linux/kernel/events/ring_buffer.c
<<
>>
Prefs
   1/*
   2 * Performance events ring-buffer code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/perf_event.h>
  13#include <linux/vmalloc.h>
  14#include <linux/slab.h>
  15#include <linux/circ_buf.h>
  16#include <linux/poll.h>
  17
  18#include "internal.h"
  19
  20static void perf_output_wakeup(struct perf_output_handle *handle)
  21{
  22        atomic_set(&handle->rb->poll, POLLIN);
  23
  24        handle->event->pending_wakeup = 1;
  25        irq_work_queue(&handle->event->pending);
  26}
  27
  28/*
  29 * We need to ensure a later event_id doesn't publish a head when a former
  30 * event isn't done writing. However since we need to deal with NMIs we
  31 * cannot fully serialize things.
  32 *
  33 * We only publish the head (and generate a wakeup) when the outer-most
  34 * event completes.
  35 */
  36static void perf_output_get_handle(struct perf_output_handle *handle)
  37{
  38        struct ring_buffer *rb = handle->rb;
  39
  40        preempt_disable();
  41        local_inc(&rb->nest);
  42        handle->wakeup = local_read(&rb->wakeup);
  43}
  44
  45static void perf_output_put_handle(struct perf_output_handle *handle)
  46{
  47        struct ring_buffer *rb = handle->rb;
  48        unsigned long head;
  49
  50again:
  51        head = local_read(&rb->head);
  52
  53        /*
  54         * IRQ/NMI can happen here, which means we can miss a head update.
  55         */
  56
  57        if (!local_dec_and_test(&rb->nest))
  58                goto out;
  59
  60        /*
  61         * Since the mmap() consumer (userspace) can run on a different CPU:
  62         *
  63         *   kernel                             user
  64         *
  65         *   if (LOAD ->data_tail) {            LOAD ->data_head
  66         *                      (A)             smp_rmb()       (C)
  67         *      STORE $data                     LOAD $data
  68         *      smp_wmb()       (B)             smp_mb()        (D)
  69         *      STORE ->data_head               STORE ->data_tail
  70         *   }
  71         *
  72         * Where A pairs with D, and B pairs with C.
  73         *
  74         * In our case (A) is a control dependency that separates the load of
  75         * the ->data_tail and the stores of $data. In case ->data_tail
  76         * indicates there is no room in the buffer to store $data we do not.
  77         *
  78         * D needs to be a full barrier since it separates the data READ
  79         * from the tail WRITE.
  80         *
  81         * For B a WMB is sufficient since it separates two WRITEs, and for C
  82         * an RMB is sufficient since it separates two READs.
  83         *
  84         * See perf_output_begin().
  85         */
  86        smp_wmb(); /* B, matches C */
  87        rb->user_page->data_head = head;
  88
  89        /*
  90         * Now check if we missed an update -- rely on previous implied
  91         * compiler barriers to force a re-read.
  92         */
  93        if (unlikely(head != local_read(&rb->head))) {
  94                local_inc(&rb->nest);
  95                goto again;
  96        }
  97
  98        if (handle->wakeup != local_read(&rb->wakeup))
  99                perf_output_wakeup(handle);
 100
 101out:
 102        preempt_enable();
 103}
 104
 105static bool __always_inline
 106ring_buffer_has_space(unsigned long head, unsigned long tail,
 107                      unsigned long data_size, unsigned int size,
 108                      bool backward)
 109{
 110        if (!backward)
 111                return CIRC_SPACE(head, tail, data_size) >= size;
 112        else
 113                return CIRC_SPACE(tail, head, data_size) >= size;
 114}
 115
 116static int __always_inline
 117__perf_output_begin(struct perf_output_handle *handle,
 118                    struct perf_event *event, unsigned int size,
 119                    bool backward)
 120{
 121        struct ring_buffer *rb;
 122        unsigned long tail, offset, head;
 123        int have_lost, page_shift;
 124        struct {
 125                struct perf_event_header header;
 126                u64                      id;
 127                u64                      lost;
 128        } lost_event;
 129
 130        rcu_read_lock();
 131        /*
 132         * For inherited events we send all the output towards the parent.
