_held(&ctx->lock);
1410
1411        if (event->state < PERF_EVENT_STATE_INACTIVE ||
1412            event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1413                return;
1414
1415        /*
1416         * in cgroup mode, time_enabled represents
1417         * the time the event was enabled AND active
1418         * tasks were in the monitored cgroup. This is
1419         * independent of the activity of the context as
1420         * there may be a mix of cgroup and non-cgroup events.
1421         *
1422         * That is why we treat cgroup events differently
1423         * here.
1424         */
1425        if (is_cgroup_event(event))
1426                run_end = perf_cgroup_event_time(event);
1427        else if (ctx->is_active)
1428                run_end = ctx->time;
1429        else
1430                run_end = event->tstamp_stopped;
1431
1432        event->total_time_enabled = run_end - event->tstamp_enabled;
1433
1434        if (event->state == PERF_EVENT_STATE_INACTIVE)
1435                run_end = event->tstamp_stopped;
1436        else
1437                run_end = perf_event_time(event);
1438
1439        event->total_time_running = run_end - event->tstamp_running;
1440
1441}
1442
1443/*
1444 * Update total_time_enabled and total_time_running for all events in a group.
1445 */
1446static void update_group_times(struct perf_event *leader)
1447{
1448        struct perf_event *event;
1449
1450        update_event_times(leader);
1451        list_for_each_entry(event, &leader->sibling_list, group_entry)
1452                update_event_times(event);
1453}
1454
1455static enum event_type_t get_event_type(struct perf_event *event)
1456{
1457        struct perf_event_context *ctx = event->ctx;
1458        enum event_type_t event_type;
1459
1460        lockdep_assert_held(&ctx->lock);
1461
1462        /*
1463         * It's 'group type', really, because if our group leader is
1464         * pinned, so are we.
1465         */
1466        if (event->group_leader != event)
1467                event = event->group_leader;
1468
1469        event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1470        if (!ctx->task)
1471                event_type |= EVENT_CPU;
1472
1473        return event_type;
1474}
1475
1476static struct list_head *
1477ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1478{
1479        if (event->attr.pinned)
1480                return &ctx->pinned_groups;
1481        else
1482                return &ctx->flexible_groups;
1483}
1484
1485/*
1486 * Add a event from the lists for its context.
1487 * Must be called with ctx->mutex and ctx->lock held.
1488 */
1489static void
1490list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1491{
1492        lockdep_assert_held(&ctx->lock);
1493
1494        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1495        event->attach_state |= PERF_ATTACH_CONTEXT;
1496
1497        /*
1498         * If we're a stand alone event or group leader, we go to the context
1499         * list, group events are kept attached to the group so that
1500         * perf_group_detach can, at all times, locate all siblings.
1501         */
1502        if (event->group_leader == event) {
1503                struct list_head *list;
1504
1505                event->group_caps = event->event_caps;
1506
1507                list = ctx_group_list(event, ctx);
1508                list_add_tail(&event->group_entry, list);
1509        }
1510
1511        list_update_cgroup_event(event, ctx, true);
1512
1513        list_add_rcu(&event->event_entry, &ctx->event_list);
1514        ctx->nr_events++;
1515        if (event->attr.inherit_stat)
1516                ctx->nr_stat++;
1517
1518        ctx->generation++;
1519}
1520
1521/*
1522 * Initialize event state based on the perf_event_attr::disabled.
1523 */
1524static inline void perf_event__state_init(struct perf_event *event)
1525{
1526        event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1527                                              PERF_EVENT_STATE_INACTIVE;
1528}
1529
1530static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1531{
1532        int entry = sizeof(u64); /* value */
1533        int size = 0;
1534        int nr = 1;
1535
1536        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1537                size += sizeof(u64);
1538
1539        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1540                size += sizeof(u64);
1541
1542        if (event->attr.read_format & PERF_FORMAT_ID)
1543                entry += sizeof(u64);
1544
1545        if (event->attr.read_format & PERF_FORMAT_GROUP) {
1546                nr += nr_siblings;
1547                size += sizeof(u64);
1548        }
1549
1550        size += entry * nr;
1551        event->read_size = size;
1552}
1553
1554static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1555{
1556        struct perf_sample_data *data;
1557        u16 size = 0;
1558
1559        if (sample_type & PERF_SAMPLE_IP)
1560                size += sizeof(data->ip);
1561
1562        if (sample_type & PERF_SAMPLE_ADDR)
1563                size += sizeof(data->addr);
1564
1565        if (sample_type & PERF_SAMPLE_PERIOD)
1566                size += sizeof(data->period);
1567
1568        if (sample_type & PERF_SAMPLE_WEIGHT)
1569                size += sizeof(data->weight);
1570
1571        if (sample_type & PERF_SAMPLE_READ)
1572                size += event->read_size;
1573
1574        if (sample_type & PERF_SAMPLE_DATA_SRC)
1575                size += sizeof(data->data_src.val);
1576
1577        if (sample_type & PERF_SAMPLE_TRANSACTION)
1578                size += sizeof(data->txn);
1579
1580        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1581                size += sizeof(data->phys_addr);
1582
1583        event->header_size = size;
1584}
1585
1586/*
1587 * Called at perf_event creation and when events are attached/detached from a
1588 * group.
1589 */
1590static void perf_event__header_size(struct perf_event *event)
1591{
1592        __perf_event_read_size(event,
1593                               event->group_leader->nr_siblings);
1594        __perf_event_header_size(event, event->attr.sample_type);
1595}
1596
1597static void perf_event__id_header_size(struct perf_event *event)
1598{
1599        struct perf_sample_data *data;
1600        u64 sample_type = event->attr.sample_type;
1601        u16 size = 0;
1602
1603        if (sample_type & PERF_SAMPLE_TID)
1604                size += sizeof(data->tid_entry);
1605
1606        if (sample_type & PERF_SAMPLE_TIME)
1607                size += sizeof(data->time);
1608
1609        if (sample_type & PERF_SAMPLE_IDENTIFIER)
1610                size += sizeof(data->id);
1611
1612        if (sample_type & PERF_SAMPLE_ID)
1613                size += sizeof(data->id);
1614
1615        if (sample_type & PERF_SAMPLE_STREAM_ID)
1616                size += sizeof(data->stream_id);
1617
1618        if (sample_type & PERF_SAMPLE_CPU)
1619                size += sizeof(data->cpu_entry);
1620
1621        event->id_header_size = size;
1622}
1623
1624static bool perf_event_validate_size(struct perf_event *event)
1625{
1626        /*
1627         * The values computed here will be over-written when we actually
1628         * attach the event.
1629         */
1630        __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1631        __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1632        perf_event__id_header_size(event);
1633
1634        /*
1635         * Sum the lot; should not exceed the 64k limit we have on records.
1636         * Conservative limit to allow for callchains and other variable fields.
1637         */
1638        if (event->read_size + event->header_size +
1639            event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1640                return false;
1641
1642        return true;
1643}
1644
1645static void perf_group_attach(struct perf_event *event)
1646{
1647        struct perf_event *group_leader = event->group_leader, *pos;
1648
1649        lockdep_assert_held(&event->ctx->lock);
1650
1651        /*
1652         * We can have double attach due to group movement in perf_event_open.
1653         */
1654        if (event->attach_state & PERF_ATTACH_GROUP)
1655                return;
1656
1657        event->attach_state |= PERF_ATTACH_GROUP;
1658
1659        if (group_leader == event)
1660                return;
1661
1662        WARN_ON_ONCE(group_leader->ctx != event->ctx);
1663
1664        group_leader->group_caps &= event->event_caps;
1665
1666        list_add_tail(&event->group_entry, &group_leader->sibling_list);
1667        group_leader->nr_siblings++;
1668
1669        perf_event__header_size(group_leader);
1670
1671        list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1672                perf_event__header_size(pos);
1673}
1674
1675/*
1676 * Remove a event from the lists for its context.
1677 * Must be called with ctx->mutex and ctx->lock held.
1678 */
1679static void
1680list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1681{
1682        WARN_ON_ONCE(event->ctx != ctx);
1683        lockdep_assert_held(&ctx->lock);
1684
1685        /*
1686         * We can have double detach due to exit/hot-unplug + close.
1687         */
1688        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1689                return;
1690
1691        event->attach_state &= ~PERF_ATTACH_CONTEXT;
1692
1693        list_update_cgroup_event(event, ctx, false);
1694
1695        ctx->nr_events--;
1696        if (event->attr.inherit_stat)
1697                ctx->nr_stat--;
1698
1699        list_del_rcu(&event->event_entry);
1700
1701        if (event->group_leader == event)
1702                list_del_init(&event->group_entry);
1703
1704        update_group_times(event);
1705
1706        /*
1707         * If event was in error state, then keep it
1708         * that way, otherwise bogus counts will be
1709         * returned on read(). The only way to get out
1710         * of error state is by explicit re-enabling
1711         * of the event
1712         */
1713        if (event->state > PERF_EVENT_STATE_OFF)
1714                event->state = PERF_EVENT_STATE_OFF;
1715
1716        ctx->generation++;
1717}
1718
1719static void perf_group_detach(struct perf_event *event)
1720{
1721        struct perf_event *sibling, *tmp;
1722        struct list_head *list = NULL;
1723
1724        lockdep_assert_held(&event->ctx->lock);
1725
1726        /*
1727         * We can have double detach due to exit/hot-unplug + close.
1728         */
1729        if (!(event->attach_state & PERF_ATTACH_GROUP))
1730                return;
1731
1732        event->attach_state &= ~PERF_ATTACH_GROUP;
1733
1734        /*
1735         * If this is a sibling, remove it from its group.
1736         */
1737        if (event->group_leader != event) {
1738                list_del_init(&event->group_entry);
1739                event->group_leader->nr_siblings--;
1740                goto out;
1741        }
1742
1743        if (!list_empty(&event->group_entry))
1744                list = &event->group_entry;
1745
1746        /*
1747         * If this was a group event with sibling events then
1748         * upgrade the siblings to singleton events by adding them
1749         * to whatever list we are on.
1750         */
1751        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1752                if (list)
1753                        list_move_tail(&sibling->group_entry, list);
1754                sibling->group_leader = sibling;
1755
1756                /* Inherit group flags from the previous leader */
1757                sibling->group_caps = event->group_caps;
1758
1759                WARN_ON_ONCE(sibling->ctx != event->ctx);
1760        }
1761
1762out:
1763        perf_event__header_size(event->group_leader);
1764
1765        list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1766                perf_event__header_size(tmp);
1767}
1768
1769static bool is_orphaned_event(struct perf_event *event)
1770{
1771        return event->state == PERF_EVENT_STATE_DEAD;
1772}
1773
1774static inline int __pmu_filter_match(struct perf_event *event)
1775{
1776        struct pmu *pmu = event->pmu;
1777        return pmu->filter_match ? pmu->filter_match(event) : 1;
1778}
1779
1780/*
1781 * Check whether we should attempt to schedule an event group based on
1782 * PMU-specific filtering. An event group can consist of HW and SW events,
1783 * potentially with a SW leader, so we must check all the filters, to
1784 * determine whether a group is schedulable:
1785 */
1786static inline int pmu_filter_match(struct perf_event *event)
1787{
1788        struct perf_event *child;
1789
1790        if (!__pmu_filter_match(event))
1791                return 0;
1792
1793        list_for_each_entry(child, &event->sibling_list, group_entry) {
1794                if (!__pmu_filter_match(child))
1795                        return 0;
1796        }
1797
1798        return 1;
1799}
1800
1801static inline int
1802event_filter_match(struct perf_event *event)
1803{
1804        return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1805               perf_cgroup_match(event) && pmu_filter_match(event);
1806}
1807
1808static void
1809event_sched_out(struct perf_event *event,
1810                  struct perf_cpu_context *cpuctx,
1811                  struct perf_event_context *ctx)
1812{
1813        u64 tstamp = perf_event_time(event);
1814        u64 delta;
1815
1816        WARN_ON_ONCE(event->ctx != ctx);
1817        lockdep_assert_held(&ctx->lock);
1818
1819        /*
1820         * An event which could not be activated because of
1821         * filter mismatch still needs to have its timings
1822         * maintained, otherwise bogus information is return
1823         * via read() for time_enabled, time_running:
1824         */
1825        if (event->state == PERF_EVENT_STATE_INACTIVE &&
1826            !event_filter_match(event)) {
1827                delta = tstamp - event->tstamp_stopped;
1828                event->tstamp_running += delta;
1829                event->tstamp_stopped = tstamp;
1830        }
1831
1832        if (event->state != PERF_EVENT_STATE_ACTIVE)
1833                return;
1834
1835        perf_pmu_disable(event->pmu);
1836
1837        event->tstamp_stopped = tstamp;
1838        event->pmu->del(event, 0);
1839        event->oncpu = -1;
1840        event->state = PERF_EVENT_STATE_INACTIVE;
1841        if (event->pending_disable) {
1842                event->pending_disable = 0;
1843                event->state = PERF_EVENT_STATE_OFF;
1844        }
1845
1846        if (!is_software_event(event))
1847                cpuctx->active_oncpu--;
1848        if (!--ctx->nr_active)
1849                perf_event_ctx_deactivate(ctx);
1850        if (event->attr.freq && event->attr.sample_freq)
1851                ctx->nr_freq--;
1852        if (event->attr.exclusive || !cpuctx->active_oncpu)
1853                cpuctx->exclusive = 0;
1854
1855        perf_pmu_enable(event->pmu);
1856}
1857
1858static void
1859group_sched_out(struct perf_event *group_event,
1860                struct perf_cpu_context *cpuctx,
1861                struct perf_event_context *ctx)
1862{
1863        struct perf_event *event;
1864        int state = group_event->state;
1865
1866        perf_pmu_disable(ctx->pmu);
1867
1868        event_sched_out(group_event, cpuctx, ctx);
1869
1870        /*
1871         * Schedule out siblings (if any):
1872         */
1873        list_for_each_entry(event, &group_event->sibling_list, group_entry)
1874                event_sched_out(event, cpuctx, ctx);
1875
1876        perf_pmu_enable(ctx->pmu);
1877
1878        if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1879                cpuctx->exclusive = 0;
1880}
1881
1882#define DETACH_GROUP    0x01UL
1883
1884/*
1885 * Cross CPU call to remove a performance event
1886 *
1887 * We disable the event on the hardware level first. After that we
1888 * remove it from the context list.
1889 */
1890static void
1891__perf_remove_from_context(struct perf_event *event,
1892                           struct perf_cpu_context *cpuctx,
1893                           struct perf_event_context *ctx,
1894                           void *info)
1895{
1896        unsigned long flags = (unsigned long)info;
1897
1898        event_sched_out(event, cpuctx, ctx);
1899        if (flags & DETACH_GROUP)
1900                perf_group_detach(event);
1901        list_del_event(event, ctx);
1902
1903        if (!ctx->nr_events && ctx->is_active) {
1904                ctx->is_active = 0;
1905                if (ctx->task) {
1906                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1907                        cpuctx->task_ctx = NULL;
1908                }
1909        }
1910}
1911
1912/*
1913 * Remove the event from a task's (or a CPU's) list of events.
1914 *
1915 * If event->ctx is a cloned context, callers must make sure that
1916 * every task struct that event->ctx->task could possibly point to
1917 * remains valid.  This is OK when called from perf_release since
1918 * that only calls us on the top-level context, which can't be a clone.
1919 * When called from perf_event_exit_task, it's OK because the
1920 * context has been detached from its task.
1921 */
1922static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1923{
1924        struct perf_event_context *ctx = event->ctx;
1925
1926        lockdep_assert_held(&ctx->mutex);
1927
1928        event_function_call(event, __perf_remove_from_context, (void *)flags);
1929
1930        /*
1931         * The above event_function_call() can NO-OP when it hits
1932         * TASK_TOMBSTONE. In that case we must already have been detached
1933         * from the context (by perf_event_exit_event()) but the grouping
1934         * might still be in-tact.
1935         */
1936        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1937        if ((flags & DETACH_GROUP) &&
1938            (event->attach_state & PERF_ATTACH_GROUP)) {
1939                /*
1940                 * Since in that case we cannot possibly be scheduled, simply
1941                 * detach now.
1942                 */
1943                raw_spin_lock_irq(&ctx->lock);
1944                perf_group_detach(event);
1945                raw_spin_unlock_irq(&ctx->lock);
1946        }
1947}
1948
1949/*
1950 * Cross CPU call to disable a performance event
1951 */
1952static void __perf_event_disable(struct perf_event *event,
1953                                 struct perf_cpu_context *cpuctx,
1954                                 struct perf_event_context *ctx,
1955                                 void *info)
1956{
1957        if (event->state < PERF_EVENT_STATE_INACTIVE)
1958                return;
1959
1960        update_context_time(ctx);
1961        update_cgrp_time_from_event(event);
1962        update_group_times(event);
1963        if (event == event->group_leader)
1964                group_sched_out(event, cpuctx, ctx);
1965        else
1966                event_sched_out(event, cpuctx, ctx);
1967        event->state = PERF_EVENT_STATE_OFF;
1968}
1969
1970/*
1971 * Disable a event.
1972 *
1973 * If event->ctx is a cloned context, callers must make sure that
1974 * every task struct that event->ctx->task could possibly point to
1975 * remains valid.  This condition is satisifed when called through
1976 * perf_event_for_each_child or perf_event_for_each because they
1977 * hold the top-level event's child_mutex, so any descendant that
1978 * goes to exit will block in perf_event_exit_event().
1979 *
1980 * When called from perf_pending_event it's OK because event->ctx
1981 * is the current context on this CPU and preemption is disabled,
1982 * hence we can't get into perf_event_task_sched_out for this context.
1983 */
1984static void _perf_event_disable(struct perf_event *event)
1985{
1986        struct perf_event_context *ctx = event->ctx;
1987
1988        raw_spin_lock_irq(&ctx->lock);
1989        if (event->state <= PERF_EVENT_STATE_OFF) {
1990                raw_spin_unlock_irq(&ctx->lock);
1991                return;
1992        }
1993        raw_spin_unlock_irq(&ctx->lock);
1994
1995        event_function_call(event, __perf_event_disable, NULL);
1996}
1997
1998void perf_event_disable_local(struct perf_event *event)
1999{
2000        event_function_local(event, __perf_event_disable, NULL);
2001}
2002
2003/*
2004 * Strictly speaking kernel users cannot create groups and therefore this
2005 * interface does not need the perf_event_ctx_lock() magic.
2006 */
2007void perf_event_disable(struct perf_event *event)
2008{
2009        struct perf_event_context *ctx;
2010
2011        ctx = perf_event_ctx_lock(event);
2012        _perf_event_disable(event);
2013        perf_event_ctx_unlock(event, ctx);
2014}
2015EXPORT_SYMBOL_GPL(perf_event_disable);
2016
2017void perf_event_disable_inatomic(struct perf_event *event)
2018{
2019        event->pending_disable = 1;
2020        irq_work_queue(&event->pending);
2021}
2022
2023static void perf_set_shadow_time(struct perf_event *event,
2024                                 struct perf_event_context *ctx,
2025                                 u64 tstamp)
2026{
2027        /*
2028         * use the correct time source for the time snapshot
2029         *
2030         * We could get by without this by leveraging the
2031         * fact that to get to this function, the caller
2032         * has most likely already called update_context_time()
2033         * and update_cgrp_time_xx() and thus both timestamp
2034         * are identical (or very close). Given that tstamp is,
2035         * already adjusted for cgroup, we could say that:
2036         *    tstamp - ctx->timestamp
2037         * is equivalent to
2038         *    tstamp - cgrp->timestamp.
2039         *
2040         * Then, in perf_output_read(), the calculation would
2041         * work with no changes because:
2042         * - event is guaranteed scheduled in
2043         * - no scheduled out in between
2044         * - thus the timestamp would be the same
2045         *
2046         * But this is a bit hairy.
2047         *
2048         * So instead, we have an explicit cgroup call to remain
2049         * within the time time source all along. We believe it
2050         * is cleaner and simpler to understand.
2051         */
2052        if (is_cgroup_event(event))
2053                perf_cgroup_set_shadow_time(event, tstamp);
2054        else
2055                event->shadow_ctx_time = tstamp - ctx->timestamp;
2056}
2057
2058#define MAX_INTERRUPTS (~0ULL)
2059
2060static void perf_log_throttle(struct perf_event *event, int enable);
2061static void perf_log_itrace_start(struct perf_event *event);
2062
2063static int
2064event_sched_in(struct perf_event *event,
2065                 struct perf_cpu_context *cpuctx,
2066                 struct perf_event_context *ctx)
2067{
2068        u64 tstamp = perf_event_time(event);
2069        int ret = 0;
2070
2071        lockdep_assert_held(&ctx->lock);
2072
2073        if (event->state <= PERF_EVENT_STATE_OFF)
2074                return 0;
2075
2076        WRITE_ONCE(event->oncpu, smp_processor_id());
2077        /*
2078         * Order event::oncpu write to happen before the ACTIVE state
2079         * is visible.
2080         */
2081        smp_wmb();
2082        WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2083
2084        /*
2085         * Unthrottle events, since we scheduled we might have missed several
2086         * ticks already, also for a heavily scheduling task there is little
2087         * guarantee it'll get a tick in a timely manner.
2088         */
2089        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2090                perf_log_throttle(event, 1);
2091                event->hw.interrupts = 0;
2092        }
2093
2094        /*
2095         * The new state must be visible before we turn it on in the hardware:
2096         */
2097        smp_wmb();
2098
2099        perf_pmu_disable(event->pmu);
2100
2101        perf_set_shadow_time(event, ctx, tstamp);
2102
2103        perf_log_itrace_start(event);
2104
2105        if (event->pmu->add(event, PERF_EF_START)) {
2106                event->state = PERF_EVENT_STATE_INACTIVE;
2107                event->oncpu = -1;
2108                ret = -EAGAIN;
2109                goto out;
2110        }
2111
2112        event->tstamp_running += tstamp - event->tstamp_stopped;
2113
2114        if (!is_software_event(event))
2115                cpuctx->active_oncpu++;
2116        if (!ctx->nr_active++)
2117                perf_event_ctx_activate(ctx);
2118        if (event->attr.freq && event->attr.sample_freq)
2119                ctx->nr_freq++;
2120
2121        if (event->attr.exclusive)
2122                cpuctx->exclusive = 1;
2123
2124out:
2125        perf_pmu_enable(event->pmu);
2126
2127        return ret;
2128}
2129
2130static int
2131group_sched_in(struct perf_event *group_event,
2132               struct perf_cpu_context *cpuctx,
2133               struct perf_event_context *ctx)
2134{
2135        struct perf_event *event, *partial_group = NULL;
2136        struct pmu *pmu = ctx->pmu;
2137        u64 now = ctx->time;
2138        bool simulate = false;
2139
2140        if (group_event->state == PERF_EVENT_STATE_OFF)
2141                return 0;
2142
2143        pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2144
2145        if (event_sched_in(group_event, cpuctx, ctx)) {
2146                pmu->cancel_txn(pmu);
2147                perf_mux_hrtimer_restart(cpuctx);
2148                return -EAGAIN;
2149        }
2150
2151        /*
2152         * Schedule in siblings as one group (if any):
2153         */
2154        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2155                if (event_sched_in(event, cpuctx, ctx)) {
2156                        partial_group = event;
2157                        goto group_error;
2158                }
2159        }
2160
2161        if (!pmu->commit_txn(pmu))
2162                return 0;
2163
2164group_error:
2165        /*
2166         * Groups can be scheduled in as one unit only, so undo any
2167         * partial group before returning:
2168         * The events up to the failed event are scheduled out normally,
2169         * tstamp_stopped will be updated.
2170         *
2171         * The failed events and the remaining siblings need to have
2172         * their timings updated as if they had gone thru event_sched_in()
2173         * and event_sched_out(). This is required to get consistent timings
2174         * across the group. This also takes care of the case where the group
2175         * could never be scheduled by ensuring tstamp_stopped is set to mark
2176         * the time the event was actually stopped, such that time delta
2177         * calculation in update_event_times() is correct.
2178         */
2179        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2180                if (event == partial_group)
2181                        simulate = true;
2182
2183                if (simulate) {
2184                        event->tstamp_running += now - event->tstamp_stopped;
2185                        event->tstamp_stopped = now;
2186                } else {
2187                        event_sched_out(event, cpuctx, ctx);
2188                }
2189        }
2190        event_sched_out(group_event, cpuctx, ctx);
2191
2192        pmu->cancel_txn(pmu);
2193
2194        perf_mux_hrtimer_restart(cpuctx);
2195
2196        return -EAGAIN;
2197}
2198
2199/*
2200 * Work out whether we can put this event group on the CPU now.
2201 */
2202static int group_can_go_on(struct perf_event *event,
2203                           struct perf_cpu_context *cpuctx,
2204                           int can_add_hw)
2205{
2206        /*
2207         * Groups consisting entirely of software events can always go on.
2208         */
2209        if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2210                return 1;
2211        /*
2212         * If an exclusive group is already on, no other hardware
2213         * events can go on.
2214         */
2215        if (cpuctx->exclusive)
2216                return 0;
2217        /*
2218         * If this group is exclusive and there are already
2219         * events on the CPU, it can't go on.
2220         */
2221        if (event->attr.exclusive && cpuctx->active_oncpu)
2222                return 0;
2223        /*
2224         * Otherwise, try to add it if all previous groups were able
2225         * to go on.
2226         */
2227        return can_add_hw;
2228}
2229
2230/*
2231 * Complement to update_event_times(). This computes the tstamp_* values to
2232 * continue 'enabled' state from @now, and effectively discards the time
2233 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2234 * just switched (context) time base).
2235 *
2236 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2237 * cannot have been scheduled in yet. And going into INACTIVE state means
2238 * '@event->tstamp_stopped = @now'.
2239 *
2240 * Thus given the rules of update_event_times():
2241 *
2242 *   total_time_enabled = tstamp_stopped - tstamp_enabled
2243 *   total_time_running = tstamp_stopped - tstamp_running
2244 *
2245 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2246 * tstamp_* values.
2247 */
2248static void __perf_event_enable_time(struct perf_event *event, u64 now)
2249{
2250        WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2251
2252        event->tstamp_stopped = now;
2253        event->tstamp_enabled = now - event->total_time_enabled;
2254        event->tstamp_running = now - event->total_time_running;
2255}
2256
2257static void add_event_to_ctx(struct perf_event *event,
2258                               struct perf_event_context *ctx)
2259{
2260        u64 tstamp = perf_event_time(event);
2261
2262        list_add_event(event, ctx);
2263        perf_group_attach(event);
2264        /*
2265         * We can be called with event->state == STATE_OFF when we create with
2266         * .disabled = 1. In that case the IOC_ENABLE will call this function.
2267         */
2268        if (event->state == PERF_EVENT_STATE_INACTIVE)
2269                __perf_event_enable_time(event, tstamp);
2270}
2271
2272static void ctx_sched_out(struct perf_event_context *ctx,
2273                          struct perf_cpu_context *cpuctx,
2274                          enum event_type_t event_type);
2275static void
2276ctx_sched_in(struct perf_event_context *ctx,
2277             struct perf_cpu_context *cpuctx,
2278             enum event_type_t event_type,
2279             struct task_struct *task);
2280
2281static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2282                               struct perf_event_context *ctx,
2283                               enum event_type_t event_type)
2284{
2285        if (!cpuctx->task_ctx)
2286                return;
2287
2288        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2289                return;
2290
2291        ctx_sched_out(ctx, cpuctx, event_type);
2292}
2293
2294static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2295                                struct perf_event_context *ctx,
2296                                struct task_struct *task)
2297{
2298        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2299        if (ctx)
2300                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2301        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2302        if (ctx)
2303                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2304}
2305
2306/*
2307 * We want to maintain the following priority of scheduling:
2308 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2309 *  - task pinned (EVENT_PINNED)
2310 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2311 *  - task flexible (EVENT_FLEXIBLE).
2312 *
2313 * In order to avoid unscheduling and scheduling back in everything every
2314 * time an event is added, only do it for the groups of equal priority and
2315 * below.
2316 *
2317 * This can be called after a batch operation on task events, in which case
2318 * event_type is a bit mask of the types of events involved. For CPU events,
2319 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2320 */
2321static void ctx_resched(struct perf_cpu_context *cpuctx,
2322                        struct perf_event_context *task_ctx,
2323                        enum event_type_t event_type)
2324{
2325        enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2326        bool cpu_event = !!(event_type & EVENT_CPU);
2327
2328        /*
2329         * If pinned groups are involved, flexible groups also need to be
2330         * scheduled out.
2331         */
2332        if (event_type & EVENT_PINNED)
2333                event_type |= EVENT_FLEXIBLE;
2334
2335        perf_pmu_disable(cpuctx->ctx.pmu);
2336        if (task_ctx)
2337                task_ctx_sched_out(cpuctx, task_ctx, event_type);
2338
2339        /*
2340         * Decide which cpu ctx groups to schedule out based on the types
2341         * of events that caused rescheduling:
2342         *  - EVENT_CPU: schedule out corresponding groups;
2343         *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2344         *  - otherwise, do nothing more.
2345         */
2346        if (cpu_event)
2347                cpu_ctx_sched_out(cpuctx, ctx_event_type);
2348        else if (ctx_event_type & EVENT_PINNED)
2349                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2350
2351        perf_event_sched_in(cpuctx, task_ctx, current);
2352        perf_pmu_enable(cpuctx->ctx.pmu);
2353}
2354
2355/*
2356 * Cross CPU call to install and enable a performance event
2357 *
2358 * Very similar to remote_function() + event_function() but cannot assume that
2359 * things like ctx->is_active and cpuctx->task_ctx are set.
2360 */
2361static int  __perf_install_in_context(void *info)
2362{
2363        struct perf_event *event = info;
2364        struct perf_event_context *ctx = event->ctx;
2365        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2366        struct perf_event_context *task_ctx = cpuctx->task_ctx;
2367        bool reprogram = true;
2368        int ret = 0;
2369
2370        raw_spin_lock(&cpuctx->ctx.lock);
2371        if (ctx->task) {
2372                raw_spin_lock(&ctx->lock);
2373                task_ctx = ctx;
2374
2375                reprogram = (ctx->task == current);
2376
2377                /*
2378                 * If the task is running, it must be running on this CPU,
2379                 * otherwise we cannot reprogram things.
2380                 *
2381                 * If its not running, we don't care, ctx->lock will
2382                 * serialize against it becoming runnable.
2383                 */
2384                if (task_curr(ctx->task) && !reprogram) {
2385                        ret = -ESRCH;
2386                        goto unlock;
2387                }
2388
2389                WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2390        } else if (task_ctx) {
2391                raw_spin_lock(&task_ctx->lock);
2392        }
2393
2394        if (reprogram) {
2395                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2396                add_event_to_ctx(event, ctx);
2397                ctx_resched(cpuctx, task_ctx, get_event_type(event));
2398        } else {
2399                add_event_to_ctx(event, ctx);
2400        }
2401
2402unlock:
2403        perf_ctx_unlock(cpuctx, task_ctx);
2404
2405        return ret;
2406}
2407
2408/*
2409 * Attach a performance event to a context.
2410 *
2411 * Very similar to event_function_call, see comment there.
2412 */
2413static void
2414perf_install_in_context(struct perf_event_context *ctx,
2415                        struct perf_event *event,
2416                        int cpu)
2417{
2418        struct task_struct *task = READ_ONCE(ctx->task);
2419
2420        lockdep_assert_held(&ctx->mutex);
2421
2422        if (event->cpu != -1)
2423                event->cpu = cpu;
2424
2425        /*
2426         * Ensures that if we can observe event->ctx, both the event and ctx
2427         * will be 'complete'. See perf_iterate_sb_cpu().
2428         */
2429        smp_store_release(&event->ctx, ctx);
2430
2431        if (!task) {
2432                cpu_function_call(cpu, __perf_install_in_context, event);
2433                return;
2434        }
2435
2436        /*
2437         * Should not happen, we validate the ctx is still alive before calling.
2438         */
2439        if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2440                return;
2441
2442        /*
2443         * Installing events is tricky because we cannot rely on ctx->is_active
2444         * to be set in case this is the nr_events 0 -> 1 transition.
2445         *
2446         * Instead we use task_curr(), which tells us if the task is running.
2447         * However, since we use task_curr() outside of rq::lock, we can race
2448         * against the actual state. This means the result can be wrong.
2449         *
2450         * If we get a false positive, we retry, this is harmless.
2451         *
2452         * If we get a false negative, things are complicated. If we are after
2453         * perf_event_context_sched_in() ctx::lock will serialize us, and the
2454         * value must be correct. If we're before, it doesn't matter since
2455         * perf_event_context_sched_in() will program the counter.
2456         *
2457         * However, this hinges on the remote context switch having observed
2458         * our task->perf_event_ctxp[] store, such that it will in fact take
2459         * ctx::lock in perf_event_context_sched_in().
2460         *
2461         * We do this by task_function_call(), if the IPI fails to hit the task
2462         * we know any future context switch of task must see the
2463         * perf_event_ctpx[] store.
2464         */
2465
2466        /*
2467         * This smp_mb() orders the task->perf_event_ctxp[] store with the
2468         * task_cpu() load, such that if the IPI then does not find the task
2469         * running, a future context switch of that task must observe the
2470         * store.
2471         */
2472        smp_mb();
2473again:
2474        if (!task_function_call(task, __perf_install_in_context, event))
2475                return;
2476
2477        raw_spin_lock_irq(&ctx->lock);
2478        task = ctx->task;
2479        if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2480                /*
2481                 * Cannot happen because we already checked above (which also
2482                 * cannot happen), and we hold ctx->mutex, which serializes us
2483                 * against perf_event_exit_task_context().
2484                 */
2485                raw_spin_unlock_irq(&ctx->lock);
2486                return;
2487        }
2488        /*
2489         * If the task is not running, ctx->lock will avoid it becoming so,
2490         * thus we can safely install the event.
2491         */
2492        if (task_curr(task)) {
2493                raw_spin_unlock_irq(&ctx->lock);
2494                goto again;
2495        }
2496        add_event_to_ctx(event, ctx);
2497        raw_spin_unlock_irq(&ctx->lock);
2498}
2499
2500/*
2501 * Put a event into inactive state and update time fields.
2502 * Enabling the leader of a group effectively enables all
2503 * the group members that aren't explicitly disabled, so we
2504 * have to update their ->tstamp_enabled also.
2505 * Note: this works for group members as well as group leaders
2506 * since the non-leader members' sibling_lists will be empty.
2507 */
2508static void __perf_event_mark_enabled(struct perf_event *event)
2509{
2510        struct perf_event *sub;
2511        u64 tstamp = perf_event_time(event);
2512
2513        event->state = PERF_EVENT_STATE_INACTIVE;
2514        __perf_event_enable_time(event, tstamp);
2515        list_for_each_entry(sub, &event->sibling_list, group_entry) {
2516                /* XXX should not be > INACTIVE if event isn't */
2517                if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2518                        __perf_event_enable_time(sub, tstamp);
2519        }
2520}
2521
2522/*
2523 * Cross CPU call to enable a performance event
2524 */
2525static void __perf_event_enable(struct perf_event *event,
2526                                struct perf_cpu_context *cpuctx,
2527                                struct perf_event_context *ctx,
2528                                void *info)
2529{
2530        struct perf_event *leader = event->group_leader;
2531        struct perf_event_context *task_ctx;
2532
2533        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534            event->state <= PERF_EVENT_STATE_ERROR)
2535                return;
2536
2537        if (ctx->is_active)
2538                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2539
2540        __perf_event_mark_enabled(event);
2541
2542        if (!ctx->is_active)
2543                return;
2544
2545        if (!event_filter_match(event)) {
2546                if (is_cgroup_event(event))
2547                        perf_cgroup_defer_enabled(event);
2548                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2549                return;
2550        }
2551
2552        /*
2553         * If the event is in a group and isn't the group leader,
2554         * then don't put it on unless the group is on.
2555         */
2556        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2557                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2558                return;
2559        }
2560
2561        task_ctx = cpuctx->task_ctx;
2562        if (ctx->task)
2563                WARN_ON_ONCE(task_ctx != ctx);
2564
2565        ctx_resched(cpuctx, task_ctx, get_event_type(event));
2566}
2567
2568/*
2569 * Enable a event.
2570 *
2571 * If event->ctx is a cloned context, callers must make sure that
2572 * every task struct that event->ctx->task could possibly point to
2573 * remains valid.  This condition is satisfied when called through
2574 * perf_event_for_each_child or perf_event_for_each as described
2575 * for perf_event_disable.
2576 */
2577static void _perf_event_enable(struct perf_event *event)
2578{
2579        struct perf_event_context *ctx = event->ctx;
2580
2581        raw_spin_lock_irq(&ctx->lock);
2582        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2583            event->state <  PERF_EVENT_STATE_ERROR) {
2584                raw_spin_unlock_irq(&ctx->lock);
2585                return;
2586        }
2587
2588        /*
2589         * If the event is in error state, clear that first.
