linux/mm/mempolicy.c
<<
>>
Prefs
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *                in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/mm.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/swap.h>
  89#include <linux/seq_file.h>
  90#include <linux/proc_fs.h>
  91#include <linux/migrate.h>
  92#include <linux/ksm.h>
  93#include <linux/rmap.h>
  94#include <linux/security.h>
  95#include <linux/syscalls.h>
  96#include <linux/ctype.h>
  97#include <linux/mm_inline.h>
  98#include <linux/mmu_notifier.h>
  99#include <linux/printk.h>
 100#include <linux/swapops.h>
 101
 102#include <asm/tlbflush.h>
 103#include <linux/uaccess.h>
 104
 105#include "internal.h"
 106
 107/* Internal flags */
 108#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)    /* Skip checks for continuous vmas */
 109#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)          /* Invert check for nodemask */
 110
 111static struct kmem_cache *policy_cache;
 112static struct kmem_cache *sn_cache;
 113
 114/* Highest zone. An specific allocation for a zone below that is not
 115   policied. */
 116enum zone_type policy_zone = 0;
 117
 118/*
 119 * run-time system-wide default policy => local allocation
 120 */
 121static struct mempolicy default_policy = {
 122        .refcnt = ATOMIC_INIT(1), /* never free it */
 123        .mode = MPOL_PREFERRED,
 124        .flags = MPOL_F_LOCAL,
 125};
 126
 127static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 128
 129struct mempolicy *get_task_policy(struct task_struct *p)
 130{
 131        struct mempolicy *pol = p->mempolicy;
 132        int node;
 133
 134        if (pol)
 135                return pol;
 136
 137        node = numa_node_id();
 138        if (node != NUMA_NO_NODE) {
 139                pol = &preferred_node_policy[node];
 140                /* preferred_node_policy is not initialised early in boot */
 141                if (pol->mode)
 142                        return pol;
 143        }
 144
 145        return &default_policy;
 146}
 147
 148static const struct mempolicy_operations {
 149        int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 150        void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 151} mpol_ops[MPOL_MAX];
 152
 153static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 154{
 155        return pol->flags & MPOL_MODE_FLAGS;
 156}
 157
 158static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 159                                   const nodemask_t *rel)
 160{
 161        nodemask_t tmp;
 162        nodes_fold(tmp, *orig, nodes_weight(*rel));
 163        nodes_onto(*ret, tmp, *rel);
 164}
 165
 166static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 167{
 168        if (nodes_empty(*nodes))
 169                return -EINVAL;
 170        pol->v.nodes = *nodes;
 171        return 0;
 172}
 173
 174static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 175{
 176        if (!nodes)
 177                pol->flags |= MPOL_F_LOCAL;     /* local allocation */
 178        else if (nodes_empty(*nodes))
 179                return -EINVAL;                 /*  no allowed nodes */
 180        else
 181                pol->v.preferred_node = first_node(*nodes);
 182        return 0;
 183}
 184
 185static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 186{
 187        if (nodes_empty(*nodes))
 188                return -EINVAL;
 189        pol->v.nodes = *nodes;
 190        return 0;
 191}
 192
 193/*
 194 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 195 * any, for the new policy.  mpol_new() has already validated the nodes
 196 * parameter with respect to the policy mode and flags.  But, we need to
 197 * handle an empty nodemask with MPOL_PREFERRED here.
 198 *
 199 * Must be called holding task's alloc_lock to protect task's mems_allowed
 200 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 201 */
 202static int mpol_set_nodemask(struct mempolicy *pol,
 203                     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 204{
 205        int ret;
 206
 207        /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 208        if (pol == NULL)
 209                return 0;
 210        /* Check N_MEMORY */
 211        nodes_and(nsc->mask1,
 212                  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 213
 214        VM_BUG_ON(!nodes);
 215        if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 216                nodes = NULL;   /* explicit local allocation */
 217        else {
 218                if (pol->flags & MPOL_F_RELATIVE_NODES)
 219                        mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 220                else
 221                        nodes_and(nsc->mask2, *nodes, nsc->mask1);
 222
 223                if (mpol_store_user_nodemask(pol))
 224                        pol->w.user_nodemask = *nodes;
 225                else
 226                        pol->w.cpuset_mems_allowed =
 227                                                cpuset_current_mems_allowed;
 228        }
 229
 230        if (nodes)
 231                ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 232        else
 233                ret = mpol_ops[pol->mode].create(pol, NULL);
 234        return ret;
 235}
 236
 237/*
 238 * This function just creates a new policy, does some check and simple
 239 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 240 */
 241static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 242                                  nodemask_t *nodes)
 243{
 244        struct mempolicy *policy;
 245
 246        pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 247                 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 248
 249        if (mode == MPOL_DEFAULT) {
 250                if (nodes && !nodes_empty(*nodes))
 251                        return ERR_PTR(-EINVAL);
 252                return NULL;
 253        }
 254        VM_BUG_ON(!nodes);
 255
 256        /*
 257         * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 258         * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 259         * All other modes require a valid pointer to a non-empty nodemask.
 260         */
 261        if (mode == MPOL_PREFERRED) {
 262                if (nodes_empty(*nodes)) {
 263                        if (((flags & MPOL_F_STATIC_NODES) ||
 264                             (flags & MPOL_F_RELATIVE_NODES)))
 265                                return ERR_PTR(-EINVAL);
 266                }
 267        } else if (mode == MPOL_LOCAL) {
 268                if (!nodes_empty(*nodes) ||
 269                    (flags & MPOL_F_STATIC_NODES) ||
 270                    (flags & MPOL_F_RELATIVE_NODES))
 271                        return ERR_PTR(-EINVAL);
 272                mode = MPOL_PREFERRED;
 273        } else if (nodes_empty(*nodes))
 274                return ERR_PTR(-EINVAL);
 275        policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 276        if (!policy)
 277                return ERR_PTR(-ENOMEM);
 278        atomic_set(&policy->refcnt, 1);
 279        policy->mode = mode;
 280        policy->flags = flags;
 281
 282        return policy;
 283}
 284
 285/* Slow path of a mpol destructor. */
 286void __mpol_put(struct mempolicy *p)
 287{
 288        if (!atomic_dec_and_test(&p->refcnt))
 289                return;
 290        kmem_cache_free(policy_cache, p);
 291}
 292
 293static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 294{
 295}
 296
 297static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 298{
 299        nodemask_t tmp;
 300
 301        if (pol->flags & MPOL_F_STATIC_NODES)
 302                nodes_and(tmp, pol->w.user_nodemask, *nodes);
 303        else if (pol->flags & MPOL_F_RELATIVE_NODES)
 304                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 305        else {
 306                nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
 307                                                                *nodes);
 308                pol->w.cpuset_mems_allowed = tmp;
 309        }
 310
 311        if (nodes_empty(tmp))
 312                tmp = *nodes;
 313
 314        pol->v.nodes = tmp;
 315}
 316
 317static void mpol_rebind_preferred(struct mempolicy *pol,
 318                                                const nodemask_t *nodes)
 319{
 320        nodemask_t tmp;
 321
 322        if (pol->flags & MPOL_F_STATIC_NODES) {
 323                int node = first_node(pol->w.user_nodemask);
 324
 325                if (node_isset(node, *nodes)) {
 326                        pol->v.preferred_node = node;
 327                        pol->flags &= ~MPOL_F_LOCAL;
 328                } else
 329                        pol->flags |= MPOL_F_LOCAL;
 330        } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 331                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 332                pol->v.preferred_node = first_node(tmp);
 333        } else if (!(pol->flags & MPOL_F_LOCAL)) {
 334                pol->v.preferred_node = node_remap(pol->v.preferred_node,
 335                                                   pol->w.cpuset_mems_allowed,
 336                                                   *nodes);
 337                pol->w.cpuset_mems_allowed = *nodes;
 338        }
 339}
 340
 341/*
 342 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 343 *
 344 * Per-vma policies are protected by mmap_sem. Allocations using per-task
 345 * policies are protected by task->mems_allowed_seq to prevent a premature
 346 * OOM/allocation failure due to parallel nodemask modification.