 133         */
 134        if (event->parent)
 135                event = event->parent;
 136
 137        rb = rcu_dereference(event->rb);
 138        if (unlikely(!rb))
 139                goto out;
 140
 141        if (unlikely(rb->paused)) {
 142                if (rb->nr_pages)
 143                        local_inc(&rb->lost);
 144                goto out;
 145        }
 146
 147        handle->rb    = rb;
 148        handle->event = event;
 149
 150        have_lost = local_read(&rb->lost);
 151        if (unlikely(have_lost)) {
 152                size += sizeof(lost_event);
 153                if (event->attr.sample_id_all)
 154                        size += event->id_header_size;
 155        }
 156
 157        perf_output_get_handle(handle);
 158
 159        do {
 160                tail = READ_ONCE(rb->user_page->data_tail);
 161                offset = head = local_read(&rb->head);
 162                if (!rb->overwrite) {
 163                        if (unlikely(!ring_buffer_has_space(head, tail,
 164                                                            perf_data_size(rb),
 165                                                            size, backward)))
 166                                goto fail;
 167                }
 168
 169                /*
 170                 * The above forms a control dependency barrier separating the
 171                 * @tail load above from the data stores below. Since the @tail
 172                 * load is required to compute the branch to fail below.
 173                 *
 174                 * A, matches D; the full memory barrier userspace SHOULD issue
 175                 * after reading the data and before storing the new tail
 176                 * position.
 177                 *
 178                 * See perf_output_put_handle().
 179                 */
 180
 181                if (!backward)
 182                        head += size;
 183                else
 184                        head -= size;
 185        } while (local_cmpxchg(&rb->head, offset, head) != offset);
 186
 187        if (backward) {
 188                offset = head;
 189                head = (u64)(-head);
 190        }
 191
 192        /*
 193         * We rely on the implied barrier() by local_cmpxchg() to ensure
 194         * none of the data stores below can be lifted up by the compiler.
 195         */
 196
 197        if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
 198                local_add(rb->watermark, &rb->wakeup);
 199
 200        page_shift = PAGE_SHIFT + page_order(rb);
 201
 202        handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
 203        offset &= (1UL << page_shift) - 1;
 204        handle->addr = rb->data_pages[handle->page] + offset;
 205        handle->size = (1UL << page_shift) - offset;
 206
 207        if (unlikely(have_lost)) {
 208                struct perf_sample_data sample_data;
 209
 210                lost_event.header.size = sizeof(lost_event);
 211                lost_event.header.type = PERF_RECORD_LOST;
 212                lost_event.header.misc = 0;
 213                lost_event.id          = event->id;
 214                lost_event.lost        = local_xchg(&rb->lost, 0);
 215
 216                perf_event_header__init_id(&lost_event.header,
 217                                           &sample_data, event);
 218                perf_output_put(handle, lost_event);
 219                perf_event__output_id_sample(event, handle, &sample_data);
 220        }
 221
 222        return 0;
 223
 224fail:
 225        local_inc(&rb->lost);
 226        perf_output_put_handle(handle);
 227out:
 228        rcu_read_unlock();
 229
 230        return -ENOSPC;
 231}
 232
 233int perf_output_begin_forward(struct perf_output_handle *handle,
 234                             struct perf_event *event, unsigned int size)
 235{
 236        return __perf_output_begin(handle, event, size, false);
 237}
 238
 239int perf_output_begin_backward(struct perf_output_handle *handle,
 240                               struct perf_event *event, unsigned int size)
 241{
 242        return __perf_output_begin(handle, event, size, true);
 243}
 244
 245int perf_output_begin(struct perf_output_handle *handle,
 246                      struct perf_event *event, unsigned int size)
 247{
 248
 249        return __perf_output_begin(handle, event, size,
 250                                   unlikely(is_write_backward(event)));
 251}
 252
 253unsigned int perf_output_copy(struct perf_output_handle *handle,
 254                      const void *buf, unsigned int len)
 255{
 256        return __output_copy(handle, buf, len);
 257}
 258
 259unsigned int perf_output_skip(struct perf_output_handle *handle,
 260                              unsigned int len)
 261{
 262        return __output_skip(handle, NULL, len);
 263}
 264
 265void perf_output_end(struct perf_output_handle *handle)
 266{
 267        perf_output_put_handle(handle);
 268        rcu_read_unlock();
 269}
 270
 271static void
 272ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
 273{
 274        long max_size = perf_data_size(rb);
 275
 276        if (watermark)
 277                rb->watermark = min(max_size, watermark);
 278
 279        if (!rb->watermark)
 280                rb->watermark = max_size / 2;
 281
 282        if (flags & RING_BUFFER_WRITABLE)
 283                rb->overwrite = 0;
 284        else
 285                rb->overwrite = 1;
 286
 287        atomic_set(&rb->refcount, 1);
 288
 289        INIT_LIST_HEAD(&rb->event_list);
 290        spin_lock_init(&rb->event_lock);
 291
 292        /*
 293         * perf_output_begin() only checks rb->paused, therefore
 294         * rb->paused must be true if we have no pages for output.