2590         *
2591         * That way, if we see the event in error state below, we know that it
2592         * has gone back into error state, as distinct from the task having
2593         * been scheduled away before the cross-call arrived.
2594         */
2595        if (event->state == PERF_EVENT_STATE_ERROR)
2596                event->state = PERF_EVENT_STATE_OFF;
2597        raw_spin_unlock_irq(&ctx->lock);
2598
2599        event_function_call(event, __perf_event_enable, NULL);
2600}
2601
2602/*
2603 * See perf_event_disable();
2604 */
2605void perf_event_enable(struct perf_event *event)
2606{
2607        struct perf_event_context *ctx;
2608
2609        ctx = perf_event_ctx_lock(event);
2610        _perf_event_enable(event);
2611        perf_event_ctx_unlock(event, ctx);
2612}
2613EXPORT_SYMBOL_GPL(perf_event_enable);
2614
2615struct stop_event_data {
2616        struct perf_event       *event;
2617        unsigned int            restart;
2618};
2619
2620static int __perf_event_stop(void *info)
2621{
2622        struct stop_event_data *sd = info;
2623        struct perf_event *event = sd->event;
2624
2625        /* if it's already INACTIVE, do nothing */
2626        if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2627                return 0;
2628
2629        /* matches smp_wmb() in event_sched_in() */
2630        smp_rmb();
2631
2632        /*
2633         * There is a window with interrupts enabled before we get here,
2634         * so we need to check again lest we try to stop another CPU's event.
2635         */
2636        if (READ_ONCE(event->oncpu) != smp_processor_id())
2637                return -EAGAIN;
2638
2639        event->pmu->stop(event, PERF_EF_UPDATE);
2640
2641        /*
2642         * May race with the actual stop (through perf_pmu_output_stop()),
2643         * but it is only used for events with AUX ring buffer, and such
2644         * events will refuse to restart because of rb::aux_mmap_count==0,
2645         * see comments in perf_aux_output_begin().
2646         *
2647         * Since this is happening on a event-local CPU, no trace is lost
2648         * while restarting.
2649         */
2650        if (sd->restart)
2651                event->pmu->start(event, 0);
2652
2653        return 0;
2654}
2655
2656static int perf_event_stop(struct perf_event *event, int restart)
2657{
2658        struct stop_event_data sd = {
2659                .event          = event,
2660                .restart        = restart,
2661        };
2662        int ret = 0;
2663
2664        do {
2665                if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2666                        return 0;
2667
2668                /* matches smp_wmb() in event_sched_in() */
2669                smp_rmb();
2670
2671                /*
2672                 * We only want to restart ACTIVE events, so if the event goes
2673                 * inactive here (event->oncpu==-1), there's nothing more to do;
2674                 * fall through with ret==-ENXIO.
2675                 */
2676                ret = cpu_function_call(READ_ONCE(event->oncpu),
2677                                        __perf_event_stop, &sd);
2678        } while (ret == -EAGAIN);
2679
2680        return ret;
2681}
2682
2683/*
2684 * In order to contain the amount of racy and tricky in the address filter
2685 * configuration management, it is a two part process:
2686 *
2687 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2688 *      we update the addresses of corresponding vmas in
2689 *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2690 * (p2) when an event is scheduled in (pmu::add), it calls
2691 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2692 *      if the generation has changed since the previous call.
2693 *
2694 * If (p1) happens while the event is active, we restart it to force (p2).
2695 *
2696 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2697 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2698 *     ioctl;
2699 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2700 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2701 *     for reading;
2702 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2703 *     of exec.
2704 */
2705void perf_event_addr_filters_sync(struct perf_event *event)
2706{
2707        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2708
2709        if (!has_addr_filter(event))
2710                return;
2711
2712        raw_spin_lock(&ifh->lock);
2713        if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2714                event->pmu->addr_filters_sync(event);
2715                event->hw.addr_filters_gen = event->addr_filters_gen;
2716        }
2717        raw_spin_unlock(&ifh->lock);
2718}
2719EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2720
2721static int _perf_event_refresh(struct perf_event *event, int refresh)
2722{
2723        /*
2724         * not supported on inherited events
2725         */
2726        if (event->attr.inherit || !is_sampling_event(event))
2727                return -EINVAL;
2728
2729        atomic_add(refresh, &event->event_limit);
2730        _perf_event_enable(event);
2731
2732        return 0;
2733}
2734
2735/*
2736 * See perf_event_disable()
2737 */
2738int perf_event_refresh(struct perf_event *event, int refresh)
2739{
2740        struct perf_event_context *ctx;
2741        int ret;
2742
2743        ctx = perf_event_ctx_lock(event);
2744        ret = _perf_event_refresh(event, refresh);
2745        perf_event_ctx_unlock(event, ctx);
2746
2747        return ret;
2748}
2749EXPORT_SYMBOL_GPL(perf_event_refresh);
2750
2751static void ctx_sched_out(struct perf_event_context *ctx,
2752                          struct perf_cpu_context *cpuctx,
2753                          enum event_type_t event_type)
2754{
2755        int is_active = ctx->is_active;
2756        struct perf_event *event;
2757
2758        lockdep_assert_held(&ctx->lock);
2759
2760        if (likely(!ctx->nr_events)) {
2761                /*
2762                 * See __perf_remove_from_context().
2763                 */
2764                WARN_ON_ONCE(ctx->is_active);
2765                if (ctx->task)
2766                        WARN_ON_ONCE(cpuctx->task_ctx);
2767                return;
2768        }
2769
2770        ctx->is_active &= ~event_type;
2771        if (!(ctx->is_active & EVENT_ALL))
2772                ctx->is_active = 0;
2773
2774        if (ctx->task) {
2775                WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2776                if (!ctx->is_active)
2777                        cpuctx->task_ctx = NULL;
2778        }
2779
2780        /*
2781         * Always update time if it was set; not only when it changes.
2782         * Otherwise we can 'forget' to update time for any but the last
2783         * context we sched out. For example:
2784         *
2785         *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2786         *   ctx_sched_out(.event_type = EVENT_PINNED)
2787         *
2788         * would only update time for the pinned events.
2789         */
2790        if (is_active & EVENT_TIME) {
2791                /* update (and stop) ctx time */
2792                update_context_time(ctx);
2793                update_cgrp_time_from_cpuctx(cpuctx);
2794        }
2795
2796        is_active ^= ctx->is_active; /* changed bits */
2797
2798        if (!ctx->nr_active || !(is_active & EVENT_ALL))
2799                return;
2800
2801        perf_pmu_disable(ctx->pmu);
2802        if (is_active & EVENT_PINNED) {
2803                list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2804                        group_sched_out(event, cpuctx, ctx);
2805        }
2806
2807        if (is_active & EVENT_FLEXIBLE) {
2808                list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2809                        group_sched_out(event, cpuctx, ctx);
2810        }
2811        perf_pmu_enable(ctx->pmu);
2812}
2813
2814/*
2815 * Test whether two contexts are equivalent, i.e. whether they have both been
2816 * cloned from the same version of the same context.
2817 *
2818 * Equivalence is measured using a generation number in the context that is
2819 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2820 * and list_del_event().
2821 */
2822static int context_equiv(struct perf_event_context *ctx1,
2823                         struct perf_event_context *ctx2)
2824{
2825        lockdep_assert_held(&ctx1->lock);
2826        lockdep_assert_held(&ctx2->lock);
2827
2828        /* Pinning disables the swap optimization */
2829        if (ctx1->pin_count || ctx2->pin_count)
2830                return 0;
2831
2832        /* If ctx1 is the parent of ctx2 */
2833        if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2834                return 1;
2835
2836        /* If ctx2 is the parent of ctx1 */
2837        if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2838                return 1;
2839
2840        /*
2841         * If ctx1 and ctx2 have the same parent; we flatten the parent
2842         * hierarchy, see perf_event_init_context().
2843         */
2844        if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2845                        ctx1->parent_gen == ctx2->parent_gen)
2846                return 1;
2847
2848        /* Unmatched */
2849        return 0;
2850}
2851
2852static void __perf_event_sync_stat(struct perf_event *event,
2853                                     struct perf_event *next_event)
2854{
2855        u64 value;
2856
2857        if (!event->attr.inherit_stat)
2858                return;
2859
2860        /*
2861         * Update the event value, we cannot use perf_event_read()
2862         * because we're in the middle of a context switch and have IRQs
2863         * disabled, which upsets smp_call_function_single(), however
2864         * we know the event must be on the current CPU, therefore we
2865         * don't need to use it.
2866         */
2867        switch (event->state) {
2868        case PERF_EVENT_STATE_ACTIVE:
2869                event->pmu->read(event);
2870                /* fall-through */
2871
2872        case PERF_EVENT_STATE_INACTIVE:
2873                update_event_times(event);
2874                break;
2875
2876        default:
2877                break;
2878        }
2879
2880        /*
2881         * In order to keep per-task stats reliable we need to flip the event
2882         * values when we flip the contexts.
2883         */
2884        value = local64_read(&next_event->count);
2885        value = local64_xchg(&event->count, value);
2886        local64_set(&next_event->count, value);
2887
2888        swap(event->total_time_enabled, next_event->total_time_enabled);
2889        swap(event->total_time_running, next_event->total_time_running);
2890
2891        /*
2892         * Since we swizzled the values, update the user visible data too.
2893         */
2894        perf_event_update_userpage(event);
2895        perf_event_update_userpage(next_event);
2896}
2897
2898static void perf_event_sync_stat(struct perf_event_context *ctx,
2899                                   struct perf_event_context *next_ctx)
2900{
2901        struct perf_event *event, *next_event;
2902
2903        if (!ctx->nr_stat)
2904                return;
2905
2906        update_context_time(ctx);
2907
2908        event = list_first_entry(&ctx->event_list,
2909                                   struct perf_event, event_entry);
2910
2911        next_event = list_first_entry(&next_ctx->event_list,
2912                                        struct perf_event, event_entry);
2913
2914        while (&event->event_entry != &ctx->event_list &&
2915               &next_event->event_entry != &next_ctx->event_list) {
2916
2917                __perf_event_sync_stat(event, next_event);
2918
2919                event = list_next_entry(event, event_entry);
2920                next_event = list_next_entry(next_event, event_entry);
2921        }
2922}
2923
2924static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2925                                         struct task_struct *next)
2926{
2927        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2928        struct perf_event_context *next_ctx;
2929        struct perf_event_context *parent, *next_parent;
2930        struct perf_cpu_context *cpuctx;
2931        int do_switch = 1;
2932
2933        if (likely(!ctx))
2934                return;
2935
2936        cpuctx = __get_cpu_context(ctx);
2937        if (!cpuctx->task_ctx)
2938                return;
2939
2940        rcu_read_lock();
2941        next_ctx = next->perf_event_ctxp[ctxn];
2942        if (!next_ctx)
2943                goto unlock;
2944
2945        parent = rcu_dereference(ctx->parent_ctx);
2946        next_parent = rcu_dereference(next_ctx->parent_ctx);
2947
2948        /* If neither context have a parent context; they cannot be clones. */
2949        if (!parent && !next_parent)
2950                goto unlock;
2951
2952        if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2953                /*
2954                 * Looks like the two contexts are clones, so we might be
2955                 * able to optimize the context switch.  We lock both
2956                 * contexts and check that they are clones under the
2957                 * lock (including re-checking that neither has been
2958                 * uncloned in the meantime).  It doesn't matter which
2959                 * order we take the locks because no other cpu could
2960                 * be trying to lock both of these tasks.
2961                 */
2962                raw_spin_lock(&ctx->lock);
2963                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2964                if (context_equiv(ctx, next_ctx)) {
2965                        WRITE_ONCE(ctx->task, next);
2966                        WRITE_ONCE(next_ctx->task, task);
2967
2968                        swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2969
2970                        /*
2971                         * RCU_INIT_POINTER here is safe because we've not
2972                         * modified the ctx and the above modification of
2973                         * ctx->task and ctx->task_ctx_data are immaterial
2974                         * since those values are always verified under
2975                         * ctx->lock which we're now holding.
2976                         */
2977                        RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2978                        RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2979
2980                        do_switch = 0;
2981
2982                        perf_event_sync_stat(ctx, next_ctx);
2983                }
2984                raw_spin_unlock(&next_ctx->lock);
2985                raw_spin_unlock(&ctx->lock);
2986        }
2987unlock:
2988        rcu_read_unlock();
2989
2990        if (do_switch) {
2991                raw_spin_lock(&ctx->lock);
2992                task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2993                raw_spin_unlock(&ctx->lock);
2994        }
2995}
2996
2997static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2998
2999void perf_sched_cb_dec(struct pmu *pmu)
3000{
3001        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3002
3003        this_cpu_dec(perf_sched_cb_usages);
3004
3005        if (!--cpuctx->sched_cb_usage)
3006                list_del(&cpuctx->sched_cb_entry);
3007}
3008
3009
3010void perf_sched_cb_inc(struct pmu *pmu)
3011{
3012        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3013
3014        if (!cpuctx->sched_cb_usage++)
3015                list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3016
3017        this_cpu_inc(perf_sched_cb_usages);
3018}
3019
3020/*
3021 * This function provides the context switch callback to the lower code
3022 * layer. It is invoked ONLY when the context switch callback is enabled.
3023 *
3024 * This callback is relevant even to per-cpu events; for example multi event
3025 * PEBS requires this to provide PID/TID information. This requires we flush
3026 * all queued PEBS records before we context switch to a new task.
3027 */
3028static void perf_pmu_sched_task(struct task_struct *prev,
3029                                struct task_struct *next,
3030                                bool sched_in)
3031{
3032        struct perf_cpu_context *cpuctx;
3033        struct pmu *pmu;
3034
3035        if (prev == next)
3036                return;
3037
3038        list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3039                pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3040
3041                if (WARN_ON_ONCE(!pmu->sched_task))
3042                        continue;
3043
3044                perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3045                perf_pmu_disable(pmu);
3046
3047                pmu->sched_task(cpuctx->task_ctx, sched_in);
3048
3049                perf_pmu_enable(pmu);
3050                perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3051        }
3052}
3053
3054static void perf_event_switch(struct task_struct *task,
3055                              struct task_struct *next_prev, bool sched_in);
3056
3057#define for_each_task_context_nr(ctxn)                                  \
3058        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3059
3060/*
3061 * Called from scheduler to remove the events of the current task,
3062 * with interrupts disabled.
3063 *
3064 * We stop each event and update the event value in event->count.
3065 *
3066 * This does not protect us against NMI, but disable()
3067 * sets the disabled bit in the control field of event _before_
3068 * accessing the event control register. If a NMI hits, then it will
3069 * not restart the event.
3070 */
3071void __perf_event_task_sched_out(struct task_struct *task,
3072                                 struct task_struct *next)
3073{
3074        int ctxn;
3075
3076        if (__this_cpu_read(perf_sched_cb_usages))
3077                perf_pmu_sched_task(task, next, false);
3078
3079        if (atomic_read(&nr_switch_events))
3080                perf_event_switch(task, next, false);
3081
3082        for_each_task_context_nr(ctxn)
3083                perf_event_context_sched_out(task, ctxn, next);
3084
3085        /*
3086         * if cgroup events exist on this CPU, then we need
3087         * to check if we have to switch out PMU state.
3088         * cgroup event are system-wide mode only
3089         */
3090        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3091                perf_cgroup_sched_out(task, next);
3092}
3093
3094/*
3095 * Called with IRQs disabled
3096 */
3097static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3098                              enum event_type_t event_type)
3099{
3100        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3101}
3102
3103static void
3104ctx_pinned_sched_in(struct perf_event_context *ctx,
3105                    struct perf_cpu_context *cpuctx)
3106{
3107        struct perf_event *event;
3108
3109        list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3110                if (event->state <= PERF_EVENT_STATE_OFF)
3111                        continue;
3112                if (!event_filter_match(event))
3113                        continue;
3114
3115                /* may need to reset tstamp_enabled */
3116                if (is_cgroup_event(event))
3117                        perf_cgroup_mark_enabled(event, ctx);
3118
3119                if (group_can_go_on(event, cpuctx, 1))
3120                        group_sched_in(event, cpuctx, ctx);
3121
3122                /*
3123                 * If this pinned group hasn't been scheduled,
3124                 * put it in error state.
3125                 */
3126                if (event->state == PERF_EVENT_STATE_INACTIVE) {
3127                        update_group_times(event);
3128                        event->state = PERF_EVENT_STATE_ERROR;
3129                }
3130        }
3131}
3132
3133static void
3134ctx_flexible_sched_in(struct perf_event_context *ctx,
3135                      struct perf_cpu_context *cpuctx)
3136{
3137        struct perf_event *event;
3138        int can_add_hw = 1;
3139
3140        list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3141                /* Ignore events in OFF or ERROR state */
3142                if (event->state <= PERF_EVENT_STATE_OFF)
3143                        continue;
3144                /*
3145                 * Listen to the 'cpu' scheduling filter constraint
3146                 * of events:
3147                 */
3148                if (!event_filter_match(event))
3149                        continue;
3150
3151                /* may need to reset tstamp_enabled */
3152                if (is_cgroup_event(event))
3153                        perf_cgroup_mark_enabled(event, ctx);
3154
3155                if (group_can_go_on(event, cpuctx, can_add_hw)) {
3156                        if (group_sched_in(event, cpuctx, ctx))
3157                                can_add_hw = 0;
3158                }
3159        }
3160}
3161
3162static void
3163ctx_sched_in(struct perf_event_context *ctx,
3164             struct perf_cpu_context *cpuctx,
3165             enum event_type_t event_type,
3166             struct task_struct *task)
3167{
3168        int is_active = ctx->is_active;
3169        u64 now;
3170
3171        lockdep_assert_held(&ctx->lock);
3172
3173        if (likely(!ctx->nr_events))
3174                return;
3175
3176        ctx->is_active |= (event_type | EVENT_TIME);
3177        if (ctx->task) {
3178                if (!is_active)
3179                        cpuctx->task_ctx = ctx;
3180                else
3181                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3182        }
3183
3184        is_active ^= ctx->is_active; /* changed bits */
3185
3186        if (is_active & EVENT_TIME) {
3187                /* start ctx time */
3188                now = perf_clock();
3189                ctx->timestamp = now;
3190                perf_cgroup_set_timestamp(task, ctx);
3191        }
3192
3193        /*
3194         * First go through the list and put on any pinned groups
3195         * in order to give them the best chance of going on.
3196         */
3197        if (is_active & EVENT_PINNED)
3198                ctx_pinned_sched_in(ctx, cpuctx);
3199
3200        /* Then walk through the lower prio flexible groups */
3201        if (is_active & EVENT_FLEXIBLE)
3202                ctx_flexible_sched_in(ctx, cpuctx);
3203}
3204
3205static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3206                             enum event_type_t event_type,
3207                             struct task_struct *task)
3208{
3209        struct perf_event_context *ctx = &cpuctx->ctx;
3210
3211        ctx_sched_in(ctx, cpuctx, event_type, task);
3212}
3213
3214static void perf_event_context_sched_in(struct perf_event_context *ctx,
3215                                        struct task_struct *task)
3216{
3217        struct perf_cpu_context *cpuctx;
3218
3219        cpuctx = __get_cpu_context(ctx);
3220        if (cpuctx->task_ctx == ctx)
3221                return;
3222
3223        perf_ctx_lock(cpuctx, ctx);
3224        /*
3225         * We must check ctx->nr_events while holding ctx->lock, such
3226         * that we serialize against perf_install_in_context().
3227         */
3228        if (!ctx->nr_events)
3229                goto unlock;
3230
3231        perf_pmu_disable(ctx->pmu);
3232        /*
3233         * We want to keep the following priority order:
3234         * cpu pinned (that don't need to move), task pinned,
3235         * cpu flexible, task flexible.
3236         *
3237         * However, if task's ctx is not carrying any pinned
3238         * events, no need to flip the cpuctx's events around.
3239         */
3240        if (!list_empty(&ctx->pinned_groups))
3241                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3242        perf_event_sched_in(cpuctx, ctx, task);
3243        perf_pmu_enable(ctx->pmu);
3244
3245unlock:
3246        perf_ctx_unlock(cpuctx, ctx);
3247}
3248
3249/*
3250 * Called from scheduler to add the events of the current task
3251 * with interrupts disabled.
3252 *
3253 * We restore the event value and then enable it.
3254 *
3255 * This does not protect us against NMI, but enable()
3256 * sets the enabled bit in the control field of event _before_
3257 * accessing the event control register. If a NMI hits, then it will
3258 * keep the event running.
3259 */
3260void __perf_event_task_sched_in(struct task_struct *prev,
3261                                struct task_struct *task)
3262{
3263        struct perf_event_context *ctx;
3264        int ctxn;
3265
3266        /*
3267         * If cgroup events exist on this CPU, then we need to check if we have
3268         * to switch in PMU state; cgroup event are system-wide mode only.
3269         *
3270         * Since cgroup events are CPU events, we must schedule these in before
3271         * we schedule in the task events.
3272         */
3273        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3274                perf_cgroup_sched_in(prev, task);
3275
3276        for_each_task_context_nr(ctxn) {
3277                ctx = task->perf_event_ctxp[ctxn];
3278                if (likely(!ctx))
3279                        continue;
3280
3281                perf_event_context_sched_in(ctx, task);
3282        }
3283
3284        if (atomic_read(&nr_switch_events))
3285                perf_event_switch(task, prev, true);
3286
3287        if (__this_cpu_read(perf_sched_cb_usages))
3288                perf_pmu_sched_task(prev, task, true);
3289}
3290
3291static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3292{
3293        u64 frequency = event->attr.sample_freq;
3294        u64 sec = NSEC_PER_SEC;
3295        u64 divisor, dividend;
3296
3297        int count_fls, nsec_fls, frequency_fls, sec_fls;
3298
3299        count_fls = fls64(count);
3300        nsec_fls = fls64(nsec);
3301        frequency_fls = fls64(frequency);
3302        sec_fls = 30;
3303
3304        /*
3305         * We got @count in @nsec, with a target of sample_freq HZ
3306         * the target period becomes:
3307         *
3308         *             @count * 10^9
3309         * period = -------------------
3310         *          @nsec * sample_freq
3311         *
3312         */
3313
3314        /*
3315         * Reduce accuracy by one bit such that @a and @b converge
3316         * to a similar magnitude.
3317         */
3318#define REDUCE_FLS(a, b)                \
3319do {                                    \
3320        if (a##_fls > b##_fls) {        \
3321                a >>= 1;                \
3322                a##_fls--;              \
3323        } else {                        \
3324                b >>= 1;                \
3325                b##_fls--;              \
3326        }                               \
3327} while (0)
3328
3329        /*
3330         * Reduce accuracy until either term fits in a u64, then proceed with
3331         * the other, so that finally we can do a u64/u64 division.
3332         */
3333        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3334                REDUCE_FLS(nsec, frequency);
3335                REDUCE_FLS(sec, count);
3336        }
3337
3338        if (count_fls + sec_fls > 64) {
3339                divisor = nsec * frequency;
3340
3341                while (count_fls + sec_fls > 64) {
3342                        REDUCE_FLS(count, sec);
3343                        divisor >>= 1;
3344                }
3345
3346                dividend = count * sec;
3347        } else {
3348                dividend = count * sec;
3349
3350                while (nsec_fls + frequency_fls > 64) {
3351                        REDUCE_FLS(nsec, frequency);
3352                        dividend >>= 1;
3353                }
3354
3355                divisor = nsec * frequency;
3356        }
3357
3358        if (!divisor)
3359                return dividend;
3360
3361        return div64_u64(dividend, divisor);
3362}
3363
3364static DEFINE_PER_CPU(int, perf_throttled_count);
3365static DEFINE_PER_CPU(u64, perf_throttled_seq);
3366
3367static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3368{
3369        struct hw_perf_event *hwc = &event->hw;
3370        s64 period, sample_period;
3371        s64 delta;
3372
3373        period = perf_calculate_period(event, nsec, count);
3374
3375        delta = (s64)(period - hwc->sample_period);
3376        delta = (delta + 7) / 8; /* low pass filter */
3377
3378        sample_period = hwc->sample_period + delta;
3379
3380        if (!sample_period)
3381                sample_period = 1;
3382
3383        hwc->sample_period = sample_period;
3384
3385        if (local64_read(&hwc->period_left) > 8*sample_period) {
3386                if (disable)
3387                        event->pmu->stop(event, PERF_EF_UPDATE);
3388
3389                local64_set(&hwc->period_left, 0);
3390
3391                if (disable)
3392                        event->pmu->start(event, PERF_EF_RELOAD);
3393        }
3394}
3395
3396/*
3397 * combine freq adjustment with unthrottling to avoid two passes over the
3398 * events. At the same time, make sure, having freq events does not change
3399 * the rate of unthrottling as that would introduce bias.
3400 */
3401static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3402                                           int needs_unthr)
3403{
3404        struct perf_event *event;
3405        struct hw_perf_event *hwc;
3406        u64 now, period = TICK_NSEC;
3407        s64 delta;
3408
3409        /*
3410         * only need to iterate over all events iff:
3411         * - context have events in frequency mode (needs freq adjust)
3412         * - there are events to unthrottle on this cpu
3413         */
3414        if (!(ctx->nr_freq || needs_unthr))
3415                return;
3416
3417        raw_spin_lock(&ctx->lock);
3418        perf_pmu_disable(ctx->pmu);
3419
3420        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3421                if (event->state != PERF_EVENT_STATE_ACTIVE)
3422                        continue;
3423
3424                if (!event_filter_match(event))
3425                        continue;
3426
3427                perf_pmu_disable(event->pmu);
3428
3429                hwc = &event->hw;
3430
3431                if (hwc->interrupts == MAX_INTERRUPTS) {
3432                        hwc->interrupts = 0;
3433                        perf_log_throttle(event, 1);
3434                        event->pmu->start(event, 0);
3435                }
3436
3437                if (!event->attr.freq || !event->attr.sample_freq)
3438                        goto next;
3439
3440                /*
3441                 * stop the event and update event->count
3442                 */
3443                event->pmu->stop(event, PERF_EF_UPDATE);
3444
3445                now = local64_read(&event->count);
3446                delta = now - hwc->freq_count_stamp;
3447                hwc->freq_count_stamp = now;
3448
3449                /*
3450                 * restart the event
3451                 * reload only if value has changed
3452                 * we have stopped the event so tell that
3453                 * to perf_adjust_period() to avoid stopping it
3454                 * twice.
3455                 */
3456                if (delta > 0)
3457                        perf_adjust_period(event, period, delta, false);
3458
3459                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3460        next:
3461                perf_pmu_enable(event->pmu);
3462        }
3463
3464        perf_pmu_enable(ctx->pmu);
3465        raw_spin_unlock(&ctx->lock);
3466}
3467
3468/*
3469 * Round-robin a context's events:
3470 */
3471static void rotate_ctx(struct perf_event_context *ctx)
3472{
3473        /*
3474         * Rotate the first entry last of non-pinned groups. Rotation might be
3475         * disabled by the inheritance code.
3476         */
3477        if (!ctx->rotate_disable)
3478                list_rotate_left(&ctx->flexible_groups);
3479}
3480
3481static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3482{
3483        struct perf_event_context *ctx = NULL;
3484        int rotate = 0;
3485
3486        if (cpuctx->ctx.nr_events) {
3487                if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3488                        rotate = 1;
3489        }
3490
3491        ctx = cpuctx->task_ctx;
3492        if (ctx && ctx->nr_events) {
3493                if (ctx->nr_events != ctx->nr_active)
3494                        rotate = 1;
3495        }
3496
3497        if (!rotate)
3498                goto done;
3499
3500        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3501        perf_pmu_disable(cpuctx->ctx.pmu);
3502
3503        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3504        if (ctx)
3505                ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3506
3507        rotate_ctx(&cpuctx->ctx);
3508        if (ctx)
3509                rotate_ctx(ctx);
3510
3511        perf_event_sched_in(cpuctx, ctx, current);
3512
3513        perf_pmu_enable(cpuctx->ctx.pmu);
3514        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3515done:
3516
3517        return rotate;
3518}
3519
3520void perf_event_task_tick(void)
3521{
3522        struct list_head *head = this_cpu_ptr(&active_ctx_list);
3523        struct perf_event_context *ctx, *tmp;
3524        int throttled;
3525
3526        WARN_ON(!irqs_disabled());
3527
3528        __this_cpu_inc(perf_throttled_seq);
3529        throttled = __this_cpu_xchg(perf_throttled_count, 0);
3530        tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3531
3532        list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3533                perf_adjust_freq_unthr_context(ctx, throttled);
3534}
3535
3536static int event_enable_on_exec(struct perf_event *event,
3537                                struct perf_event_context *ctx)
3538{
3539        if (!event->attr.enable_on_exec)
3540                return 0;
3541
3542        event->attr.enable_on_exec = 0;
3543        if (event->state >= PERF_EVENT_STATE_INACTIVE)
3544                return 0;
3545
3546        __perf_event_mark_enabled(event);
3547
3548        return 1;
3549}
3550
3551/*
3552 * Enable all of a task's events that have been marked enable-on-exec.
3553 * This expects task == current.
3554 */
3555static void perf_event_enable_on_exec(int ctxn)
3556{
3557        struct perf_event_context *ctx, *clone_ctx = NULL;
3558        enum event_type_t event_type = 0;
3559        struct perf_cpu_context *cpuctx;
3560        struct perf_event *event;
3561        unsigned long flags;
3562        int enabled = 0;
3563
3564        local_irq_save(flags);
3565        ctx = current->perf_event_ctxp[ctxn];
3566        if (!ctx || !ctx->nr_events)
3567                goto out;
3568
3569        cpuctx = __get_cpu_context(ctx);
3570        perf_ctx_lock(cpuctx, ctx);
3571        ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3572        list_for_each_entry(event, &ctx->event_list, event_entry) {
3573                enabled |= event_enable_on_exec(event, ctx);
3574                event_type |= get_event_type(event);
3575        }
3576
3577        /*
3578         * Unclone and reschedule this context if we enabled any event.
3579         */
3580        if (enabled) {
3581                clone_ctx = unclone_ctx(ctx);
3582                ctx_resched(cpuctx, ctx, event_type);
3583        } else {
3584                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3585        }
3586        perf_ctx_unlock(cpuctx, ctx);
3587
3588out:
3589        local_irq_restore(flags);
3590
3591        if (clone_ctx)
3592                put_ctx(clone_ctx);
3593}
3594
3595struct perf_read_data {
3596        struct perf_event *event;
3597        bool group;
3598        int ret;
3599};
3600
3601static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3602{
3603        u16 local_pkg, event_pkg;
3604
3605        if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3606                int local_cpu = smp_processor_id();
3607
3608                event_pkg = topology_physical_package_id(event_cpu);
3609                local_pkg = topology_physical_package_id(local_cpu);
3610
3611                if (event_pkg == local_pkg)
3612                        return local_cpu;
3613        }
3614
3615        return event_cpu;
3616}
3617
3618/*
3619 * Cross CPU call to read the hardware event
3620 */
3621static void __perf_event_read(void *info)
3622{
3623        struct perf_read_data *data = info;
3624        struct perf_event *sub, *event = data->event;
3625        struct perf_event_context *ctx = event->ctx;
3626        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3627        struct pmu *pmu = event->pmu;
3628
3629        /*
3630         * If this is a task context, we need to check whether it is
3631         * the current task context of this cpu.  If not it has been
3632         * scheduled out before the smp call arrived.  In that case
3633         * event->count would have been updated to a recent sample
3634         * when the event was scheduled out.
3635         */
3636        if (ctx->task && cpuctx->task_ctx != ctx)
3637                return;
3638
3639        raw_spin_lock(&ctx->lock);
3640        if (ctx->is_active) {
3641                update_context_time(ctx);
3642                update_cgrp_time_from_event(event);
3643        }
3644
3645        update_event_times(event);
3646        if (event->state != PERF_EVENT_STATE_ACTIVE)
3647                goto unlock;
3648
3649        if (!data->group) {
3650                pmu->read(event);
3651                data->ret = 0;
3652                goto unlock;
3653        }
3654
3655        pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3656
3657        pmu->read(event);
3658
3659        list_for_each_entry(sub, &event->sibling_list, group_entry) {
3660                update_event_times(sub);
3661                if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3662                        /*
3663                         * Use sibling's PMU rather than @event's since
3664                         * sibling could be on different (eg: software) PMU.
3665                         */
3666                        sub->pmu->read(sub);
3667                }
3668        }
3669
3670        data->ret = pmu->commit_txn(pmu);
3671
3672unlock:
3673        raw_spin_unlock(&ctx->lock);
3674}
3675
3676static inline u64 perf_event_count(struct perf_event *event)
3677{
3678        return local64_read(&event->count) + atomic64_read(&event->child_count);
3679}
3680
3681/*
3682 * NMI-safe method to read a local event, that is an event that
3683 * is:
3684 *   - either for the current task, or for this CPU
3685 *   - does not have inherit set, for inherited task events
3686 *     will not be local and we cannot read them atomically
3687 *   - must not have a pmu::count method
3688 */
3689int perf_event_read_local(struct perf_event *event, u64 *value)
3690{
3691        unsigned long flags;
3692        int ret = 0;
3693
3694        /*
3695         * Disabling interrupts avoids all counter scheduling (context
3696         * switches, timer based rotation and IPIs).
3697         */
3698        local_irq_save(flags);
3699
3700        /*
3701         * It must not be an event with inherit set, we cannot read
3702         * all child counters from atomic context.
3703         */
3704        if (event->attr.inherit) {
3705                ret = -EOPNOTSUPP;
3706                goto out;
3707        }
3708
3709        /* If this is a per-task event, it must be for current */
3710        if ((event->attach_state & PERF_ATTACH_TASK) &&
3711            event->hw.target != current) {
3712                ret = -EINVAL;
3713                goto out;
3714        }
3715
3716        /* If this is a per-CPU event, it must be for this CPU */
3717        if (!(event->attach_state & PERF_ATTACH_TASK) &&
3718            event->cpu != smp_processor_id()) {
3719                ret = -EINVAL;
3720                goto out;
3721        }
3722
3723        /*
3724         * If the event is currently on this CPU, its either a per-task event,
3725         * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3726         * oncpu == -1).
3727         */
3728        if (event->oncpu == smp_processor_id())
3729                event->pmu->read(event);
3730
3731        *value = local64_read(&event->count);
3732out:
3733        local_irq_restore(flags);
3734
3735        return ret;
3736}
3737
3738static int perf_event_read(struct perf_event *event, bool group)
3739{
3740        int event_cpu, ret = 0;
3741
3742        /*
3743         * If event is enabled and currently active on a CPU, update the
3744         * value in the event structure:
3745         */
3746        if (event->state == PERF_EVENT_STATE_ACTIVE) {
3747                struct perf_read_data data = {
3748                        .event = event,
3749                        .group = group,
3750                        .ret = 0,
3751                };
3752
3753                event_cpu = READ_ONCE(event->oncpu);
3754                if ((unsigned)event_cpu >= nr_cpu_ids)
3755                        return 0;
3756
3757                preempt_disable();
3758                event_cpu = __perf_event_read_cpu(event, event_cpu);
3759
3760                /*
3761                 * Purposely ignore the smp_call_function_single() return
3762                 * value.
3763                 *
3764                 * If event_cpu isn't a valid CPU it means the event got
3765                 * scheduled out and that will have updated the event count.
3766                 *
3767                 * Therefore, either way, we'll have an up-to-date event count
3768                 * after this.
3769                 */
3770                (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3771                preempt_enable();
3772                ret = data.ret;
3773        } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3774                struct perf_event_context *ctx = event->ctx;
3775                unsigned long flags;
3776
3777                raw_spin_lock_irqsave(&ctx->lock, flags);
3778                /*
3779                 * may read while context is not active
3780                 * (e.g., thread is blocked), in that case
3781                 * we cannot update context time
3782                 */
3783                if (ctx->is_active) {
3784                        update_context_time(ctx);
3785                        update_cgrp_time_from_event(event);
3786                }
3787                if (group)
3788                        update_group_times(event);
3789                else
3790                        update_event_times(event);
3791                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3792        }
3793
3794        return ret;
3795}
3796
3797/*
3798 * Initialize the perf_event context in a task_struct:
3799 */
3800static void __perf_event_init_context(struct perf_event_context *ctx)
3801{
3802        raw_spin_lock_init(&ctx->lock);
3803        mutex_init(&ctx->mutex);
3804        INIT_LIST_HEAD(&ctx->active_ctx_list);
3805        INIT_LIST_HEAD(&ctx->pinned_groups);
3806        INIT_LIST_HEAD(&ctx->flexible_groups);
3807        INIT_LIST_HEAD(&ctx->event_list);
3808        atomic_set(&ctx->refcount, 1);
3809}
3810
3811static struct perf_event_context *
3812alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3813{
3814        struct perf_event_context *ctx;
3815
3816        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3817        if (!ctx)
3818                return NULL;
3819
3820        __perf_event_init_context(ctx);
3821        if (task) {
3822                ctx->task = task;
3823                get_task_struct(task);
3824        }
3825        ctx->pmu = pmu;
3826
3827        return ctx;
3828}
3829
3830static struct task_struct *
3831find_lively_task_by_vpid(pid_t vpid)
3832{
3833        struct task_struct *task;
3834
3835        rcu_read_lock();
3836        if (!vpid)
3837                task = current;
3838        else
3839                task = find_task_by_vpid(vpid);
3840        if (task)
3841                get_task_struct(task);
3842        rcu_read_unlock();
3843
3844        if (!task)
3845                return ERR_PTR(-ESRCH);
3846
3847        return task;
3848}
3849
3850/*
3851 * Returns a matching context with refcount and pincount.