 347 */
 348static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 349{
 350        if (!pol)
 351                return;
 352        if (!mpol_store_user_nodemask(pol) &&
 353            nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 354                return;
 355
 356        mpol_ops[pol->mode].rebind(pol, newmask);
 357}
 358
 359/*
 360 * Wrapper for mpol_rebind_policy() that just requires task
 361 * pointer, and updates task mempolicy.
 362 *
 363 * Called with task's alloc_lock held.
 364 */
 365
 366void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 367{
 368        mpol_rebind_policy(tsk->mempolicy, new);
 369}
 370
 371/*
 372 * Rebind each vma in mm to new nodemask.
 373 *
 374 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 375 */
 376
 377void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 378{
 379        struct vm_area_struct *vma;
 380
 381        down_write(&mm->mmap_sem);
 382        for (vma = mm->mmap; vma; vma = vma->vm_next)
 383                mpol_rebind_policy(vma->vm_policy, new);
 384        up_write(&mm->mmap_sem);
 385}
 386
 387static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 388        [MPOL_DEFAULT] = {
 389                .rebind = mpol_rebind_default,
 390        },
 391        [MPOL_INTERLEAVE] = {
 392                .create = mpol_new_interleave,
 393                .rebind = mpol_rebind_nodemask,
 394        },
 395        [MPOL_PREFERRED] = {
 396                .create = mpol_new_preferred,
 397                .rebind = mpol_rebind_preferred,
 398        },
 399        [MPOL_BIND] = {
 400                .create = mpol_new_bind,
 401                .rebind = mpol_rebind_nodemask,
 402        },
 403};
 404
 405static void migrate_page_add(struct page *page, struct list_head *pagelist,
 406                                unsigned long flags);
 407
 408struct queue_pages {
 409        struct list_head *pagelist;
 410        unsigned long flags;
 411        nodemask_t *nmask;
 412        struct vm_area_struct *prev;
 413};
 414
 415/*
 416 * Check if the page's nid is in qp->nmask.
 417 *
 418 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 419 * in the invert of qp->nmask.
 420 */
 421static inline bool queue_pages_required(struct page *page,
 422                                        struct queue_pages *qp)
 423{
 424        int nid = page_to_nid(page);
 425        unsigned long flags = qp->flags;
 426
 427        return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 428}
 429
 430static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 431                                unsigned long end, struct mm_walk *walk)
 432{
 433        int ret = 0;
 434        struct page *page;
 435        struct queue_pages *qp = walk->private;
 436        unsigned long flags;
 437
 438        if (unlikely(is_pmd_migration_entry(*pmd))) {
 439                ret = 1;
 440                goto unlock;
 441        }
 442        page = pmd_page(*pmd);
 443        if (is_huge_zero_page(page)) {
 444                spin_unlock(ptl);
 445                __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
 446                goto out;
 447        }
 448        if (!thp_migration_supported()) {
 449                get_page(page);
 450                spin_unlock(ptl);
 451                lock_page(page);
 452                ret = split_huge_page(page);
 453                unlock_page(page);
 454                put_page(page);
 455                goto out;
 456        }
 457        if (!queue_pages_required(page, qp)) {
 458                ret = 1;
 459                goto unlock;
 460        }
 461
 462        ret = 1;
 463        flags = qp->flags;
 464        /* go to thp migration */
 465        if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 466                migrate_page_add(page, qp->pagelist, flags);
 467unlock:
 468        spin_unlock(ptl);
 469out:
 470        return ret;
 471}
 472
 473/*
 474 * Scan through pages checking if pages follow certain conditions,
 475 * and move them to the pagelist if they do.
 476 */
 477static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 478                        unsigned long end, struct mm_walk *walk)
 479{
 480        struct vm_area_struct *vma = walk->vma;
 481        struct page *page;
 482        struct queue_pages *qp = walk->private;
 483        unsigned long flags = qp->flags;
 484        int ret;
 485        pte_t *pte;
 486        spinlock_t *ptl;
 487
 488        ptl = pmd_trans_huge_lock(pmd, vma);
 489        if (ptl) {
 490                ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 491                if (ret)
 492                        return 0;
 493        }
 494
 495        if (pmd_trans_unstable(pmd))
 496                return 0;
 497retry:
 498        pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 499        for (; addr != end; pte++, addr += PAGE_SIZE) {
 500                if (!pte_present(*pte))
 501                        continue;
 502                page = vm_normal_page(vma, addr, *pte);
 503                if (!page)
 504                        continue;
 505                /*
 506                 * vm_normal_page() filters out zero pages, but there might
 507                 * still be PageReserved pages to skip, perhaps in a VDSO.
 508                 */
 509                if (PageReserved(page))
 510                        continue;
 511                if (!queue_pages_required(page, qp))
 512                        continue;
 513                if (PageTransCompound(page) && !thp_migration_supported()) {
 514                        get_page(page);
 515                        pte_unmap_unlock(pte, ptl);
 516                        lock_page(page);
 517                        ret = split_huge_page(page);
 518                        unlock_page(page);
 519                        put_page(page);
 520                        /* Failed to split -- skip. */
 521                        if (ret) {
 522                                pte = pte_offset_map_lock(walk->mm, pmd,
 523                                                addr, &ptl);
 524                                continue;
 525                        }
 526                        goto retry;
 527                }
 528
 529                migrate_page_add(page, qp->pagelist, flags);
 530        }
 531        pte_unmap_unlock(pte - 1, ptl);
 532        cond_resched();
 533        return 0;
 534}
 535
 536static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 537                               unsigned long addr, unsigned long end,
 538                               struct mm_walk *walk)
 539{
 540#ifdef CONFIG_HUGETLB_PAGE
 541        struct queue_pages *qp = walk->private;
 542        unsigned long flags = qp->flags;
 543        struct page *page;
 544        spinlock_t *ptl;
 545        pte_t entry;
 546
 547        ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 548        entry = huge_ptep_get(pte);
 549        if (!pte_present(entry))
 550                goto unlock;
 551        page = pte_page(entry);
 552        if (!queue_pages_required(page, qp))
 553                goto unlock;
 554        /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 555        if (flags & (MPOL_MF_MOVE_ALL) ||
 556            (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 557                isolate_huge_page(page, qp->pagelist);
 558unlock:
 559        spin_unlock(ptl);
 560#else
 561        BUG();
 562#endif
 563        return 0;
 564}
 565
 566#ifdef CONFIG_NUMA_BALANCING
 567/*
 568 * This is used to mark a range of virtual addresses to be inaccessible.
 569 * These are later cleared by a NUMA hinting fault. Depending on these
 570 * faults, pages may be migrated for better NUMA placement.
 571 *
 572 * This is assuming that NUMA faults are handled using PROT_NONE. If
 573 * an architecture makes a different choice, it will need further
 574 * changes to the core.