 295         */
 296        if (!rb->nr_pages)
 297                rb->paused = 1;
 298}
 299
 300void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
 301{
 302        /*
 303         * OVERWRITE is determined by perf_aux_output_end() and can't
 304         * be passed in directly.
 305         */
 306        if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
 307                return;
 308
 309        handle->aux_flags |= flags;
 310}
 311EXPORT_SYMBOL_GPL(perf_aux_output_flag);
 312
 313/*
 314 * This is called before hardware starts writing to the AUX area to
 315 * obtain an output handle and make sure there's room in the buffer.
 316 * When the capture completes, call perf_aux_output_end() to commit
 317 * the recorded data to the buffer.
 318 *
 319 * The ordering is similar to that of perf_output_{begin,end}, with
 320 * the exception of (B), which should be taken care of by the pmu
 321 * driver, since ordering rules will differ depending on hardware.
 322 *
 323 * Call this from pmu::start(); see the comment in perf_aux_output_end()
 324 * about its use in pmu callbacks. Both can also be called from the PMI
 325 * handler if needed.
 326 */
 327void *perf_aux_output_begin(struct perf_output_handle *handle,
 328                            struct perf_event *event)
 329{
 330        struct perf_event *output_event = event;
 331        unsigned long aux_head, aux_tail;
 332        struct ring_buffer *rb;
 333
 334        if (output_event->parent)
 335                output_event = output_event->parent;
 336
 337        /*
 338         * Since this will typically be open across pmu::add/pmu::del, we
 339         * grab ring_buffer's refcount instead of holding rcu read lock
 340         * to make sure it doesn't disappear under us.
 341         */
 342        rb = ring_buffer_get(output_event);
 343        if (!rb)
 344                return NULL;
 345
 346        if (!rb_has_aux(rb))
 347                goto err;
 348
 349        /*
 350         * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
 351         * about to get freed, so we leave immediately.
 352         *
 353         * Checking rb::aux_mmap_count and rb::refcount has to be done in
 354         * the same order, see perf_mmap_close. Otherwise we end up freeing
 355         * aux pages in this path, which is a bug, because in_atomic().
 356         */
 357        if (!atomic_read(&rb->aux_mmap_count))
 358                goto err;
 359
 360        if (!atomic_inc_not_zero(&rb->aux_refcount))
 361                goto err;
 362
 363        /*
 364         * Nesting is not supported for AUX area, make sure nested
 365         * writers are caught early
 366         */
 367        if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
 368                goto err_put;
 369
 370        aux_head = rb->aux_head;
 371
 372        handle->rb = rb;
 373        handle->event = event;
 374        handle->head = aux_head;
 375        handle->size = 0;
 376        handle->aux_flags = 0;
 377
 378        /*
 379         * In overwrite mode, AUX data stores do not depend on aux_tail,
 380         * therefore (A) control dependency barrier does not exist. The
 381         * (B) <-> (C) ordering is still observed by the pmu driver.
 382         */
 383        if (!rb->aux_overwrite) {
 384                aux_tail = ACCESS_ONCE(rb->user_page->aux_tail);
 385                handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
 386                if (aux_head - aux_tail < perf_aux_size(rb))
 387                        handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
 388
 389                /*
 390                 * handle->size computation depends on aux_tail load; this forms a
 391                 * control dependency barrier separating aux_tail load from aux data
 392                 * store that will be enabled on successful return
 393                 */
 394                if (!handle->size) { /* A, matches D */
 395                        event->pending_disable = 1;
 396                        perf_output_wakeup(handle);
 397                        local_set(&rb->aux_nest, 0);
 398                        goto err_put;
 399                }
 400        }
 401
 402        return handle->rb->aux_priv;
 403
 404err_put:
 405        /* can't be last */
 406        rb_free_aux(rb);
 407
 408err:
 409        ring_buffer_put(rb);
 410        handle->event = NULL;
 411
 412        return NULL;
 413}
 414
 415static bool __always_inline rb_need_aux_wakeup(struct ring_buffer *rb)
 416{
 417        if (rb->aux_overwrite)
 418                return false;
 419
 420        if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
 421                rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
 422                return true;
 423        }
 424
 425        return false;
 426}
 427
 428/*
 429 * Commit the data written by hardware into the ring buffer by adjusting
 430 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
 431 * pmu driver's responsibility to observe ordering rules of the hardware,
 432 * so that all the data is externally visible before this is called.