3852 */
3853static struct perf_event_context *
3854find_get_context(struct pmu *pmu, struct task_struct *task,
3855                struct perf_event *event)
3856{
3857        struct perf_event_context *ctx, *clone_ctx = NULL;
3858        struct perf_cpu_context *cpuctx;
3859        void *task_ctx_data = NULL;
3860        unsigned long flags;
3861        int ctxn, err;
3862        int cpu = event->cpu;
3863
3864        if (!task) {
3865                /* Must be root to operate on a CPU event: */
3866                if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3867                        return ERR_PTR(-EACCES);
3868
3869                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3870                ctx = &cpuctx->ctx;
3871                get_ctx(ctx);
3872                ++ctx->pin_count;
3873
3874                return ctx;
3875        }
3876
3877        err = -EINVAL;
3878        ctxn = pmu->task_ctx_nr;
3879        if (ctxn < 0)
3880                goto errout;
3881
3882        if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3883                task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3884                if (!task_ctx_data) {
3885                        err = -ENOMEM;
3886                        goto errout;
3887                }
3888        }
3889
3890retry:
3891        ctx = perf_lock_task_context(task, ctxn, &flags);
3892        if (ctx) {
3893                clone_ctx = unclone_ctx(ctx);
3894                ++ctx->pin_count;
3895
3896                if (task_ctx_data && !ctx->task_ctx_data) {
3897                        ctx->task_ctx_data = task_ctx_data;
3898                        task_ctx_data = NULL;
3899                }
3900                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3901
3902                if (clone_ctx)
3903                        put_ctx(clone_ctx);
3904        } else {
3905                ctx = alloc_perf_context(pmu, task);
3906                err = -ENOMEM;
3907                if (!ctx)
3908                        goto errout;
3909
3910                if (task_ctx_data) {
3911                        ctx->task_ctx_data = task_ctx_data;
3912                        task_ctx_data = NULL;
3913                }
3914
3915                err = 0;
3916                mutex_lock(&task->perf_event_mutex);
3917                /*
3918                 * If it has already passed perf_event_exit_task().
3919                 * we must see PF_EXITING, it takes this mutex too.
3920                 */
3921                if (task->flags & PF_EXITING)
3922                        err = -ESRCH;
3923                else if (task->perf_event_ctxp[ctxn])
3924                        err = -EAGAIN;
3925                else {
3926                        get_ctx(ctx);
3927                        ++ctx->pin_count;
3928                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3929                }
3930                mutex_unlock(&task->perf_event_mutex);
3931
3932                if (unlikely(err)) {
3933                        put_ctx(ctx);
3934
3935                        if (err == -EAGAIN)
3936                                goto retry;
3937                        goto errout;
3938                }
3939        }
3940
3941        kfree(task_ctx_data);
3942        return ctx;
3943
3944errout:
3945        kfree(task_ctx_data);
3946        return ERR_PTR(err);
3947}
3948
3949static void perf_event_free_filter(struct perf_event *event);
3950static void perf_event_free_bpf_prog(struct perf_event *event);
3951
3952static void free_event_rcu(struct rcu_head *head)
3953{
3954        struct perf_event *event;
3955
3956        event = container_of(head, struct perf_event, rcu_head);
3957        if (event->ns)
3958                put_pid_ns(event->ns);
3959        perf_event_free_filter(event);
3960        kfree(event);
3961}
3962
3963static void ring_buffer_attach(struct perf_event *event,
3964                               struct ring_buffer *rb);
3965
3966static void detach_sb_event(struct perf_event *event)
3967{
3968        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3969
3970        raw_spin_lock(&pel->lock);
3971        list_del_rcu(&event->sb_list);
3972        raw_spin_unlock(&pel->lock);
3973}
3974
3975static bool is_sb_event(struct perf_event *event)
3976{
3977        struct perf_event_attr *attr = &event->attr;
3978
3979        if (event->parent)
3980                return false;
3981
3982        if (event->attach_state & PERF_ATTACH_TASK)
3983                return false;
3984
3985        if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3986            attr->comm || attr->comm_exec ||
3987            attr->task ||
3988            attr->context_switch)
3989                return true;
3990        return false;
3991}
3992
3993static void unaccount_pmu_sb_event(struct perf_event *event)
3994{
3995        if (is_sb_event(event))
3996                detach_sb_event(event);
3997}
3998
3999static void unaccount_event_cpu(struct perf_event *event, int cpu)
4000{
4001        if (event->parent)
4002                return;
4003
4004        if (is_cgroup_event(event))
4005                atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4006}
4007
4008#ifdef CONFIG_NO_HZ_FULL
4009static DEFINE_SPINLOCK(nr_freq_lock);
4010#endif
4011
4012static void unaccount_freq_event_nohz(void)
4013{
4014#ifdef CONFIG_NO_HZ_FULL
4015        spin_lock(&nr_freq_lock);
4016        if (atomic_dec_and_test(&nr_freq_events))
4017                tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4018        spin_unlock(&nr_freq_lock);
4019#endif
4020}
4021
4022static void unaccount_freq_event(void)
4023{
4024        if (tick_nohz_full_enabled())
4025                unaccount_freq_event_nohz();
4026        else
4027                atomic_dec(&nr_freq_events);
4028}
4029
4030static void unaccount_event(struct perf_event *event)
4031{
4032        bool dec = false;
4033
4034        if (event->parent)
4035                return;
4036
4037        if (event->attach_state & PERF_ATTACH_TASK)
4038                dec = true;
4039        if (event->attr.mmap || event->attr.mmap_data)
4040                atomic_dec(&nr_mmap_events);
4041        if (event->attr.comm)
4042                atomic_dec(&nr_comm_events);
4043        if (event->attr.namespaces)
4044                atomic_dec(&nr_namespaces_events);
4045        if (event->attr.task)
4046                atomic_dec(&nr_task_events);
4047        if (event->attr.freq)
4048                unaccount_freq_event();
4049        if (event->attr.context_switch) {
4050                dec = true;
4051                atomic_dec(&nr_switch_events);
4052        }
4053        if (is_cgroup_event(event))
4054                dec = true;
4055        if (has_branch_stack(event))
4056                dec = true;
4057
4058        if (dec) {
4059                if (!atomic_add_unless(&perf_sched_count, -1, 1))
4060                        schedule_delayed_work(&perf_sched_work, HZ);
4061        }
4062
4063        unaccount_event_cpu(event, event->cpu);
4064
4065        unaccount_pmu_sb_event(event);
4066}
4067
4068static void perf_sched_delayed(struct work_struct *work)
4069{
4070        mutex_lock(&perf_sched_mutex);
4071        if (atomic_dec_and_test(&perf_sched_count))
4072                static_branch_disable(&perf_sched_events);
4073        mutex_unlock(&perf_sched_mutex);
4074}
4075
4076/*
4077 * The following implement mutual exclusion of events on "exclusive" pmus
4078 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4079 * at a time, so we disallow creating events that might conflict, namely:
4080 *
4081 *  1) cpu-wide events in the presence of per-task events,
4082 *  2) per-task events in the presence of cpu-wide events,
4083 *  3) two matching events on the same context.
4084 *
4085 * The former two cases are handled in the allocation path (perf_event_alloc(),
4086 * _free_event()), the latter -- before the first perf_install_in_context().
4087 */
4088static int exclusive_event_init(struct perf_event *event)
4089{
4090        struct pmu *pmu = event->pmu;
4091
4092        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4093                return 0;
4094
4095        /*
4096         * Prevent co-existence of per-task and cpu-wide events on the
4097         * same exclusive pmu.
4098         *
4099         * Negative pmu::exclusive_cnt means there are cpu-wide
4100         * events on this "exclusive" pmu, positive means there are
4101         * per-task events.
4102         *
4103         * Since this is called in perf_event_alloc() path, event::ctx
4104         * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4105         * to mean "per-task event", because unlike other attach states it
4106         * never gets cleared.
4107         */
4108        if (event->attach_state & PERF_ATTACH_TASK) {
4109                if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4110                        return -EBUSY;
4111        } else {
4112                if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4113                        return -EBUSY;
4114        }
4115
4116        return 0;
4117}
4118
4119static void exclusive_event_destroy(struct perf_event *event)
4120{
4121        struct pmu *pmu = event->pmu;
4122
4123        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4124                return;
4125
4126        /* see comment in exclusive_event_init() */
4127        if (event->attach_state & PERF_ATTACH_TASK)
4128                atomic_dec(&pmu->exclusive_cnt);
4129        else
4130                atomic_inc(&pmu->exclusive_cnt);
4131}
4132
4133static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4134{
4135        if ((e1->pmu == e2->pmu) &&
4136            (e1->cpu == e2->cpu ||
4137             e1->cpu == -1 ||
4138             e2->cpu == -1))
4139                return true;
4140        return false;
4141}
4142
4143/* Called under the same ctx::mutex as perf_install_in_context() */
4144static bool exclusive_event_installable(struct perf_event *event,
4145                                        struct perf_event_context *ctx)
4146{
4147        struct perf_event *iter_event;
4148        struct pmu *pmu = event->pmu;
4149
4150        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4151                return true;
4152
4153        list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4154                if (exclusive_event_match(iter_event, event))
4155                        return false;
4156        }
4157
4158        return true;
4159}
4160
4161static void perf_addr_filters_splice(struct perf_event *event,
4162                                       struct list_head *head);
4163
4164static void _free_event(struct perf_event *event)
4165{
4166        irq_work_sync(&event->pending);
4167
4168        unaccount_event(event);
4169
4170        if (event->rb) {
4171                /*
4172                 * Can happen when we close an event with re-directed output.
4173                 *
4174                 * Since we have a 0 refcount, perf_mmap_close() will skip
4175                 * over us; possibly making our ring_buffer_put() the last.
4176                 */
4177                mutex_lock(&event->mmap_mutex);
4178                ring_buffer_attach(event, NULL);
4179                mutex_unlock(&event->mmap_mutex);
4180        }
4181
4182        if (is_cgroup_event(event))
4183                perf_detach_cgroup(event);
4184
4185        if (!event->parent) {
4186                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4187                        put_callchain_buffers();
4188        }
4189
4190        perf_event_free_bpf_prog(event);
4191        perf_addr_filters_splice(event, NULL);
4192        kfree(event->addr_filters_offs);
4193
4194        if (event->destroy)
4195                event->destroy(event);
4196
4197        if (event->ctx)
4198                put_ctx(event->ctx);
4199
4200        exclusive_event_destroy(event);
4201        module_put(event->pmu->module);
4202
4203        call_rcu(&event->rcu_head, free_event_rcu);
4204}
4205
4206/*
4207 * Used to free events which have a known refcount of 1, such as in error paths
4208 * where the event isn't exposed yet and inherited events.
4209 */
4210static void free_event(struct perf_event *event)
4211{
4212        if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4213                                "unexpected event refcount: %ld; ptr=%p\n",
4214                                atomic_long_read(&event->refcount), event)) {
4215                /* leak to avoid use-after-free */
4216                return;
4217        }
4218
4219        _free_event(event);
4220}
4221
4222/*
4223 * Remove user event from the owner task.
4224 */
4225static void perf_remove_from_owner(struct perf_event *event)
4226{
4227        struct task_struct *owner;
4228
4229        rcu_read_lock();
4230        /*
4231         * Matches the smp_store_release() in perf_event_exit_task(). If we
4232         * observe !owner it means the list deletion is complete and we can
4233         * indeed free this event, otherwise we need to serialize on
4234         * owner->perf_event_mutex.
4235         */
4236        owner = lockless_dereference(event->owner);
4237        if (owner) {
4238                /*
4239                 * Since delayed_put_task_struct() also drops the last
4240                 * task reference we can safely take a new reference
4241                 * while holding the rcu_read_lock().
4242                 */
4243                get_task_struct(owner);
4244        }
4245        rcu_read_unlock();
4246
4247        if (owner) {
4248                /*
4249                 * If we're here through perf_event_exit_task() we're already
4250                 * holding ctx->mutex which would be an inversion wrt. the
4251                 * normal lock order.
4252                 *
4253                 * However we can safely take this lock because its the child
4254                 * ctx->mutex.
4255                 */
4256                mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4257
4258                /*
4259                 * We have to re-check the event->owner field, if it is cleared
4260                 * we raced with perf_event_exit_task(), acquiring the mutex
4261                 * ensured they're done, and we can proceed with freeing the
4262                 * event.
4263                 */
4264                if (event->owner) {
4265                        list_del_init(&event->owner_entry);
4266                        smp_store_release(&event->owner, NULL);
4267                }
4268                mutex_unlock(&owner->perf_event_mutex);
4269                put_task_struct(owner);
4270        }
4271}
4272
4273static void put_event(struct perf_event *event)
4274{
4275        if (!atomic_long_dec_and_test(&event->refcount))
4276                return;
4277
4278        _free_event(event);
4279}
4280
4281/*
4282 * Kill an event dead; while event:refcount will preserve the event
4283 * object, it will not preserve its functionality. Once the last 'user'
4284 * gives up the object, we'll destroy the thing.
4285 */
4286int perf_event_release_kernel(struct perf_event *event)
4287{
4288        struct perf_event_context *ctx = event->ctx;
4289        struct perf_event *child, *tmp;
4290
4291        /*
4292         * If we got here through err_file: fput(event_file); we will not have
4293         * attached to a context yet.
4294         */
4295        if (!ctx) {
4296                WARN_ON_ONCE(event->attach_state &
4297                                (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4298                goto no_ctx;
4299        }
4300
4301        if (!is_kernel_event(event))
4302                perf_remove_from_owner(event);
4303
4304        ctx = perf_event_ctx_lock(event);
4305        WARN_ON_ONCE(ctx->parent_ctx);
4306        perf_remove_from_context(event, DETACH_GROUP);
4307
4308        raw_spin_lock_irq(&ctx->lock);
4309        /*
4310         * Mark this event as STATE_DEAD, there is no external reference to it
4311         * anymore.
4312         *
4313         * Anybody acquiring event->child_mutex after the below loop _must_
4314         * also see this, most importantly inherit_event() which will avoid
4315         * placing more children on the list.
4316         *
4317         * Thus this guarantees that we will in fact observe and kill _ALL_
4318         * child events.
4319         */
4320        event->state = PERF_EVENT_STATE_DEAD;
4321        raw_spin_unlock_irq(&ctx->lock);
4322
4323        perf_event_ctx_unlock(event, ctx);
4324
4325again:
4326        mutex_lock(&event->child_mutex);
4327        list_for_each_entry(child, &event->child_list, child_list) {
4328
4329                /*
4330                 * Cannot change, child events are not migrated, see the
4331                 * comment with perf_event_ctx_lock_nested().
4332                 */
4333                ctx = lockless_dereference(child->ctx);
4334                /*
4335                 * Since child_mutex nests inside ctx::mutex, we must jump
4336                 * through hoops. We start by grabbing a reference on the ctx.
4337                 *
4338                 * Since the event cannot get freed while we hold the
4339                 * child_mutex, the context must also exist and have a !0
4340                 * reference count.
4341                 */
4342                get_ctx(ctx);
4343
4344                /*
4345                 * Now that we have a ctx ref, we can drop child_mutex, and
4346                 * acquire ctx::mutex without fear of it going away. Then we
4347                 * can re-acquire child_mutex.
4348                 */
4349                mutex_unlock(&event->child_mutex);
4350                mutex_lock(&ctx->mutex);
4351                mutex_lock(&event->child_mutex);
4352
4353                /*
4354                 * Now that we hold ctx::mutex and child_mutex, revalidate our
4355                 * state, if child is still the first entry, it didn't get freed
4356                 * and we can continue doing so.
4357                 */
4358                tmp = list_first_entry_or_null(&event->child_list,
4359                                               struct perf_event, child_list);
4360                if (tmp == child) {
4361                        perf_remove_from_context(child, DETACH_GROUP);
4362                        list_del(&child->child_list);
4363                        free_event(child);
4364                        /*
4365                         * This matches the refcount bump in inherit_event();
4366                         * this can't be the last reference.
4367                         */
4368                        put_event(event);
4369                }
4370
4371                mutex_unlock(&event->child_mutex);
4372                mutex_unlock(&ctx->mutex);
4373                put_ctx(ctx);
4374                goto again;
4375        }
4376        mutex_unlock(&event->child_mutex);
4377
4378no_ctx:
4379        put_event(event); /* Must be the 'last' reference */
4380        return 0;
4381}
4382EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4383
4384/*
4385 * Called when the last reference to the file is gone.
4386 */
4387static int perf_release(struct inode *inode, struct file *file)
4388{
4389        perf_event_release_kernel(file->private_data);
4390        return 0;
4391}
4392
4393u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4394{
4395        struct perf_event *child;
4396        u64 total = 0;
4397
4398        *enabled = 0;
4399        *running = 0;
4400
4401        mutex_lock(&event->child_mutex);
4402
4403        (void)perf_event_read(event, false);
4404        total += perf_event_count(event);
4405
4406        *enabled += event->total_time_enabled +
4407                        atomic64_read(&event->child_total_time_enabled);
4408        *running += event->total_time_running +
4409                        atomic64_read(&event->child_total_time_running);
4410
4411        list_for_each_entry(child, &event->child_list, child_list) {
4412                (void)perf_event_read(child, false);
4413                total += perf_event_count(child);
4414                *enabled += child->total_time_enabled;
4415                *running += child->total_time_running;
4416        }
4417        mutex_unlock(&event->child_mutex);
4418
4419        return total;
4420}
4421EXPORT_SYMBOL_GPL(perf_event_read_value);
4422
4423static int __perf_read_group_add(struct perf_event *leader,
4424                                        u64 read_format, u64 *values)
4425{
4426        struct perf_event_context *ctx = leader->ctx;
4427        struct perf_event *sub;
4428        unsigned long flags;
4429        int n = 1; /* skip @nr */
4430        int ret;
4431
4432        ret = perf_event_read(leader, true);
4433        if (ret)
4434                return ret;
4435
4436        /*
4437         * Since we co-schedule groups, {enabled,running} times of siblings
4438         * will be identical to those of the leader, so we only publish one
4439         * set.
4440         */
4441        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4442                values[n++] += leader->total_time_enabled +
4443                        atomic64_read(&leader->child_total_time_enabled);
4444        }
4445
4446        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4447                values[n++] += leader->total_time_running +
4448                        atomic64_read(&leader->child_total_time_running);
4449        }
4450
4451        /*
4452         * Write {count,id} tuples for every sibling.
4453         */
4454        values[n++] += perf_event_count(leader);
4455        if (read_format & PERF_FORMAT_ID)
4456                values[n++] = primary_event_id(leader);
4457
4458        raw_spin_lock_irqsave(&ctx->lock, flags);
4459
4460        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4461                values[n++] += perf_event_count(sub);
4462                if (read_format & PERF_FORMAT_ID)
4463                        values[n++] = primary_event_id(sub);
4464        }
4465
4466        raw_spin_unlock_irqrestore(&ctx->lock, flags);
4467        return 0;
4468}
4469
4470static int perf_read_group(struct perf_event *event,
4471                                   u64 read_format, char __user *buf)
4472{
4473        struct perf_event *leader = event->group_leader, *child;
4474        struct perf_event_context *ctx = leader->ctx;
4475        int ret;
4476        u64 *values;
4477
4478        lockdep_assert_held(&ctx->mutex);
4479
4480        values = kzalloc(event->read_size, GFP_KERNEL);
4481        if (!values)
4482                return -ENOMEM;
4483
4484        values[0] = 1 + leader->nr_siblings;
4485
4486        /*
4487         * By locking the child_mutex of the leader we effectively
4488         * lock the child list of all siblings.. XXX explain how.
4489         */
4490        mutex_lock(&leader->child_mutex);
4491
4492        ret = __perf_read_group_add(leader, read_format, values);
4493        if (ret)
4494                goto unlock;
4495
4496        list_for_each_entry(child, &leader->child_list, child_list) {
4497                ret = __perf_read_group_add(child, read_format, values);
4498                if (ret)
4499                        goto unlock;
4500        }
4501
4502        mutex_unlock(&leader->child_mutex);
4503
4504        ret = event->read_size;
4505        if (copy_to_user(buf, values, event->read_size))
4506                ret = -EFAULT;
4507        goto out;
4508
4509unlock:
4510        mutex_unlock(&leader->child_mutex);
4511out:
4512        kfree(values);
4513        return ret;
4514}
4515
4516static int perf_read_one(struct perf_event *event,
4517                                 u64 read_format, char __user *buf)
4518{
4519        u64 enabled, running;
4520        u64 values[4];
4521        int n = 0;
4522
4523        values[n++] = perf_event_read_value(event, &enabled, &running);
4524        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4525                values[n++] = enabled;
4526        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4527                values[n++] = running;
4528        if (read_format & PERF_FORMAT_ID)
4529                values[n++] = primary_event_id(event);
4530
4531        if (copy_to_user(buf, values, n * sizeof(u64)))
4532                return -EFAULT;
4533
4534        return n * sizeof(u64);
4535}
4536
4537static bool is_event_hup(struct perf_event *event)
4538{
4539        bool no_children;
4540
4541        if (event->state > PERF_EVENT_STATE_EXIT)
4542                return false;
4543
4544        mutex_lock(&event->child_mutex);
4545        no_children = list_empty(&event->child_list);
4546        mutex_unlock(&event->child_mutex);
4547        return no_children;
4548}
4549
4550/*
4551 * Read the performance event - simple non blocking version for now
4552 */
4553static ssize_t
4554__perf_read(struct perf_event *event, char __user *buf, size_t count)
4555{
4556        u64 read_format = event->attr.read_format;
4557        int ret;
4558
4559        /*
4560         * Return end-of-file for a read on a event that is in
4561         * error state (i.e. because it was pinned but it couldn't be
4562         * scheduled on to the CPU at some point).
4563         */
4564        if (event->state == PERF_EVENT_STATE_ERROR)
4565                return 0;
4566
4567        if (count < event->read_size)
4568                return -ENOSPC;
4569
4570        WARN_ON_ONCE(event->ctx->parent_ctx);
4571        if (read_format & PERF_FORMAT_GROUP)
4572                ret = perf_read_group(event, read_format, buf);
4573        else
4574                ret = perf_read_one(event, read_format, buf);
4575
4576        return ret;
4577}
4578
4579static ssize_t
4580perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4581{
4582        struct perf_event *event = file->private_data;
4583        struct perf_event_context *ctx;
4584        int ret;
4585
4586        ctx = perf_event_ctx_lock(event);
4587        ret = __perf_read(event, buf, count);
4588        perf_event_ctx_unlock(event, ctx);
4589
4590        return ret;
4591}
4592
4593static unsigned int perf_poll(struct file *file, poll_table *wait)
4594{
4595        struct perf_event *event = file->private_data;
4596        struct ring_buffer *rb;
4597        unsigned int events = POLLHUP;
4598
4599        poll_wait(file, &event->waitq, wait);
4600
4601        if (is_event_hup(event))
4602                return events;
4603
4604        /*
4605         * Pin the event->rb by taking event->mmap_mutex; otherwise
4606         * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4607         */
4608        mutex_lock(&event->mmap_mutex);
4609        rb = event->rb;
4610        if (rb)
4611                events = atomic_xchg(&rb->poll, 0);
4612        mutex_unlock(&event->mmap_mutex);
4613        return events;
4614}
4615
4616static void _perf_event_reset(struct perf_event *event)
4617{
4618        (void)perf_event_read(event, false);
4619        local64_set(&event->count, 0);
4620        perf_event_update_userpage(event);
4621}
4622
4623/*
4624 * Holding the top-level event's child_mutex means that any
4625 * descendant process that has inherited this event will block
4626 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4627 * task existence requirements of perf_event_enable/disable.
4628 */
4629static void perf_event_for_each_child(struct perf_event *event,
4630                                        void (*func)(struct perf_event *))
4631{
4632        struct perf_event *child;
4633
4634        WARN_ON_ONCE(event->ctx->parent_ctx);
4635
4636        mutex_lock(&event->child_mutex);
4637        func(event);
4638        list_for_each_entry(child, &event->child_list, child_list)
4639                func(child);
4640        mutex_unlock(&event->child_mutex);
4641}
4642
4643static void perf_event_for_each(struct perf_event *event,
4644                                  void (*func)(struct perf_event *))
4645{
4646        struct perf_event_context *ctx = event->ctx;
4647        struct perf_event *sibling;
4648
4649        lockdep_assert_held(&ctx->mutex);
4650
4651        event = event->group_leader;
4652
4653        perf_event_for_each_child(event, func);
4654        list_for_each_entry(sibling, &event->sibling_list, group_entry)
4655                perf_event_for_each_child(sibling, func);
4656}
4657
4658static void __perf_event_period(struct perf_event *event,
4659                                struct perf_cpu_context *cpuctx,
4660                                struct perf_event_context *ctx,
4661                                void *info)
4662{
4663        u64 value = *((u64 *)info);
4664        bool active;
4665
4666        if (event->attr.freq) {
4667                event->attr.sample_freq = value;
4668        } else {
4669                event->attr.sample_period = value;
4670                event->hw.sample_period = value;
4671        }
4672
4673        active = (event->state == PERF_EVENT_STATE_ACTIVE);
4674        if (active) {
4675                perf_pmu_disable(ctx->pmu);
4676                /*
4677                 * We could be throttled; unthrottle now to avoid the tick
4678                 * trying to unthrottle while we already re-started the event.
4679                 */
4680                if (event->hw.interrupts == MAX_INTERRUPTS) {
4681                        event->hw.interrupts = 0;
4682                        perf_log_throttle(event, 1);
4683                }
4684                event->pmu->stop(event, PERF_EF_UPDATE);
4685        }
4686
4687        local64_set(&event->hw.period_left, 0);
4688
4689        if (active) {
4690                event->pmu->start(event, PERF_EF_RELOAD);
4691                perf_pmu_enable(ctx->pmu);
4692        }
4693}
4694
4695static int perf_event_period(struct perf_event *event, u64 __user *arg)
4696{
4697        u64 value;
4698
4699        if (!is_sampling_event(event))
4700                return -EINVAL;
4701
4702        if (copy_from_user(&value, arg, sizeof(value)))
4703                return -EFAULT;
4704
4705        if (!value)
4706                return -EINVAL;
4707
4708        if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4709                return -EINVAL;
4710
4711        event_function_call(event, __perf_event_period, &value);
4712
4713        return 0;
4714}
4715
4716static const struct file_operations perf_fops;
4717
4718static inline int perf_fget_light(int fd, struct fd *p)
4719{
4720        struct fd f = fdget(fd);
4721        if (!f.file)
4722                return -EBADF;
4723
4724        if (f.file->f_op != &perf_fops) {
4725                fdput(f);
4726                return -EBADF;
4727        }
4728        *p = f;
4729        return 0;
4730}
4731
4732static int perf_event_set_output(struct perf_event *event,
4733                                 struct perf_event *output_event);
4734static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4735static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4736
4737static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4738{
4739        void (*func)(struct perf_event *);
4740        u32 flags = arg;
4741
4742        switch (cmd) {
4743        case PERF_EVENT_IOC_ENABLE:
4744                func = _perf_event_enable;
4745                break;
4746        case PERF_EVENT_IOC_DISABLE:
4747                func = _perf_event_disable;
4748                break;
4749        case PERF_EVENT_IOC_RESET:
4750                func = _perf_event_reset;
4751                break;
4752
4753        case PERF_EVENT_IOC_REFRESH:
4754                return _perf_event_refresh(event, arg);
4755
4756        case PERF_EVENT_IOC_PERIOD:
4757                return perf_event_period(event, (u64 __user *)arg);
4758
4759        case PERF_EVENT_IOC_ID:
4760        {
4761                u64 id = primary_event_id(event);
4762
4763                if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4764                        return -EFAULT;
4765                return 0;
4766        }
4767
4768        case PERF_EVENT_IOC_SET_OUTPUT:
4769        {
4770                int ret;
4771                if (arg != -1) {
4772                        struct perf_event *output_event;
4773                        struct fd output;
4774                        ret = perf_fget_light(arg, &output);
4775                        if (ret)
4776                                return ret;
4777                        output_event = output.file->private_data;
4778                        ret = perf_event_set_output(event, output_event);
4779                        fdput(output);
4780                } else {
4781                        ret = perf_event_set_output(event, NULL);
4782                }
4783                return ret;
4784        }
4785
4786        case PERF_EVENT_IOC_SET_FILTER:
4787                return perf_event_set_filter(event, (void __user *)arg);
4788
4789        case PERF_EVENT_IOC_SET_BPF:
4790                return perf_event_set_bpf_prog(event, arg);
4791
4792        case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4793                struct ring_buffer *rb;
4794
4795                rcu_read_lock();
4796                rb = rcu_dereference(event->rb);
4797                if (!rb || !rb->nr_pages) {
4798                        rcu_read_unlock();
4799                        return -EINVAL;
4800                }
4801                rb_toggle_paused(rb, !!arg);
4802                rcu_read_unlock();
4803                return 0;
4804        }
4805        default:
4806                return -ENOTTY;
4807        }
4808
4809        if (flags & PERF_IOC_FLAG_GROUP)
4810                perf_event_for_each(event, func);
4811        else
4812                perf_event_for_each_child(event, func);
4813
4814        return 0;
4815}
4816
4817static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4818{
4819        struct perf_event *event = file->private_data;
4820        struct perf_event_context *ctx;
4821        long ret;
4822
4823        ctx = perf_event_ctx_lock(event);
4824        ret = _perf_ioctl(event, cmd, arg);
4825        perf_event_ctx_unlock(event, ctx);
4826
4827        return ret;
4828}
4829
4830#ifdef CONFIG_COMPAT
4831static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4832                                unsigned long arg)
4833{
4834        switch (_IOC_NR(cmd)) {
4835        case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4836        case _IOC_NR(PERF_EVENT_IOC_ID):
4837                /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4838                if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4839                        cmd &= ~IOCSIZE_MASK;
4840                        cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4841                }
4842                break;
4843        }
4844        return perf_ioctl(file, cmd, arg);
4845}
4846#else
4847# define perf_compat_ioctl NULL
4848#endif
4849
4850int perf_event_task_enable(void)
4851{
4852        struct perf_event_context *ctx;
4853        struct perf_event *event;
4854
4855        mutex_lock(&current->perf_event_mutex);
4856        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4857                ctx = perf_event_ctx_lock(event);
4858                perf_event_for_each_child(event, _perf_event_enable);
4859                perf_event_ctx_unlock(event, ctx);
4860        }
4861        mutex_unlock(&current->perf_event_mutex);
4862
4863        return 0;
4864}
4865
4866int perf_event_task_disable(void)
4867{
4868        struct perf_event_context *ctx;
4869        struct perf_event *event;
4870
4871        mutex_lock(&current->perf_event_mutex);
4872        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4873                ctx = perf_event_ctx_lock(event);
4874                perf_event_for_each_child(event, _perf_event_disable);
4875                perf_event_ctx_unlock(event, ctx);
4876        }
4877        mutex_unlock(&current->perf_event_mutex);
4878
4879        return 0;
4880}
4881
4882static int perf_event_index(struct perf_event *event)
4883{
4884        if (event->hw.state & PERF_HES_STOPPED)
4885                return 0;
4886
4887        if (event->state != PERF_EVENT_STATE_ACTIVE)
4888                return 0;
4889
4890        return event->pmu->event_idx(event);
4891}
4892
4893static void calc_timer_values(struct perf_event *event,
4894                                u64 *now,
4895                                u64 *enabled,
4896                                u64 *running)
4897{
4898        u64 ctx_time;
4899
4900        *now = perf_clock();
4901        ctx_time = event->shadow_ctx_time + *now;
4902        *enabled = ctx_time - event->tstamp_enabled;
4903        *running = ctx_time - event->tstamp_running;
4904}
4905
4906static void perf_event_init_userpage(struct perf_event *event)
4907{
4908        struct perf_event_mmap_page *userpg;
4909        struct ring_buffer *rb;
4910
4911        rcu_read_lock();
4912        rb = rcu_dereference(event->rb);
4913        if (!rb)
4914                goto unlock;
4915
4916        userpg = rb->user_page;
4917
4918        /* Allow new userspace to detect that bit 0 is deprecated */
4919        userpg->cap_bit0_is_deprecated = 1;
4920        userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4921        userpg->data_offset = PAGE_SIZE;
4922        userpg->data_size = perf_data_size(rb);
4923
4924unlock:
4925        rcu_read_unlock();
4926}
4927
4928void __weak arch_perf_update_userpage(
4929        struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4930{
4931}
4932
4933/*
4934 * Callers need to ensure there can be no nesting of this function, otherwise
4935 * the seqlock logic goes bad. We can not serialize this because the arch
4936 * code calls this from NMI context.
4937 */
4938void perf_event_update_userpage(struct perf_event *event)
4939{
4940        struct perf_event_mmap_page *userpg;
4941        struct ring_buffer *rb;
4942        u64 enabled, running, now;
4943
4944        rcu_read_lock();
4945        rb = rcu_dereference(event->rb);
4946        if (!rb)
4947                goto unlock;
4948
4949        /*
4950         * compute total_time_enabled, total_time_running
4951         * based on snapshot values taken when the event
4952         * was last scheduled in.
4953         *
4954         * we cannot simply called update_context_time()
4955         * because of locking issue as we can be called in
4956         * NMI context
4957         */
4958        calc_timer_values(event, &now, &enabled, &running);
4959
4960        userpg = rb->user_page;
4961        /*
4962         * Disable preemption so as to not let the corresponding user-space
4963         * spin too long if we get preempted.
4964         */
4965        preempt_disable();
4966        ++userpg->lock;
4967        barrier();
4968        userpg->index = perf_event_index(event);
4969        userpg->offset = perf_event_count(event);
4970        if (userpg->index)
4971                userpg->offset -= local64_read(&event->hw.prev_count);
4972
4973        userpg->time_enabled = enabled +
4974                        atomic64_read(&event->child_total_time_enabled);
4975
4976        userpg->time_running = running +
4977                        atomic64_read(&event->child_total_time_running);
4978
4979        arch_perf_update_userpage(event, userpg, now);
4980
4981        barrier();
4982        ++userpg->lock;
4983        preempt_enable();
4984unlock:
4985        rcu_read_unlock();
4986}
4987
4988static int perf_mmap_fault(struct vm_fault *vmf)
4989{
4990        struct perf_event *event = vmf->vma->vm_file->private_data;
4991        struct ring_buffer *rb;
4992        int ret = VM_FAULT_SIGBUS;
4993
4994        if (vmf->flags & FAULT_FLAG_MKWRITE) {
4995                if (vmf->pgoff == 0)
4996                        ret = 0;
4997                return ret;
4998        }
4999
5000        rcu_read_lock();
5001        rb = rcu_dereference(event->rb);
5002        if (!rb)
5003                goto unlock;
5004
5005        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5006                goto unlock;
5007
5008        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5009        if (!vmf->page)
5010                goto unlock;
5011
5012        get_page(vmf->page);
5013        vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5014        vmf->page->index   = vmf->pgoff;
5015
5016        ret = 0;
5017unlock:
5018        rcu_read_unlock();
5019
5020        return ret;
5021}
5022
5023static void ring_buffer_attach(struct perf_event *event,
5024                               struct ring_buffer *rb)
5025{
5026        struct ring_buffer *old_rb = NULL;
5027        unsigned long flags;
5028
5029        if (event->rb) {
5030                /*
5031                 * Should be impossible, we set this when removing
5032                 * event->rb_entry and wait/clear when adding event->rb_entry.