 575 */
 576unsigned long change_prot_numa(struct vm_area_struct *vma,
 577                        unsigned long addr, unsigned long end)
 578{
 579        int nr_updated;
 580
 581        nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 582        if (nr_updated)
 583                count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 584
 585        return nr_updated;
 586}
 587#else
 588static unsigned long change_prot_numa(struct vm_area_struct *vma,
 589                        unsigned long addr, unsigned long end)
 590{
 591        return 0;
 592}
 593#endif /* CONFIG_NUMA_BALANCING */
 594
 595static int queue_pages_test_walk(unsigned long start, unsigned long end,
 596                                struct mm_walk *walk)
 597{
 598        struct vm_area_struct *vma = walk->vma;
 599        struct queue_pages *qp = walk->private;
 600        unsigned long endvma = vma->vm_end;
 601        unsigned long flags = qp->flags;
 602
 603        if (!vma_migratable(vma))
 604                return 1;
 605
 606        if (endvma > end)
 607                endvma = end;
 608        if (vma->vm_start > start)
 609                start = vma->vm_start;
 610
 611        if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 612                if (!vma->vm_next && vma->vm_end < end)
 613                        return -EFAULT;
 614                if (qp->prev && qp->prev->vm_end < vma->vm_start)
 615                        return -EFAULT;
 616        }
 617
 618        qp->prev = vma;
 619
 620        if (flags & MPOL_MF_LAZY) {
 621                /* Similar to task_numa_work, skip inaccessible VMAs */
 622                if (!is_vm_hugetlb_page(vma) &&
 623                        (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 624                        !(vma->vm_flags & VM_MIXEDMAP))
 625                        change_prot_numa(vma, start, endvma);
 626                return 1;
 627        }
 628
 629        /* queue pages from current vma */
 630        if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 631                return 0;
 632        return 1;
 633}
 634
 635/*
 636 * Walk through page tables and collect pages to be migrated.
 637 *
 638 * If pages found in a given range are on a set of nodes (determined by
 639 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 640 * passed via @private.)
 641 */
 642static int
 643queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 644                nodemask_t *nodes, unsigned long flags,
 645                struct list_head *pagelist)
 646{
 647        struct queue_pages qp = {
 648                .pagelist = pagelist,
 649                .flags = flags,
 650                .nmask = nodes,
 651                .prev = NULL,
 652        };
 653        struct mm_walk queue_pages_walk = {
 654                .hugetlb_entry = queue_pages_hugetlb,
 655                .pmd_entry = queue_pages_pte_range,
 656                .test_walk = queue_pages_test_walk,
 657                .mm = mm,
 658                .private = &qp,
 659        };
 660
 661        return walk_page_range(start, end, &queue_pages_walk);
 662}
 663
 664/*
 665 * Apply policy to a single VMA
 666 * This must be called with the mmap_sem held for writing.
 667 */
 668static int vma_replace_policy(struct vm_area_struct *vma,
 669                                                struct mempolicy *pol)
 670{
 671        int err;
 672        struct mempolicy *old;
 673        struct mempolicy *new;
 674
 675        pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 676                 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 677                 vma->vm_ops, vma->vm_file,
 678                 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 679
 680        new = mpol_dup(pol);
 681        if (IS_ERR(new))
 682                return PTR_ERR(new);
 683
 684        if (vma->vm_ops && vma->vm_ops->set_policy) {
 685                err = vma->vm_ops->set_policy(vma, new);
 686                if (err)
 687                        goto err_out;
 688        }
 689
 690        old = vma->vm_policy;
 691        vma->vm_policy = new; /* protected by mmap_sem */
 692        mpol_put(old);
 693
 694        return 0;
 695 err_out:
 696        mpol_put(new);
 697        return err;
 698}
 699
 700/* Step 2: apply policy to a range and do splits. */
 701static int mbind_range(struct mm_struct *mm, unsigned long start,
 702                       unsigned long end, struct mempolicy *new_pol)
 703{
 704        struct vm_area_struct *next;
 705        struct vm_area_struct *prev;
 706        struct vm_area_struct *vma;
 707        int err = 0;
 708        pgoff_t pgoff;
 709        unsigned long vmstart;
 710        unsigned long vmend;
 711
 712        vma = find_vma(mm, start);
 713        if (!vma || vma->vm_start > start)
 714                return -EFAULT;
 715
 716        prev = vma->vm_prev;
 717        if (start > vma->vm_start)
 718                prev = vma;
 719
 720        for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 721                next = vma->vm_next;
 722                vmstart = max(start, vma->vm_start);
 723                vmend   = min(end, vma->vm_end);
 724
 725                if (mpol_equal(vma_policy(vma), new_pol))
 726                        continue;
 727
 728                pgoff = vma->vm_pgoff +
 729                        ((vmstart - vma->vm_start) >> PAGE_SHIFT);
 730                prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 731                                 vma->anon_vma, vma->vm_file, pgoff,
 732                                 new_pol, vma->vm_userfaultfd_ctx);
 733                if (prev) {
 734                        vma = prev;
 735                        next = vma->vm_next;
 736                        if (mpol_equal(vma_policy(vma), new_pol))
 737                                continue;
 738                        /* vma_merge() joined vma && vma->next, case 8 */
 739                        goto replace;
 740                }
 741                if (vma->vm_start != vmstart) {
 742                        err = split_vma(vma->vm_mm, vma, vmstart, 1);
 743                        if (err)
 744                                goto out;
 745                }
 746                if (vma->vm_end != vmend) {
 747                        err = split_vma(vma->vm_mm, vma, vmend, 0);
 748                        if (err)
 749                                goto out;
 750                }
 751 replace:
 752                err = vma_replace_policy(vma, new_pol);
 753                if (err)
 754                        goto out;
 755        }
 756
 757 out:
 758        return err;
 759}
 760
 761/* Set the process memory policy */
 762static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 763                             nodemask_t *nodes)
 764{
 765        struct mempolicy *new, *old;
 766        NODEMASK_SCRATCH(scratch);
 767        int ret;
 768
 769        if (!scratch)
 770                return -ENOMEM;
 771
 772        new = mpol_new(mode, flags, nodes);
 773        if (IS_ERR(new)) {
 774                ret = PTR_ERR(new);
 775                goto out;
 776        }
 777
 778        task_lock(current);
 779        ret = mpol_set_nodemask(new, nodes, scratch);
 780        if (ret) {
 781                task_unlock(current);
 782                mpol_put(new);
 783                goto out;
 784        }
 785        old = current->mempolicy;
 786        current->mempolicy = new;
 787        if (new && new->mode == MPOL_INTERLEAVE)
 788                current->il_prev = MAX_NUMNODES-1;
 789        task_unlock(current);
 790        mpol_put(old);
 791        ret = 0;
 792out:
 793        NODEMASK_SCRATCH_FREE(scratch);
 794        return ret;
 795}
 796
 797/*
 798 * Return nodemask for policy for get_mempolicy() query
 799 *
 800 * Called with task's alloc_lock held
 801 */
 802static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 803{
 804        nodes_clear(*nodes);
 805        if (p == &default_policy)
 806                return;
 807
 808        switch (p->mode) {
 809        case MPOL_BIND:
 810                /* Fall through */
 811        case MPOL_INTERLEAVE:
 812                *nodes = p->v.nodes;
 813                break;
 814        case MPOL_PREFERRED:
 815                if (!(p->flags & MPOL_F_LOCAL))
 816                        node_set(p->v.preferred_node, *nodes);
 817                /* else return empty node mask for local allocation */
 818                break;
 819        default:
 820                BUG();
 821        }
 822}
 823
 824static int lookup_node(unsigned long addr)
 825{
 826        struct page *p;
 827        int err;
 828
 829        err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
 830        if (err >= 0) {
 831                err = page_to_nid(p);
 832                put_page(p);
 833        }
 834        return err;
 835}
 836
 837/* Retrieve NUMA policy */
 838static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 839                             unsigned long addr, unsigned long flags)
 840{
 841        int err;
 842        struct mm_struct *mm = current->mm;
 843        struct vm_area_struct *vma = NULL;
 844        struct mempolicy *pol = current->mempolicy;
 845
 846        if (flags &
 847                ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 848                return -EINVAL;
 849
 850        if (flags & MPOL_F_MEMS_ALLOWED) {
 851                if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 852                        return -EINVAL;
 853                *policy = 0;    /* just so it's initialized */
 854                task_lock(current);
 855                *nmask  = cpuset_current_mems_allowed;
 856                task_unlock(current);
 857                return 0;
 858        }
 859
 860        if (flags & MPOL_F_ADDR) {
 861                /*
 862                 * Do NOT fall back to task policy if the
 863                 * vma/shared policy at addr is NULL.  We
 864                 * want to return MPOL_DEFAULT in this case.