 433 *
 434 * Note: this has to be called from pmu::stop() callback, as the assumption
 435 * of the AUX buffer management code is that after pmu::stop(), the AUX
 436 * transaction must be stopped and therefore drop the AUX reference count.
 437 */
 438void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
 439{
 440        bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
 441        struct ring_buffer *rb = handle->rb;
 442        unsigned long aux_head;
 443
 444        /* in overwrite mode, driver provides aux_head via handle */
 445        if (rb->aux_overwrite) {
 446                handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
 447
 448                aux_head = handle->head;
 449                rb->aux_head = aux_head;
 450        } else {
 451                handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
 452
 453                aux_head = rb->aux_head;
 454                rb->aux_head += size;
 455        }
 456
 457        if (size || handle->aux_flags) {
 458                /*
 459                 * Only send RECORD_AUX if we have something useful to communicate
 460                 */
 461
 462                perf_event_aux_event(handle->event, aux_head, size,
 463                                     handle->aux_flags);
 464        }
 465
 466        rb->user_page->aux_head = rb->aux_head;
 467        if (rb_need_aux_wakeup(rb))
 468                wakeup = true;
 469
 470        if (wakeup) {
 471                if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
 472                        handle->event->pending_disable = 1;
 473                perf_output_wakeup(handle);
 474        }
 475
 476        handle->event = NULL;
 477
 478        local_set(&rb->aux_nest, 0);
 479        /* can't be last */
 480        rb_free_aux(rb);
 481        ring_buffer_put(rb);
 482}
 483
 484/*
 485 * Skip over a given number of bytes in the AUX buffer, due to, for example,
 486 * hardware's alignment constraints.
 487 */
 488int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
 489{
 490        struct ring_buffer *rb = handle->rb;
 491
 492        if (size > handle->size)
 493                return -ENOSPC;
 494
 495        rb->aux_head += size;
 496
 497        rb->user_page->aux_head = rb->aux_head;
 498        if (rb_need_aux_wakeup(rb)) {
 499                perf_output_wakeup(handle);
 500                handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
 501        }
 502
 503        handle->head = rb->aux_head;
 504        handle->size -= size;
 505
 506        return 0;
 507}
 508
 509void *perf_get_aux(struct perf_output_handle *handle)
 510{
 511        /* this is only valid between perf_aux_output_begin and *_end */
 512        if (!handle->event)
 513                return NULL;
 514
 515        return handle->rb->aux_priv;
 516}
 517
 518#define PERF_AUX_GFP    (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
 519
 520static struct page *rb_alloc_aux_page(int node, int order)
 521{
 522        struct page *page;
 523
 524        if (order > MAX_ORDER)
 525                order = MAX_ORDER;
 526
 527        do {
 528                page = alloc_pages_node(node, PERF_AUX_GFP, order);
 529        } while (!page && order--);
 530
 531        if (page && order) {
 532                /*
 533                 * Communicate the allocation size to the driver:
 534                 * if we managed to secure a high-order allocation,
 535                 * set its first page's private to this order;
 536                 * !PagePrivate(page) means it's just a normal page.
 537                 */
 538                split_page(page, order);
 539                SetPagePrivate(page);
 540                set_page_private(page, order);
 541        }
 542
 543        return page;
 544}
 545
 546static void rb_free_aux_page(struct ring_buffer *rb, int idx)
 547{
 548        struct page *page = virt_to_page(rb->aux_pages[idx]);
 549
 550        ClearPagePrivate(page);
 551        page->mapping = NULL;
 552        __free_page(page);
 553}
 554
 555static void __rb_free_aux(struct ring_buffer *rb)
 556{
 557        int pg;
 558
 559        /*
 560         * Should never happen, the last reference should be dropped from
 561         * perf_mmap_close() path, which first stops aux transactions (which
 562         * in turn are the atomic holders of aux_refcount) and then does the
 563         * last rb_free_aux().