5033                 */
5034                WARN_ON_ONCE(event->rcu_pending);
5035
5036                old_rb = event->rb;
5037                spin_lock_irqsave(&old_rb->event_lock, flags);
5038                list_del_rcu(&event->rb_entry);
5039                spin_unlock_irqrestore(&old_rb->event_lock, flags);
5040
5041                event->rcu_batches = get_state_synchronize_rcu();
5042                event->rcu_pending = 1;
5043        }
5044
5045        if (rb) {
5046                if (event->rcu_pending) {
5047                        cond_synchronize_rcu(event->rcu_batches);
5048                        event->rcu_pending = 0;
5049                }
5050
5051                spin_lock_irqsave(&rb->event_lock, flags);
5052                list_add_rcu(&event->rb_entry, &rb->event_list);
5053                spin_unlock_irqrestore(&rb->event_lock, flags);
5054        }
5055
5056        /*
5057         * Avoid racing with perf_mmap_close(AUX): stop the event
5058         * before swizzling the event::rb pointer; if it's getting
5059         * unmapped, its aux_mmap_count will be 0 and it won't
5060         * restart. See the comment in __perf_pmu_output_stop().
5061         *
5062         * Data will inevitably be lost when set_output is done in
5063         * mid-air, but then again, whoever does it like this is
5064         * not in for the data anyway.
5065         */
5066        if (has_aux(event))
5067                perf_event_stop(event, 0);
5068
5069        rcu_assign_pointer(event->rb, rb);
5070
5071        if (old_rb) {
5072                ring_buffer_put(old_rb);
5073                /*
5074                 * Since we detached before setting the new rb, so that we
5075                 * could attach the new rb, we could have missed a wakeup.
5076                 * Provide it now.
5077                 */
5078                wake_up_all(&event->waitq);
5079        }
5080}
5081
5082static void ring_buffer_wakeup(struct perf_event *event)
5083{
5084        struct ring_buffer *rb;
5085
5086        rcu_read_lock();
5087        rb = rcu_dereference(event->rb);
5088        if (rb) {
5089                list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5090                        wake_up_all(&event->waitq);
5091        }
5092        rcu_read_unlock();
5093}
5094
5095struct ring_buffer *ring_buffer_get(struct perf_event *event)
5096{
5097        struct ring_buffer *rb;
5098
5099        rcu_read_lock();
5100        rb = rcu_dereference(event->rb);
5101        if (rb) {
5102                if (!atomic_inc_not_zero(&rb->refcount))
5103                        rb = NULL;
5104        }
5105        rcu_read_unlock();
5106
5107        return rb;
5108}
5109
5110void ring_buffer_put(struct ring_buffer *rb)
5111{
5112        if (!atomic_dec_and_test(&rb->refcount))
5113                return;
5114
5115        WARN_ON_ONCE(!list_empty(&rb->event_list));
5116
5117        call_rcu(&rb->rcu_head, rb_free_rcu);
5118}
5119
5120static void perf_mmap_open(struct vm_area_struct *vma)
5121{
5122        struct perf_event *event = vma->vm_file->private_data;
5123
5124        atomic_inc(&event->mmap_count);
5125        atomic_inc(&event->rb->mmap_count);
5126
5127        if (vma->vm_pgoff)
5128                atomic_inc(&event->rb->aux_mmap_count);
5129
5130        if (event->pmu->event_mapped)
5131                event->pmu->event_mapped(event, vma->vm_mm);
5132}
5133
5134static void perf_pmu_output_stop(struct perf_event *event);
5135
5136/*
5137 * A buffer can be mmap()ed multiple times; either directly through the same
5138 * event, or through other events by use of perf_event_set_output().
5139 *
5140 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5141 * the buffer here, where we still have a VM context. This means we need
5142 * to detach all events redirecting to us.
5143 */
5144static void perf_mmap_close(struct vm_area_struct *vma)
5145{
5146        struct perf_event *event = vma->vm_file->private_data;
5147
5148        struct ring_buffer *rb = ring_buffer_get(event);
5149        struct user_struct *mmap_user = rb->mmap_user;
5150        int mmap_locked = rb->mmap_locked;
5151        unsigned long size = perf_data_size(rb);
5152
5153        if (event->pmu->event_unmapped)
5154                event->pmu->event_unmapped(event, vma->vm_mm);
5155
5156        /*
5157         * rb->aux_mmap_count will always drop before rb->mmap_count and
5158         * event->mmap_count, so it is ok to use event->mmap_mutex to
5159         * serialize with perf_mmap here.
5160         */
5161        if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5162            atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5163                /*
5164                 * Stop all AUX events that are writing to this buffer,
5165                 * so that we can free its AUX pages and corresponding PMU
5166                 * data. Note that after rb::aux_mmap_count dropped to zero,
5167                 * they won't start any more (see perf_aux_output_begin()).
5168                 */
5169                perf_pmu_output_stop(event);
5170
5171                /* now it's safe to free the pages */
5172                atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5173                vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5174
5175                /* this has to be the last one */
5176                rb_free_aux(rb);
5177                WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5178
5179                mutex_unlock(&event->mmap_mutex);
5180        }
5181
5182        atomic_dec(&rb->mmap_count);
5183
5184        if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5185                goto out_put;
5186
5187        ring_buffer_attach(event, NULL);
5188        mutex_unlock(&event->mmap_mutex);
5189
5190        /* If there's still other mmap()s of this buffer, we're done. */
5191        if (atomic_read(&rb->mmap_count))
5192                goto out_put;
5193
5194        /*
5195         * No other mmap()s, detach from all other events that might redirect
5196         * into the now unreachable buffer. Somewhat complicated by the
5197         * fact that rb::event_lock otherwise nests inside mmap_mutex.
5198         */
5199again:
5200        rcu_read_lock();
5201        list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5202                if (!atomic_long_inc_not_zero(&event->refcount)) {
5203                        /*
5204                         * This event is en-route to free_event() which will
5205                         * detach it and remove it from the list.
5206                         */
5207                        continue;
5208                }
5209                rcu_read_unlock();
5210
5211                mutex_lock(&event->mmap_mutex);
5212                /*
5213                 * Check we didn't race with perf_event_set_output() which can
5214                 * swizzle the rb from under us while we were waiting to
5215                 * acquire mmap_mutex.
5216                 *
5217                 * If we find a different rb; ignore this event, a next
5218                 * iteration will no longer find it on the list. We have to
5219                 * still restart the iteration to make sure we're not now
5220                 * iterating the wrong list.
5221                 */
5222                if (event->rb == rb)
5223                        ring_buffer_attach(event, NULL);
5224
5225                mutex_unlock(&event->mmap_mutex);
5226                put_event(event);
5227
5228                /*
5229                 * Restart the iteration; either we're on the wrong list or
5230                 * destroyed its integrity by doing a deletion.
5231                 */
5232                goto again;
5233        }
5234        rcu_read_unlock();
5235
5236        /*
5237         * It could be there's still a few 0-ref events on the list; they'll
5238         * get cleaned up by free_event() -- they'll also still have their
5239         * ref on the rb and will free it whenever they are done with it.
5240         *
5241         * Aside from that, this buffer is 'fully' detached and unmapped,
5242         * undo the VM accounting.
5243         */
5244
5245        atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5246        vma->vm_mm->pinned_vm -= mmap_locked;
5247        free_uid(mmap_user);
5248
5249out_put:
5250        ring_buffer_put(rb); /* could be last */
5251}
5252
5253static const struct vm_operations_struct perf_mmap_vmops = {
5254        .open           = perf_mmap_open,
5255        .close          = perf_mmap_close, /* non mergable */
5256        .fault          = perf_mmap_fault,
5257        .page_mkwrite   = perf_mmap_fault,
5258};
5259
5260static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5261{
5262        struct perf_event *event = file->private_data;
5263        unsigned long user_locked, user_lock_limit;
5264        struct user_struct *user = current_user();
5265        unsigned long locked, lock_limit;
5266        struct ring_buffer *rb = NULL;
5267        unsigned long vma_size;
5268        unsigned long nr_pages;
5269        long user_extra = 0, extra = 0;
5270        int ret = 0, flags = 0;
5271
5272        /*
5273         * Don't allow mmap() of inherited per-task counters. This would
5274         * create a performance issue due to all children writing to the
5275         * same rb.
5276         */
5277        if (event->cpu == -1 && event->attr.inherit)
5278                return -EINVAL;
5279
5280        if (!(vma->vm_flags & VM_SHARED))
5281                return -EINVAL;
5282
5283        vma_size = vma->vm_end - vma->vm_start;
5284
5285        if (vma->vm_pgoff == 0) {
5286                nr_pages = (vma_size / PAGE_SIZE) - 1;
5287        } else {
5288                /*
5289                 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5290                 * mapped, all subsequent mappings should have the same size
5291                 * and offset. Must be above the normal perf buffer.
5292                 */
5293                u64 aux_offset, aux_size;
5294
5295                if (!event->rb)
5296                        return -EINVAL;
5297
5298                nr_pages = vma_size / PAGE_SIZE;
5299
5300                mutex_lock(&event->mmap_mutex);
5301                ret = -EINVAL;
5302
5303                rb = event->rb;
5304                if (!rb)
5305                        goto aux_unlock;
5306
5307                aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5308                aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5309
5310                if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5311                        goto aux_unlock;
5312
5313                if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5314                        goto aux_unlock;
5315
5316                /* already mapped with a different offset */
5317                if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5318                        goto aux_unlock;
5319
5320                if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5321                        goto aux_unlock;
5322
5323                /* already mapped with a different size */
5324                if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5325                        goto aux_unlock;
5326
5327                if (!is_power_of_2(nr_pages))
5328                        goto aux_unlock;
5329
5330                if (!atomic_inc_not_zero(&rb->mmap_count))
5331                        goto aux_unlock;
5332
5333                if (rb_has_aux(rb)) {
5334                        atomic_inc(&rb->aux_mmap_count);
5335                        ret = 0;
5336                        goto unlock;
5337                }
5338
5339                atomic_set(&rb->aux_mmap_count, 1);
5340                user_extra = nr_pages;
5341
5342                goto accounting;
5343        }
5344
5345        /*
5346         * If we have rb pages ensure they're a power-of-two number, so we
5347         * can do bitmasks instead of modulo.
5348         */
5349        if (nr_pages != 0 && !is_power_of_2(nr_pages))
5350                return -EINVAL;
5351
5352        if (vma_size != PAGE_SIZE * (1 + nr_pages))
5353                return -EINVAL;
5354
5355        WARN_ON_ONCE(event->ctx->parent_ctx);
5356again:
5357        mutex_lock(&event->mmap_mutex);
5358        if (event->rb) {
5359                if (event->rb->nr_pages != nr_pages) {
5360                        ret = -EINVAL;
5361                        goto unlock;
5362                }
5363
5364                if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5365                        /*
5366                         * Raced against perf_mmap_close() through
5367                         * perf_event_set_output(). Try again, hope for better
5368                         * luck.
5369                         */
5370                        mutex_unlock(&event->mmap_mutex);
5371                        goto again;
5372                }
5373
5374                goto unlock;
5375        }
5376
5377        user_extra = nr_pages + 1;
5378
5379accounting:
5380        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5381
5382        /*
5383         * Increase the limit linearly with more CPUs:
5384         */
5385        user_lock_limit *= num_online_cpus();
5386
5387        user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5388
5389        if (user_locked > user_lock_limit)
5390                extra = user_locked - user_lock_limit;
5391
5392        lock_limit = rlimit(RLIMIT_MEMLOCK);
5393        lock_limit >>= PAGE_SHIFT;
5394        locked = vma->vm_mm->pinned_vm + extra;
5395
5396        if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5397                !capable(CAP_IPC_LOCK)) {
5398                ret = -EPERM;
5399                goto unlock;
5400        }
5401
5402        WARN_ON(!rb && event->rb);
5403
5404        if (vma->vm_flags & VM_WRITE)
5405                flags |= RING_BUFFER_WRITABLE;
5406
5407        if (!rb) {
5408                rb = rb_alloc(nr_pages,
5409                              event->attr.watermark ? event->attr.wakeup_watermark : 0,
5410                              event->cpu, flags);
5411
5412                if (!rb) {
5413                        ret = -ENOMEM;
5414                        goto unlock;
5415                }
5416
5417                atomic_set(&rb->mmap_count, 1);
5418                rb->mmap_user = get_current_user();
5419                rb->mmap_locked = extra;
5420
5421                ring_buffer_attach(event, rb);
5422
5423                perf_event_init_userpage(event);
5424                perf_event_update_userpage(event);
5425        } else {
5426                ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5427                                   event->attr.aux_watermark, flags);
5428                if (!ret)
5429                        rb->aux_mmap_locked = extra;
5430        }
5431
5432unlock:
5433        if (!ret) {
5434                atomic_long_add(user_extra, &user->locked_vm);
5435                vma->vm_mm->pinned_vm += extra;
5436
5437                atomic_inc(&event->mmap_count);
5438        } else if (rb) {
5439                atomic_dec(&rb->mmap_count);
5440        }
5441aux_unlock:
5442        mutex_unlock(&event->mmap_mutex);
5443
5444        /*
5445         * Since pinned accounting is per vm we cannot allow fork() to copy our
5446         * vma.
5447         */
5448        vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5449        vma->vm_ops = &perf_mmap_vmops;
5450
5451        if (event->pmu->event_mapped)
5452                event->pmu->event_mapped(event, vma->vm_mm);
5453
5454        return ret;
5455}
5456
5457static int perf_fasync(int fd, struct file *filp, int on)
5458{
5459        struct inode *inode = file_inode(filp);
5460        struct perf_event *event = filp->private_data;
5461        int retval;
5462
5463        inode_lock(inode);
5464        retval = fasync_helper(fd, filp, on, &event->fasync);
5465        inode_unlock(inode);
5466
5467        if (retval < 0)
5468                return retval;
5469
5470        return 0;
5471}
5472
5473static const struct file_operations perf_fops = {
5474        .llseek                 = no_llseek,
5475        .release                = perf_release,
5476        .read                   = perf_read,
5477        .poll                   = perf_poll,
5478        .unlocked_ioctl         = perf_ioctl,
5479        .compat_ioctl           = perf_compat_ioctl,
5480        .mmap                   = perf_mmap,
5481        .fasync                 = perf_fasync,
5482};
5483
5484/*
5485 * Perf event wakeup
5486 *
5487 * If there's data, ensure we set the poll() state and publish everything
5488 * to user-space before waking everybody up.
5489 */
5490
5491static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5492{
5493        /* only the parent has fasync state */
5494        if (event->parent)
5495                event = event->parent;
5496        return &event->fasync;
5497}
5498
5499void perf_event_wakeup(struct perf_event *event)
5500{
5501        ring_buffer_wakeup(event);
5502
5503        if (event->pending_kill) {
5504                kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5505                event->pending_kill = 0;
5506        }
5507}
5508
5509static void perf_pending_event(struct irq_work *entry)
5510{
5511        struct perf_event *event = container_of(entry,
5512                        struct perf_event, pending);
5513        int rctx;
5514
5515        rctx = perf_swevent_get_recursion_context();
5516        /*
5517         * If we 'fail' here, that's OK, it means recursion is already disabled
5518         * and we won't recurse 'further'.
5519         */
5520
5521        if (event->pending_disable) {
5522                event->pending_disable = 0;
5523                perf_event_disable_local(event);
5524        }
5525
5526        if (event->pending_wakeup) {
5527                event->pending_wakeup = 0;
5528                perf_event_wakeup(event);
5529        }
5530
5531        if (rctx >= 0)
5532                perf_swevent_put_recursion_context(rctx);
5533}
5534
5535/*
5536 * We assume there is only KVM supporting the callbacks.
5537 * Later on, we might change it to a list if there is
5538 * another virtualization implementation supporting the callbacks.
5539 */
5540struct perf_guest_info_callbacks *perf_guest_cbs;
5541
5542int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5543{
5544        perf_guest_cbs = cbs;
5545        return 0;
5546}
5547EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5548
5549int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5550{
5551        perf_guest_cbs = NULL;
5552        return 0;
5553}
5554EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5555
5556static void
5557perf_output_sample_regs(struct perf_output_handle *handle,
5558                        struct pt_regs *regs, u64 mask)
5559{
5560        int bit;
5561        DECLARE_BITMAP(_mask, 64);
5562
5563        bitmap_from_u64(_mask, mask);
5564        for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5565                u64 val;
5566
5567                val = perf_reg_value(regs, bit);
5568                perf_output_put(handle, val);
5569        }
5570}
5571
5572static void perf_sample_regs_user(struct perf_regs *regs_user,
5573                                  struct pt_regs *regs,
5574                                  struct pt_regs *regs_user_copy)
5575{
5576        if (user_mode(regs)) {
5577                regs_user->abi = perf_reg_abi(current);
5578                regs_user->regs = regs;
5579        } else if (current->mm) {
5580                perf_get_regs_user(regs_user, regs, regs_user_copy);
5581        } else {
5582                regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5583                regs_user->regs = NULL;
5584        }
5585}
5586
5587static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5588                                  struct pt_regs *regs)
5589{
5590        regs_intr->regs = regs;
5591        regs_intr->abi  = perf_reg_abi(current);
5592}
5593
5594
5595/*
5596 * Get remaining task size from user stack pointer.
5597 *
5598 * It'd be better to take stack vma map and limit this more
5599 * precisly, but there's no way to get it safely under interrupt,
5600 * so using TASK_SIZE as limit.
5601 */
5602static u64 perf_ustack_task_size(struct pt_regs *regs)
5603{
5604        unsigned long addr = perf_user_stack_pointer(regs);
5605
5606        if (!addr || addr >= TASK_SIZE)
5607                return 0;
5608
5609        return TASK_SIZE - addr;
5610}
5611
5612static u16
5613perf_sample_ustack_size(u16 stack_size, u16 header_size,
5614                        struct pt_regs *regs)
5615{
5616        u64 task_size;
5617
5618        /* No regs, no stack pointer, no dump. */
5619        if (!regs)
5620                return 0;
5621
5622        /*
5623         * Check if we fit in with the requested stack size into the:
5624         * - TASK_SIZE
5625         *   If we don't, we limit the size to the TASK_SIZE.
5626         *
5627         * - remaining sample size
5628         *   If we don't, we customize the stack size to
5629         *   fit in to the remaining sample size.
5630         */
5631
5632        task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5633        stack_size = min(stack_size, (u16) task_size);
5634
5635        /* Current header size plus static size and dynamic size. */
5636        header_size += 2 * sizeof(u64);
5637
5638        /* Do we fit in with the current stack dump size? */
5639        if ((u16) (header_size + stack_size) < header_size) {
5640                /*
5641                 * If we overflow the maximum size for the sample,
5642                 * we customize the stack dump size to fit in.
5643                 */
5644                stack_size = USHRT_MAX - header_size - sizeof(u64);
5645                stack_size = round_up(stack_size, sizeof(u64));
5646        }
5647
5648        return stack_size;
5649}
5650
5651static void
5652perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5653                          struct pt_regs *regs)
5654{
5655        /* Case of a kernel thread, nothing to dump */
5656        if (!regs) {
5657                u64 size = 0;
5658                perf_output_put(handle, size);
5659        } else {
5660                unsigned long sp;
5661                unsigned int rem;
5662                u64 dyn_size;
5663
5664                /*
5665                 * We dump:
5666                 * static size
5667                 *   - the size requested by user or the best one we can fit
5668                 *     in to the sample max size
5669                 * data
5670                 *   - user stack dump data
5671                 * dynamic size
5672                 *   - the actual dumped size
5673                 */
5674
5675                /* Static size. */
5676                perf_output_put(handle, dump_size);
5677
5678                /* Data. */
5679                sp = perf_user_stack_pointer(regs);
5680                rem = __output_copy_user(handle, (void *) sp, dump_size);
5681                dyn_size = dump_size - rem;
5682
5683                perf_output_skip(handle, rem);
5684
5685                /* Dynamic size. */
5686                perf_output_put(handle, dyn_size);
5687        }
5688}
5689
5690static void __perf_event_header__init_id(struct perf_event_header *header,
5691                                         struct perf_sample_data *data,
5692                                         struct perf_event *event)
5693{
5694        u64 sample_type = event->attr.sample_type;
5695
5696        data->type = sample_type;
5697        header->size += event->id_header_size;
5698
5699        if (sample_type & PERF_SAMPLE_TID) {
5700                /* namespace issues */
5701                data->tid_entry.pid = perf_event_pid(event, current);
5702                data->tid_entry.tid = perf_event_tid(event, current);
5703        }
5704
5705        if (sample_type & PERF_SAMPLE_TIME)
5706                data->time = perf_event_clock(event);
5707
5708        if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5709                data->id = primary_event_id(event);
5710
5711        if (sample_type & PERF_SAMPLE_STREAM_ID)
5712                data->stream_id = event->id;
5713
5714        if (sample_type & PERF_SAMPLE_CPU) {
5715                data->cpu_entry.cpu      = raw_smp_processor_id();
5716                data->cpu_entry.reserved = 0;
5717        }
5718}
5719
5720void perf_event_header__init_id(struct perf_event_header *header,
5721                                struct perf_sample_data *data,
5722                                struct perf_event *event)
5723{
5724        if (event->attr.sample_id_all)
5725                __perf_event_header__init_id(header, data, event);
5726}
5727
5728static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5729                                           struct perf_sample_data *data)
5730{
5731        u64 sample_type = data->type;
5732
5733        if (sample_type & PERF_SAMPLE_TID)
5734                perf_output_put(handle, data->tid_entry);
5735
5736        if (sample_type & PERF_SAMPLE_TIME)
5737                perf_output_put(handle, data->time);
5738
5739        if (sample_type & PERF_SAMPLE_ID)
5740                perf_output_put(handle, data->id);
5741
5742        if (sample_type & PERF_SAMPLE_STREAM_ID)
5743                perf_output_put(handle, data->stream_id);
5744
5745        if (sample_type & PERF_SAMPLE_CPU)
5746                perf_output_put(handle, data->cpu_entry);
5747
5748        if (sample_type & PERF_SAMPLE_IDENTIFIER)
5749                perf_output_put(handle, data->id);
5750}
5751
5752void perf_event__output_id_sample(struct perf_event *event,
5753                                  struct perf_output_handle *handle,
5754                                  struct perf_sample_data *sample)
5755{
5756        if (event->attr.sample_id_all)
5757                __perf_event__output_id_sample(handle, sample);
5758}
5759
5760static void perf_output_read_one(struct perf_output_handle *handle,
5761                                 struct perf_event *event,
5762                                 u64 enabled, u64 running)
5763{
5764        u64 read_format = event->attr.read_format;
5765        u64 values[4];
5766        int n = 0;
5767
5768        values[n++] = perf_event_count(event);
5769        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5770                values[n++] = enabled +
5771                        atomic64_read(&event->child_total_time_enabled);
5772        }
5773        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5774                values[n++] = running +
5775                        atomic64_read(&event->child_total_time_running);
5776        }
5777        if (read_format & PERF_FORMAT_ID)
5778                values[n++] = primary_event_id(event);
5779
5780        __output_copy(handle, values, n * sizeof(u64));
5781}
5782
5783static void perf_output_read_group(struct perf_output_handle *handle,
5784                            struct perf_event *event,
5785                            u64 enabled, u64 running)
5786{
5787        struct perf_event *leader = event->group_leader, *sub;
5788        u64 read_format = event->attr.read_format;
5789        u64 values[5];
5790        int n = 0;
5791
5792        values[n++] = 1 + leader->nr_siblings;
5793
5794        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5795                values[n++] = enabled;
5796
5797        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5798                values[n++] = running;
5799
5800        if (leader != event)
5801                leader->pmu->read(leader);
5802
5803        values[n++] = perf_event_count(leader);
5804        if (read_format & PERF_FORMAT_ID)
5805                values[n++] = primary_event_id(leader);
5806
5807        __output_copy(handle, values, n * sizeof(u64));
5808
5809        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5810                n = 0;
5811
5812                if ((sub != event) &&
5813                    (sub->state == PERF_EVENT_STATE_ACTIVE))
5814                        sub->pmu->read(sub);
5815
5816                values[n++] = perf_event_count(sub);
5817                if (read_format & PERF_FORMAT_ID)
5818                        values[n++] = primary_event_id(sub);
5819
5820                __output_copy(handle, values, n * sizeof(u64));
5821        }
5822}
5823
5824#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5825                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
5826
5827/*
5828 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5829 *
5830 * The problem is that its both hard and excessively expensive to iterate the
5831 * child list, not to mention that its impossible to IPI the children running
5832 * on another CPU, from interrupt/NMI context.
5833 */
5834static void perf_output_read(struct perf_output_handle *handle,
5835                             struct perf_event *event)
5836{
5837        u64 enabled = 0, running = 0, now;
5838        u64 read_format = event->attr.read_format;
5839
5840        /*
5841         * compute total_time_enabled, total_time_running
5842         * based on snapshot values taken when the event
5843         * was last scheduled in.
5844         *
5845         * we cannot simply called update_context_time()
5846         * because of locking issue as we are called in
5847         * NMI context
5848         */
5849        if (read_format & PERF_FORMAT_TOTAL_TIMES)
5850                calc_timer_values(event, &now, &enabled, &running);
5851
5852        if (event->attr.read_format & PERF_FORMAT_GROUP)
5853                perf_output_read_group(handle, event, enabled, running);
5854        else
5855                perf_output_read_one(handle, event, enabled, running);
5856}
5857
5858void perf_output_sample(struct perf_output_handle *handle,
5859                        struct perf_event_header *header,
5860                        struct perf_sample_data *data,
5861                        struct perf_event *event)
5862{
5863        u64 sample_type = data->type;
5864
5865        perf_output_put(handle, *header);
5866
5867        if (sample_type & PERF_SAMPLE_IDENTIFIER)
5868                perf_output_put(handle, data->id);
5869
5870        if (sample_type & PERF_SAMPLE_IP)
5871                perf_output_put(handle, data->ip);
5872
5873        if (sample_type & PERF_SAMPLE_TID)
5874                perf_output_put(handle, data->tid_entry);
5875
5876        if (sample_type & PERF_SAMPLE_TIME)
5877                perf_output_put(handle, data->time);
5878
5879        if (sample_type & PERF_SAMPLE_ADDR)
5880                perf_output_put(handle, data->addr);
5881
5882        if (sample_type & PERF_SAMPLE_ID)
5883                perf_output_put(handle, data->id);
5884
5885        if (sample_type & PERF_SAMPLE_STREAM_ID)
5886                perf_output_put(handle, data->stream_id);
5887
5888        if (sample_type & PERF_SAMPLE_CPU)
5889                perf_output_put(handle, data->cpu_entry);
5890
5891        if (sample_type & PERF_SAMPLE_PERIOD)
5892                perf_output_put(handle, data->period);
5893
5894        if (sample_type & PERF_SAMPLE_READ)
5895                perf_output_read(handle, event);
5896
5897        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5898                if (data->callchain) {
5899                        int size = 1;
5900
5901                        if (data->callchain)
5902                                size += data->callchain->nr;
5903
5904                        size *= sizeof(u64);
5905
5906                        __output_copy(handle, data->callchain, size);
5907                } else {
5908                        u64 nr = 0;
5909                        perf_output_put(handle, nr);
5910                }
5911        }
5912
5913        if (sample_type & PERF_SAMPLE_RAW) {
5914                struct perf_raw_record *raw = data->raw;
5915
5916                if (raw) {
5917                        struct perf_raw_frag *frag = &raw->frag;
5918
5919                        perf_output_put(handle, raw->size);
5920                        do {
5921                                if (frag->copy) {
5922                                        __output_custom(handle, frag->copy,
5923                                                        frag->data, frag->size);
5924                                } else {
5925                                        __output_copy(handle, frag->data,
5926                                                      frag->size);
5927                                }
5928                                if (perf_raw_frag_last(frag))
5929                                        break;
5930                                frag = frag->next;
5931                        } while (1);
5932                        if (frag->pad)
5933                                __output_skip(handle, NULL, frag->pad);
5934                } else {
5935                        struct {
5936                                u32     size;
5937                                u32     data;
5938                        } raw = {
5939                                .size = sizeof(u32),
5940                                .data = 0,
5941                        };
5942                        perf_output_put(handle, raw);
5943                }
5944        }
5945
5946        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5947                if (data->br_stack) {
5948                        size_t size;
5949
5950                        size = data->br_stack->nr
5951                             * sizeof(struct perf_branch_entry);
5952
5953                        perf_output_put(handle, data->br_stack->nr);
5954                        perf_output_copy(handle, data->br_stack->entries, size);
5955                } else {
5956                        /*
5957                         * we always store at least the value of nr
5958                         */
5959                        u64 nr = 0;
5960                        perf_output_put(handle, nr);
5961                }
5962        }
5963
5964        if (sample_type & PERF_SAMPLE_REGS_USER) {
5965                u64 abi = data->regs_user.abi;
5966
5967                /*
5968                 * If there are no regs to dump, notice it through
5969                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5970                 */
5971                perf_output_put(handle, abi);
5972
5973                if (abi) {
5974                        u64 mask = event->attr.sample_regs_user;
5975                        perf_output_sample_regs(handle,
5976                                                data->regs_user.regs,
5977                                                mask);
5978                }
5979        }
5980
5981        if (sample_type & PERF_SAMPLE_STACK_USER) {
5982                perf_output_sample_ustack(handle,
5983                                          data->stack_user_size,
5984                                          data->regs_user.regs);
5985        }
5986
5987        if (sample_type & PERF_SAMPLE_WEIGHT)
5988                perf_output_put(handle, data->weight);
5989
5990        if (sample_type & PERF_SAMPLE_DATA_SRC)
5991                perf_output_put(handle, data->data_src.val);
5992
5993        if (sample_type & PERF_SAMPLE_TRANSACTION)
5994                perf_output_put(handle, data->txn);
5995
5996        if (sample_type & PERF_SAMPLE_REGS_INTR) {
5997                u64 abi = data->regs_intr.abi;
5998                /*
5999                 * If there are no regs to dump, notice it through
6000                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6001                 */
6002                perf_output_put(handle, abi);
6003
6004                if (abi) {
6005                        u64 mask = event->attr.sample_regs_intr;
6006
6007                        perf_output_sample_regs(handle,
6008                                                data->regs_intr.regs,
6009                                                mask);
6010                }
6011        }
6012
6013        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6014                perf_output_put(handle, data->phys_addr);
6015
6016        if (!event->attr.watermark) {
6017                int wakeup_events = event->attr.wakeup_events;
6018
6019                if (wakeup_events) {
6020                        struct ring_buffer *rb = handle->rb;
6021                        int events = local_inc_return(&rb->events);
6022
6023                        if (events >= wakeup_events) {
6024                                local_sub(wakeup_events, &rb->events);
6025                                local_inc(&rb->wakeup);
6026                        }
6027                }
6028        }
6029}
6030
6031static u64 perf_virt_to_phys(u64 virt)
6032{
6033        u64 phys_addr = 0;
6034        struct page *p = NULL;
6035
6036        if (!virt)
6037                return 0;
6038
6039        if (virt >= TASK_SIZE) {
6040                /* If it's vmalloc()d memory, leave phys_addr as 0 */
6041                if (virt_addr_valid((void *)(uintptr_t)virt) &&
6042                    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6043                        phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6044        } else {
6045                /*
6046                 * Walking the pages tables for user address.
6047                 * Interrupts are disabled, so it prevents any tear down
6048                 * of the page tables.
6049                 * Try IRQ-safe __get_user_pages_fast first.
6050                 * If failed, leave phys_addr as 0.
6051                 */
6052                if ((current->mm != NULL) &&
6053                    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6054                        phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6055
6056                if (p)
6057                        put_page(p);
6058        }
6059
6060        return phys_addr;
6061}
6062
6063void perf_prepare_sample(struct perf_event_header *header,
6064                         struct perf_sample_data *data,
6065                         struct perf_event *event,
6066                         struct pt_regs *regs)
6067{
6068        u64 sample_type = event->attr.sample_type;
6069
6070        header->type = PERF_RECORD_SAMPLE;
6071        header->size = sizeof(*header) + event->header_size;
6072
6073        header->misc = 0;
6074        header->misc |= perf_misc_flags(regs);
6075
6076        __perf_event_header__init_id(header, data, event);
6077
6078        if (sample_type & PERF_SAMPLE_IP)
6079                data->ip = perf_instruction_pointer(regs);
6080
6081        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6082                int size = 1;
6083
6084                data->callchain = perf_callchain(event, regs);
6085
6086                if (data->callchain)
6087                        size += data->callchain->nr;
6088
6089                header->size += size * sizeof(u64);
6090        }
6091
6092        if (sample_type & PERF_SAMPLE_RAW) {
6093                struct perf_raw_record *raw = data->raw;
6094                int size;
6095
6096                if (raw) {
6097                        struct perf_raw_frag *frag = &raw->frag;
6098                        u32 sum = 0;
6099
6100                        do {
6101                                sum += frag->size;
6102                                if (perf_raw_frag_last(frag))
6103                                        break;
6104                                frag = frag->next;
6105                        } while (1);
6106
6107                        size = round_up(sum + sizeof(u32), sizeof(u64));
6108                        raw->size = size - sizeof(u32);
6109                        frag->pad = raw->size - sum;
6110                } else {
6111                        size = sizeof(u64);
6112                }
6113
6114                header->size += size;
6115        }
6116
6117        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6118                int size = sizeof(u64); /* nr */
6119                if (data->br_stack) {
6120                        size += data->br_stack->nr
6121                              * sizeof(struct perf_branch_entry);
6122                }
6123                header->size += size;
6124        }
6125
6126        if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6127                perf_sample_regs_user(&data->regs_user, regs,
6128                                      &data->regs_user_copy);
6129
6130        if (sample_type & PERF_SAMPLE_REGS_USER) {
6131                /* regs dump ABI info */
6132                int size = sizeof(u64);
6133
6134                if (data->regs_user.regs) {
6135                        u64 mask = event->attr.sample_regs_user;
6136                        size += hweight64(mask) * sizeof(u64);
6137                }
6138
6139                header->size += size;
6140        }
6141
6142        if (sample_type & PERF_SAMPLE_STACK_USER) {
6143                /*
6144                 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6145                 * processed as the last one or have additional check added
6146                 * in case new sample type is added, because we could eat
6147                 * up the rest of the sample size.
6148                 */
6149                u16 stack_size = event->attr.sample_stack_user;
6150                u16 size = sizeof(u64);
6151
6152                stack_size = perf_sample_ustack_size(stack_size, header->size,
6153                                                     data->regs_user.regs);
6154
6155                /*
6156                 * If there is something to dump, add space for the dump
6157                 * itself and for the field that tells the dynamic size,
6158                 * which is how many have been actually dumped.
6159                 */
6160                if (stack_size)
6161                        size += sizeof(u64) + stack_size;
6162
6163                data->stack_user_size = stack_size;
6164                header->size += size;
6165        }
6166
6167        if (sample_type & PERF_SAMPLE_REGS_INTR) {
6168                /* regs dump ABI info */
6169                int size = sizeof(u64);
6170
6171                perf_sample_regs_intr(&data->regs_intr, regs);
6172
6173                if (data->regs_intr.regs) {
6174                        u64 mask = event->attr.sample_regs_intr;
6175
6176                        size += hweight64(mask) * sizeof(u64);
6177                }
6178
6179                header->size += size;
6180        }
6181
6182        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6183                data->phys_addr = perf_virt_to_phys(data->addr);
6184}
6185
6186static void __always_inline
6187__perf_event_output(struct perf_event *event,
6188                    struct perf_sample_data *data,
6189                    struct pt_regs *regs,
6190                    int (*output_begin)(struct perf_output_handle *,
6191                                        struct perf_event *,
6192                                        unsigned int))
6193{
6194        struct perf_output_handle handle;
6195        struct perf_event_header header;
6196
6197        /* protect the callchain buffers */
6198        rcu_read_lock();
6199
6200        perf_prepare_sample(&header, data, event, regs);
6201
6202        if (output_begin(&handle, event, header.size))
6203                goto exit;
6204
6205        perf_output_sample(&handle, &header, data, event);
6206
6207        perf_output_end(&handle);
6208
6209exit:
6210        rcu_read_unlock();
6211}
6212
6213void
6214perf_event_output_forward(struct perf_event *event,
6215                         struct perf_sample_data *data,
6216                         struct pt_regs *regs)
6217{
6218        __perf_event_output(event, data, regs, perf_output_begin_forward);
6219}
6220
6221void
6222perf_event_output_backward(struct perf_event *event,
6223                           struct perf_sample_data *data,
6224                           struct pt_regs *regs)
6225{
6226        __perf_event_output(event, data, regs, perf_output_begin_backward);
6227}
6228
6229void
6230perf_event_output(struct perf_event *event,
6231                  struct perf_sample_data *data,
6232                  struct pt_regs *regs)
6233{
6234        __perf_event_output(event, data, regs, perf_output_begin);
6235}
6236
6237/*
6238 * read event_id
6239 */
6240
6241struct perf_read_event {
6242        struct perf_event_header        header;
6243
6244        u32                             pid;
6245        u32                             tid;
6246};
6247
6248static void
6249perf_event_read_event(struct perf_event *event,
6250                        struct task_struct *task)
6251{
6252        struct perf_output_handle handle;
6253        struct perf_sample_data sample;
6254        struct perf_read_event read_event = {
6255                .header = {
6256                        .type = PERF_RECORD_READ,
6257                        .misc = 0,
6258                        .size = sizeof(read_event) + event->read_size,
6259                },
6260                .pid = perf_event_pid(event, task),
6261                .tid = perf_event_tid(event, task),
6262        };
6263        int ret;
6264
6265        perf_event_header__init_id(&read_event.header, &sample, event);
6266        ret = perf_output_begin(&handle, event, read_event.header.size);
6267        if (ret)
6268                return;
6269
6270        perf_output_put(&handle, read_event);
6271        perf_output_read(&handle, event);
6272        perf_event__output_id_sample(event, &handle, &sample);
6273
6274        perf_output_end(&handle);
6275}
6276
6277typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6278
6279static void
6280perf_iterate_ctx(struct perf_event_context *ctx,
6281                   perf_iterate_f output,
6282                   void *data, bool all)
6283{
6284        struct perf_event *event;
6285
6286        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6287                if (!all) {
6288                        if (event->state < PERF_EVENT_STATE_INACTIVE)
6289                                continue;
6290                        if (!event_filter_match(event))
6291                                continue;
6292                }
6293
6294                output(event, data);
6295        }
6296}
6297
6298static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6299{
6300        struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6301        struct perf_event *event;
6302
6303        list_for_each_entry_rcu(event, &pel->list, sb_list) {
6304                /*
6305                 * Skip events that are not fully formed yet; ensure that
6306                 * if we observe event->ctx, both event and ctx will be
6307                 * complete enough. See perf_install_in_context().