 865                 */
 866                down_read(&mm->mmap_sem);
 867                vma = find_vma_intersection(mm, addr, addr+1);
 868                if (!vma) {
 869                        up_read(&mm->mmap_sem);
 870                        return -EFAULT;
 871                }
 872                if (vma->vm_ops && vma->vm_ops->get_policy)
 873                        pol = vma->vm_ops->get_policy(vma, addr);
 874                else
 875                        pol = vma->vm_policy;
 876        } else if (addr)
 877                return -EINVAL;
 878
 879        if (!pol)
 880                pol = &default_policy;  /* indicates default behavior */
 881
 882        if (flags & MPOL_F_NODE) {
 883                if (flags & MPOL_F_ADDR) {
 884                        err = lookup_node(addr);
 885                        if (err < 0)
 886                                goto out;
 887                        *policy = err;
 888                } else if (pol == current->mempolicy &&
 889                                pol->mode == MPOL_INTERLEAVE) {
 890                        *policy = next_node_in(current->il_prev, pol->v.nodes);
 891                } else {
 892                        err = -EINVAL;
 893                        goto out;
 894                }
 895        } else {
 896                *policy = pol == &default_policy ? MPOL_DEFAULT :
 897                                                pol->mode;
 898                /*
 899                 * Internal mempolicy flags must be masked off before exposing
 900                 * the policy to userspace.
 901                 */
 902                *policy |= (pol->flags & MPOL_MODE_FLAGS);
 903        }
 904
 905        err = 0;
 906        if (nmask) {
 907                if (mpol_store_user_nodemask(pol)) {
 908                        *nmask = pol->w.user_nodemask;
 909                } else {
 910                        task_lock(current);
 911                        get_policy_nodemask(pol, nmask);
 912                        task_unlock(current);
 913                }
 914        }
 915
 916 out:
 917        mpol_cond_put(pol);
 918        if (vma)
 919                up_read(&current->mm->mmap_sem);
 920        return err;
 921}
 922
 923#ifdef CONFIG_MIGRATION
 924/*
 925 * page migration, thp tail pages can be passed.
 926 */
 927static void migrate_page_add(struct page *page, struct list_head *pagelist,
 928                                unsigned long flags)
 929{
 930        struct page *head = compound_head(page);
 931        /*
 932         * Avoid migrating a page that is shared with others.
 933         */
 934        if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
 935                if (!isolate_lru_page(head)) {
 936                        list_add_tail(&head->lru, pagelist);
 937                        mod_node_page_state(page_pgdat(head),
 938                                NR_ISOLATED_ANON + page_is_file_cache(head),
 939                                hpage_nr_pages(head));
 940                }
 941        }
 942}
 943
 944static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 945{
 946        if (PageHuge(page))
 947                return alloc_huge_page_node(page_hstate(compound_head(page)),
 948                                        node);
 949        else if (thp_migration_supported() && PageTransHuge(page)) {
 950                struct page *thp;
 951
 952                thp = alloc_pages_node(node,
 953                        (GFP_TRANSHUGE | __GFP_THISNODE),
 954                        HPAGE_PMD_ORDER);
 955                if (!thp)
 956                        return NULL;
 957                prep_transhuge_page(thp);
 958                return thp;
 959        } else
 960                return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
 961                                                    __GFP_THISNODE, 0);
 962}
 963
 964/*
 965 * Migrate pages from one node to a target node.
 966 * Returns error or the number of pages not migrated.
 967 */
 968static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 969                           int flags)
 970{
 971        nodemask_t nmask;
 972        LIST_HEAD(pagelist);
 973        int err = 0;
 974
 975        nodes_clear(nmask);
 976        node_set(source, nmask);
 977
 978        /*
 979         * This does not "check" the range but isolates all pages that
 980         * need migration.  Between passing in the full user address
 981         * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
 982         */
 983        VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
 984        queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 985                        flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 986
 987        if (!list_empty(&pagelist)) {
 988                err = migrate_pages(&pagelist, new_node_page, NULL, dest,
 989                                        MIGRATE_SYNC, MR_SYSCALL);
 990                if (err)
 991                        putback_movable_pages(&pagelist);
 992        }
 993
 994        return err;
 995}
 996
 997/*
 998 * Move pages between the two nodesets so as to preserve the physical
 999 * layout as much as possible.
1000 *
1001 * Returns the number of page that could not be moved.
1002 */
1003int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1004                     const nodemask_t *to, int flags)
1005{
1006        int busy = 0;
1007        int err;
1008        nodemask_t tmp;
1009
1010        err = migrate_prep();
1011        if (err)
1012                return err;
1013
1014        down_read(&mm->mmap_sem);
1015
1016        /*
1017         * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1018         * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1019         * bit in 'tmp', and return that <source, dest> pair for migration.
1020         * The pair of nodemasks 'to' and 'from' define the map.
1021         *
1022         * If no pair of bits is found that way, fallback to picking some
1023         * pair of 'source' and 'dest' bits that are not the same.  If the
1024         * 'source' and 'dest' bits are the same, this represents a node
1025         * that will be migrating to itself, so no pages need move.
1026         *
1027         * If no bits are left in 'tmp', or if all remaining bits left
1028         * in 'tmp' correspond to the same bit in 'to', return false
1029         * (nothing left to migrate).
1030         *
1031         * This lets us pick a pair of nodes to migrate between, such that
1032         * if possible the dest node is not already occupied by some other
1033         * source node, minimizing the risk of overloading the memory on a
1034         * node that would happen if we migrated incoming memory to a node
1035         * before migrating outgoing memory source that same node.
1036         *
1037         * A single scan of tmp is sufficient.  As we go, we remember the
1038         * most recent <s, d> pair that moved (s != d).  If we find a pair
1039         * that not only moved, but what's better, moved to an empty slot
1040         * (d is not set in tmp), then we break out then, with that pair.
1041         * Otherwise when we finish scanning from_tmp, we at least have the
1042         * most recent <s, d> pair that moved.  If we get all the way through
1043         * the scan of tmp without finding any node that moved, much less
1044         * moved to an empty node, then there is nothing left worth migrating.
1045         */
1046
1047        tmp = *from;
1048        while (!nodes_empty(tmp)) {
1049                int s,d;
1050                int source = NUMA_NO_NODE;
1051                int dest = 0;
1052
1053                for_each_node_mask(s, tmp) {
1054
1055                        /*
1056                         * do_migrate_pages() tries to maintain the relative
1057                         * node relationship of the pages established between
1058                         * threads and memory areas.
1059                         *
1060                         * However if the number of source nodes is not equal to
1061                         * the number of destination nodes we can not preserve
1062                         * this node relative relationship.  In that case, skip
1063                         * copying memory from a node that is in the destination
1064                         * mask.
1065                         *
1066                         * Example: [2,3,4] -> [3,4,5] moves everything.