 564         */
 565        WARN_ON_ONCE(in_atomic());
 566
 567        if (rb->aux_priv) {
 568                rb->free_aux(rb->aux_priv);
 569                rb->free_aux = NULL;
 570                rb->aux_priv = NULL;
 571        }
 572
 573        if (rb->aux_nr_pages) {
 574                for (pg = 0; pg < rb->aux_nr_pages; pg++)
 575                        rb_free_aux_page(rb, pg);
 576
 577                kfree(rb->aux_pages);
 578                rb->aux_nr_pages = 0;
 579        }
 580}
 581
 582int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
 583                 pgoff_t pgoff, int nr_pages, long watermark, int flags)
 584{
 585        bool overwrite = !(flags & RING_BUFFER_WRITABLE);
 586        int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
 587        int ret = -ENOMEM, max_order = 0;
 588
 589        if (!has_aux(event))
 590                return -EOPNOTSUPP;
 591
 592        if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
 593                /*
 594                 * We need to start with the max_order that fits in nr_pages,
 595                 * not the other way around, hence ilog2() and not get_order.
 596                 */
 597                max_order = ilog2(nr_pages);
 598
 599                /*
 600                 * PMU requests more than one contiguous chunks of memory
 601                 * for SW double buffering
 602                 */
 603                if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
 604                    !overwrite) {
 605                        if (!max_order)
 606                                return -EINVAL;
 607
 608                        max_order--;
 609                }
 610        }
 611
 612        rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
 613        if (!rb->aux_pages)
 614                return -ENOMEM;
 615
 616        rb->free_aux = event->pmu->free_aux;
 617        for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
 618                struct page *page;
 619                int last, order;
 620
 621                order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
 622                page = rb_alloc_aux_page(node, order);
 623                if (!page)
 624                        goto out;
 625
 626                for (last = rb->aux_nr_pages + (1 << page_private(page));
 627                     last > rb->aux_nr_pages; rb->aux_nr_pages++)
 628                        rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
 629        }
 630
 631        /*
 632         * In overwrite mode, PMUs that don't support SG may not handle more
 633         * than one contiguous allocation, since they rely on PMI to do double
 634         * buffering. In this case, the entire buffer has to be one contiguous
 635         * chunk.
 636         */
 637        if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
 638            overwrite) {
 639                struct page *page = virt_to_page(rb->aux_pages[0]);
 640
 641                if (page_private(page) != max_order)
 642                        goto out;
 643        }
 644
 645        rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
 646                                             overwrite);
 647        if (!rb->aux_priv)
 648                goto out;
 649
 650        ret = 0;
 651
 652        /*
 653         * aux_pages (and pmu driver's private data, aux_priv) will be
 654         * referenced in both producer's and consumer's contexts, thus
 655         * we keep a refcount here to make sure either of the two can
 656         * reference them safely.
 657         */
 658        atomic_set(&rb->aux_refcount, 1);
 659
 660        rb->aux_overwrite = overwrite;
 661        rb->aux_watermark = watermark;
 662
 663        if (!rb->aux_watermark && !rb->aux_overwrite)
 664                rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
 665
 666out:
 667        if (!ret)
 668                rb->aux_pgoff = pgoff;
 669        else
 670                __rb_free_aux(rb);
 671
 672        return ret;
 673}
 674
 675void rb_free_aux(struct ring_buffer *rb)
 676{
 677        if (atomic_dec_and_test(&rb->aux_refcount))
 678                __rb_free_aux(rb);
 679}
 680
 681#ifndef CONFIG_PERF_USE_VMALLOC
 682
 683/*
 684 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 685 */
 686
 687static struct page *
 688__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
 689{
 690        if (pgoff > rb->nr_pages)
 691                return NULL;
 692
 693        if (pgoff == 0)
 694                return virt_to_page(rb->user_page);
 695
 696        return virt_to_page(rb->data_pages[pgoff - 1]);
 697}
 698