6308                 */
6309                if (!smp_load_acquire(&event->ctx))
6310                        continue;
6311
6312                if (event->state < PERF_EVENT_STATE_INACTIVE)
6313                        continue;
6314                if (!event_filter_match(event))
6315                        continue;
6316                output(event, data);
6317        }
6318}
6319
6320/*
6321 * Iterate all events that need to receive side-band events.
6322 *
6323 * For new callers; ensure that account_pmu_sb_event() includes
6324 * your event, otherwise it might not get delivered.
6325 */
6326static void
6327perf_iterate_sb(perf_iterate_f output, void *data,
6328               struct perf_event_context *task_ctx)
6329{
6330        struct perf_event_context *ctx;
6331        int ctxn;
6332
6333        rcu_read_lock();
6334        preempt_disable();
6335
6336        /*
6337         * If we have task_ctx != NULL we only notify the task context itself.
6338         * The task_ctx is set only for EXIT events before releasing task
6339         * context.
6340         */
6341        if (task_ctx) {
6342                perf_iterate_ctx(task_ctx, output, data, false);
6343                goto done;
6344        }
6345
6346        perf_iterate_sb_cpu(output, data);
6347
6348        for_each_task_context_nr(ctxn) {
6349                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6350                if (ctx)
6351                        perf_iterate_ctx(ctx, output, data, false);
6352        }
6353done:
6354        preempt_enable();
6355        rcu_read_unlock();
6356}
6357
6358/*
6359 * Clear all file-based filters at exec, they'll have to be
6360 * re-instated when/if these objects are mmapped again.
6361 */
6362static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6363{
6364        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6365        struct perf_addr_filter *filter;
6366        unsigned int restart = 0, count = 0;
6367        unsigned long flags;
6368
6369        if (!has_addr_filter(event))
6370                return;
6371
6372        raw_spin_lock_irqsave(&ifh->lock, flags);
6373        list_for_each_entry(filter, &ifh->list, entry) {
6374                if (filter->inode) {
6375                        event->addr_filters_offs[count] = 0;
6376                        restart++;
6377                }
6378
6379                count++;
6380        }
6381
6382        if (restart)
6383                event->addr_filters_gen++;
6384        raw_spin_unlock_irqrestore(&ifh->lock, flags);
6385
6386        if (restart)
6387                perf_event_stop(event, 1);
6388}
6389
6390void perf_event_exec(void)
6391{
6392        struct perf_event_context *ctx;
6393        int ctxn;
6394
6395        rcu_read_lock();
6396        for_each_task_context_nr(ctxn) {
6397                ctx = current->perf_event_ctxp[ctxn];
6398                if (!ctx)
6399                        continue;
6400
6401                perf_event_enable_on_exec(ctxn);
6402
6403                perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6404                                   true);
6405        }
6406        rcu_read_unlock();
6407}
6408
6409struct remote_output {
6410        struct ring_buffer      *rb;
6411        int                     err;
6412};
6413
6414static void __perf_event_output_stop(struct perf_event *event, void *data)
6415{
6416        struct perf_event *parent = event->parent;
6417        struct remote_output *ro = data;
6418        struct ring_buffer *rb = ro->rb;
6419        struct stop_event_data sd = {
6420                .event  = event,
6421        };
6422
6423        if (!has_aux(event))
6424                return;
6425
6426        if (!parent)
6427                parent = event;
6428
6429        /*
6430         * In case of inheritance, it will be the parent that links to the
6431         * ring-buffer, but it will be the child that's actually using it.
6432         *
6433         * We are using event::rb to determine if the event should be stopped,
6434         * however this may race with ring_buffer_attach() (through set_output),
6435         * which will make us skip the event that actually needs to be stopped.
6436         * So ring_buffer_attach() has to stop an aux event before re-assigning
6437         * its rb pointer.
6438         */
6439        if (rcu_dereference(parent->rb) == rb)
6440                ro->err = __perf_event_stop(&sd);
6441}
6442
6443static int __perf_pmu_output_stop(void *info)
6444{
6445        struct perf_event *event = info;
6446        struct pmu *pmu = event->pmu;
6447        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6448        struct remote_output ro = {
6449                .rb     = event->rb,
6450        };
6451
6452        rcu_read_lock();
6453        perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6454        if (cpuctx->task_ctx)
6455                perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6456                                   &ro, false);
6457        rcu_read_unlock();
6458
6459        return ro.err;
6460}
6461
6462static void perf_pmu_output_stop(struct perf_event *event)
6463{
6464        struct perf_event *iter;
6465        int err, cpu;
6466
6467restart:
6468        rcu_read_lock();
6469        list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6470                /*
6471                 * For per-CPU events, we need to make sure that neither they
6472                 * nor their children are running; for cpu==-1 events it's
6473                 * sufficient to stop the event itself if it's active, since
6474                 * it can't have children.
6475                 */
6476                cpu = iter->cpu;
6477                if (cpu == -1)
6478                        cpu = READ_ONCE(iter->oncpu);
6479
6480                if (cpu == -1)
6481                        continue;
6482
6483                err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6484                if (err == -EAGAIN) {
6485                        rcu_read_unlock();
6486                        goto restart;
6487                }
6488        }
6489        rcu_read_unlock();
6490}
6491
6492/*
6493 * task tracking -- fork/exit
6494 *
6495 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6496 */
6497
6498struct perf_task_event {
6499        struct task_struct              *task;
6500        struct perf_event_context       *task_ctx;
6501
6502        struct {
6503                struct perf_event_header        header;
6504
6505                u32                             pid;
6506                u32                             ppid;
6507                u32                             tid;
6508                u32                             ptid;
6509                u64                             time;
6510        } event_id;
6511};
6512
6513static int perf_event_task_match(struct perf_event *event)
6514{
6515        return event->attr.comm  || event->attr.mmap ||
6516               event->attr.mmap2 || event->attr.mmap_data ||
6517               event->attr.task;
6518}
6519
6520static void perf_event_task_output(struct perf_event *event,
6521                                   void *data)
6522{
6523        struct perf_task_event *task_event = data;
6524        struct perf_output_handle handle;
6525        struct perf_sample_data sample;
6526        struct task_struct *task = task_event->task;
6527        int ret, size = task_event->event_id.header.size;
6528
6529        if (!perf_event_task_match(event))
6530                return;
6531
6532        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6533
6534        ret = perf_output_begin(&handle, event,
6535                                task_event->event_id.header.size);
6536        if (ret)
6537                goto out;
6538
6539        task_event->event_id.pid = perf_event_pid(event, task);
6540        task_event->event_id.ppid = perf_event_pid(event, current);
6541
6542        task_event->event_id.tid = perf_event_tid(event, task);
6543        task_event->event_id.ptid = perf_event_tid(event, current);
6544
6545        task_event->event_id.time = perf_event_clock(event);
6546
6547        perf_output_put(&handle, task_event->event_id);
6548
6549        perf_event__output_id_sample(event, &handle, &sample);
6550
6551        perf_output_end(&handle);
6552out:
6553        task_event->event_id.header.size = size;
6554}
6555
6556static void perf_event_task(struct task_struct *task,
6557                              struct perf_event_context *task_ctx,
6558                              int new)
6559{
6560        struct perf_task_event task_event;
6561
6562        if (!atomic_read(&nr_comm_events) &&
6563            !atomic_read(&nr_mmap_events) &&
6564            !atomic_read(&nr_task_events))
6565                return;
6566
6567        task_event = (struct perf_task_event){
6568                .task     = task,
6569                .task_ctx = task_ctx,
6570                .event_id    = {
6571                        .header = {
6572                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6573                                .misc = 0,
6574                                .size = sizeof(task_event.event_id),
6575                        },
6576                        /* .pid  */
6577                        /* .ppid */
6578                        /* .tid  */
6579                        /* .ptid */
6580                        /* .time */
6581                },
6582        };
6583
6584        perf_iterate_sb(perf_event_task_output,
6585                       &task_event,
6586                       task_ctx);
6587}
6588
6589void perf_event_fork(struct task_struct *task)
6590{
6591        perf_event_task(task, NULL, 1);
6592        perf_event_namespaces(task);
6593}
6594
6595/*
6596 * comm tracking
6597 */
6598
6599struct perf_comm_event {
6600        struct task_struct      *task;
6601        char                    *comm;
6602        int                     comm_size;
6603
6604        struct {
6605                struct perf_event_header        header;
6606
6607                u32                             pid;
6608                u32                             tid;
6609        } event_id;
6610};
6611
6612static int perf_event_comm_match(struct perf_event *event)
6613{
6614        return event->attr.comm;
6615}
6616
6617static void perf_event_comm_output(struct perf_event *event,
6618                                   void *data)
6619{
6620        struct perf_comm_event *comm_event = data;
6621        struct perf_output_handle handle;
6622        struct perf_sample_data sample;
6623        int size = comm_event->event_id.header.size;
6624        int ret;
6625
6626        if (!perf_event_comm_match(event))
6627                return;
6628
6629        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6630        ret = perf_output_begin(&handle, event,
6631                                comm_event->event_id.header.size);
6632
6633        if (ret)
6634                goto out;
6635
6636        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6637        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6638
6639        perf_output_put(&handle, comm_event->event_id);
6640        __output_copy(&handle, comm_event->comm,
6641                                   comm_event->comm_size);
6642
6643        perf_event__output_id_sample(event, &handle, &sample);
6644
6645        perf_output_end(&handle);
6646out:
6647        comm_event->event_id.header.size = size;
6648}
6649
6650static void perf_event_comm_event(struct perf_comm_event *comm_event)
6651{
6652        char comm[TASK_COMM_LEN];
6653        unsigned int size;
6654
6655        memset(comm, 0, sizeof(comm));
6656        strlcpy(comm, comm_event->task->comm, sizeof(comm));
6657        size = ALIGN(strlen(comm)+1, sizeof(u64));
6658
6659        comm_event->comm = comm;
6660        comm_event->comm_size = size;
6661
6662        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6663
6664        perf_iterate_sb(perf_event_comm_output,
6665                       comm_event,
6666                       NULL);
6667}
6668
6669void perf_event_comm(struct task_struct *task, bool exec)
6670{
6671        struct perf_comm_event comm_event;
6672
6673        if (!atomic_read(&nr_comm_events))
6674                return;
6675
6676        comm_event = (struct perf_comm_event){
6677                .task   = task,
6678                /* .comm      */
6679                /* .comm_size */
6680                .event_id  = {
6681                        .header = {
6682                                .type = PERF_RECORD_COMM,
6683                                .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6684                                /* .size */
6685                        },
6686                        /* .pid */
6687                        /* .tid */
6688                },
6689        };
6690
6691        perf_event_comm_event(&comm_event);
6692}
6693
6694/*
6695 * namespaces tracking
6696 */
6697
6698struct perf_namespaces_event {
6699        struct task_struct              *task;
6700
6701        struct {
6702                struct perf_event_header        header;
6703
6704                u32                             pid;
6705                u32                             tid;
6706                u64                             nr_namespaces;
6707                struct perf_ns_link_info        link_info[NR_NAMESPACES];
6708        } event_id;
6709};
6710
6711static int perf_event_namespaces_match(struct perf_event *event)
6712{
6713        return event->attr.namespaces;
6714}
6715
6716static void perf_event_namespaces_output(struct perf_event *event,
6717                                         void *data)
6718{
6719        struct perf_namespaces_event *namespaces_event = data;
6720        struct perf_output_handle handle;
6721        struct perf_sample_data sample;
6722        int ret;
6723
6724        if (!perf_event_namespaces_match(event))
6725                return;
6726
6727        perf_event_header__init_id(&namespaces_event->event_id.header,
6728                                   &sample, event);
6729        ret = perf_output_begin(&handle, event,
6730                                namespaces_event->event_id.header.size);
6731        if (ret)
6732                return;
6733
6734        namespaces_event->event_id.pid = perf_event_pid(event,
6735                                                        namespaces_event->task);
6736        namespaces_event->event_id.tid = perf_event_tid(event,
6737                                                        namespaces_event->task);
6738
6739        perf_output_put(&handle, namespaces_event->event_id);
6740
6741        perf_event__output_id_sample(event, &handle, &sample);
6742
6743        perf_output_end(&handle);
6744}
6745
6746static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6747                                   struct task_struct *task,
6748                                   const struct proc_ns_operations *ns_ops)
6749{
6750        struct path ns_path;
6751        struct inode *ns_inode;
6752        void *error;
6753
6754        error = ns_get_path(&ns_path, task, ns_ops);
6755        if (!error) {
6756                ns_inode = ns_path.dentry->d_inode;
6757                ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6758                ns_link_info->ino = ns_inode->i_ino;
6759        }
6760}
6761
6762void perf_event_namespaces(struct task_struct *task)
6763{
6764        struct perf_namespaces_event namespaces_event;
6765        struct perf_ns_link_info *ns_link_info;
6766
6767        if (!atomic_read(&nr_namespaces_events))
6768                return;
6769
6770        namespaces_event = (struct perf_namespaces_event){
6771                .task   = task,
6772                .event_id  = {
6773                        .header = {
6774                                .type = PERF_RECORD_NAMESPACES,
6775                                .misc = 0,
6776                                .size = sizeof(namespaces_event.event_id),
6777                        },
6778                        /* .pid */
6779                        /* .tid */
6780                        .nr_namespaces = NR_NAMESPACES,
6781                        /* .link_info[NR_NAMESPACES] */
6782                },
6783        };
6784
6785        ns_link_info = namespaces_event.event_id.link_info;
6786
6787        perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6788                               task, &mntns_operations);
6789
6790#ifdef CONFIG_USER_NS
6791        perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6792                               task, &userns_operations);
6793#endif
6794#ifdef CONFIG_NET_NS
6795        perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6796                               task, &netns_operations);
6797#endif
6798#ifdef CONFIG_UTS_NS
6799        perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6800                               task, &utsns_operations);
6801#endif
6802#ifdef CONFIG_IPC_NS
6803        perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6804                               task, &ipcns_operations);
6805#endif
6806#ifdef CONFIG_PID_NS
6807        perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6808                               task, &pidns_operations);
6809#endif
6810#ifdef CONFIG_CGROUPS
6811        perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6812                               task, &cgroupns_operations);
6813#endif
6814
6815        perf_iterate_sb(perf_event_namespaces_output,
6816                        &namespaces_event,
6817                        NULL);
6818}
6819
6820/*
6821 * mmap tracking
6822 */
6823
6824struct perf_mmap_event {
6825        struct vm_area_struct   *vma;
6826
6827        const char              *file_name;
6828        int                     file_size;
6829        int                     maj, min;
6830        u64                     ino;
6831        u64                     ino_generation;
6832        u32                     prot, flags;
6833
6834        struct {
6835                struct perf_event_header        header;
6836
6837                u32                             pid;
6838                u32                             tid;
6839                u64                             start;
6840                u64                             len;
6841                u64                             pgoff;
6842        } event_id;
6843};
6844
6845static int perf_event_mmap_match(struct perf_event *event,
6846                                 void *data)
6847{
6848        struct perf_mmap_event *mmap_event = data;
6849        struct vm_area_struct *vma = mmap_event->vma;
6850        int executable = vma->vm_flags & VM_EXEC;
6851
6852        return (!executable && event->attr.mmap_data) ||
6853               (executable && (event->attr.mmap || event->attr.mmap2));
6854}
6855
6856static void perf_event_mmap_output(struct perf_event *event,
6857                                   void *data)
6858{
6859        struct perf_mmap_event *mmap_event = data;
6860        struct perf_output_handle handle;
6861        struct perf_sample_data sample;
6862        int size = mmap_event->event_id.header.size;
6863        int ret;
6864
6865        if (!perf_event_mmap_match(event, data))
6866                return;
6867
6868        if (event->attr.mmap2) {
6869                mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6870                mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6871                mmap_event->event_id.header.size += sizeof(mmap_event->min);
6872                mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6873                mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6874                mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6875                mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6876        }
6877
6878        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6879        ret = perf_output_begin(&handle, event,
6880                                mmap_event->event_id.header.size);
6881        if (ret)
6882                goto out;
6883
6884        mmap_event->event_id.pid = perf_event_pid(event, current);
6885        mmap_event->event_id.tid = perf_event_tid(event, current);
6886
6887        perf_output_put(&handle, mmap_event->event_id);
6888
6889        if (event->attr.mmap2) {
6890                perf_output_put(&handle, mmap_event->maj);
6891                perf_output_put(&handle, mmap_event->min);
6892                perf_output_put(&handle, mmap_event->ino);
6893                perf_output_put(&handle, mmap_event->ino_generation);
6894                perf_output_put(&handle, mmap_event->prot);
6895                perf_output_put(&handle, mmap_event->flags);
6896        }
6897
6898        __output_copy(&handle, mmap_event->file_name,
6899                                   mmap_event->file_size);
6900
6901        perf_event__output_id_sample(event, &handle, &sample);
6902
6903        perf_output_end(&handle);
6904out:
6905        mmap_event->event_id.header.size = size;
6906}
6907
6908static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6909{
6910        struct vm_area_struct *vma = mmap_event->vma;
6911        struct file *file = vma->vm_file;
6912        int maj = 0, min = 0;
6913        u64 ino = 0, gen = 0;
6914        u32 prot = 0, flags = 0;
6915        unsigned int size;
6916        char tmp[16];
6917        char *buf = NULL;
6918        char *name;
6919
6920        if (vma->vm_flags & VM_READ)
6921                prot |= PROT_READ;
6922        if (vma->vm_flags & VM_WRITE)
6923                prot |= PROT_WRITE;
6924        if (vma->vm_flags & VM_EXEC)
6925                prot |= PROT_EXEC;
6926
6927        if (vma->vm_flags & VM_MAYSHARE)
6928                flags = MAP_SHARED;
6929        else
6930                flags = MAP_PRIVATE;
6931
6932        if (vma->vm_flags & VM_DENYWRITE)
6933                flags |= MAP_DENYWRITE;
6934        if (vma->vm_flags & VM_MAYEXEC)
6935                flags |= MAP_EXECUTABLE;
6936        if (vma->vm_flags & VM_LOCKED)
6937                flags |= MAP_LOCKED;
6938        if (vma->vm_flags & VM_HUGETLB)
6939                flags |= MAP_HUGETLB;
6940
6941        if (file) {
6942                struct inode *inode;
6943                dev_t dev;
6944
6945                buf = kmalloc(PATH_MAX, GFP_KERNEL);
6946                if (!buf) {
6947                        name = "//enomem";
6948                        goto cpy_name;
6949                }
6950                /*
6951                 * d_path() works from the end of the rb backwards, so we
6952                 * need to add enough zero bytes after the string to handle
6953                 * the 64bit alignment we do later.
6954                 */
6955                name = file_path(file, buf, PATH_MAX - sizeof(u64));
6956                if (IS_ERR(name)) {
6957                        name = "//toolong";
6958                        goto cpy_name;
6959                }
6960                inode = file_inode(vma->vm_file);
6961                dev = inode->i_sb->s_dev;
6962                ino = inode->i_ino;
6963                gen = inode->i_generation;
6964                maj = MAJOR(dev);
6965                min = MINOR(dev);
6966
6967                goto got_name;
6968        } else {
6969                if (vma->vm_ops && vma->vm_ops->name) {
6970                        name = (char *) vma->vm_ops->name(vma);
6971                        if (name)
6972                                goto cpy_name;
6973                }
6974
6975                name = (char *)arch_vma_name(vma);
6976                if (name)
6977                        goto cpy_name;
6978
6979                if (vma->vm_start <= vma->vm_mm->start_brk &&
6980                                vma->vm_end >= vma->vm_mm->brk) {
6981                        name = "[heap]";
6982                        goto cpy_name;
6983                }
6984                if (vma->vm_start <= vma->vm_mm->start_stack &&
6985                                vma->vm_end >= vma->vm_mm->start_stack) {
6986                        name = "[stack]";
6987                        goto cpy_name;
6988                }
6989
6990                name = "//anon";
6991                goto cpy_name;
6992        }
6993
6994cpy_name:
6995        strlcpy(tmp, name, sizeof(tmp));
6996        name = tmp;
6997got_name:
6998        /*
6999         * Since our buffer works in 8 byte units we need to align our string
7000         * size to a multiple of 8. However, we must guarantee the tail end is
7001         * zero'd out to avoid leaking random bits to userspace.
7002         */
7003        size = strlen(name)+1;
7004        while (!IS_ALIGNED(size, sizeof(u64)))
7005                name[size++] = '\0';
7006
7007        mmap_event->file_name = name;
7008        mmap_event->file_size = size;
7009        mmap_event->maj = maj;
7010        mmap_event->min = min;
7011        mmap_event->ino = ino;
7012        mmap_event->ino_generation = gen;
7013        mmap_event->prot = prot;
7014        mmap_event->flags = flags;
7015
7016        if (!(vma->vm_flags & VM_EXEC))
7017                mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7018
7019        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7020
7021        perf_iterate_sb(perf_event_mmap_output,
7022                       mmap_event,
7023                       NULL);
7024
7025        kfree(buf);
7026}
7027
7028/*
7029 * Check whether inode and address range match filter criteria.
7030 */
7031static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7032                                     struct file *file, unsigned long offset,
7033                                     unsigned long size)
7034{
7035        if (filter->inode != file_inode(file))
7036                return false;
7037
7038        if (filter->offset > offset + size)
7039                return false;
7040
7041        if (filter->offset + filter->size < offset)
7042                return false;
7043
7044        return true;
7045}
7046
7047static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7048{
7049        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7050        struct vm_area_struct *vma = data;
7051        unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7052        struct file *file = vma->vm_file;
7053        struct perf_addr_filter *filter;
7054        unsigned int restart = 0, count = 0;
7055
7056        if (!has_addr_filter(event))
7057                return;
7058
7059        if (!file)
7060                return;
7061
7062        raw_spin_lock_irqsave(&ifh->lock, flags);
7063        list_for_each_entry(filter, &ifh->list, entry) {
7064                if (perf_addr_filter_match(filter, file, off,
7065                                             vma->vm_end - vma->vm_start)) {
7066                        event->addr_filters_offs[count] = vma->vm_start;
7067                        restart++;
7068                }
7069
7070                count++;
7071        }
7072
7073        if (restart)
7074                event->addr_filters_gen++;
7075        raw_spin_unlock_irqrestore(&ifh->lock, flags);
7076
7077        if (restart)
7078                perf_event_stop(event, 1);
7079}
7080
7081/*
7082 * Adjust all task's events' filters to the new vma
7083 */
7084static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7085{
7086        struct perf_event_context *ctx;
7087        int ctxn;
7088
7089        /*
7090         * Data tracing isn't supported yet and as such there is no need
7091         * to keep track of anything that isn't related to executable code:
7092         */
7093        if (!(vma->vm_flags & VM_EXEC))
7094                return;
7095
7096        rcu_read_lock();
7097        for_each_task_context_nr(ctxn) {
7098                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7099                if (!ctx)
7100                        continue;
7101
7102                perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7103        }
7104        rcu_read_unlock();
7105}
7106
7107void perf_event_mmap(struct vm_area_struct *vma)
7108{
7109        struct perf_mmap_event mmap_event;
7110
7111        if (!atomic_read(&nr_mmap_events))
7112                return;
7113
7114        mmap_event = (struct perf_mmap_event){
7115                .vma    = vma,
7116                /* .file_name */
7117                /* .file_size */
7118                .event_id  = {
7119                        .header = {
7120                                .type = PERF_RECORD_MMAP,
7121                                .misc = PERF_RECORD_MISC_USER,
7122                                /* .size */
7123                        },
7124                        /* .pid */
7125                        /* .tid */
7126                        .start  = vma->vm_start,
7127                        .len    = vma->vm_end - vma->vm_start,
7128                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7129                },
7130                /* .maj (attr_mmap2 only) */
7131                /* .min (attr_mmap2 only) */
7132                /* .ino (attr_mmap2 only) */
7133                /* .ino_generation (attr_mmap2 only) */
7134                /* .prot (attr_mmap2 only) */
7135                /* .flags (attr_mmap2 only) */
7136        };
7137
7138        perf_addr_filters_adjust(vma);
7139        perf_event_mmap_event(&mmap_event);
7140}
7141
7142void perf_event_aux_event(struct perf_event *event, unsigned long head,
7143                          unsigned long size, u64 flags)
7144{
7145        struct perf_output_handle handle;
7146        struct perf_sample_data sample;
7147        struct perf_aux_event {
7148                struct perf_event_header        header;
7149                u64                             offset;
7150                u64                             size;
7151                u64                             flags;
7152        } rec = {
7153                .header = {
7154                        .type = PERF_RECORD_AUX,
7155                        .misc = 0,
7156                        .size = sizeof(rec),
7157                },
7158                .offset         = head,
7159                .size           = size,
7160                .flags          = flags,
7161        };
7162        int ret;
7163
7164        perf_event_header__init_id(&rec.header, &sample, event);
7165        ret = perf_output_begin(&handle, event, rec.header.size);
7166
7167        if (ret)
7168                return;
7169
7170        perf_output_put(&handle, rec);
7171        perf_event__output_id_sample(event, &handle, &sample);
7172
7173        perf_output_end(&handle);
7174}
7175
7176/*
7177 * Lost/dropped samples logging
7178 */
7179void perf_log_lost_samples(struct perf_event *event, u64 lost)
7180{
7181        struct perf_output_handle handle;
7182        struct perf_sample_data sample;
7183        int ret;
7184
7185        struct {
7186                struct perf_event_header        header;
7187                u64                             lost;
7188        } lost_samples_event = {
7189                .header = {
7190                        .type = PERF_RECORD_LOST_SAMPLES,
7191                        .misc = 0,
7192                        .size = sizeof(lost_samples_event),
7193                },
7194                .lost           = lost,
7195        };
7196
7197        perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7198
7199        ret = perf_output_begin(&handle, event,
7200                                lost_samples_event.header.size);
7201        if (ret)
7202                return;
7203
7204        perf_output_put(&handle, lost_samples_event);
7205        perf_event__output_id_sample(event, &handle, &sample);
7206        perf_output_end(&handle);
7207}
7208
7209/*
7210 * context_switch tracking
7211 */
7212
7213struct perf_switch_event {
7214        struct task_struct      *task;
7215        struct task_struct      *next_prev;
7216
7217        struct {
7218                struct perf_event_header        header;
7219                u32                             next_prev_pid;
7220                u32                             next_prev_tid;
7221        } event_id;
7222};
7223
7224static int perf_event_switch_match(struct perf_event *event)
7225{
7226        return event->attr.context_switch;
7227}
7228
7229static void perf_event_switch_output(struct perf_event *event, void *data)
7230{
7231        struct perf_switch_event *se = data;
7232        struct perf_output_handle handle;
7233        struct perf_sample_data sample;
7234        int ret;
7235
7236        if (!perf_event_switch_match(event))
7237                return;
7238
7239        /* Only CPU-wide events are allowed to see next/prev pid/tid */
7240        if (event->ctx->task) {
7241                se->event_id.header.type = PERF_RECORD_SWITCH;
7242                se->event_id.header.size = sizeof(se->event_id.header);
7243        } else {
7244                se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7245                se->event_id.header.size = sizeof(se->event_id);
7246                se->event_id.next_prev_pid =
7247                                        perf_event_pid(event, se->next_prev);
7248                se->event_id.next_prev_tid =
7249                                        perf_event_tid(event, se->next_prev);
7250        }
7251
7252        perf_event_header__init_id(&se->event_id.header, &sample, event);
7253
7254        ret = perf_output_begin(&handle, event, se->event_id.header.size);
7255        if (ret)
7256                return;
7257
7258        if (event->ctx->task)
7259                perf_output_put(&handle, se->event_id.header);
7260        else
7261                perf_output_put(&handle, se->event_id);
7262
7263        perf_event__output_id_sample(event, &handle, &sample);
7264
7265        perf_output_end(&handle);
7266}
7267
7268static void perf_event_switch(struct task_struct *task,
7269                              struct task_struct *next_prev, bool sched_in)
7270{
7271        struct perf_switch_event switch_event;
7272
7273        /* N.B. caller checks nr_switch_events != 0 */
7274
7275        switch_event = (struct perf_switch_event){
7276                .task           = task,
7277                .next_prev      = next_prev,
7278                .event_id       = {
7279                        .header = {
7280                                /* .type */
7281                                .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7282                                /* .size */
7283                        },
7284                        /* .next_prev_pid */
7285                        /* .next_prev_tid */
7286                },
7287        };
7288
7289        perf_iterate_sb(perf_event_switch_output,
7290                       &switch_event,
7291                       NULL);
7292}
7293
7294/*
7295 * IRQ throttle logging
7296 */
7297
7298static void perf_log_throttle(struct perf_event *event, int enable)
7299{
7300        struct perf_output_handle handle;
7301        struct perf_sample_data sample;
7302        int ret;
7303
7304        struct {
7305                struct perf_event_header        header;
7306                u64                             time;
7307                u64                             id;
7308                u64                             stream_id;
7309        } throttle_event = {
7310                .header = {
7311                        .type = PERF_RECORD_THROTTLE,
7312                        .misc = 0,
7313                        .size = sizeof(throttle_event),
7314                },
7315                .time           = perf_event_clock(event),
7316                .id             = primary_event_id(event),
7317                .stream_id      = event->id,
7318        };
7319
7320        if (enable)
7321                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7322
7323        perf_event_header__init_id(&throttle_event.header, &sample, event);
7324
7325        ret = perf_output_begin(&handle, event,
7326                                throttle_event.header.size);
7327        if (ret)
7328                return;
7329
7330        perf_output_put(&handle, throttle_event);
7331        perf_event__output_id_sample(event, &handle, &sample);
7332        perf_output_end(&handle);
7333}
7334
7335void perf_event_itrace_started(struct perf_event *event)
7336{
7337        event->attach_state |= PERF_ATTACH_ITRACE;
7338}
7339
7340static void perf_log_itrace_start(struct perf_event *event)
7341{
7342        struct perf_output_handle handle;
7343        struct perf_sample_data sample;
7344        struct perf_aux_event {
7345                struct perf_event_header        header;
7346                u32                             pid;
7347                u32                             tid;
7348        } rec;
7349        int ret;
7350
7351        if (event->parent)
7352                event = event->parent;
7353
7354        if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7355            event->attach_state & PERF_ATTACH_ITRACE)
7356                return;
7357
7358        rec.header.type = PERF_RECORD_ITRACE_START;
7359        rec.header.misc = 0;
7360        rec.header.size = sizeof(rec);
7361        rec.pid = perf_event_pid(event, current);
7362        rec.tid = perf_event_tid(event, current);
7363
7364        perf_event_header__init_id(&rec.header, &sample, event);
7365        ret = perf_output_begin(&handle, event, rec.header.size);
7366
7367        if (ret)
7368                return;
7369
7370        perf_output_put(&handle, rec);
7371        perf_event__output_id_sample(event, &handle, &sample);
7372
7373        perf_output_end(&handle);
7374}
7375
7376static int
7377__perf_event_account_interrupt(struct perf_event *event, int throttle)
7378{
7379        struct hw_perf_event *hwc = &event->hw;
7380        int ret = 0;
7381        u64 seq;
7382
7383        seq = __this_cpu_read(perf_throttled_seq);
7384        if (seq != hwc->interrupts_seq) {
7385                hwc->interrupts_seq = seq;
7386                hwc->interrupts = 1;
7387        } else {
7388                hwc->interrupts++;
7389                if (unlikely(throttle
7390                             && hwc->interrupts >= max_samples_per_tick)) {
7391                        __this_cpu_inc(perf_throttled_count);
7392                        tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7393                        hwc->interrupts = MAX_INTERRUPTS;
7394                        perf_log_throttle(event, 0);
7395                        ret = 1;
7396                }
7397        }
7398
7399        if (event->attr.freq) {
7400                u64 now = perf_clock();
7401                s64 delta = now - hwc->freq_time_stamp;
7402
7403                hwc->freq_time_stamp = now;
7404
7405                if (delta > 0 && delta < 2*TICK_NSEC)
7406                        perf_adjust_period(event, delta, hwc->last_period, true);
7407        }
7408
7409        return ret;
7410}
7411
7412int perf_event_account_interrupt(struct perf_event *event)
7413{
7414        return __perf_event_account_interrupt(event, 1);
7415}
7416
7417/*
7418 * Generic event overflow handling, sampling.
7419 */
7420
7421static int __perf_event_overflow(struct perf_event *event,
7422                                   int throttle, struct perf_sample_data *data,
7423                                   struct pt_regs *regs)
7424{
7425        int events = atomic_read(&event->event_limit);
7426        int ret = 0;
7427
7428        /*
7429         * Non-sampling counters might still use the PMI to fold short
7430         * hardware counters, ignore those.
7431         */
7432        if (unlikely(!is_sampling_event(event)))
7433                return 0;
7434
7435        ret = __perf_event_account_interrupt(event, throttle);
7436
7437        /*
7438         * XXX event_limit might not quite work as expected on inherited
7439         * events
7440         */
7441
7442        event->pending_kill = POLL_IN;
7443        if (events && atomic_dec_and_test(&event->event_limit)) {
7444                ret = 1;
7445                event->pending_kill = POLL_HUP;
7446
7447                perf_event_disable_inatomic(event);
7448        }
7449
7450        READ_ONCE(event->overflow_handler)(event, data, regs);
7451
7452        if (*perf_event_fasync(event) && event->pending_kill) {
7453                event->pending_wakeup = 1;
7454                irq_work_queue(&event->pending);
7455        }
7456
7457        return ret;
7458}
7459
7460int perf_event_overflow(struct perf_event *event,
7461                          struct perf_sample_data *data,
7462                          struct pt_regs *regs)
7463{
7464        return __perf_event_overflow(event, 1, data, regs);
7465}
7466
7467/*
7468 * Generic software event infrastructure
7469 */
7470
7471struct swevent_htable {
7472        struct swevent_hlist            *swevent_hlist;
7473        struct mutex                    hlist_mutex;
7474        int                             hlist_refcount;
7475
7476        /* Recursion avoidance in each contexts */
7477        int                             recursion[PERF_NR_CONTEXTS];
7478};
7479
7480static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7481
7482/*
7483 * We directly increment event->count and keep a second value in
7484 * event->hw.period_left to count intervals. This period event
7485 * is kept in the range [-sample_period, 0] so that we can use the
7486 * sign as trigger.
7487 */
7488
7489u64 perf_swevent_set_period(struct perf_event *event)
7490{
7491        struct hw_perf_event *hwc = &event->hw;
7492        u64 period = hwc->last_period;
7493        u64 nr, offset;
7494        s64 old, val;
7495
7496        hwc->last_period = hwc->sample_period;
7497
7498again:
7499        old = val = local64_read(&hwc->period_left);
7500        if (val < 0)
7501                return 0;
7502
7503        nr = div64_u64(period + val, period);
7504        offset = nr * period;
7505        val -= offset;
7506        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7507                goto again;
7508
7509        return nr;
7510}
7511
7512static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7513                                    struct perf_sample_data *data,
7514                                    struct pt_regs *regs)
7515{
7516        struct hw_perf_event *hwc = &event->hw;
7517        int throttle = 0;
7518
7519        if (!overflow)
7520                overflow = perf_swevent_set_period(event);
7521
7522        if (hwc->interrupts == MAX_INTERRUPTS)
7523                return;
7524
7525        for (; overflow; overflow--) {
7526                if (__perf_event_overflow(event, throttle,
7527                                            data, regs)) {
7528                        /*
7529                         * We inhibit the overflow from happening when
7530                         * hwc->interrupts == MAX_INTERRUPTS.