1067                         *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1068                         */
1069
1070                        if ((nodes_weight(*from) != nodes_weight(*to)) &&
1071                                                (node_isset(s, *to)))
1072                                continue;
1073
1074                        d = node_remap(s, *from, *to);
1075                        if (s == d)
1076                                continue;
1077
1078                        source = s;     /* Node moved. Memorize */
1079                        dest = d;
1080
1081                        /* dest not in remaining from nodes? */
1082                        if (!node_isset(dest, tmp))
1083                                break;
1084                }
1085                if (source == NUMA_NO_NODE)
1086                        break;
1087
1088                node_clear(source, tmp);
1089                err = migrate_to_node(mm, source, dest, flags);
1090                if (err > 0)
1091                        busy += err;
1092                if (err < 0)
1093                        break;
1094        }
1095        up_read(&mm->mmap_sem);
1096        if (err < 0)
1097                return err;
1098        return busy;
1099
1100}
1101
1102/*
1103 * Allocate a new page for page migration based on vma policy.
1104 * Start by assuming the page is mapped by the same vma as contains @start.
1105 * Search forward from there, if not.  N.B., this assumes that the
1106 * list of pages handed to migrate_pages()--which is how we get here--
1107 * is in virtual address order.
1108 */
1109static struct page *new_page(struct page *page, unsigned long start, int **x)
1110{
1111        struct vm_area_struct *vma;
1112        unsigned long uninitialized_var(address);
1113
1114        vma = find_vma(current->mm, start);
1115        while (vma) {
1116                address = page_address_in_vma(page, vma);
1117                if (address != -EFAULT)
1118                        break;
1119                vma = vma->vm_next;
1120        }
1121
1122        if (PageHuge(page)) {
1123                BUG_ON(!vma);
1124                return alloc_huge_page_noerr(vma, address, 1);
1125        } else if (thp_migration_supported() && PageTransHuge(page)) {
1126                struct page *thp;
1127
1128                thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1129                                         HPAGE_PMD_ORDER);
1130                if (!thp)
1131                        return NULL;
1132                prep_transhuge_page(thp);
1133                return thp;
1134        }
1135        /*
1136         * if !vma, alloc_page_vma() will use task or system default policy
1137         */
1138        return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1139                        vma, address);
1140}
1141#else
1142
1143static void migrate_page_add(struct page *page, struct list_head *pagelist,
1144                                unsigned long flags)
1145{
1146}
1147
1148int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1149                     const nodemask_t *to, int flags)
1150{
1151        return -ENOSYS;
1152}
1153
1154static struct page *new_page(struct page *page, unsigned long start, int **x)
1155{
1156        return NULL;
1157}
1158#endif
1159
1160static long do_mbind(unsigned long start, unsigned long len,
1161                     unsigned short mode, unsigned short mode_flags,
1162                     nodemask_t *nmask, unsigned long flags)
1163{
1164        struct mm_struct *mm = current->mm;
1165        struct mempolicy *new;
1166        unsigned long end;
1167        int err;
1168        LIST_HEAD(pagelist);
1169
1170        if (flags & ~(unsigned long)MPOL_MF_VALID)
1171                return -EINVAL;
1172        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1173                return -EPERM;
1174
1175        if (start & ~PAGE_MASK)
1176                return -EINVAL;
1177
1178        if (mode == MPOL_DEFAULT)
1179                flags &= ~MPOL_MF_STRICT;
1180
1181        len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1182        end = start + len;
1183
1184        if (end < start)
1185                return -EINVAL;
1186        if (end == start)
1187                return 0;
1188
1189        new = mpol_new(mode, mode_flags, nmask);
1190        if (IS_ERR(new))
1191                return PTR_ERR(new);
1192
1193        if (flags & MPOL_MF_LAZY)
1194                new->flags |= MPOL_F_MOF;
1195
1196        /*
1197         * If we are using the default policy then operation
1198         * on discontinuous address spaces is okay after all
1199         */
1200        if (!new)
1201                flags |= MPOL_MF_DISCONTIG_OK;
1202
1203        pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1204                 start, start + len, mode, mode_flags,
1205                 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1206
1207        if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1208
1209                err = migrate_prep();
1210                if (err)
1211                        goto mpol_out;
1212        }
1213        {
1214                NODEMASK_SCRATCH(scratch);
1215                if (scratch) {
1216                        down_write(&mm->mmap_sem);
1217                        task_lock(current);
1218                        err = mpol_set_nodemask(new, nmask, scratch);
1219                        task_unlock(current);
1220                        if (err)
1221                                up_write(&mm->mmap_sem);
1222                } else
1223                        err = -ENOMEM;
1224                NODEMASK_SCRATCH_FREE(scratch);
1225        }
1226        if (err)
1227                goto mpol_out;
1228
1229        err = queue_pages_range(mm, start, end, nmask,
1230                          flags | MPOL_MF_INVERT, &pagelist);
1231        if (!err)
1232                err = mbind_range(mm, start, end, new);
1233
1234        if (!err) {
1235                int nr_failed = 0;
1236
1237                if (!list_empty(&pagelist)) {
1238                        WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1239                        nr_failed = migrate_pages(&pagelist, new_page, NULL,
1240                                start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1241                        if (nr_failed)
1242                                putback_movable_pages(&pagelist);
1243                }
1244
1245                if (nr_failed && (flags & MPOL_MF_STRICT))
1246                        err = -EIO;
1247        } else
1248                putback_movable_pages(&pagelist);
1249
1250        up_write(&mm->mmap_sem);
1251 mpol_out:
1252        mpol_put(new);
1253        return err;
1254}
1255
1256/*
1257 * User space interface with variable sized bitmaps for nodelists.