 699static void *perf_mmap_alloc_page(int cpu)
 700{
 701        struct page *page;
 702        int node;
 703
 704        node = (cpu == -1) ? cpu : cpu_to_node(cpu);
 705        page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
 706        if (!page)
 707                return NULL;
 708
 709        return page_address(page);
 710}
 711
 712struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
 713{
 714        struct ring_buffer *rb;
 715        unsigned long size;
 716        int i;
 717
 718        size = sizeof(struct ring_buffer);
 719        size += nr_pages * sizeof(void *);
 720
 721        rb = kzalloc(size, GFP_KERNEL);
 722        if (!rb)
 723                goto fail;
 724
 725        rb->user_page = perf_mmap_alloc_page(cpu);
 726        if (!rb->user_page)
 727                goto fail_user_page;
 728
 729        for (i = 0; i < nr_pages; i++) {
 730                rb->data_pages[i] = perf_mmap_alloc_page(cpu);
 731                if (!rb->data_pages[i])
 732                        goto fail_data_pages;
 733        }
 734
 735        rb->nr_pages = nr_pages;
 736
 737        ring_buffer_init(rb, watermark, flags);
 738
 739        return rb;
 740
 741fail_data_pages:
 742        for (i--; i >= 0; i--)
 743                free_page((unsigned long)rb->data_pages[i]);
 744
 745        free_page((unsigned long)rb->user_page);
 746
 747fail_user_page:
 748        kfree(rb);
 749
 750fail:
 751        return NULL;
 752}
 753
 754static void perf_mmap_free_page(unsigned long addr)
 755{
 756        struct page *page = virt_to_page((void *)addr);
 757
 758        page->mapping = NULL;
 759        __free_page(page);
 760}
 761
 762void rb_free(struct ring_buffer *rb)
 763{
 764        int i;
 765
 766        perf_mmap_free_page((unsigned long)rb->user_page);
 767        for (i = 0; i < rb->nr_pages; i++)
 768                perf_mmap_free_page((unsigned long)rb->data_pages[i]);
 769        kfree(rb);
 770}
 771
 772#else
 773static int data_page_nr(struct ring_buffer *rb)
 774{
 775        return rb->nr_pages << page_order(rb);
 776}
 777
 778static struct page *
 779__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
 780{
 781        /* The '>' counts in the user page. */
 782        if (pgoff > data_page_nr(rb))
 783                return NULL;
 784
 785        return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
 786}
 787
 788static void perf_mmap_unmark_page(void *addr)
 789{
 790        struct page *page = vmalloc_to_page(addr);
 791
 792        page->mapping = NULL;
 793}
 794
 795static void rb_free_work(struct work_struct *work)
 796{
 797        struct ring_buffer *rb;
 798        void *base;
 799        int i, nr;
 800
 801        rb = container_of(work, struct ring_buffer, work);
 802        nr = data_page_nr(rb);
 803
 804        base = rb->user_page;
 805        /* The '<=' counts in the user page. */
 806        for (i = 0; i <= nr; i++)
 807                perf_mmap_unmark_page(base + (i * PAGE_SIZE));
 808
 809        vfree(base);
 810        kfree(rb);
 811}
 812
 813void rb_free(struct ring_buffer *rb)
 814{
 815        schedule_work(&rb->work);
 816}
 817
 818struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
 819{
 820        struct ring_buffer *rb;
 821        unsigned long size;
 822        void *all_buf;
 823
 824        size = sizeof(struct ring_buffer);
 825        size += sizeof(void *);
 826
 827        rb = kzalloc(size, GFP_KERNEL);
 828        if (!rb)
 829                goto fail;
 830
 831        INIT_WORK(&rb->work, rb_free_work);
 832
 833        all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
 834        if (!all_buf)
 835                goto fail_all_buf;
 836
 837        rb->user_page = all_buf;
 838        rb->data_pages[0] = all_buf + PAGE_SIZE;
 839        if (nr_pages) {
 840                rb->nr_pages = 1;
 841                rb->page_order = ilog2(nr_pages);
 842        }
 843
 844        ring_buffer_init(rb, watermark, flags);
 845
 846        return rb;
 847
 848fail_all_buf:
 849        kfree(rb);
 850
 851fail:
 852        return NULL;
 853}
 854
 855#endif
 856
 857struct page *
 858perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
 859{
 860        if (rb->aux_nr_pages) {
 861                /* above AUX space */
 862                if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
 863                        return NULL;
 864
 865                /* AUX space */
 866                if (pgoff >= rb->aux_pgoff)
 867                        return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
 868        }
 869
 870        return __perf_mmap_to_page(rb, pgoff);
 871}
 872