7531                         */
7532                        break;
7533                }
7534                throttle = 1;
7535        }
7536}
7537
7538static void perf_swevent_event(struct perf_event *event, u64 nr,
7539                               struct perf_sample_data *data,
7540                               struct pt_regs *regs)
7541{
7542        struct hw_perf_event *hwc = &event->hw;
7543
7544        local64_add(nr, &event->count);
7545
7546        if (!regs)
7547                return;
7548
7549        if (!is_sampling_event(event))
7550                return;
7551
7552        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7553                data->period = nr;
7554                return perf_swevent_overflow(event, 1, data, regs);
7555        } else
7556                data->period = event->hw.last_period;
7557
7558        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7559                return perf_swevent_overflow(event, 1, data, regs);
7560
7561        if (local64_add_negative(nr, &hwc->period_left))
7562                return;
7563
7564        perf_swevent_overflow(event, 0, data, regs);
7565}
7566
7567static int perf_exclude_event(struct perf_event *event,
7568                              struct pt_regs *regs)
7569{
7570        if (event->hw.state & PERF_HES_STOPPED)
7571                return 1;
7572
7573        if (regs) {
7574                if (event->attr.exclude_user && user_mode(regs))
7575                        return 1;
7576
7577                if (event->attr.exclude_kernel && !user_mode(regs))
7578                        return 1;
7579        }
7580
7581        return 0;
7582}
7583
7584static int perf_swevent_match(struct perf_event *event,
7585                                enum perf_type_id type,
7586                                u32 event_id,
7587                                struct perf_sample_data *data,
7588                                struct pt_regs *regs)
7589{
7590        if (event->attr.type != type)
7591                return 0;
7592
7593        if (event->attr.config != event_id)
7594                return 0;
7595
7596        if (perf_exclude_event(event, regs))
7597                return 0;
7598
7599        return 1;
7600}
7601
7602static inline u64 swevent_hash(u64 type, u32 event_id)
7603{
7604        u64 val = event_id | (type << 32);
7605
7606        return hash_64(val, SWEVENT_HLIST_BITS);
7607}
7608
7609static inline struct hlist_head *
7610__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7611{
7612        u64 hash = swevent_hash(type, event_id);
7613
7614        return &hlist->heads[hash];
7615}
7616
7617/* For the read side: events when they trigger */
7618static inline struct hlist_head *
7619find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7620{
7621        struct swevent_hlist *hlist;
7622
7623        hlist = rcu_dereference(swhash->swevent_hlist);
7624        if (!hlist)
7625                return NULL;
7626
7627        return __find_swevent_head(hlist, type, event_id);
7628}
7629
7630/* For the event head insertion and removal in the hlist */
7631static inline struct hlist_head *
7632find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7633{
7634        struct swevent_hlist *hlist;
7635        u32 event_id = event->attr.config;
7636        u64 type = event->attr.type;
7637
7638        /*
7639         * Event scheduling is always serialized against hlist allocation
7640         * and release. Which makes the protected version suitable here.
7641         * The context lock guarantees that.
7642         */
7643        hlist = rcu_dereference_protected(swhash->swevent_hlist,
7644                                          lockdep_is_held(&event->ctx->lock));
7645        if (!hlist)
7646                return NULL;
7647
7648        return __find_swevent_head(hlist, type, event_id);
7649}
7650
7651static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7652                                    u64 nr,
7653                                    struct perf_sample_data *data,
7654                                    struct pt_regs *regs)
7655{
7656        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7657        struct perf_event *event;
7658        struct hlist_head *head;
7659
7660        rcu_read_lock();
7661        head = find_swevent_head_rcu(swhash, type, event_id);
7662        if (!head)
7663                goto end;
7664
7665        hlist_for_each_entry_rcu(event, head, hlist_entry) {
7666                if (perf_swevent_match(event, type, event_id, data, regs))
7667                        perf_swevent_event(event, nr, data, regs);
7668        }
7669end:
7670        rcu_read_unlock();
7671}
7672
7673DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7674
7675int perf_swevent_get_recursion_context(void)
7676{
7677        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7678
7679        return get_recursion_context(swhash->recursion);
7680}
7681EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7682
7683void perf_swevent_put_recursion_context(int rctx)
7684{
7685        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7686
7687        put_recursion_context(swhash->recursion, rctx);
7688}
7689
7690void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7691{
7692        struct perf_sample_data data;
7693
7694        if (WARN_ON_ONCE(!regs))
7695                return;
7696
7697        perf_sample_data_init(&data, addr, 0);
7698        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7699}
7700
7701void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7702{
7703        int rctx;
7704
7705        preempt_disable_notrace();
7706        rctx = perf_swevent_get_recursion_context();
7707        if (unlikely(rctx < 0))
7708                goto fail;
7709
7710        ___perf_sw_event(event_id, nr, regs, addr);
7711
7712        perf_swevent_put_recursion_context(rctx);
7713fail:
7714        preempt_enable_notrace();
7715}
7716
7717static void perf_swevent_read(struct perf_event *event)
7718{
7719}
7720
7721static int perf_swevent_add(struct perf_event *event, int flags)
7722{
7723        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7724        struct hw_perf_event *hwc = &event->hw;
7725        struct hlist_head *head;
7726
7727        if (is_sampling_event(event)) {
7728                hwc->last_period = hwc->sample_period;
7729                perf_swevent_set_period(event);
7730        }
7731
7732        hwc->state = !(flags & PERF_EF_START);
7733
7734        head = find_swevent_head(swhash, event);
7735        if (WARN_ON_ONCE(!head))
7736                return -EINVAL;
7737
7738        hlist_add_head_rcu(&event->hlist_entry, head);
7739        perf_event_update_userpage(event);
7740
7741        return 0;
7742}
7743
7744static void perf_swevent_del(struct perf_event *event, int flags)
7745{
7746        hlist_del_rcu(&event->hlist_entry);
7747}
7748
7749static void perf_swevent_start(struct perf_event *event, int flags)
7750{
7751        event->hw.state = 0;
7752}
7753
7754static void perf_swevent_stop(struct perf_event *event, int flags)
7755{
7756        event->hw.state = PERF_HES_STOPPED;
7757}
7758
7759/* Deref the hlist from the update side */
7760static inline struct swevent_hlist *
7761swevent_hlist_deref(struct swevent_htable *swhash)
7762{
7763        return rcu_dereference_protected(swhash->swevent_hlist,
7764                                         lockdep_is_held(&swhash->hlist_mutex));
7765}
7766
7767static void swevent_hlist_release(struct swevent_htable *swhash)
7768{
7769        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7770
7771        if (!hlist)
7772                return;
7773
7774        RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7775        kfree_rcu(hlist, rcu_head);
7776}
7777
7778static void swevent_hlist_put_cpu(int cpu)
7779{
7780        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7781
7782        mutex_lock(&swhash->hlist_mutex);
7783
7784        if (!--swhash->hlist_refcount)
7785                swevent_hlist_release(swhash);
7786
7787        mutex_unlock(&swhash->hlist_mutex);
7788}
7789
7790static void swevent_hlist_put(void)
7791{
7792        int cpu;
7793
7794        for_each_possible_cpu(cpu)
7795                swevent_hlist_put_cpu(cpu);
7796}
7797
7798static int swevent_hlist_get_cpu(int cpu)
7799{
7800        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7801        int err = 0;
7802
7803        mutex_lock(&swhash->hlist_mutex);
7804        if (!swevent_hlist_deref(swhash) &&
7805            cpumask_test_cpu(cpu, perf_online_mask)) {
7806                struct swevent_hlist *hlist;
7807
7808                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7809                if (!hlist) {
7810                        err = -ENOMEM;
7811                        goto exit;
7812                }
7813                rcu_assign_pointer(swhash->swevent_hlist, hlist);
7814        }
7815        swhash->hlist_refcount++;
7816exit:
7817        mutex_unlock(&swhash->hlist_mutex);
7818
7819        return err;
7820}
7821
7822static int swevent_hlist_get(void)
7823{
7824        int err, cpu, failed_cpu;
7825
7826        mutex_lock(&pmus_lock);
7827        for_each_possible_cpu(cpu) {
7828                err = swevent_hlist_get_cpu(cpu);
7829                if (err) {
7830                        failed_cpu = cpu;
7831                        goto fail;
7832                }
7833        }
7834        mutex_unlock(&pmus_lock);
7835        return 0;
7836fail:
7837        for_each_possible_cpu(cpu) {
7838                if (cpu == failed_cpu)
7839                        break;
7840                swevent_hlist_put_cpu(cpu);
7841        }
7842        mutex_unlock(&pmus_lock);
7843        return err;
7844}
7845
7846struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7847
7848static void sw_perf_event_destroy(struct perf_event *event)
7849{
7850        u64 event_id = event->attr.config;
7851
7852        WARN_ON(event->parent);
7853
7854        static_key_slow_dec(&perf_swevent_enabled[event_id]);
7855        swevent_hlist_put();
7856}
7857
7858static int perf_swevent_init(struct perf_event *event)
7859{
7860        u64 event_id = event->attr.config;
7861
7862        if (event->attr.type != PERF_TYPE_SOFTWARE)
7863                return -ENOENT;
7864
7865        /*
7866         * no branch sampling for software events
7867         */
7868        if (has_branch_stack(event))
7869                return -EOPNOTSUPP;
7870
7871        switch (event_id) {
7872        case PERF_COUNT_SW_CPU_CLOCK:
7873        case PERF_COUNT_SW_TASK_CLOCK:
7874                return -ENOENT;
7875
7876        default:
7877                break;
7878        }
7879
7880        if (event_id >= PERF_COUNT_SW_MAX)
7881                return -ENOENT;
7882
7883        if (!event->parent) {
7884                int err;
7885
7886                err = swevent_hlist_get();
7887                if (err)
7888                        return err;
7889
7890                static_key_slow_inc(&perf_swevent_enabled[event_id]);
7891                event->destroy = sw_perf_event_destroy;
7892        }
7893
7894        return 0;
7895}
7896
7897static struct pmu perf_swevent = {
7898        .task_ctx_nr    = perf_sw_context,
7899
7900        .capabilities   = PERF_PMU_CAP_NO_NMI,
7901
7902        .event_init     = perf_swevent_init,
7903        .add            = perf_swevent_add,
7904        .del            = perf_swevent_del,
7905        .start          = perf_swevent_start,
7906        .stop           = perf_swevent_stop,
7907        .read           = perf_swevent_read,
7908};
7909
7910#ifdef CONFIG_EVENT_TRACING
7911
7912static int perf_tp_filter_match(struct perf_event *event,
7913                                struct perf_sample_data *data)
7914{
7915        void *record = data->raw->frag.data;
7916
7917        /* only top level events have filters set */
7918        if (event->parent)
7919                event = event->parent;
7920
7921        if (likely(!event->filter) || filter_match_preds(event->filter, record))
7922                return 1;
7923        return 0;
7924}
7925
7926static int perf_tp_event_match(struct perf_event *event,
7927                                struct perf_sample_data *data,
7928                                struct pt_regs *regs)
7929{
7930        if (event->hw.state & PERF_HES_STOPPED)
7931                return 0;
7932        /*
7933         * All tracepoints are from kernel-space.
7934         */
7935        if (event->attr.exclude_kernel)
7936                return 0;
7937
7938        if (!perf_tp_filter_match(event, data))
7939                return 0;
7940
7941        return 1;
7942}
7943
7944void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7945                               struct trace_event_call *call, u64 count,
7946                               struct pt_regs *regs, struct hlist_head *head,
7947                               struct task_struct *task)
7948{
7949        struct bpf_prog *prog = call->prog;
7950
7951        if (prog) {
7952                *(struct pt_regs **)raw_data = regs;
7953                if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7954                        perf_swevent_put_recursion_context(rctx);
7955                        return;
7956                }
7957        }
7958        perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7959                      rctx, task, NULL);
7960}
7961EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7962
7963void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7964                   struct pt_regs *regs, struct hlist_head *head, int rctx,
7965                   struct task_struct *task, struct perf_event *event)
7966{
7967        struct perf_sample_data data;
7968
7969        struct perf_raw_record raw = {
7970                .frag = {
7971                        .size = entry_size,
7972                        .data = record,
7973                },
7974        };
7975
7976        perf_sample_data_init(&data, 0, 0);
7977        data.raw = &raw;
7978
7979        perf_trace_buf_update(record, event_type);
7980
7981        /* Use the given event instead of the hlist */
7982        if (event) {
7983                if (perf_tp_event_match(event, &data, regs))
7984                        perf_swevent_event(event, count, &data, regs);
7985        } else {
7986                hlist_for_each_entry_rcu(event, head, hlist_entry) {
7987                        if (perf_tp_event_match(event, &data, regs))
7988                                perf_swevent_event(event, count, &data, regs);
7989                }
7990        }
7991
7992        /*
7993         * If we got specified a target task, also iterate its context and
7994         * deliver this event there too.
7995         */
7996        if (task && task != current) {
7997                struct perf_event_context *ctx;
7998                struct trace_entry *entry = record;
7999
8000                rcu_read_lock();
8001                ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8002                if (!ctx)
8003                        goto unlock;
8004
8005                list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8006                        if (event->attr.type != PERF_TYPE_TRACEPOINT)
8007                                continue;
8008                        if (event->attr.config != entry->type)
8009                                continue;
8010                        if (perf_tp_event_match(event, &data, regs))
8011                                perf_swevent_event(event, count, &data, regs);
8012                }
8013unlock:
8014                rcu_read_unlock();
8015        }
8016
8017        perf_swevent_put_recursion_context(rctx);
8018}
8019EXPORT_SYMBOL_GPL(perf_tp_event);
8020
8021static void tp_perf_event_destroy(struct perf_event *event)
8022{
8023        perf_trace_destroy(event);
8024}
8025
8026static int perf_tp_event_init(struct perf_event *event)
8027{
8028        int err;
8029
8030        if (event->attr.type != PERF_TYPE_TRACEPOINT)
8031                return -ENOENT;
8032
8033        /*
8034         * no branch sampling for tracepoint events
8035         */
8036        if (has_branch_stack(event))
8037                return -EOPNOTSUPP;
8038
8039        err = perf_trace_init(event);
8040        if (err)
8041                return err;
8042
8043        event->destroy = tp_perf_event_destroy;
8044
8045        return 0;
8046}
8047
8048static struct pmu perf_tracepoint = {
8049        .task_ctx_nr    = perf_sw_context,
8050
8051        .event_init     = perf_tp_event_init,
8052        .add            = perf_trace_add,
8053        .del            = perf_trace_del,
8054        .start          = perf_swevent_start,
8055        .stop           = perf_swevent_stop,
8056        .read           = perf_swevent_read,
8057};
8058
8059static inline void perf_tp_register(void)
8060{
8061        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8062}
8063
8064static void perf_event_free_filter(struct perf_event *event)
8065{
8066        ftrace_profile_free_filter(event);
8067}
8068
8069#ifdef CONFIG_BPF_SYSCALL
8070static void bpf_overflow_handler(struct perf_event *event,
8071                                 struct perf_sample_data *data,
8072                                 struct pt_regs *regs)
8073{
8074        struct bpf_perf_event_data_kern ctx = {
8075                .data = data,
8076                .regs = regs,
8077        };
8078        int ret = 0;
8079
8080        preempt_disable();
8081        if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8082                goto out;
8083        rcu_read_lock();
8084        ret = BPF_PROG_RUN(event->prog, &ctx);
8085        rcu_read_unlock();
8086out:
8087        __this_cpu_dec(bpf_prog_active);
8088        preempt_enable();
8089        if (!ret)
8090                return;
8091
8092        event->orig_overflow_handler(event, data, regs);
8093}
8094
8095static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8096{
8097        struct bpf_prog *prog;
8098
8099        if (event->overflow_handler_context)
8100                /* hw breakpoint or kernel counter */
8101                return -EINVAL;
8102
8103        if (event->prog)
8104                return -EEXIST;
8105
8106        prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8107        if (IS_ERR(prog))
8108                return PTR_ERR(prog);
8109
8110        event->prog = prog;
8111        event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8112        WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8113        return 0;
8114}
8115
8116static void perf_event_free_bpf_handler(struct perf_event *event)
8117{
8118        struct bpf_prog *prog = event->prog;
8119
8120        if (!prog)
8121                return;
8122
8123        WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8124        event->prog = NULL;
8125        bpf_prog_put(prog);
8126}
8127#else
8128static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8129{
8130        return -EOPNOTSUPP;
8131}
8132static void perf_event_free_bpf_handler(struct perf_event *event)
8133{
8134}
8135#endif
8136
8137static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8138{
8139        bool is_kprobe, is_tracepoint, is_syscall_tp;
8140        struct bpf_prog *prog;
8141
8142        if (event->attr.type != PERF_TYPE_TRACEPOINT)
8143                return perf_event_set_bpf_handler(event, prog_fd);
8144
8145        if (event->tp_event->prog)
8146                return -EEXIST;
8147
8148        is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8149        is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8150        is_syscall_tp = is_syscall_trace_event(event->tp_event);
8151        if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8152                /* bpf programs can only be attached to u/kprobe or tracepoint */
8153                return -EINVAL;
8154
8155        prog = bpf_prog_get(prog_fd);
8156        if (IS_ERR(prog))
8157                return PTR_ERR(prog);
8158
8159        if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8160            (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8161            (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8162                /* valid fd, but invalid bpf program type */
8163                bpf_prog_put(prog);
8164                return -EINVAL;
8165        }
8166
8167        if (is_tracepoint || is_syscall_tp) {
8168                int off = trace_event_get_offsets(event->tp_event);
8169
8170                if (prog->aux->max_ctx_offset > off) {
8171                        bpf_prog_put(prog);
8172                        return -EACCES;
8173                }
8174        }
8175        event->tp_event->prog = prog;
8176        event->tp_event->bpf_prog_owner = event;
8177
8178        return 0;
8179}
8180
8181static void perf_event_free_bpf_prog(struct perf_event *event)
8182{
8183        struct bpf_prog *prog;
8184
8185        perf_event_free_bpf_handler(event);
8186
8187        if (!event->tp_event)
8188                return;
8189
8190        prog = event->tp_event->prog;
8191        if (prog && event->tp_event->bpf_prog_owner == event) {
8192                event->tp_event->prog = NULL;
8193                bpf_prog_put(prog);
8194        }
8195}
8196
8197#else
8198
8199static inline void perf_tp_register(void)
8200{
8201}
8202
8203static void perf_event_free_filter(struct perf_event *event)
8204{
8205}
8206
8207static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8208{
8209        return -ENOENT;
8210}
8211
8212static void perf_event_free_bpf_prog(struct perf_event *event)
8213{
8214}
8215#endif /* CONFIG_EVENT_TRACING */
8216
8217#ifdef CONFIG_HAVE_HW_BREAKPOINT
8218void perf_bp_event(struct perf_event *bp, void *data)
8219{
8220        struct perf_sample_data sample;
8221        struct pt_regs *regs = data;
8222
8223        perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8224
8225        if (!bp->hw.state && !perf_exclude_event(bp, regs))
8226                perf_swevent_event(bp, 1, &sample, regs);
8227}
8228#endif
8229
8230/*
8231 * Allocate a new address filter
8232 */
8233static struct perf_addr_filter *
8234perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8235{
8236        int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8237        struct perf_addr_filter *filter;
8238
8239        filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8240        if (!filter)
8241                return NULL;
8242
8243        INIT_LIST_HEAD(&filter->entry);
8244        list_add_tail(&filter->entry, filters);
8245
8246        return filter;
8247}
8248
8249static void free_filters_list(struct list_head *filters)
8250{
8251        struct perf_addr_filter *filter, *iter;
8252
8253        list_for_each_entry_safe(filter, iter, filters, entry) {
8254                if (filter->inode)
8255                        iput(filter->inode);
8256                list_del(&filter->entry);
8257                kfree(filter);
8258        }
8259}
8260
8261/*
8262 * Free existing address filters and optionally install new ones
8263 */
8264static void perf_addr_filters_splice(struct perf_event *event,
8265                                     struct list_head *head)
8266{
8267        unsigned long flags;
8268        LIST_HEAD(list);
8269
8270        if (!has_addr_filter(event))
8271                return;
8272
8273        /* don't bother with children, they don't have their own filters */
8274        if (event->parent)
8275                return;
8276
8277        raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8278
8279        list_splice_init(&event->addr_filters.list, &list);
8280        if (head)
8281                list_splice(head, &event->addr_filters.list);
8282
8283        raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8284
8285        free_filters_list(&list);
8286}
8287
8288/*
8289 * Scan through mm's vmas and see if one of them matches the
8290 * @filter; if so, adjust filter's address range.
8291 * Called with mm::mmap_sem down for reading.
8292 */
8293static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8294                                            struct mm_struct *mm)
8295{
8296        struct vm_area_struct *vma;
8297
8298        for (vma = mm->mmap; vma; vma = vma->vm_next) {
8299                struct file *file = vma->vm_file;
8300                unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8301                unsigned long vma_size = vma->vm_end - vma->vm_start;
8302
8303                if (!file)
8304                        continue;
8305
8306                if (!perf_addr_filter_match(filter, file, off, vma_size))
8307                        continue;
8308
8309                return vma->vm_start;
8310        }
8311
8312        return 0;
8313}
8314
8315/*
8316 * Update event's address range filters based on the
8317 * task's existing mappings, if any.
8318 */
8319static void perf_event_addr_filters_apply(struct perf_event *event)
8320{
8321        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8322        struct task_struct *task = READ_ONCE(event->ctx->task);
8323        struct perf_addr_filter *filter;
8324        struct mm_struct *mm = NULL;
8325        unsigned int count = 0;
8326        unsigned long flags;
8327
8328        /*
8329         * We may observe TASK_TOMBSTONE, which means that the event tear-down
8330         * will stop on the parent's child_mutex that our caller is also holding
8331         */
8332        if (task == TASK_TOMBSTONE)
8333                return;
8334
8335        if (!ifh->nr_file_filters)
8336                return;
8337
8338        mm = get_task_mm(event->ctx->task);
8339        if (!mm)
8340                goto restart;
8341
8342        down_read(&mm->mmap_sem);
8343
8344        raw_spin_lock_irqsave(&ifh->lock, flags);
8345        list_for_each_entry(filter, &ifh->list, entry) {
8346                event->addr_filters_offs[count] = 0;
8347
8348                /*
8349                 * Adjust base offset if the filter is associated to a binary
8350                 * that needs to be mapped:
8351                 */
8352                if (filter->inode)
8353                        event->addr_filters_offs[count] =
8354                                perf_addr_filter_apply(filter, mm);
8355
8356                count++;
8357        }
8358
8359        event->addr_filters_gen++;
8360        raw_spin_unlock_irqrestore(&ifh->lock, flags);
8361
8362        up_read(&mm->mmap_sem);
8363
8364        mmput(mm);
8365
8366restart:
8367        perf_event_stop(event, 1);
8368}
8369
8370/*
8371 * Address range filtering: limiting the data to certain
8372 * instruction address ranges. Filters are ioctl()ed to us from
8373 * userspace as ascii strings.
8374 *
8375 * Filter string format:
8376 *
8377 * ACTION RANGE_SPEC
8378 * where ACTION is one of the
8379 *  * "filter": limit the trace to this region
8380 *  * "start": start tracing from this address
8381 *  * "stop": stop tracing at this address/region;
8382 * RANGE_SPEC is
8383 *  * for kernel addresses: <start address>[/<size>]
8384 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8385 *
8386 * if <size> is not specified, the range is treated as a single address.
8387 */
8388enum {
8389        IF_ACT_NONE = -1,
8390        IF_ACT_FILTER,
8391        IF_ACT_START,
8392        IF_ACT_STOP,
8393        IF_SRC_FILE,
8394        IF_SRC_KERNEL,
8395        IF_SRC_FILEADDR,
8396        IF_SRC_KERNELADDR,
8397};
8398
8399enum {
8400        IF_STATE_ACTION = 0,
8401        IF_STATE_SOURCE,
8402        IF_STATE_END,
8403};
8404
8405static const match_table_t if_tokens = {
8406        { IF_ACT_FILTER,        "filter" },
8407        { IF_ACT_START,         "start" },
8408        { IF_ACT_STOP,          "stop" },
8409        { IF_SRC_FILE,          "%u/%u@%s" },
8410        { IF_SRC_KERNEL,        "%u/%u" },
8411        { IF_SRC_FILEADDR,      "%u@%s" },
8412        { IF_SRC_KERNELADDR,    "%u" },
8413        { IF_ACT_NONE,          NULL },
8414};
8415
8416/*
8417 * Address filter string parser
8418 */
8419static int
8420perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8421                             struct list_head *filters)
8422{
8423        struct perf_addr_filter *filter = NULL;
8424        char *start, *orig, *filename = NULL;
8425        struct path path;
8426        substring_t args[MAX_OPT_ARGS];
8427        int state = IF_STATE_ACTION, token;
8428        unsigned int kernel = 0;
8429        int ret = -EINVAL;
8430
8431        orig = fstr = kstrdup(fstr, GFP_KERNEL);
8432        if (!fstr)
8433                return -ENOMEM;
8434
8435        while ((start = strsep(&fstr, " ,\n")) != NULL) {
8436                ret = -EINVAL;
8437
8438                if (!*start)
8439                        continue;
8440
8441                /* filter definition begins */
8442                if (state == IF_STATE_ACTION) {
8443                        filter = perf_addr_filter_new(event, filters);
8444                        if (!filter)
8445                                goto fail;
8446                }
8447
8448                token = match_token(start, if_tokens, args);
8449                switch (token) {
8450                case IF_ACT_FILTER:
8451                case IF_ACT_START:
8452                        filter->filter = 1;
8453
8454                case IF_ACT_STOP:
8455                        if (state != IF_STATE_ACTION)
8456                                goto fail;
8457
8458                        state = IF_STATE_SOURCE;
8459                        break;
8460
8461                case IF_SRC_KERNELADDR:
8462                case IF_SRC_KERNEL:
8463                        kernel = 1;
8464
8465                case IF_SRC_FILEADDR:
8466                case IF_SRC_FILE:
8467                        if (state != IF_STATE_SOURCE)
8468                                goto fail;
8469
8470                        if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8471                                filter->range = 1;
8472
8473                        *args[0].to = 0;
8474                        ret = kstrtoul(args[0].from, 0, &filter->offset);
8475                        if (ret)
8476                                goto fail;
8477
8478                        if (filter->range) {
8479                                *args[1].to = 0;
8480                                ret = kstrtoul(args[1].from, 0, &filter->size);
8481                                if (ret)
8482                                        goto fail;
8483                        }
8484
8485                        if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8486                                int fpos = filter->range ? 2 : 1;
8487
8488                                filename = match_strdup(&args[fpos]);
8489                                if (!filename) {
8490                                        ret = -ENOMEM;
8491                                        goto fail;
8492                                }
8493                        }
8494
8495                        state = IF_STATE_END;
8496                        break;
8497
8498                default:
8499                        goto fail;
8500                }
8501
8502                /*
8503                 * Filter definition is fully parsed, validate and install it.
8504                 * Make sure that it doesn't contradict itself or the event's
8505                 * attribute.
8506                 */
8507                if (state == IF_STATE_END) {
8508                        ret = -EINVAL;
8509                        if (kernel && event->attr.exclude_kernel)
8510                                goto fail;
8511
8512                        if (!kernel) {
8513                                if (!filename)
8514                                        goto fail;
8515
8516                                /*
8517                                 * For now, we only support file-based filters
8518                                 * in per-task events; doing so for CPU-wide
8519                                 * events requires additional context switching
8520                                 * trickery, since same object code will be
8521                                 * mapped at different virtual addresses in
8522                                 * different processes.
8523                                 */
8524                                ret = -EOPNOTSUPP;
8525                                if (!event->ctx->task)
8526                                        goto fail_free_name;
8527
8528                                /* look up the path and grab its inode */
8529                                ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8530                                if (ret)
8531                                        goto fail_free_name;
8532
8533                                filter->inode = igrab(d_inode(path.dentry));
8534                                path_put(&path);
8535                                kfree(filename);
8536                                filename = NULL;
8537
8538                                ret = -EINVAL;
8539                                if (!filter->inode ||
8540                                    !S_ISREG(filter->inode->i_mode))
8541                                        /* free_filters_list() will iput() */
8542                                        goto fail;
8543
8544                                event->addr_filters.nr_file_filters++;
8545                        }
8546
8547                        /* ready to consume more filters */
8548                        state = IF_STATE_ACTION;
8549                        filter = NULL;
8550                }
8551        }
8552
8553        if (state != IF_STATE_ACTION)
8554                goto fail;
8555
8556        kfree(orig);
8557
8558        return 0;
8559
8560fail_free_name:
8561        kfree(filename);
8562fail:
8563        free_filters_list(filters);
8564        kfree(orig);
8565
8566        return ret;
8567}
8568
8569static int
8570perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8571{
8572        LIST_HEAD(filters);
8573        int ret;
8574
8575        /*
8576         * Since this is called in perf_ioctl() path, we're already holding
8577         * ctx::mutex.
8578         */
8579        lockdep_assert_held(&event->ctx->mutex);
8580
8581        if (WARN_ON_ONCE(event->parent))
8582                return -EINVAL;
8583
8584        ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8585        if (ret)
8586                goto fail_clear_files;
8587
8588        ret = event->pmu->addr_filters_validate(&filters);
8589        if (ret)
8590                goto fail_free_filters;
8591
8592        /* remove existing filters, if any */
8593        perf_addr_filters_splice(event, &filters);
8594
8595        /* install new filters */
8596        perf_event_for_each_child(event, perf_event_addr_filters_apply);
8597
8598        return ret;
8599
8600fail_free_filters:
8601        free_filters_list(&filters);
8602
8603fail_clear_files:
8604        event->addr_filters.nr_file_filters = 0;
8605
8606        return ret;
8607}
8608
8609static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8610{
8611        char *filter_str;
8612        int ret = -EINVAL;
8613
8614        if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8615            !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8616            !has_addr_filter(event))
8617                return -EINVAL;
8618
8619        filter_str = strndup_user(arg, PAGE_SIZE);
8620        if (IS_ERR(filter_str))
8621                return PTR_ERR(filter_str);
8622
8623        if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8624            event->attr.type == PERF_TYPE_TRACEPOINT)
8625                ret = ftrace_profile_set_filter(event, event->attr.config,
8626                                                filter_str);
8627        else if (has_addr_filter(event))
8628                ret = perf_event_set_addr_filter(event, filter_str);
8629
8630        kfree(filter_str);
8631        return ret;
8632}
8633
8634/*
8635 * hrtimer based swevent callback
8636 */
8637
8638static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8639{
8640        enum hrtimer_restart ret = HRTIMER_RESTART;
8641        struct perf_sample_data data;
8642        struct pt_regs *regs;
8643        struct perf_event *event;
8644        u64 period;
8645
8646        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8647
8648        if (event->state != PERF_EVENT_STATE_ACTIVE)
8649                return HRTIMER_NORESTART;
8650
8651        event->pmu->read(event);
8652
8653        perf_sample_data_init(&data, 0, event->hw.last_period);
8654        regs = get_irq_regs();
8655
8656        if (regs && !perf_exclude_event(event, regs)) {
8657                if (!(event->attr.exclude_idle && is_idle_task(current)))
8658                        if (__perf_event_overflow(event, 1, &data, regs))
8659                                ret = HRTIMER_NORESTART;
8660        }
8661
8662        period = max_t(u64, 10000, event->hw.sample_period);
8663        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8664
8665        return ret;
8666}
8667
8668static void perf_swevent_start_hrtimer(struct perf_event *event)
8669{
8670        struct hw_perf_event *hwc = &event->hw;
8671        s64 period;
8672
8673        if (!is_sampling_event(event))
8674                return;
8675
8676        period = local64_read(&hwc->period_left);
8677        if (period) {
8678                if (period < 0)
8679                        period = 10000;
8680
8681                local64_set(&hwc->period_left, 0);
8682        } else {
8683                period = max_t(u64, 10000, hwc->sample_period);
8684        }
8685        hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8686                      HRTIMER_MODE_REL_PINNED);
8687}
8688
8689static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8690{
8691        struct hw_perf_event *hwc = &event->hw;
8692
8693        if (is_sampling_event(event)) {
8694                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8695                local64_set(&hwc->period_left, ktime_to_ns(remaining));
8696
8697                hrtimer_cancel(&hwc->hrtimer);
8698        }
8699}
8700
8701static void perf_swevent_init_hrtimer(struct perf_event *event)
8702{
8703        struct hw_perf_event *hwc = &event->hw;
8704
8705        if (!is_sampling_event(event))
8706                return;
8707
8708        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8709        hwc->hrtimer.function = perf_swevent_hrtimer;
8710
8711        /*
8712         * Since hrtimers have a fixed rate, we can do a static freq->period
8713         * mapping and avoid the whole period adjust feedback stuff.
8714         */
8715        if (event->attr.freq) {
8716                long freq = event->attr.sample_freq;
8717
8718                event->attr.sample_period = NSEC_PER_SEC / freq;
8719                hwc->sample_period = event->attr.sample_period;
8720                local64_set(&hwc->period_left, hwc->sample_period);
8721                hwc->last_period = hwc->sample_period;
8722                event->attr.freq = 0;
8723        }
8724}
8725
8726/*
8727 * Software event: cpu wall time clock
8728 */
8729
8730static void cpu_clock_event_update(struct perf_event *event)
8731{
8732        s64 prev;
8733        u64 now;
8734
8735        now = local_clock();
8736        prev = local64_xchg(&event->hw.prev_count, now);
8737        local64_add(now - prev, &event->count);
8738}
8739
8740static void cpu_clock_event_start(struct perf_event *event, int flags)
8741{
8742        local64_set(&event->hw.prev_count, local_clock());
8743        perf_swevent_start_hrtimer(event);
8744}
8745
8746static void cpu_clock_event_stop(struct perf_event *event, int flags)
8747{
8748        perf_swevent_cancel_hrtimer(event);
8749        cpu_clock_event_update(event);
8750}
8751
8752static int cpu_clock_event_add(struct perf_event *event, int flags)
8753{
8754        if (flags & PERF_EF_START)
8755                cpu_clock_event_start(event, flags);
8756        perf_event_update_userpage(event);
8757
8758        return 0;
8759}
8760
8761static void cpu_clock_event_del(struct perf_event *event, int flags)
8762{
8763        cpu_clock_event_stop(event, flags);
8764}
8765
8766static void cpu_clock_event_read(struct perf_event *event)
8767{
8768        cpu_clock_event_update(event);
8769}
8770
8771static int cpu_clock_event_init(struct perf_event *event)
8772{
8773        if (event->attr.type != PERF_TYPE_SOFTWARE)
8774                return -ENOENT;
8775
8776        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8777                return -ENOENT;
8778
8779        /*
8780         * no branch sampling for software events
8781         */
8782        if (has_branch_stack(event))
8783                return -EOPNOTSUPP;
8784
8785        perf_swevent_init_hrtimer(event);
8786
8787        return 0;
8788}
8789
8790static struct pmu perf_cpu_clock = {
8791        .task_ctx_nr    = perf_sw_context,
8792
8793        .capabilities   = PERF_PMU_CAP_NO_NMI,
8794
8795        .event_init     = cpu_clock_event_init,
8796        .add            = cpu_clock_event_add,
8797        .del            = cpu_clock_event_del,
8798        .start          = cpu_clock_event_start,
8799        .stop           = cpu_clock_event_stop,
8800        .read           = cpu_clock_event_read,
8801};
8802
8803/*
8804 * Software event: task time clock
8805 */
8806
8807static void task_clock_event_update(struct perf_event *event, u64 now)
8808{
8809        u64 prev;
8810        s64 delta;
8811
8812        prev = local64_xchg(&event->hw.prev_count, now);
8813        delta = now - prev;
8814        local64_add(delta, &event->count);
8815}
8816
8817static void task_clock_event_start(struct perf_event *event, int flags)
8818{
8819        local64_set(&event->hw.prev_count, event->ctx->time);
8820        perf_swevent_start_hrtimer(event);
8821}
8822
8823static void task_clock_event_stop(struct perf_event *event, int flags)
8824{
8825        perf_swevent_cancel_hrtimer(event);
8826        task_clock_event_update(event, event->ctx->time);
8827}
8828
8829static int task_clock_event_add(struct perf_event *event, int flags)
8830{
8831        if (flags & PERF_EF_START)
8832                task_clock_event_start(event, flags);
8833        perf_event_update_userpage(event);
8834
8835        return 0;
8836}
8837
8838static void task_clock_event_del(struct perf_event *event, int flags)
8839{
8840        task_clock_event_stop(event, PERF_EF_UPDATE);
8841}
8842
8843static void task_clock_event_read(struct perf_event *event)
8844{
8845        u64 now = perf_clock();
8846        u64 delta = now - event->ctx->timestamp;
8847        u64 time = event->ctx->time + delta;
8848
8849        task_clock_event_update(event, time);
8850}
8851
8852static int task_clock_event_init(struct perf_event *event)
8853{
8854        if (event->attr.type != PERF_TYPE_SOFTWARE)
8855                return -ENOENT;
8856
8857        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8858                return -ENOENT;
8859
8860        /*
8861         * no branch sampling for software events
8862         */
8863        if (has_branch_stack(event))
8864                return -EOPNOTSUPP;
8865
8866        perf_swevent_init_hrtimer(event);
8867
8868        return 0;
8869}
8870
8871static struct pmu perf_task_clock = {
8872        .task_ctx_nr    = perf_sw_context,
8873
8874        .capabilities   = PERF_PMU_CAP_NO_NMI,
8875
8876        .event_init     = task_clock_event_init,
8877        .add            = task_clock_event_add,
8878        .del            = task_clock_event_del,
8879        .start          = task_clock_event_start,
8880        .stop           = task_clock_event_stop,
8881        .read           = task_clock_event_read,
8882};
8883
8884static void perf_pmu_nop_void(struct pmu *pmu)
8885{
8886}
8887
8888static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8889{
8890}
8891
8892static int perf_pmu_nop_int(struct pmu *pmu)
8893{
8894        return 0;
8895}
8896
8897static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8898
8899static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8900{
8901        __this_cpu_write(nop_txn_flags, flags);
8902
8903        if (flags & ~PERF_PMU_TXN_ADD)
8904                return;
8905
8906        perf_pmu_disable(pmu);
8907}
8908
8909static int perf_pmu_commit_txn(struct pmu *pmu)
8910{
8911        unsigned int flags = __this_cpu_read(nop_txn_flags);
8912
8913        __this_cpu_write(nop_txn_flags, 0);
8914
8915        if (flags & ~PERF_PMU_TXN_ADD)
8916                return 0;
8917
8918        perf_pmu_enable(pmu);
8919        return 0;
8920}
8921
8922static void perf_pmu_cancel_txn(struct pmu *pmu)
8923{
8924        unsigned int flags =  __this_cpu_read(nop_txn_flags);
8925
8926        __this_cpu_write(nop_txn_flags, 0);
8927
8928        if (flags & ~PERF_PMU_TXN_ADD)
8929                return;
8930
8931        perf_pmu_enable(pmu);
8932}
8933
8934static int perf_event_idx_default(struct perf_event *event)
8935{
8936        return 0;
8937}
8938
8939/*
8940 * Ensures all contexts with the same task_ctx_nr have the same
8941 * pmu_cpu_context too.