1258 */
1259
1260/* Copy a node mask from user space. */
1261static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1262                     unsigned long maxnode)
1263{
1264        unsigned long k;
1265        unsigned long nlongs;
1266        unsigned long endmask;
1267
1268        --maxnode;
1269        nodes_clear(*nodes);
1270        if (maxnode == 0 || !nmask)
1271                return 0;
1272        if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1273                return -EINVAL;
1274
1275        nlongs = BITS_TO_LONGS(maxnode);
1276        if ((maxnode % BITS_PER_LONG) == 0)
1277                endmask = ~0UL;
1278        else
1279                endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1280
1281        /* When the user specified more nodes than supported just check
1282           if the non supported part is all zero. */
1283        if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1284                if (nlongs > PAGE_SIZE/sizeof(long))
1285                        return -EINVAL;
1286                for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1287                        unsigned long t;
1288                        if (get_user(t, nmask + k))
1289                                return -EFAULT;
1290                        if (k == nlongs - 1) {
1291                                if (t & endmask)
1292                                        return -EINVAL;
1293                        } else if (t)
1294                                return -EINVAL;
1295                }
1296                nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1297                endmask = ~0UL;
1298        }
1299
1300        if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1301                return -EFAULT;
1302        nodes_addr(*nodes)[nlongs-1] &= endmask;
1303        return 0;
1304}
1305
1306/* Copy a kernel node mask to user space */
1307static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1308                              nodemask_t *nodes)
1309{
1310        unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1311        const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1312
1313        if (copy > nbytes) {
1314                if (copy > PAGE_SIZE)
1315                        return -EINVAL;
1316                if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1317                        return -EFAULT;
1318                copy = nbytes;
1319        }
1320        return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1321}
1322
1323SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1324                unsigned long, mode, const unsigned long __user *, nmask,
1325                unsigned long, maxnode, unsigned, flags)
1326{
1327        nodemask_t nodes;
1328        int err;
1329        unsigned short mode_flags;
1330
1331        mode_flags = mode & MPOL_MODE_FLAGS;
1332        mode &= ~MPOL_MODE_FLAGS;
1333        if (mode >= MPOL_MAX)
1334                return -EINVAL;
1335        if ((mode_flags & MPOL_F_STATIC_NODES) &&
1336            (mode_flags & MPOL_F_RELATIVE_NODES))
1337                return -EINVAL;
1338        err = get_nodes(&nodes, nmask, maxnode);
1339        if (err)
1340                return err;
1341        return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1342}
1343
1344/* Set the process memory policy */
1345SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1346                unsigned long, maxnode)
1347{
1348        int err;
1349        nodemask_t nodes;
1350        unsigned short flags;
1351
1352        flags = mode & MPOL_MODE_FLAGS;
1353        mode &= ~MPOL_MODE_FLAGS;
1354        if ((unsigned int)mode >= MPOL_MAX)
1355                return -EINVAL;
1356        if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1357                return -EINVAL;
1358        err = get_nodes(&nodes, nmask, maxnode);
1359        if (err)
1360                return err;
1361        return do_set_mempolicy(mode, flags, &nodes);
1362}
1363
1364SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1365                const unsigned long __user *, old_nodes,
1366                const unsigned long __user *, new_nodes)
1367{
1368        const struct cred *cred = current_cred(), *tcred;
1369        struct mm_struct *mm = NULL;
1370        struct task_struct *task;
1371        nodemask_t task_nodes;
1372        int err;
1373        nodemask_t *old;
1374        nodemask_t *new;
1375        NODEMASK_SCRATCH(scratch);
1376
1377        if (!scratch)
1378                return -ENOMEM;
1379
1380        old = &scratch->mask1;
1381        new = &scratch->mask2;
1382
1383        err = get_nodes(old, old_nodes, maxnode);
1384        if (err)
1385                goto out;
1386
1387        err = get_nodes(new, new_nodes, maxnode);
1388        if (err)
1389                goto out;
1390
1391        /* Find the mm_struct */
1392        rcu_read_lock();
1393        task = pid ? find_task_by_vpid(pid) : current;
1394        if (!task) {
1395                rcu_read_unlock();
1396                err = -ESRCH;
1397                goto out;
1398        }
1399        get_task_struct(task);
1400
1401        err = -EINVAL;
1402
1403        /*
1404         * Check if this process has the right to modify the specified
1405         * process. The right exists if the process has administrative
1406         * capabilities, superuser privileges or the same
1407         * userid as the target process.
1408         */
1409        tcred = __task_cred(task);
1410        if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1411            !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1412            !capable(CAP_SYS_NICE)) {
1413                rcu_read_unlock();
1414                err = -EPERM;
1415                goto out_put;
1416        }
1417        rcu_read_unlock();
1418
1419        task_nodes = cpuset_mems_allowed(task);
1420        /* Is the user allowed to access the target nodes? */
1421        if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1422                err = -EPERM;
1423                goto out_put;
1424        }
1425
1426        if (!nodes_subset(*new, node_states[N_MEMORY])) {
1427                err = -EINVAL;
1428                goto out_put;
1429        }
1430
1431        err = security_task_movememory(task);
1432        if (err)
1433                goto out_put;
1434
1435        mm = get_task_mm(task);
1436        put_task_struct(task);
1437
1438        if (!mm) {
1439                err = -EINVAL;
1440                goto out;
1441        }
1442
1443        err = do_migrate_pages(mm, old, new,
1444                capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1445
1446        mmput(mm);
1447out:
1448        NODEMASK_SCRATCH_FREE(scratch);
1449
1450        return err;
1451
1452out_put:
1453        put_task_struct(task);
1454        goto out;
1455
1456}
1457
1458
1459/* Retrieve NUMA policy */
1460SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1461                unsigned long __user *, nmask, unsigned long, maxnode,
1462                unsigned long, addr, unsigned long, flags)
1463{
1464        int err;
1465        int uninitialized_var(pval);
1466        nodemask_t nodes;
1467
1468        if (nmask != NULL && maxnode < MAX_NUMNODES)
1469                return -EINVAL;
1470
1471        err = do_get_mempolicy(&pval, &nodes, addr, flags);
1472
1473        if (err)
1474                return err;
1475
1476        if (policy && put_user(pval, policy))
1477                return -EFAULT;
1478
1479        if (nmask)
1480                err = copy_nodes_to_user(nmask, maxnode, &nodes);
1481
1482        return err;
1483}
1484
1485#ifdef CONFIG_COMPAT
1486
1487COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1488                       compat_ulong_t __user *, nmask,
1489                       compat_ulong_t, maxnode,
1490                       compat_ulong_t, addr, compat_ulong_t, flags)
1491{
1492        long err;
1493        unsigned long __user *nm = NULL;
1494        unsigned long nr_bits, alloc_size;
1495        DECLARE_BITMAP(bm, MAX_NUMNODES);
1496
1497        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1498        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1499
1500        if (nmask)
1501                nm = compat_alloc_user_space(alloc_size);
1502
1503        err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1504
1505        if (!err && nmask) {
1506                unsigned long copy_size;
1507                copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1508                err = copy_from_user(bm, nm, copy_size);
1509                /* ensure entire bitmap is zeroed */
1510                err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1511                err |= compat_put_bitmap(nmask, bm, nr_bits);
1512        }
1513
1514        return err;
1515}
1516
1517COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1518                       compat_ulong_t, maxnode)
1519{
1520        unsigned long __user *nm = NULL;
1521        unsigned long nr_bits, alloc_size;
1522        DECLARE_BITMAP(bm, MAX_NUMNODES);
1523
1524        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1525        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1526
1527        if (nmask) {
1528                if (compat_get_bitmap(bm, nmask, nr_bits))
1529                        return -EFAULT;
1530                nm = compat_alloc_user_space(alloc_size);
1531                if (copy_to_user(nm, bm, alloc_size))
1532                        return -EFAULT;
1533        }
1534
1535        return sys_set_mempolicy(mode, nm, nr_bits+1);
1536}
1537
1538COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1539                       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1540                       compat_ulong_t, maxnode, compat_ulong_t, flags)
1541{
1542        unsigned long __user *nm = NULL;
1543        unsigned long nr_bits, alloc_size;
1544        nodemask_t bm;
1545
1546        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1547        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1548
1549        if (nmask) {
1550                if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1551                        return -EFAULT;
1552                nm = compat_alloc_user_space(alloc_size);
1553                if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1554                        return -EFAULT;
1555        }
1556
1557        return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1558}
1559
1560#endif
1561
1562struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1563                                                unsigned long addr)
1564{
1565        struct mempolicy *pol = NULL;
1566
1567        if (vma) {
1568                if (vma->vm_ops && vma->vm_ops->get_policy) {
1569                        pol = vma->vm_ops->get_policy(vma, addr);
1570                } else if (vma->vm_policy) {
1571                        pol = vma->vm_policy;
1572
1573                        /*
1574                         * shmem_alloc_page() passes MPOL_F_SHARED policy with
1575                         * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1576                         * count on these policies which will be dropped by
1577                         * mpol_cond_put() later
1578                         */
1579                        if (mpol_needs_cond_ref(pol))
1580                                mpol_get(pol);
1581                }
1582        }
1583
1584        return pol;
1585}
1586
1587/*
1588 * get_vma_policy(@vma, @addr)
1589 * @vma: virtual memory area whose policy is sought
1590 * @addr: address in @vma for shared policy lookup
1591 *
1592 * Returns effective policy for a VMA at specified address.
1593 * Falls back to current->mempolicy or system default policy, as necessary.
1594 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1595 * count--added by the get_policy() vm_op, as appropriate--to protect against
1596 * freeing by another task.  It is the caller's responsibility to free the
1597 * extra reference for shared policies.