8942 */
8943static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8944{
8945        struct pmu *pmu;
8946
8947        if (ctxn < 0)
8948                return NULL;
8949
8950        list_for_each_entry(pmu, &pmus, entry) {
8951                if (pmu->task_ctx_nr == ctxn)
8952                        return pmu->pmu_cpu_context;
8953        }
8954
8955        return NULL;
8956}
8957
8958static void free_pmu_context(struct pmu *pmu)
8959{
8960        /*
8961         * Static contexts such as perf_sw_context have a global lifetime
8962         * and may be shared between different PMUs. Avoid freeing them
8963         * when a single PMU is going away.
8964         */
8965        if (pmu->task_ctx_nr > perf_invalid_context)
8966                return;
8967
8968        mutex_lock(&pmus_lock);
8969        free_percpu(pmu->pmu_cpu_context);
8970        mutex_unlock(&pmus_lock);
8971}
8972
8973/*
8974 * Let userspace know that this PMU supports address range filtering:
8975 */
8976static ssize_t nr_addr_filters_show(struct device *dev,
8977                                    struct device_attribute *attr,
8978                                    char *page)
8979{
8980        struct pmu *pmu = dev_get_drvdata(dev);
8981
8982        return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8983}
8984DEVICE_ATTR_RO(nr_addr_filters);
8985
8986static struct idr pmu_idr;
8987
8988static ssize_t
8989type_show(struct device *dev, struct device_attribute *attr, char *page)
8990{
8991        struct pmu *pmu = dev_get_drvdata(dev);
8992
8993        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8994}
8995static DEVICE_ATTR_RO(type);
8996
8997static ssize_t
8998perf_event_mux_interval_ms_show(struct device *dev,
8999                                struct device_attribute *attr,
9000                                char *page)
9001{
9002        struct pmu *pmu = dev_get_drvdata(dev);
9003
9004        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9005}
9006
9007static DEFINE_MUTEX(mux_interval_mutex);
9008
9009static ssize_t
9010perf_event_mux_interval_ms_store(struct device *dev,
9011                                 struct device_attribute *attr,
9012                                 const char *buf, size_t count)
9013{
9014        struct pmu *pmu = dev_get_drvdata(dev);
9015        int timer, cpu, ret;
9016
9017        ret = kstrtoint(buf, 0, &timer);
9018        if (ret)
9019                return ret;
9020
9021        if (timer < 1)
9022                return -EINVAL;
9023
9024        /* same value, noting to do */
9025        if (timer == pmu->hrtimer_interval_ms)
9026                return count;
9027
9028        mutex_lock(&mux_interval_mutex);
9029        pmu->hrtimer_interval_ms = timer;
9030
9031        /* update all cpuctx for this PMU */
9032        cpus_read_lock();
9033        for_each_online_cpu(cpu) {
9034                struct perf_cpu_context *cpuctx;
9035                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9036                cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9037
9038                cpu_function_call(cpu,
9039                        (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9040        }
9041        cpus_read_unlock();
9042        mutex_unlock(&mux_interval_mutex);
9043
9044        return count;
9045}
9046static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9047
9048static struct attribute *pmu_dev_attrs[] = {
9049        &dev_attr_type.attr,
9050        &dev_attr_perf_event_mux_interval_ms.attr,
9051        NULL,
9052};
9053ATTRIBUTE_GROUPS(pmu_dev);
9054
9055static int pmu_bus_running;
9056static struct bus_type pmu_bus = {
9057        .name           = "event_source",
9058        .dev_groups     = pmu_dev_groups,
9059};
9060
9061static void pmu_dev_release(struct device *dev)
9062{
9063        kfree(dev);
9064}
9065
9066static int pmu_dev_alloc(struct pmu *pmu)
9067{
9068        int ret = -ENOMEM;
9069
9070        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9071        if (!pmu->dev)
9072                goto out;
9073
9074        pmu->dev->groups = pmu->attr_groups;
9075        device_initialize(pmu->dev);
9076        ret = dev_set_name(pmu->dev, "%s", pmu->name);
9077        if (ret)
9078                goto free_dev;
9079
9080        dev_set_drvdata(pmu->dev, pmu);
9081        pmu->dev->bus = &pmu_bus;
9082        pmu->dev->release = pmu_dev_release;
9083        ret = device_add(pmu->dev);
9084        if (ret)
9085                goto free_dev;
9086
9087        /* For PMUs with address filters, throw in an extra attribute: */
9088        if (pmu->nr_addr_filters)
9089                ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9090
9091        if (ret)
9092                goto del_dev;
9093
9094out:
9095        return ret;
9096
9097del_dev:
9098        device_del(pmu->dev);
9099
9100free_dev:
9101        put_device(pmu->dev);
9102        goto out;
9103}
9104
9105static struct lock_class_key cpuctx_mutex;
9106static struct lock_class_key cpuctx_lock;
9107
9108int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9109{
9110        int cpu, ret;
9111
9112        mutex_lock(&pmus_lock);
9113        ret = -ENOMEM;
9114        pmu->pmu_disable_count = alloc_percpu(int);
9115        if (!pmu->pmu_disable_count)
9116                goto unlock;
9117
9118        pmu->type = -1;
9119        if (!name)
9120                goto skip_type;
9121        pmu->name = name;
9122
9123        if (type < 0) {
9124                type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9125                if (type < 0) {
9126                        ret = type;
9127                        goto free_pdc;
9128                }
9129        }
9130        pmu->type = type;
9131
9132        if (pmu_bus_running) {
9133                ret = pmu_dev_alloc(pmu);
9134                if (ret)
9135                        goto free_idr;
9136        }
9137
9138skip_type:
9139        if (pmu->task_ctx_nr == perf_hw_context) {
9140                static int hw_context_taken = 0;
9141
9142                /*
9143                 * Other than systems with heterogeneous CPUs, it never makes
9144                 * sense for two PMUs to share perf_hw_context. PMUs which are
9145                 * uncore must use perf_invalid_context.
9146                 */
9147                if (WARN_ON_ONCE(hw_context_taken &&
9148                    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9149                        pmu->task_ctx_nr = perf_invalid_context;
9150
9151                hw_context_taken = 1;
9152        }
9153
9154        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9155        if (pmu->pmu_cpu_context)
9156                goto got_cpu_context;
9157
9158        ret = -ENOMEM;
9159        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9160        if (!pmu->pmu_cpu_context)
9161                goto free_dev;
9162
9163        for_each_possible_cpu(cpu) {
9164                struct perf_cpu_context *cpuctx;
9165
9166                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9167                __perf_event_init_context(&cpuctx->ctx);
9168                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9169                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9170                cpuctx->ctx.pmu = pmu;
9171                cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9172
9173                __perf_mux_hrtimer_init(cpuctx, cpu);
9174        }
9175
9176got_cpu_context:
9177        if (!pmu->start_txn) {
9178                if (pmu->pmu_enable) {
9179                        /*
9180                         * If we have pmu_enable/pmu_disable calls, install
9181                         * transaction stubs that use that to try and batch
9182                         * hardware accesses.
9183                         */
9184                        pmu->start_txn  = perf_pmu_start_txn;
9185                        pmu->commit_txn = perf_pmu_commit_txn;
9186                        pmu->cancel_txn = perf_pmu_cancel_txn;
9187                } else {
9188                        pmu->start_txn  = perf_pmu_nop_txn;
9189                        pmu->commit_txn = perf_pmu_nop_int;
9190                        pmu->cancel_txn = perf_pmu_nop_void;
9191                }
9192        }
9193
9194        if (!pmu->pmu_enable) {
9195                pmu->pmu_enable  = perf_pmu_nop_void;
9196                pmu->pmu_disable = perf_pmu_nop_void;
9197        }
9198
9199        if (!pmu->event_idx)
9200                pmu->event_idx = perf_event_idx_default;
9201
9202        list_add_rcu(&pmu->entry, &pmus);
9203        atomic_set(&pmu->exclusive_cnt, 0);
9204        ret = 0;
9205unlock:
9206        mutex_unlock(&pmus_lock);
9207
9208        return ret;
9209
9210free_dev:
9211        device_del(pmu->dev);
9212        put_device(pmu->dev);
9213
9214free_idr:
9215        if (pmu->type >= PERF_TYPE_MAX)
9216                idr_remove(&pmu_idr, pmu->type);
9217
9218free_pdc:
9219        free_percpu(pmu->pmu_disable_count);
9220        goto unlock;
9221}
9222EXPORT_SYMBOL_GPL(perf_pmu_register);
9223
9224void perf_pmu_unregister(struct pmu *pmu)
9225{
9226        int remove_device;
9227
9228        mutex_lock(&pmus_lock);
9229        remove_device = pmu_bus_running;
9230        list_del_rcu(&pmu->entry);
9231        mutex_unlock(&pmus_lock);
9232
9233        /*
9234         * We dereference the pmu list under both SRCU and regular RCU, so
9235         * synchronize against both of those.
9236         */
9237        synchronize_srcu(&pmus_srcu);
9238        synchronize_rcu();
9239
9240        free_percpu(pmu->pmu_disable_count);
9241        if (pmu->type >= PERF_TYPE_MAX)
9242                idr_remove(&pmu_idr, pmu->type);
9243        if (remove_device) {
9244                if (pmu->nr_addr_filters)
9245                        device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9246                device_del(pmu->dev);
9247                put_device(pmu->dev);
9248        }
9249        free_pmu_context(pmu);
9250}
9251EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9252
9253static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9254{
9255        struct perf_event_context *ctx = NULL;
9256        int ret;
9257
9258        if (!try_module_get(pmu->module))
9259                return -ENODEV;
9260
9261        if (event->group_leader != event) {
9262                /*
9263                 * This ctx->mutex can nest when we're called through
9264                 * inheritance. See the perf_event_ctx_lock_nested() comment.
9265                 */
9266                ctx = perf_event_ctx_lock_nested(event->group_leader,
9267                                                 SINGLE_DEPTH_NESTING);
9268                BUG_ON(!ctx);
9269        }
9270
9271        event->pmu = pmu;
9272        ret = pmu->event_init(event);
9273
9274        if (ctx)
9275                perf_event_ctx_unlock(event->group_leader, ctx);
9276
9277        if (ret)
9278                module_put(pmu->module);
9279
9280        return ret;
9281}
9282
9283static struct pmu *perf_init_event(struct perf_event *event)
9284{
9285        struct pmu *pmu;
9286        int idx;
9287        int ret;
9288
9289        idx = srcu_read_lock(&pmus_srcu);
9290
9291        /* Try parent's PMU first: */
9292        if (event->parent && event->parent->pmu) {
9293                pmu = event->parent->pmu;
9294                ret = perf_try_init_event(pmu, event);
9295                if (!ret)
9296                        goto unlock;
9297        }
9298
9299        rcu_read_lock();
9300        pmu = idr_find(&pmu_idr, event->attr.type);
9301        rcu_read_unlock();
9302        if (pmu) {
9303                ret = perf_try_init_event(pmu, event);
9304                if (ret)
9305                        pmu = ERR_PTR(ret);
9306                goto unlock;
9307        }
9308
9309        list_for_each_entry_rcu(pmu, &pmus, entry) {
9310                ret = perf_try_init_event(pmu, event);
9311                if (!ret)
9312                        goto unlock;
9313
9314                if (ret != -ENOENT) {
9315                        pmu = ERR_PTR(ret);
9316                        goto unlock;
9317                }
9318        }
9319        pmu = ERR_PTR(-ENOENT);
9320unlock:
9321        srcu_read_unlock(&pmus_srcu, idx);
9322
9323        return pmu;
9324}
9325
9326static void attach_sb_event(struct perf_event *event)
9327{
9328        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9329
9330        raw_spin_lock(&pel->lock);
9331        list_add_rcu(&event->sb_list, &pel->list);
9332        raw_spin_unlock(&pel->lock);
9333}
9334
9335/*
9336 * We keep a list of all !task (and therefore per-cpu) events
9337 * that need to receive side-band records.
9338 *
9339 * This avoids having to scan all the various PMU per-cpu contexts
9340 * looking for them.
9341 */
9342static void account_pmu_sb_event(struct perf_event *event)
9343{
9344        if (is_sb_event(event))
9345                attach_sb_event(event);
9346}
9347
9348static void account_event_cpu(struct perf_event *event, int cpu)
9349{
9350        if (event->parent)
9351                return;
9352
9353        if (is_cgroup_event(event))
9354                atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9355}
9356
9357/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9358static void account_freq_event_nohz(void)
9359{
9360#ifdef CONFIG_NO_HZ_FULL
9361        /* Lock so we don't race with concurrent unaccount */
9362        spin_lock(&nr_freq_lock);
9363        if (atomic_inc_return(&nr_freq_events) == 1)
9364                tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9365        spin_unlock(&nr_freq_lock);
9366#endif
9367}
9368
9369static void account_freq_event(void)
9370{
9371        if (tick_nohz_full_enabled())
9372                account_freq_event_nohz();
9373        else
9374                atomic_inc(&nr_freq_events);
9375}
9376
9377
9378static void account_event(struct perf_event *event)
9379{
9380        bool inc = false;
9381
9382        if (event->parent)
9383                return;
9384
9385        if (event->attach_state & PERF_ATTACH_TASK)
9386                inc = true;
9387        if (event->attr.mmap || event->attr.mmap_data)
9388                atomic_inc(&nr_mmap_events);
9389        if (event->attr.comm)
9390                atomic_inc(&nr_comm_events);
9391        if (event->attr.namespaces)
9392                atomic_inc(&nr_namespaces_events);
9393        if (event->attr.task)
9394                atomic_inc(&nr_task_events);
9395        if (event->attr.freq)
9396                account_freq_event();
9397        if (event->attr.context_switch) {
9398                atomic_inc(&nr_switch_events);
9399                inc = true;
9400        }
9401        if (has_branch_stack(event))
9402                inc = true;
9403        if (is_cgroup_event(event))
9404                inc = true;
9405
9406        if (inc) {
9407                if (atomic_inc_not_zero(&perf_sched_count))
9408                        goto enabled;
9409
9410                mutex_lock(&perf_sched_mutex);
9411                if (!atomic_read(&perf_sched_count)) {
9412                        static_branch_enable(&perf_sched_events);
9413                        /*
9414                         * Guarantee that all CPUs observe they key change and
9415                         * call the perf scheduling hooks before proceeding to
9416                         * install events that need them.
9417                         */
9418                        synchronize_sched();
9419                }
9420                /*
9421                 * Now that we have waited for the sync_sched(), allow further
9422                 * increments to by-pass the mutex.
9423                 */
9424                atomic_inc(&perf_sched_count);
9425                mutex_unlock(&perf_sched_mutex);
9426        }
9427enabled:
9428
9429        account_event_cpu(event, event->cpu);
9430
9431        account_pmu_sb_event(event);
9432}
9433
9434/*
9435 * Allocate and initialize a event structure
9436 */
9437static struct perf_event *
9438perf_event_alloc(struct perf_event_attr *attr, int cpu,
9439                 struct task_struct *task,
9440                 struct perf_event *group_leader,
9441                 struct perf_event *parent_event,
9442                 perf_overflow_handler_t overflow_handler,
9443                 void *context, int cgroup_fd)
9444{
9445        struct pmu *pmu;
9446        struct perf_event *event;
9447        struct hw_perf_event *hwc;
9448        long err = -EINVAL;
9449
9450        if ((unsigned)cpu >= nr_cpu_ids) {
9451                if (!task || cpu != -1)
9452                        return ERR_PTR(-EINVAL);
9453        }
9454
9455        event = kzalloc(sizeof(*event), GFP_KERNEL);
9456        if (!event)
9457                return ERR_PTR(-ENOMEM);
9458
9459        /*
9460         * Single events are their own group leaders, with an
9461         * empty sibling list:
9462         */
9463        if (!group_leader)
9464                group_leader = event;
9465
9466        mutex_init(&event->child_mutex);
9467        INIT_LIST_HEAD(&event->child_list);
9468
9469        INIT_LIST_HEAD(&event->group_entry);
9470        INIT_LIST_HEAD(&event->event_entry);
9471        INIT_LIST_HEAD(&event->sibling_list);
9472        INIT_LIST_HEAD(&event->rb_entry);
9473        INIT_LIST_HEAD(&event->active_entry);
9474        INIT_LIST_HEAD(&event->addr_filters.list);
9475        INIT_HLIST_NODE(&event->hlist_entry);
9476
9477
9478        init_waitqueue_head(&event->waitq);
9479        init_irq_work(&event->pending, perf_pending_event);
9480
9481        mutex_init(&event->mmap_mutex);
9482        raw_spin_lock_init(&event->addr_filters.lock);
9483
9484        atomic_long_set(&event->refcount, 1);
9485        event->cpu              = cpu;
9486        event->attr             = *attr;
9487        event->group_leader     = group_leader;
9488        event->pmu              = NULL;
9489        event->oncpu            = -1;
9490
9491        event->parent           = parent_event;
9492
9493        event->ns               = get_pid_ns(task_active_pid_ns(current));
9494        event->id               = atomic64_inc_return(&perf_event_id);
9495
9496        event->state            = PERF_EVENT_STATE_INACTIVE;
9497
9498        if (task) {
9499                event->attach_state = PERF_ATTACH_TASK;
9500                /*
9501                 * XXX pmu::event_init needs to know what task to account to
9502                 * and we cannot use the ctx information because we need the
9503                 * pmu before we get a ctx.
9504                 */
9505                event->hw.target = task;
9506        }
9507
9508        event->clock = &local_clock;
9509        if (parent_event)
9510                event->clock = parent_event->clock;
9511
9512        if (!overflow_handler && parent_event) {
9513                overflow_handler = parent_event->overflow_handler;
9514                context = parent_event->overflow_handler_context;
9515#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9516                if (overflow_handler == bpf_overflow_handler) {
9517                        struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9518
9519                        if (IS_ERR(prog)) {
9520                                err = PTR_ERR(prog);
9521                                goto err_ns;
9522                        }
9523                        event->prog = prog;
9524                        event->orig_overflow_handler =
9525                                parent_event->orig_overflow_handler;
9526                }
9527#endif
9528        }
9529
9530        if (overflow_handler) {
9531                event->overflow_handler = overflow_handler;
9532                event->overflow_handler_context = context;
9533        } else if (is_write_backward(event)){
9534                event->overflow_handler = perf_event_output_backward;
9535                event->overflow_handler_context = NULL;
9536        } else {
9537                event->overflow_handler = perf_event_output_forward;
9538                event->overflow_handler_context = NULL;
9539        }
9540
9541        perf_event__state_init(event);
9542
9543        pmu = NULL;
9544
9545        hwc = &event->hw;
9546        hwc->sample_period = attr->sample_period;
9547        if (attr->freq && attr->sample_freq)
9548                hwc->sample_period = 1;
9549        hwc->last_period = hwc->sample_period;
9550
9551        local64_set(&hwc->period_left, hwc->sample_period);
9552
9553        /*
9554         * We currently do not support PERF_SAMPLE_READ on inherited events.
9555         * See perf_output_read().
9556         */
9557        if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9558                goto err_ns;
9559
9560        if (!has_branch_stack(event))
9561                event->attr.branch_sample_type = 0;
9562
9563        if (cgroup_fd != -1) {
9564                err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9565                if (err)
9566                        goto err_ns;
9567        }
9568
9569        pmu = perf_init_event(event);
9570        if (IS_ERR(pmu)) {
9571                err = PTR_ERR(pmu);
9572                goto err_ns;
9573        }
9574
9575        err = exclusive_event_init(event);
9576        if (err)
9577                goto err_pmu;
9578
9579        if (has_addr_filter(event)) {
9580                event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9581                                                   sizeof(unsigned long),
9582                                                   GFP_KERNEL);
9583                if (!event->addr_filters_offs) {
9584                        err = -ENOMEM;
9585                        goto err_per_task;
9586                }
9587
9588                /* force hw sync on the address filters */
9589                event->addr_filters_gen = 1;
9590        }
9591
9592        if (!event->parent) {
9593                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9594                        err = get_callchain_buffers(attr->sample_max_stack);
9595                        if (err)
9596                                goto err_addr_filters;
9597                }
9598        }
9599
9600        /* symmetric to unaccount_event() in _free_event() */
9601        account_event(event);
9602
9603        return event;
9604
9605err_addr_filters:
9606        kfree(event->addr_filters_offs);
9607
9608err_per_task:
9609        exclusive_event_destroy(event);
9610
9611err_pmu:
9612        if (event->destroy)
9613                event->destroy(event);
9614        module_put(pmu->module);
9615err_ns:
9616        if (is_cgroup_event(event))
9617                perf_detach_cgroup(event);
9618        if (event->ns)
9619                put_pid_ns(event->ns);
9620        kfree(event);
9621
9622        return ERR_PTR(err);
9623}
9624
9625static int perf_copy_attr(struct perf_event_attr __user *uattr,
9626                          struct perf_event_attr *attr)
9627{
9628        u32 size;
9629        int ret;
9630
9631        if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9632                return -EFAULT;
9633
9634        /*
9635         * zero the full structure, so that a short copy will be nice.
9636         */
9637        memset(attr, 0, sizeof(*attr));
9638
9639        ret = get_user(size, &uattr->size);
9640        if (ret)
9641                return ret;
9642
9643        if (size > PAGE_SIZE)   /* silly large */
9644                goto err_size;
9645
9646        if (!size)              /* abi compat */
9647                size = PERF_ATTR_SIZE_VER0;
9648
9649        if (size < PERF_ATTR_SIZE_VER0)
9650                goto err_size;
9651
9652        /*
9653         * If we're handed a bigger struct than we know of,
9654         * ensure all the unknown bits are 0 - i.e. new
9655         * user-space does not rely on any kernel feature
9656         * extensions we dont know about yet.
9657         */
9658        if (size > sizeof(*attr)) {
9659                unsigned char __user *addr;
9660                unsigned char __user *end;
9661                unsigned char val;
9662
9663                addr = (void __user *)uattr + sizeof(*attr);
9664                end  = (void __user *)uattr + size;
9665
9666                for (; addr < end; addr++) {
9667                        ret = get_user(val, addr);
9668                        if (ret)
9669                                return ret;
9670                        if (val)
9671                                goto err_size;
9672                }
9673                size = sizeof(*attr);
9674        }
9675
9676        ret = copy_from_user(attr, uattr, size);
9677        if (ret)
9678                return -EFAULT;
9679
9680        attr->size = size;
9681
9682        if (attr->__reserved_1)
9683                return -EINVAL;
9684
9685        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9686                return -EINVAL;
9687
9688        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9689                return -EINVAL;
9690
9691        if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9692                u64 mask = attr->branch_sample_type;
9693
9694                /* only using defined bits */
9695                if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9696                        return -EINVAL;
9697
9698                /* at least one branch bit must be set */
9699                if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9700                        return -EINVAL;
9701
9702                /* propagate priv level, when not set for branch */
9703                if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9704
9705                        /* exclude_kernel checked on syscall entry */
9706                        if (!attr->exclude_kernel)
9707                                mask |= PERF_SAMPLE_BRANCH_KERNEL;
9708
9709                        if (!attr->exclude_user)
9710                                mask |= PERF_SAMPLE_BRANCH_USER;
9711
9712                        if (!attr->exclude_hv)
9713                                mask |= PERF_SAMPLE_BRANCH_HV;
9714                        /*
9715                         * adjust user setting (for HW filter setup)
9716                         */
9717                        attr->branch_sample_type = mask;
9718                }
9719                /* privileged levels capture (kernel, hv): check permissions */
9720                if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9721                    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9722                        return -EACCES;
9723        }
9724
9725        if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9726                ret = perf_reg_validate(attr->sample_regs_user);
9727                if (ret)
9728                        return ret;
9729        }
9730
9731        if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9732                if (!arch_perf_have_user_stack_dump())
9733                        return -ENOSYS;
9734
9735                /*
9736                 * We have __u32 type for the size, but so far
9737                 * we can only use __u16 as maximum due to the
9738                 * __u16 sample size limit.
9739                 */
9740                if (attr->sample_stack_user >= USHRT_MAX)
9741                        ret = -EINVAL;
9742                else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9743                        ret = -EINVAL;
9744        }
9745
9746        if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9747                ret = perf_reg_validate(attr->sample_regs_intr);
9748out:
9749        return ret;
9750
9751err_size:
9752        put_user(sizeof(*attr), &uattr->size);
9753        ret = -E2BIG;
9754        goto out;
9755}
9756
9757static int
9758perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9759{
9760        struct ring_buffer *rb = NULL;
9761        int ret = -EINVAL;
9762
9763        if (!output_event)
9764                goto set;
9765
9766        /* don't allow circular references */
9767        if (event == output_event)
9768                goto out;
9769
9770        /*
9771         * Don't allow cross-cpu buffers
9772         */
9773        if (output_event->cpu != event->cpu)
9774                goto out;
9775
9776        /*
9777         * If its not a per-cpu rb, it must be the same task.
9778         */
9779        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9780                goto out;
9781
9782        /*
9783         * Mixing clocks in the same buffer is trouble you don't need.
9784         */
9785        if (output_event->clock != event->clock)
9786                goto out;
9787
9788        /*
9789         * Either writing ring buffer from beginning or from end.
9790         * Mixing is not allowed.
9791         */
9792        if (is_write_backward(output_event) != is_write_backward(event))
9793                goto out;
9794
9795        /*
9796         * If both events generate aux data, they must be on the same PMU
9797         */
9798        if (has_aux(event) && has_aux(output_event) &&
9799            event->pmu != output_event->pmu)
9800                goto out;
9801
9802set:
9803        mutex_lock(&event->mmap_mutex);
9804        /* Can't redirect output if we've got an active mmap() */
9805        if (atomic_read(&event->mmap_count))
9806                goto unlock;
9807
9808        if (output_event) {
9809                /* get the rb we want to redirect to */
9810                rb = ring_buffer_get(output_event);
9811                if (!rb)
9812                        goto unlock;
9813        }
9814
9815        ring_buffer_attach(event, rb);
9816
9817        ret = 0;
9818unlock:
9819        mutex_unlock(&event->mmap_mutex);
9820
9821out:
9822        return ret;
9823}
9824
9825static void mutex_lock_double(struct mutex *a, struct mutex *b)
9826{
9827        if (b < a)
9828                swap(a, b);
9829
9830        mutex_lock(a);
9831        mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9832}
9833
9834static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9835{
9836        bool nmi_safe = false;
9837
9838        switch (clk_id) {
9839        case CLOCK_MONOTONIC:
9840                event->clock = &ktime_get_mono_fast_ns;
9841                nmi_safe = true;
9842                break;
9843
9844        case CLOCK_MONOTONIC_RAW:
9845                event->clock = &ktime_get_raw_fast_ns;
9846                nmi_safe = true;
9847                break;
9848
9849        case CLOCK_REALTIME:
9850                event->clock = &ktime_get_real_ns;
9851                break;
9852
9853        case CLOCK_BOOTTIME:
9854                event->clock = &ktime_get_boot_ns;
9855                break;
9856
9857        case CLOCK_TAI:
9858                event->clock = &ktime_get_tai_ns;
9859                break;
9860
9861        default:
9862                return -EINVAL;
9863        }
9864
9865        if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9866                return -EINVAL;
9867
9868        return 0;
9869}
9870
9871/*
9872 * Variation on perf_event_ctx_lock_nested(), except we take two context
9873 * mutexes.
9874 */
9875static struct perf_event_context *
9876__perf_event_ctx_lock_double(struct perf_event *group_leader,
9877                             struct perf_event_context *ctx)
9878{
9879        struct perf_event_context *gctx;
9880
9881again:
9882        rcu_read_lock();
9883        gctx = READ_ONCE(group_leader->ctx);
9884        if (!atomic_inc_not_zero(&gctx->refcount)) {
9885                rcu_read_unlock();
9886                goto again;
9887        }
9888        rcu_read_unlock();
9889
9890        mutex_lock_double(&gctx->mutex, &ctx->mutex);
9891
9892        if (group_leader->ctx != gctx) {
9893                mutex_unlock(&ctx->mutex);
9894                mutex_unlock(&gctx->mutex);
9895                put_ctx(gctx);
9896                goto again;
9897        }
9898
9899        return gctx;
9900}
9901
9902/**
9903 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9904 *
9905 * @attr_uptr:  event_id type attributes for monitoring/sampling
9906 * @pid:                target pid
9907 * @cpu:                target cpu
9908 * @group_fd:           group leader event fd
9909 */
9910SYSCALL_DEFINE5(perf_event_open,
9911                struct perf_event_attr __user *, attr_uptr,
9912                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9913{
9914        struct perf_event *group_leader = NULL, *output_event = NULL;
9915        struct perf_event *event, *sibling;
9916        struct perf_event_attr attr;
9917        struct perf_event_context *ctx, *uninitialized_var(gctx);
9918        struct file *event_file = NULL;
9919        struct fd group = {NULL, 0};
9920        struct task_struct *task = NULL;
9921        struct pmu *pmu;
9922        int event_fd;
9923        int move_group = 0;
9924        int err;
9925        int f_flags = O_RDWR;
9926        int cgroup_fd = -1;
9927
9928        /* for future expandability... */
9929        if (flags & ~PERF_FLAG_ALL)
9930                return -EINVAL;
9931
9932        err = perf_copy_attr(attr_uptr, &attr);
9933        if (err)
9934                return err;
9935
9936        if (!attr.exclude_kernel) {
9937                if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9938                        return -EACCES;
9939        }
9940
9941        if (attr.namespaces) {
9942                if (!capable(CAP_SYS_ADMIN))
9943                        return -EACCES;
9944        }
9945
9946        if (attr.freq) {
9947                if (attr.sample_freq > sysctl_perf_event_sample_rate)
9948                        return -EINVAL;
9949        } else {
9950                if (attr.sample_period & (1ULL << 63))
9951                        return -EINVAL;
9952        }
9953
9954        /* Only privileged users can get physical addresses */
9955        if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9956            perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9957                return -EACCES;
9958
9959        if (!attr.sample_max_stack)
9960                attr.sample_max_stack = sysctl_perf_event_max_stack;
9961
9962        /*
9963         * In cgroup mode, the pid argument is used to pass the fd
9964         * opened to the cgroup directory in cgroupfs. The cpu argument
9965         * designates the cpu on which to monitor threads from that
9966         * cgroup.
9967         */
9968        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9969                return -EINVAL;
9970
9971        if (flags & PERF_FLAG_FD_CLOEXEC)
9972                f_flags |= O_CLOEXEC;
9973
9974        event_fd = get_unused_fd_flags(f_flags);
9975        if (event_fd < 0)
9976                return event_fd;
9977
9978        if (group_fd != -1) {
9979                err = perf_fget_light(group_fd, &group);
9980                if (err)
9981                        goto err_fd;
9982                group_leader = group.file->private_data;
9983                if (flags & PERF_FLAG_FD_OUTPUT)
9984                        output_event = group_leader;
9985                if (flags & PERF_FLAG_FD_NO_GROUP)
9986                        group_leader = NULL;
9987        }
9988
9989        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9990                task = find_lively_task_by_vpid(pid);
9991                if (IS_ERR(task)) {
9992                        err = PTR_ERR(task);
9993                        goto err_group_fd;
9994                }
9995        }
9996
9997        if (task && group_leader &&
9998            group_leader->attr.inherit != attr.inherit) {
9999                err = -EINVAL;
10000                goto err_task;
10001        }
10002
10003        if (task) {
10004                err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10005                if (err)
10006                        goto err_task;
10007
10008                /*
10009                 * Reuse ptrace permission checks for now.
10010                 *
10011                 * We must hold cred_guard_mutex across this and any potential
10012                 * perf_install_in_context() call for this new event to
10013                 * serialize against exec() altering our credentials (and the
10014                 * perf_event_exit_task() that could imply).
10015                 */
10016                err = -EACCES;
10017                if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10018                        goto err_cred;
10019        }
10020
10021        if (flags & PERF_FLAG_PID_CGROUP)
10022                cgroup_fd = pid;
10023
10024        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10025                                 NULL, NULL, cgroup_fd);
10026        if (IS_ERR(event)) {
10027                err = PTR_ERR(event);
10028                goto err_cred;
10029        }
10030
10031        if (is_sampling_event(event)) {
10032                if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10033                        err = -EOPNOTSUPP;
10034                        goto err_alloc;
10035                }
10036        }
10037
10038        /*
10039         * Special case software events and allow them to be part of
10040         * any hardware group.
10041         */
10042        pmu = event->pmu;
10043
10044        if (attr.use_clockid) {
10045                err = perf_event_set_clock(event, attr.clockid);
10046                if (err)
10047                        goto err_alloc;
10048        }
10049
10050        if (pmu->task_ctx_nr == perf_sw_context)
10051                event->event_caps |= PERF_EV_CAP_SOFTWARE;
10052
10053        if (group_leader &&
10054            (is_software_event(event) != is_software_event(group_leader))) {
10055                if (is_software_event(event)) {
10056                        /*
10057                         * If event and group_leader are not both a software
10058                         * event, and event is, then group leader is not.
10059                         *
10060                         * Allow the addition of software events to !software
10061                         * groups, this is safe because software events never
10062                         * fail to schedule.
10063                         */
10064                        pmu = group_leader->pmu;
10065                } else if (is_software_event(group_leader) &&
10066                           (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10067                        /*
10068                         * In case the group is a pure software group, and we
10069                         * try to add a hardware event, move the whole group to
10070                         * the hardware context.