1598 */
1599static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1600                                                unsigned long addr)
1601{
1602        struct mempolicy *pol = __get_vma_policy(vma, addr);
1603
1604        if (!pol)
1605                pol = get_task_policy(current);
1606
1607        return pol;
1608}
1609
1610bool vma_policy_mof(struct vm_area_struct *vma)
1611{
1612        struct mempolicy *pol;
1613
1614        if (vma->vm_ops && vma->vm_ops->get_policy) {
1615                bool ret = false;
1616
1617                pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1618                if (pol && (pol->flags & MPOL_F_MOF))
1619                        ret = true;
1620                mpol_cond_put(pol);
1621
1622                return ret;
1623        }
1624
1625        pol = vma->vm_policy;
1626        if (!pol)
1627                pol = get_task_policy(current);
1628
1629        return pol->flags & MPOL_F_MOF;
1630}
1631
1632static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1633{
1634        enum zone_type dynamic_policy_zone = policy_zone;
1635
1636        BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1637
1638        /*
1639         * if policy->v.nodes has movable memory only,
1640         * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1641         *
1642         * policy->v.nodes is intersect with node_states[N_MEMORY].
1643         * so if the following test faile, it implies
1644         * policy->v.nodes has movable memory only.
1645         */
1646        if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1647                dynamic_policy_zone = ZONE_MOVABLE;
1648
1649        return zone >= dynamic_policy_zone;
1650}
1651
1652/*
1653 * Return a nodemask representing a mempolicy for filtering nodes for
1654 * page allocation
1655 */
1656static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1657{
1658        /* Lower zones don't get a nodemask applied for MPOL_BIND */
1659        if (unlikely(policy->mode == MPOL_BIND) &&
1660                        apply_policy_zone(policy, gfp_zone(gfp)) &&
1661                        cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1662                return &policy->v.nodes;
1663
1664        return NULL;
1665}
1666
1667/* Return the node id preferred by the given mempolicy, or the given id */
1668static int policy_node(gfp_t gfp, struct mempolicy *policy,
1669                                                                int nd)
1670{
1671        if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1672                nd = policy->v.preferred_node;
1673        else {
1674                /*
1675                 * __GFP_THISNODE shouldn't even be used with the bind policy
1676                 * because we might easily break the expectation to stay on the
1677                 * requested node and not break the policy.
1678                 */
1679                WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1680        }
1681
1682        return nd;
1683}
1684
1685/* Do dynamic interleaving for a process */
1686static unsigned interleave_nodes(struct mempolicy *policy)
1687{
1688        unsigned next;
1689        struct task_struct *me = current;
1690
1691        next = next_node_in(me->il_prev, policy->v.nodes);
1692        if (next < MAX_NUMNODES)
1693                me->il_prev = next;
1694        return next;
1695}
1696
1697/*
1698 * Depending on the memory policy provide a node from which to allocate the
1699 * next slab entry.
1700 */
1701unsigned int mempolicy_slab_node(void)
1702{
1703        struct mempolicy *policy;
1704        int node = numa_mem_id();
1705
1706        if (in_interrupt())
1707                return node;
1708
1709        policy = current->mempolicy;
1710        if (!policy || policy->flags & MPOL_F_LOCAL)
1711                return node;
1712
1713        switch (policy->mode) {
1714        case MPOL_PREFERRED:
1715                /*
1716                 * handled MPOL_F_LOCAL above
1717                 */
1718                return policy->v.preferred_node;
1719
1720        case MPOL_INTERLEAVE:
1721                return interleave_nodes(policy);
1722
1723        case MPOL_BIND: {
1724                struct zoneref *z;
1725
1726                /*
1727                 * Follow bind policy behavior and start allocation at the
1728                 * first node.
1729                 */
1730                struct zonelist *zonelist;
1731                enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1732                zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1733                z = first_zones_zonelist(zonelist, highest_zoneidx,
1734                                                        &policy->v.nodes);
1735                return z->zone ? z->zone->node : node;
1736        }
1737
1738        default:
1739                BUG();
1740        }
1741}
1742
1743/*
1744 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1745 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1746 * number of present nodes.
1747 */
1748static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1749{
1750        unsigned nnodes = nodes_weight(pol->v.nodes);
1751        unsigned target;
1752        int i;
1753        int nid;
1754
1755        if (!nnodes)
1756                return numa_node_id();
1757        target = (unsigned int)n % nnodes;
1758        nid = first_node(pol->v.nodes);
1759        for (i = 0; i < target; i++)
1760                nid = next_node(nid, pol->v.nodes);
1761        return nid;
1762}
1763
1764/* Determine a node number for interleave */
1765static inline unsigned interleave_nid(struct mempolicy *pol,
1766                 struct vm_area_struct *vma, unsigned long addr, int shift)
1767{
1768        if (vma) {
1769                unsigned long off;
1770
1771                /*
1772                 * for small pages, there is no difference between
1773                 * shift and PAGE_SHIFT, so the bit-shift is safe.
1774                 * for huge pages, since vm_pgoff is in units of small
1775                 * pages, we need to shift off the always 0 bits to get
1776                 * a useful offset.
1777                 */
1778                BUG_ON(shift < PAGE_SHIFT);
1779                off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1780                off += (addr - vma->vm_start) >> shift;
1781                return offset_il_node(pol, off);
1782        } else
1783                return interleave_nodes(pol);
1784}
1785
1786#ifdef CONFIG_HUGETLBFS
1787/*
1788 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1789 * @vma: virtual memory area whose policy is sought
1790 * @addr: address in @vma for shared policy lookup and interleave policy
1791 * @gfp_flags: for requested zone
1792 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1793 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1794 *
1795 * Returns a nid suitable for a huge page allocation and a pointer
1796 * to the struct mempolicy for conditional unref after allocation.
1797 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1798 * @nodemask for filtering the zonelist.
1799 *
1800 * Must be protected by read_mems_allowed_begin()
1801 */
1802int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1803                                struct mempolicy **mpol, nodemask_t **nodemask)
1804{
1805        int nid;
1806
1807        *mpol = get_vma_policy(vma, addr);
1808        *nodemask = NULL;       /* assume !MPOL_BIND */
1809
1810        if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1811                nid = interleave_nid(*mpol, vma, addr,
1812                                        huge_page_shift(hstate_vma(vma)));
1813        } else {
1814                nid = policy_node(gfp_flags, *mpol, numa_node_id());
1815                if ((*mpol)->mode == MPOL_BIND)
1816                        *nodemask = &(*mpol)->v.nodes;
1817        }
1818        return nid;
1819}
1820
1821/*
1822 * init_nodemask_of_mempolicy
1823 *
1824 * If the current task's mempolicy is "default" [NULL], return 'false'
1825 * to indicate default policy.  Otherwise, extract the policy nodemask
1826 * for 'bind' or 'interleave' policy into the argument nodemask, or
1827 * initialize the argument nodemask to contain the single node for
1828 * 'preferred' or 'local' policy and return 'true' to indicate presence
1829 * of non-default mempolicy.
1830 *
1831 * We don't bother with reference counting the mempolicy [mpol_get/put]
1832 * because the current task is examining it's own mempolicy and a task's
1833 * mempolicy is only ever changed by the task itself.
1834 *
1835 * N.B., it is the caller's responsibility to free a returned nodemask.