10071                         */
10072                        move_group = 1;
10073                }
10074        }
10075
10076        /*
10077         * Get the target context (task or percpu):
10078         */
10079        ctx = find_get_context(pmu, task, event);
10080        if (IS_ERR(ctx)) {
10081                err = PTR_ERR(ctx);
10082                goto err_alloc;
10083        }
10084
10085        if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10086                err = -EBUSY;
10087                goto err_context;
10088        }
10089
10090        /*
10091         * Look up the group leader (we will attach this event to it):
10092         */
10093        if (group_leader) {
10094                err = -EINVAL;
10095
10096                /*
10097                 * Do not allow a recursive hierarchy (this new sibling
10098                 * becoming part of another group-sibling):
10099                 */
10100                if (group_leader->group_leader != group_leader)
10101                        goto err_context;
10102
10103                /* All events in a group should have the same clock */
10104                if (group_leader->clock != event->clock)
10105                        goto err_context;
10106
10107                /*
10108                 * Make sure we're both events for the same CPU;
10109                 * grouping events for different CPUs is broken; since
10110                 * you can never concurrently schedule them anyhow.
10111                 */
10112                if (group_leader->cpu != event->cpu)
10113                        goto err_context;
10114
10115                /*
10116                 * Make sure we're both on the same task, or both
10117                 * per-CPU events.
10118                 */
10119                if (group_leader->ctx->task != ctx->task)
10120                        goto err_context;
10121
10122                /*
10123                 * Do not allow to attach to a group in a different task
10124                 * or CPU context. If we're moving SW events, we'll fix
10125                 * this up later, so allow that.
10126                 */
10127                if (!move_group && group_leader->ctx != ctx)
10128                        goto err_context;
10129
10130                /*
10131                 * Only a group leader can be exclusive or pinned
10132                 */
10133                if (attr.exclusive || attr.pinned)
10134                        goto err_context;
10135        }
10136
10137        if (output_event) {
10138                err = perf_event_set_output(event, output_event);
10139                if (err)
10140                        goto err_context;
10141        }
10142
10143        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10144                                        f_flags);
10145        if (IS_ERR(event_file)) {
10146                err = PTR_ERR(event_file);
10147                event_file = NULL;
10148                goto err_context;
10149        }
10150
10151        if (move_group) {
10152                gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10153
10154                if (gctx->task == TASK_TOMBSTONE) {
10155                        err = -ESRCH;
10156                        goto err_locked;
10157                }
10158
10159                /*
10160                 * Check if we raced against another sys_perf_event_open() call
10161                 * moving the software group underneath us.
10162                 */
10163                if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10164                        /*
10165                         * If someone moved the group out from under us, check
10166                         * if this new event wound up on the same ctx, if so
10167                         * its the regular !move_group case, otherwise fail.
10168                         */
10169                        if (gctx != ctx) {
10170                                err = -EINVAL;
10171                                goto err_locked;
10172                        } else {
10173                                perf_event_ctx_unlock(group_leader, gctx);
10174                                move_group = 0;
10175                        }
10176                }
10177        } else {
10178                mutex_lock(&ctx->mutex);
10179        }
10180
10181        if (ctx->task == TASK_TOMBSTONE) {
10182                err = -ESRCH;
10183                goto err_locked;
10184        }
10185
10186        if (!perf_event_validate_size(event)) {
10187                err = -E2BIG;
10188                goto err_locked;
10189        }
10190
10191        if (!task) {
10192                /*
10193                 * Check if the @cpu we're creating an event for is online.
10194                 *
10195                 * We use the perf_cpu_context::ctx::mutex to serialize against
10196                 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10197                 */
10198                struct perf_cpu_context *cpuctx =
10199                        container_of(ctx, struct perf_cpu_context, ctx);
10200
10201                if (!cpuctx->online) {
10202                        err = -ENODEV;
10203                        goto err_locked;
10204                }
10205        }
10206
10207
10208        /*
10209         * Must be under the same ctx::mutex as perf_install_in_context(),
10210         * because we need to serialize with concurrent event creation.
10211         */
10212        if (!exclusive_event_installable(event, ctx)) {
10213                /* exclusive and group stuff are assumed mutually exclusive */
10214                WARN_ON_ONCE(move_group);
10215
10216                err = -EBUSY;
10217                goto err_locked;
10218        }
10219
10220        WARN_ON_ONCE(ctx->parent_ctx);
10221
10222        /*
10223         * This is the point on no return; we cannot fail hereafter. This is
10224         * where we start modifying current state.
10225         */
10226
10227        if (move_group) {
10228                /*
10229                 * See perf_event_ctx_lock() for comments on the details
10230                 * of swizzling perf_event::ctx.
10231                 */
10232                perf_remove_from_context(group_leader, 0);
10233                put_ctx(gctx);
10234
10235                list_for_each_entry(sibling, &group_leader->sibling_list,
10236                                    group_entry) {
10237                        perf_remove_from_context(sibling, 0);
10238                        put_ctx(gctx);
10239                }
10240
10241                /*
10242                 * Wait for everybody to stop referencing the events through
10243                 * the old lists, before installing it on new lists.
10244                 */
10245                synchronize_rcu();
10246
10247                /*
10248                 * Install the group siblings before the group leader.
10249                 *
10250                 * Because a group leader will try and install the entire group
10251                 * (through the sibling list, which is still in-tact), we can
10252                 * end up with siblings installed in the wrong context.
10253                 *
10254                 * By installing siblings first we NO-OP because they're not
10255                 * reachable through the group lists.
10256                 */
10257                list_for_each_entry(sibling, &group_leader->sibling_list,
10258                                    group_entry) {
10259                        perf_event__state_init(sibling);
10260                        perf_install_in_context(ctx, sibling, sibling->cpu);
10261                        get_ctx(ctx);
10262                }
10263
10264                /*
10265                 * Removing from the context ends up with disabled
10266                 * event. What we want here is event in the initial
10267                 * startup state, ready to be add into new context.
10268                 */
10269                perf_event__state_init(group_leader);
10270                perf_install_in_context(ctx, group_leader, group_leader->cpu);
10271                get_ctx(ctx);
10272        }
10273
10274        /*
10275         * Precalculate sample_data sizes; do while holding ctx::mutex such
10276         * that we're serialized against further additions and before
10277         * perf_install_in_context() which is the point the event is active and
10278         * can use these values.
10279         */
10280        perf_event__header_size(event);
10281        perf_event__id_header_size(event);
10282
10283        event->owner = current;
10284
10285        perf_install_in_context(ctx, event, event->cpu);
10286        perf_unpin_context(ctx);
10287
10288        if (move_group)
10289                perf_event_ctx_unlock(group_leader, gctx);
10290        mutex_unlock(&ctx->mutex);
10291
10292        if (task) {
10293                mutex_unlock(&task->signal->cred_guard_mutex);
10294                put_task_struct(task);
10295        }
10296
10297        mutex_lock(&current->perf_event_mutex);
10298        list_add_tail(&event->owner_entry, &current->perf_event_list);
10299        mutex_unlock(&current->perf_event_mutex);
10300
10301        /*
10302         * Drop the reference on the group_event after placing the
10303         * new event on the sibling_list. This ensures destruction
10304         * of the group leader will find the pointer to itself in
10305         * perf_group_detach().
10306         */
10307        fdput(group);
10308        fd_install(event_fd, event_file);
10309        return event_fd;
10310
10311err_locked:
10312        if (move_group)
10313                perf_event_ctx_unlock(group_leader, gctx);
10314        mutex_unlock(&ctx->mutex);
10315/* err_file: */
10316        fput(event_file);
10317err_context:
10318        perf_unpin_context(ctx);
10319        put_ctx(ctx);
10320err_alloc:
10321        /*
10322         * If event_file is set, the fput() above will have called ->release()
10323         * and that will take care of freeing the event.
10324         */
10325        if (!event_file)
10326                free_event(event);
10327err_cred:
10328        if (task)
10329                mutex_unlock(&task->signal->cred_guard_mutex);
10330err_task:
10331        if (task)
10332                put_task_struct(task);
10333err_group_fd:
10334        fdput(group);
10335err_fd:
10336        put_unused_fd(event_fd);
10337        return err;
10338}
10339
10340/**
10341 * perf_event_create_kernel_counter
10342 *
10343 * @attr: attributes of the counter to create
10344 * @cpu: cpu in which the counter is bound
10345 * @task: task to profile (NULL for percpu)
10346 */
10347struct perf_event *
10348perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10349                                 struct task_struct *task,
10350                                 perf_overflow_handler_t overflow_handler,
10351                                 void *context)
10352{
10353        struct perf_event_context *ctx;
10354        struct perf_event *event;
10355        int err;
10356
10357        /*
10358         * Get the target context (task or percpu):
10359         */
10360
10361        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10362                                 overflow_handler, context, -1);
10363        if (IS_ERR(event)) {
10364                err = PTR_ERR(event);
10365                goto err;
10366        }
10367
10368        /* Mark owner so we could distinguish it from user events. */
10369        event->owner = TASK_TOMBSTONE;
10370
10371        ctx = find_get_context(event->pmu, task, event);
10372        if (IS_ERR(ctx)) {
10373                err = PTR_ERR(ctx);
10374                goto err_free;
10375        }
10376
10377        WARN_ON_ONCE(ctx->parent_ctx);
10378        mutex_lock(&ctx->mutex);
10379        if (ctx->task == TASK_TOMBSTONE) {
10380                err = -ESRCH;
10381                goto err_unlock;
10382        }
10383
10384        if (!task) {
10385                /*
10386                 * Check if the @cpu we're creating an event for is online.
10387                 *
10388                 * We use the perf_cpu_context::ctx::mutex to serialize against
10389                 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10390                 */
10391                struct perf_cpu_context *cpuctx =
10392                        container_of(ctx, struct perf_cpu_context, ctx);
10393                if (!cpuctx->online) {
10394                        err = -ENODEV;
10395                        goto err_unlock;
10396                }
10397        }
10398
10399        if (!exclusive_event_installable(event, ctx)) {
10400                err = -EBUSY;
10401                goto err_unlock;
10402        }
10403
10404        perf_install_in_context(ctx, event, cpu);
10405        perf_unpin_context(ctx);
10406        mutex_unlock(&ctx->mutex);
10407
10408        return event;
10409
10410err_unlock:
10411        mutex_unlock(&ctx->mutex);
10412        perf_unpin_context(ctx);
10413        put_ctx(ctx);
10414err_free:
10415        free_event(event);
10416err:
10417        return ERR_PTR(err);
10418}
10419EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10420
10421void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10422{
10423        struct perf_event_context *src_ctx;
10424        struct perf_event_context *dst_ctx;
10425        struct perf_event *event, *tmp;
10426        LIST_HEAD(events);
10427
10428        src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10429        dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10430
10431        /*
10432         * See perf_event_ctx_lock() for comments on the details
10433         * of swizzling perf_event::ctx.
10434         */
10435        mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10436        list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10437                                 event_entry) {
10438                perf_remove_from_context(event, 0);
10439                unaccount_event_cpu(event, src_cpu);
10440                put_ctx(src_ctx);
10441                list_add(&event->migrate_entry, &events);
10442        }
10443
10444        /*
10445         * Wait for the events to quiesce before re-instating them.
10446         */
10447        synchronize_rcu();
10448
10449        /*
10450         * Re-instate events in 2 passes.
10451         *
10452         * Skip over group leaders and only install siblings on this first
10453         * pass, siblings will not get enabled without a leader, however a
10454         * leader will enable its siblings, even if those are still on the old
10455         * context.
10456         */
10457        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10458                if (event->group_leader == event)
10459                        continue;
10460
10461                list_del(&event->migrate_entry);
10462                if (event->state >= PERF_EVENT_STATE_OFF)
10463                        event->state = PERF_EVENT_STATE_INACTIVE;
10464                account_event_cpu(event, dst_cpu);
10465                perf_install_in_context(dst_ctx, event, dst_cpu);
10466                get_ctx(dst_ctx);
10467        }
10468
10469        /*
10470         * Once all the siblings are setup properly, install the group leaders
10471         * to make it go.
10472         */
10473        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10474                list_del(&event->migrate_entry);
10475                if (event->state >= PERF_EVENT_STATE_OFF)
10476                        event->state = PERF_EVENT_STATE_INACTIVE;
10477                account_event_cpu(event, dst_cpu);
10478                perf_install_in_context(dst_ctx, event, dst_cpu);
10479                get_ctx(dst_ctx);
10480        }
10481        mutex_unlock(&dst_ctx->mutex);
10482        mutex_unlock(&src_ctx->mutex);
10483}
10484EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10485
10486static void sync_child_event(struct perf_event *child_event,
10487                               struct task_struct *child)
10488{
10489        struct perf_event *parent_event = child_event->parent;
10490        u64 child_val;
10491
10492        if (child_event->attr.inherit_stat)
10493                perf_event_read_event(child_event, child);
10494
10495        child_val = perf_event_count(child_event);
10496
10497        /*
10498         * Add back the child's count to the parent's count:
10499         */
10500        atomic64_add(child_val, &parent_event->child_count);
10501        atomic64_add(child_event->total_time_enabled,
10502                     &parent_event->child_total_time_enabled);
10503        atomic64_add(child_event->total_time_running,
10504                     &parent_event->child_total_time_running);
10505}
10506
10507static void
10508perf_event_exit_event(struct perf_event *child_event,
10509                      struct perf_event_context *child_ctx,
10510                      struct task_struct *child)
10511{
10512        struct perf_event *parent_event = child_event->parent;
10513
10514        /*
10515         * Do not destroy the 'original' grouping; because of the context
10516         * switch optimization the original events could've ended up in a
10517         * random child task.
10518         *
10519         * If we were to destroy the original group, all group related
10520         * operations would cease to function properly after this random
10521         * child dies.
10522         *
10523         * Do destroy all inherited groups, we don't care about those
10524         * and being thorough is better.
10525         */
10526        raw_spin_lock_irq(&child_ctx->lock);
10527        WARN_ON_ONCE(child_ctx->is_active);
10528
10529        if (parent_event)
10530                perf_group_detach(child_event);
10531        list_del_event(child_event, child_ctx);
10532        child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10533        raw_spin_unlock_irq(&child_ctx->lock);
10534
10535        /*
10536         * Parent events are governed by their filedesc, retain them.
10537         */
10538        if (!parent_event) {
10539                perf_event_wakeup(child_event);
10540                return;
10541        }
10542        /*
10543         * Child events can be cleaned up.
10544         */
10545
10546        sync_child_event(child_event, child);
10547
10548        /*
10549         * Remove this event from the parent's list
10550         */
10551        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10552        mutex_lock(&parent_event->child_mutex);
10553        list_del_init(&child_event->child_list);
10554        mutex_unlock(&parent_event->child_mutex);
10555
10556        /*
10557         * Kick perf_poll() for is_event_hup().
10558         */
10559        perf_event_wakeup(parent_event);
10560        free_event(child_event);
10561        put_event(parent_event);
10562}
10563
10564static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10565{
10566        struct perf_event_context *child_ctx, *clone_ctx = NULL;
10567        struct perf_event *child_event, *next;
10568
10569        WARN_ON_ONCE(child != current);
10570
10571        child_ctx = perf_pin_task_context(child, ctxn);
10572        if (!child_ctx)
10573                return;
10574
10575        /*
10576         * In order to reduce the amount of tricky in ctx tear-down, we hold
10577         * ctx::mutex over the entire thing. This serializes against almost
10578         * everything that wants to access the ctx.
10579         *
10580         * The exception is sys_perf_event_open() /
10581         * perf_event_create_kernel_count() which does find_get_context()
10582         * without ctx::mutex (it cannot because of the move_group double mutex
10583         * lock thing). See the comments in perf_install_in_context().
10584         */
10585        mutex_lock(&child_ctx->mutex);
10586
10587        /*
10588         * In a single ctx::lock section, de-schedule the events and detach the
10589         * context from the task such that we cannot ever get it scheduled back
10590         * in.
10591         */
10592        raw_spin_lock_irq(&child_ctx->lock);
10593        task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10594
10595        /*
10596         * Now that the context is inactive, destroy the task <-> ctx relation
10597         * and mark the context dead.
10598         */
10599        RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10600        put_ctx(child_ctx); /* cannot be last */
10601        WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10602        put_task_struct(current); /* cannot be last */
10603
10604        clone_ctx = unclone_ctx(child_ctx);
10605        raw_spin_unlock_irq(&child_ctx->lock);
10606
10607        if (clone_ctx)
10608                put_ctx(clone_ctx);
10609
10610        /*
10611         * Report the task dead after unscheduling the events so that we
10612         * won't get any samples after PERF_RECORD_EXIT. We can however still
10613         * get a few PERF_RECORD_READ events.
10614         */
10615        perf_event_task(child, child_ctx, 0);
10616
10617        list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10618                perf_event_exit_event(child_event, child_ctx, child);
10619
10620        mutex_unlock(&child_ctx->mutex);
10621
10622        put_ctx(child_ctx);
10623}
10624
10625/*
10626 * When a child task exits, feed back event values to parent events.
10627 *
10628 * Can be called with cred_guard_mutex held when called from
10629 * install_exec_creds().
10630 */
10631void perf_event_exit_task(struct task_struct *child)
10632{
10633        struct perf_event *event, *tmp;
10634        int ctxn;
10635
10636        mutex_lock(&child->perf_event_mutex);
10637        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10638                                 owner_entry) {
10639                list_del_init(&event->owner_entry);
10640
10641                /*
10642                 * Ensure the list deletion is visible before we clear
10643                 * the owner, closes a race against perf_release() where
10644                 * we need to serialize on the owner->perf_event_mutex.
10645                 */
10646                smp_store_release(&event->owner, NULL);
10647        }
10648        mutex_unlock(&child->perf_event_mutex);
10649
10650        for_each_task_context_nr(ctxn)
10651                perf_event_exit_task_context(child, ctxn);
10652
10653        /*
10654         * The perf_event_exit_task_context calls perf_event_task
10655         * with child's task_ctx, which generates EXIT events for
10656         * child contexts and sets child->perf_event_ctxp[] to NULL.
10657         * At this point we need to send EXIT events to cpu contexts.
10658         */
10659        perf_event_task(child, NULL, 0);
10660}
10661
10662static void perf_free_event(struct perf_event *event,
10663                            struct perf_event_context *ctx)
10664{
10665        struct perf_event *parent = event->parent;
10666
10667        if (WARN_ON_ONCE(!parent))
10668                return;
10669
10670        mutex_lock(&parent->child_mutex);
10671        list_del_init(&event->child_list);
10672        mutex_unlock(&parent->child_mutex);
10673
10674        put_event(parent);
10675
10676        raw_spin_lock_irq(&ctx->lock);
10677        perf_group_detach(event);
10678        list_del_event(event, ctx);
10679        raw_spin_unlock_irq(&ctx->lock);
10680        free_event(event);
10681}
10682
10683/*
10684 * Free an unexposed, unused context as created by inheritance by
10685 * perf_event_init_task below, used by fork() in case of fail.
10686 *
10687 * Not all locks are strictly required, but take them anyway to be nice and
10688 * help out with the lockdep assertions.
10689 */
10690void perf_event_free_task(struct task_struct *task)
10691{
10692        struct perf_event_context *ctx;
10693        struct perf_event *event, *tmp;
10694        int ctxn;
10695
10696        for_each_task_context_nr(ctxn) {
10697                ctx = task->perf_event_ctxp[ctxn];
10698                if (!ctx)
10699                        continue;
10700
10701                mutex_lock(&ctx->mutex);
10702                raw_spin_lock_irq(&ctx->lock);
10703                /*
10704                 * Destroy the task <-> ctx relation and mark the context dead.
10705                 *
10706                 * This is important because even though the task hasn't been
10707                 * exposed yet the context has been (through child_list).
10708                 */
10709                RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10710                WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10711                put_task_struct(task); /* cannot be last */
10712                raw_spin_unlock_irq(&ctx->lock);
10713
10714                list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10715                        perf_free_event(event, ctx);
10716
10717                mutex_unlock(&ctx->mutex);
10718                put_ctx(ctx);
10719        }
10720}
10721
10722void perf_event_delayed_put(struct task_struct *task)
10723{
10724        int ctxn;
10725
10726        for_each_task_context_nr(ctxn)
10727                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10728}
10729
10730struct file *perf_event_get(unsigned int fd)
10731{
10732        struct file *file;
10733
10734        file = fget_raw(fd);
10735        if (!file)
10736                return ERR_PTR(-EBADF);
10737
10738        if (file->f_op != &perf_fops) {
10739                fput(file);
10740                return ERR_PTR(-EBADF);
10741        }
10742
10743        return file;
10744}
10745
10746const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10747{
10748        if (!event)
10749                return ERR_PTR(-EINVAL);
10750
10751        return &event->attr;
10752}
10753
10754/*
10755 * Inherit a event from parent task to child task.
10756 *
10757 * Returns:
10758 *  - valid pointer on success
10759 *  - NULL for orphaned events
10760 *  - IS_ERR() on error
10761 */
10762static struct perf_event *
10763inherit_event(struct perf_event *parent_event,
10764              struct task_struct *parent,
10765              struct perf_event_context *parent_ctx,
10766              struct task_struct *child,
10767              struct perf_event *group_leader,
10768              struct perf_event_context *child_ctx)
10769{
10770        enum perf_event_active_state parent_state = parent_event->state;
10771        struct perf_event *child_event;
10772        unsigned long flags;
10773
10774        /*
10775         * Instead of creating recursive hierarchies of events,
10776         * we link inherited events back to the original parent,
10777         * which has a filp for sure, which we use as the reference
10778         * count:
10779         */
10780        if (parent_event->parent)
10781                parent_event = parent_event->parent;
10782
10783        child_event = perf_event_alloc(&parent_event->attr,
10784                                           parent_event->cpu,
10785                                           child,
10786                                           group_leader, parent_event,
10787                                           NULL, NULL, -1);
10788        if (IS_ERR(child_event))
10789                return child_event;
10790
10791        /*
10792         * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10793         * must be under the same lock in order to serialize against
10794         * perf_event_release_kernel(), such that either we must observe
10795         * is_orphaned_event() or they will observe us on the child_list.
10796         */
10797        mutex_lock(&parent_event->child_mutex);
10798        if (is_orphaned_event(parent_event) ||
10799            !atomic_long_inc_not_zero(&parent_event->refcount)) {
10800                mutex_unlock(&parent_event->child_mutex);
10801                free_event(child_event);
10802                return NULL;
10803        }
10804
10805        get_ctx(child_ctx);
10806
10807        /*
10808         * Make the child state follow the state of the parent event,
10809         * not its attr.disabled bit.  We hold the parent's mutex,
10810         * so we won't race with perf_event_{en, dis}able_family.
10811         */
10812        if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10813                child_event->state = PERF_EVENT_STATE_INACTIVE;
10814        else
10815                child_event->state = PERF_EVENT_STATE_OFF;
10816
10817        if (parent_event->attr.freq) {
10818                u64 sample_period = parent_event->hw.sample_period;
10819                struct hw_perf_event *hwc = &child_event->hw;
10820
10821                hwc->sample_period = sample_period;
10822                hwc->last_period   = sample_period;
10823
10824                local64_set(&hwc->period_left, sample_period);
10825        }
10826
10827        child_event->ctx = child_ctx;
10828        child_event->overflow_handler = parent_event->overflow_handler;
10829        child_event->overflow_handler_context
10830                = parent_event->overflow_handler_context;
10831
10832        /*
10833         * Precalculate sample_data sizes
10834         */
10835        perf_event__header_size(child_event);
10836        perf_event__id_header_size(child_event);
10837
10838        /*
10839         * Link it up in the child's context:
10840         */
10841        raw_spin_lock_irqsave(&child_ctx->lock, flags);
10842        add_event_to_ctx(child_event, child_ctx);
10843        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10844
10845        /*
10846         * Link this into the parent event's child list
10847         */
10848        list_add_tail(&child_event->child_list, &parent_event->child_list);
10849        mutex_unlock(&parent_event->child_mutex);
10850
10851        return child_event;
10852}
10853
10854/*
10855 * Inherits an event group.
10856 *
10857 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10858 * This matches with perf_event_release_kernel() removing all child events.
10859 *
10860 * Returns:
10861 *  - 0 on success
10862 *  - <0 on error
10863 */
10864static int inherit_group(struct perf_event *parent_event,
10865              struct task_struct *parent,
10866              struct perf_event_context *parent_ctx,
10867              struct task_struct *child,
10868              struct perf_event_context *child_ctx)
10869{
10870        struct perf_event *leader;
10871        struct perf_event *sub;
10872        struct perf_event *child_ctr;
10873
10874        leader = inherit_event(parent_event, parent, parent_ctx,
10875                                 child, NULL, child_ctx);
10876        if (IS_ERR(leader))
10877                return PTR_ERR(leader);
10878        /*
10879         * @leader can be NULL here because of is_orphaned_event(). In this
10880         * case inherit_event() will create individual events, similar to what
10881         * perf_group_detach() would do anyway.
10882         */
10883        list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10884                child_ctr = inherit_event(sub, parent, parent_ctx,
10885                                            child, leader, child_ctx);
10886                if (IS_ERR(child_ctr))
10887                        return PTR_ERR(child_ctr);
10888        }
10889        return 0;
10890}
10891
10892/*
10893 * Creates the child task context and tries to inherit the event-group.
10894 *
10895 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10896 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10897 * consistent with perf_event_release_kernel() removing all child events.
10898 *
10899 * Returns:
10900 *  - 0 on success
10901 *  - <0 on error
10902 */
10903static int
10904inherit_task_group(struct perf_event *event, struct task_struct *parent,
10905                   struct perf_event_context *parent_ctx,
10906                   struct task_struct *child, int ctxn,
10907                   int *inherited_all)
10908{
10909        int ret;
10910        struct perf_event_context *child_ctx;
10911
10912        if (!event->attr.inherit) {
10913                *inherited_all = 0;
10914                return 0;
10915        }
10916
10917        child_ctx = child->perf_event_ctxp[ctxn];
10918        if (!child_ctx) {
10919                /*
10920                 * This is executed from the parent task context, so
10921                 * inherit events that have been marked for cloning.
10922                 * First allocate and initialize a context for the
10923                 * child.
10924                 */
10925                child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10926                if (!child_ctx)
10927                        return -ENOMEM;
10928
10929                child->perf_event_ctxp[ctxn] = child_ctx;
10930        }
10931
10932        ret = inherit_group(event, parent, parent_ctx,
10933                            child, child_ctx);
10934
10935        if (ret)
10936                *inherited_all = 0;
10937
10938        return ret;
10939}
10940
10941/*
10942 * Initialize the perf_event context in task_struct
10943 */
10944static int perf_event_init_context(struct task_struct *child, int ctxn)
10945{
10946        struct perf_event_context *child_ctx, *parent_ctx;
10947        struct perf_event_context *cloned_ctx;
10948        struct perf_event *event;
10949        struct task_struct *parent = current;
10950        int inherited_all = 1;
10951        unsigned long flags;
10952        int ret = 0;
10953
10954        if (likely(!parent->perf_event_ctxp[ctxn]))
10955                return 0;
10956
10957        /*
10958         * If the parent's context is a clone, pin it so it won't get
10959         * swapped under us.
10960         */
10961        parent_ctx = perf_pin_task_context(parent, ctxn);
10962        if (!parent_ctx)
10963                return 0;
10964
10965        /*
10966         * No need to check if parent_ctx != NULL here; since we saw
10967         * it non-NULL earlier, the only reason for it to become NULL
10968         * is if we exit, and since we're currently in the middle of
10969         * a fork we can't be exiting at the same time.
10970         */
10971
10972        /*
10973         * Lock the parent list. No need to lock the child - not PID
10974         * hashed yet and not running, so nobody can access it.
10975         */
10976        mutex_lock(&parent_ctx->mutex);
10977
10978        /*
10979         * We dont have to disable NMIs - we are only looking at
10980         * the list, not manipulating it:
10981         */
10982        list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10983                ret = inherit_task_group(event, parent, parent_ctx,
10984                                         child, ctxn, &inherited_all);
10985                if (ret)
10986                        goto out_unlock;
10987        }
10988
10989        /*
10990         * We can't hold ctx->lock when iterating the ->flexible_group list due
10991         * to allocations, but we need to prevent rotation because
10992         * rotate_ctx() will change the list from interrupt context.
10993         */
10994        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10995        parent_ctx->rotate_disable = 1;
10996        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10997
10998        list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10999                ret = inherit_task_group(event, parent, parent_ctx,
11000                                         child, ctxn, &inherited_all);
11001                if (ret)
11002                        goto out_unlock;
11003        }
11004
11005        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11006        parent_ctx->rotate_disable = 0;
11007
11008        child_ctx = child->perf_event_ctxp[ctxn];
11009
11010        if (child_ctx && inherited_all) {
11011                /*
11012                 * Mark the child context as a clone of the parent
11013                 * context, or of whatever the parent is a clone of.
11014                 *
11015                 * Note that if the parent is a clone, the holding of
11016                 * parent_ctx->lock avoids it from being uncloned.
11017                 */
11018                cloned_ctx = parent_ctx->parent_ctx;
11019                if (cloned_ctx) {
11020                        child_ctx->parent_ctx = cloned_ctx;
11021                        child_ctx->parent_gen = parent_ctx->parent_gen;
11022                } else {
11023                        child_ctx->parent_ctx = parent_ctx;
11024                        child_ctx->parent_gen = parent_ctx->generation;
11025                }
11026                get_ctx(child_ctx->parent_ctx);
11027        }
11028
11029        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11030out_unlock:
11031        mutex_unlock(&parent_ctx->mutex);
11032
11033        perf_unpin_context(parent_ctx);
11034        put_ctx(parent_ctx);
11035
11036        return ret;
11037}
11038
11039/*
11040 * Initialize the perf_event context in task_struct
11041 */
11042int perf_event_init_task(struct task_struct *child)
11043{
11044        int ctxn, ret;
11045
11046        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11047        mutex_init(&child->perf_event_mutex);
11048        INIT_LIST_HEAD(&child->perf_event_list);
11049
11050        for_each_task_context_nr(ctxn) {
11051                ret = perf_event_init_context(child, ctxn);
11052                if (ret) {
11053                        perf_event_free_task(child);
11054                        return ret;
11055                }
11056        }
11057
11058        return 0;
11059}
11060
11061static void __init perf_event_init_all_cpus(void)
11062{
11063        struct swevent_htable *swhash;
11064        int cpu;
11065
11066        zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11067
11068        for_each_possible_cpu(cpu) {
11069                swhash = &per_cpu(swevent_htable, cpu);
11070                mutex_init(&swhash->hlist_mutex);
11071                INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11072
11073                INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11074                raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11075
11076#ifdef CONFIG_CGROUP_PERF
11077                INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11078#endif
11079                INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11080        }
11081}
11082
11083void perf_swevent_init_cpu(unsigned int cpu)
11084{
11085        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11086
11087        mutex_lock(&swhash->hlist_mutex);
11088        if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11089                struct swevent_hlist *hlist;
11090
11091                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11092                WARN_ON(!hlist);
11093                rcu_assign_pointer(swhash->swevent_hlist, hlist);
11094        }
11095        mutex_unlock(&swhash->hlist_mutex);
11096}
11097
11098#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11099static void __perf_event_exit_context(void *__info)
11100{
11101        struct perf_event_context *ctx = __info;
11102        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11103        struct perf_event *event;
11104
11105        raw_spin_lock(&ctx->lock);
11106        list_for_each_entry(event, &ctx->event_list, event_entry)
11107                __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11108        raw_spin_unlock(&ctx->lock);
11109}
11110
11111static void perf_event_exit_cpu_context(int cpu)
11112{
11113        struct perf_cpu_context *cpuctx;
11114        struct perf_event_context *ctx;
11115        struct pmu *pmu;
11116
11117        mutex_lock(&pmus_lock);
11118        list_for_each_entry(pmu, &pmus, entry) {
11119                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11120                ctx = &cpuctx->ctx;
11121
11122                mutex_lock(&ctx->mutex);
11123                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11124                cpuctx->online = 0;
11125                mutex_unlock(&ctx->mutex);
11126        }
11127        cpumask_clear_cpu(cpu, perf_online_mask);
11128        mutex_unlock(&pmus_lock);
11129}
11130#else
11131
11132static void perf_event_exit_cpu_context(int cpu) { }
11133
11134#endif
11135
11136int perf_event_init_cpu(unsigned int cpu)
11137{
11138        struct perf_cpu_context *cpuctx;
11139        struct perf_event_context *ctx;
11140        struct pmu *pmu;
11141
11142        perf_swevent_init_cpu(cpu);
11143
11144        mutex_lock(&pmus_lock);
11145        cpumask_set_cpu(cpu, perf_online_mask);
11146        list_for_each_entry(pmu, &pmus, entry) {
11147                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11148                ctx = &cpuctx->ctx;
11149
11150                mutex_lock(&ctx->mutex);
11151                cpuctx->online = 1;
11152                mutex_unlock(&ctx->mutex);
11153        }
11154        mutex_unlock(&pmus_lock);
11155
11156        return 0;
11157}
11158
11159int perf_event_exit_cpu(unsigned int cpu)
11160{
11161        perf_event_exit_cpu_context(cpu);
11162        return 0;
11163}
11164
11165static int
11166perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11167{
11168        int cpu;
11169
11170        for_each_online_cpu(cpu)
11171                perf_event_exit_cpu(cpu);
11172
11173        return NOTIFY_OK;
11174}
11175
11176/*
11177 * Run the perf reboot notifier at the very last possible moment so that
11178 * the generic watchdog code runs as long as possible.
11179 */
11180static struct notifier_block perf_reboot_notifier = {
11181        .notifier_call = perf_reboot,
11182        .priority = INT_MIN,
11183};
11184
11185void __init perf_event_init(void)
11186{
11187        int ret;
11188
11189        idr_init(&pmu_idr);
11190
11191        perf_event_init_all_cpus();
11192        init_srcu_struct(&pmus_srcu);
11193        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11194        perf_pmu_register(&perf_cpu_clock, NULL, -1);
11195        perf_pmu_register(&perf_task_clock, NULL, -1);
11196        perf_tp_register();
11197        perf_event_init_cpu(smp_processor_id());
11198        register_reboot_notifier(&perf_reboot_notifier);
11199
11200        ret = init_hw_breakpoint();
11201        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11202
11203        /*
11204         * Build time assertion that we keep the data_head at the intended
11205         * location.  IOW, validation we got the __reserved[] size right.
11206         */
11207        BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11208                     != 1024);
11209}
11210
11211ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11212                              char *page)
11213{
11214        struct perf_pmu_events_attr *pmu_attr =
11215                container_of(attr, struct perf_pmu_events_attr, attr);
11216
11217        if (pmu_attr->event_str)
11218                return sprintf(page, "%s\n", pmu_attr->event_str);
11219
11220        return 0;
11221}
11222EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11223
11224static int __init perf_event_sysfs_init(void)
11225{
11226        struct pmu *pmu;
11227        int ret;
11228
11229        mutex_lock(&pmus_lock);
11230
11231        ret = bus_register(&pmu_bus);
11232        if (ret)
11233                goto unlock;
11234
11235        list_for_each_entry(pmu, &pmus, entry) {
11236                if (!pmu->name || pmu->type < 0)
11237                        continue;
11238
11239                ret = pmu_dev_alloc(pmu);
11240                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11241        }
11242        pmu_bus_running = 1;
11243        ret = 0;
11244
11245unlock:
11246        mutex_unlock(&pmus_lock);
11247
11248        return ret;
11249}
11250device_initcall(perf_event_sysfs_init);
11251
11252#ifdef CONFIG_CGROUP_PERF
11253static struct cgroup_subsys_state *
11254perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11255{
11256        struct perf_cgroup *jc;
11257
11258        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11259        if (!jc)
11260                return ERR_PTR(-ENOMEM);
11261
11262        jc->info = alloc_percpu(struct perf_cgroup_info);
11263        if (!jc->info) {
11264                kfree(jc);
11265                return ERR_PTR(-ENOMEM);
11266        }
11267
11268        return &jc->css;
11269}
11270
11271static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11272{
11273        struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11274
11275        free_percpu(jc->info);
11276        kfree(jc);
11277}
11278
11279static int __perf_cgroup_move(void *info)
11280{
11281        struct task_struct *task = info;
11282        rcu_read_lock();
11283        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11284        rcu_read_unlock();
11285        return 0;
11286}
11287
11288static void perf_cgroup_attach(struct cgroup_taskset *tset)
11289{
11290        struct task_struct *task;
11291        struct cgroup_subsys_state *css;
11292
11293        cgroup_taskset_for_each(task, css, tset)
11294                task_function_call(task, __perf_cgroup_move, task);
11295}
11296
11297struct cgroup_subsys perf_event_cgrp_subsys = {
11298        .css_alloc      = perf_cgroup_css_alloc,
11299        .css_free       = perf_cgroup_css_free,
11300        .attach         = perf_cgroup_attach,
11301        /*
11302         * Implicitly enable on dfl hierarchy so that perf events can
11303         * always be filtered by cgroup2 path as long as perf_event
11304         * controller is not mounted on a legacy hierarchy.
11305         */
11306        .implicit_on_dfl = true,
11307        .threaded       = true,
11308};
11309#endif /* CONFIG_CGROUP_PERF */
11310