1836 */
1837bool init_nodemask_of_mempolicy(nodemask_t *mask)
1838{
1839        struct mempolicy *mempolicy;
1840        int nid;
1841
1842        if (!(mask && current->mempolicy))
1843                return false;
1844
1845        task_lock(current);
1846        mempolicy = current->mempolicy;
1847        switch (mempolicy->mode) {
1848        case MPOL_PREFERRED:
1849                if (mempolicy->flags & MPOL_F_LOCAL)
1850                        nid = numa_node_id();
1851                else
1852                        nid = mempolicy->v.preferred_node;
1853                init_nodemask_of_node(mask, nid);
1854                break;
1855
1856        case MPOL_BIND:
1857                /* Fall through */
1858        case MPOL_INTERLEAVE:
1859                *mask =  mempolicy->v.nodes;
1860                break;
1861
1862        default:
1863                BUG();
1864        }
1865        task_unlock(current);
1866
1867        return true;
1868}
1869#endif
1870
1871/*
1872 * mempolicy_nodemask_intersects
1873 *
1874 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1875 * policy.  Otherwise, check for intersection between mask and the policy
1876 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1877 * policy, always return true since it may allocate elsewhere on fallback.
1878 *
1879 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1880 */
1881bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1882                                        const nodemask_t *mask)
1883{
1884        struct mempolicy *mempolicy;
1885        bool ret = true;
1886
1887        if (!mask)
1888                return ret;
1889        task_lock(tsk);
1890        mempolicy = tsk->mempolicy;
1891        if (!mempolicy)
1892                goto out;
1893
1894        switch (mempolicy->mode) {
1895        case MPOL_PREFERRED:
1896                /*
1897                 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1898                 * allocate from, they may fallback to other nodes when oom.
1899                 * Thus, it's possible for tsk to have allocated memory from
1900                 * nodes in mask.
1901                 */
1902                break;
1903        case MPOL_BIND:
1904        case MPOL_INTERLEAVE:
1905                ret = nodes_intersects(mempolicy->v.nodes, *mask);
1906                break;
1907        default:
1908                BUG();
1909        }
1910out:
1911        task_unlock(tsk);
1912        return ret;
1913}
1914
1915/* Allocate a page in interleaved policy.
1916   Own path because it needs to do special accounting. */
1917static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1918                                        unsigned nid)
1919{
1920        struct page *page;
1921
1922        page = __alloc_pages(gfp, order, nid);
1923        if (page && page_to_nid(page) == nid) {
1924                preempt_disable();
1925                __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1926                preempt_enable();
1927        }
1928        return page;
1929}
1930
1931/**
1932 *      alloc_pages_vma - Allocate a page for a VMA.
1933 *
1934 *      @gfp:
1935 *      %GFP_USER    user allocation.
1936 *      %GFP_KERNEL  kernel allocations,
1937 *      %GFP_HIGHMEM highmem/user allocations,
1938 *      %GFP_FS      allocation should not call back into a file system.
1939 *      %GFP_ATOMIC  don't sleep.
1940 *
1941 *      @order:Order of the GFP allocation.
1942 *      @vma:  Pointer to VMA or NULL if not available.
1943 *      @addr: Virtual Address of the allocation. Must be inside the VMA.
1944 *      @node: Which node to prefer for allocation (modulo policy).
1945 *      @hugepage: for hugepages try only the preferred node if possible
1946 *
1947 *      This function allocates a page from the kernel page pool and applies
1948 *      a NUMA policy associated with the VMA or the current process.
1949 *      When VMA is not NULL caller must hold down_read on the mmap_sem of the
1950 *      mm_struct of the VMA to prevent it from going away. Should be used for
1951 *      all allocations for pages that will be mapped into user space. Returns
1952 *      NULL when no page can be allocated.
1953 */
1954struct page *
1955alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1956                unsigned long addr, int node, bool hugepage)
1957{
1958        struct mempolicy *pol;
1959        struct page *page;
1960        int preferred_nid;
1961        nodemask_t *nmask;
1962
1963        pol = get_vma_policy(vma, addr);
1964
1965        if (pol->mode == MPOL_INTERLEAVE) {
1966                unsigned nid;
1967
1968                nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1969                mpol_cond_put(pol);
1970                page = alloc_page_interleave(gfp, order, nid);
1971                goto out;
1972        }
1973
1974        if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1975                int hpage_node = node;
1976
1977                /*
1978                 * For hugepage allocation and non-interleave policy which
1979                 * allows the current node (or other explicitly preferred
1980                 * node) we only try to allocate from the current/preferred
1981                 * node and don't fall back to other nodes, as the cost of
1982                 * remote accesses would likely offset THP benefits.
1983                 *
1984                 * If the policy is interleave, or does not allow the current
1985                 * node in its nodemask, we allocate the standard way.
1986                 */
1987                if (pol->mode == MPOL_PREFERRED &&
1988                                                !(pol->flags & MPOL_F_LOCAL))
1989                        hpage_node = pol->v.preferred_node;
1990
1991                nmask = policy_nodemask(gfp, pol);
1992                if (!nmask || node_isset(hpage_node, *nmask)) {
1993                        mpol_cond_put(pol);
1994                        page = __alloc_pages_node(hpage_node,
1995                                                gfp | __GFP_THISNODE, order);
1996                        goto out;
1997                }
1998        }
1999
2000        nmask = policy_nodemask(gfp, pol);
2001        preferred_nid = policy_node(gfp, pol, node);
2002        page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2003        mpol_cond_put(pol);
2004out:
2005        return page;
2006}
2007
2008/**
2009 *      alloc_pages_current - Allocate pages.
2010 *
2011 *      @gfp:
2012 *              %GFP_USER   user allocation,
2013 *              %GFP_KERNEL kernel allocation,
2014 *              %GFP_HIGHMEM highmem allocation,
2015 *              %GFP_FS     don't call back into a file system.
2016 *              %GFP_ATOMIC don't sleep.
2017 *      @order: Power of two of allocation size in pages. 0 is a single page.
2018 *
2019 *      Allocate a page from the kernel page pool.  When not in
2020 *      interrupt context and apply the current process NUMA policy.
2021 *      Returns NULL when no page can be allocated.
2022 */
2023struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2024{
2025        struct mempolicy *pol = &default_policy;
2026        struct page *page;
2027
2028        if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2029                pol = get_task_policy(current);
2030
2031        /*
2032         * No reference counting needed for current->mempolicy
2033         * nor system default_policy
2034         */
2035        if (pol->mode == MPOL_INTERLEAVE)
2036                page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2037        else
2038                page = __alloc_pages_nodemask(gfp, order,
2039                                policy_node(gfp, pol, numa_node_id()),
2040                                policy_nodemask(gfp, pol));
2041
2042        return page;
2043}
2044EXPORT_SYMBOL(alloc_pages_current);
2045
2046int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2047{
2048        struct mempolicy *pol = mpol_dup(vma_policy(src));
2049
2050        if (IS_ERR(pol))
2051                return PTR_ERR(pol);
2052        dst->vm_policy = pol;
2053        return 0;
2054}
2055
2056/*
2057 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2058 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2059 * with the mems_allowed returned by cpuset_mems_allowed().  This
2060 * keeps mempolicies cpuset relative after its cpuset moves.  See
2061 * further kernel/cpuset.c update_nodemask().
2062 *
2063 * current's mempolicy may be rebinded by the other task(the task that changes
2064 * cpuset's mems), so we needn't do rebind work for current task.
2065 */
2066
2067/* Slow path of a mempolicy duplicate */
2068struct mempolicy *__mpol_dup(struct mempolicy *old)
2069{
2070        struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2071
2072        if (!new)
2073                return ERR_PTR(-ENOMEM);
2074
2075        /* task's mempolicy is protected by alloc_lock */
2076        if (old == current->mempolicy) {
2077                task_lock(current);
2078                *new = *old;
2079                task_unlock(current);
2080        } else
2081                *new = *old;
2082
2083        if (current_cpuset_is_being_rebound()) {
2084                nodemask_t mems = cpuset_mems_allowed(current);
2085                mpol_rebind_policy(new, &mems);
2086        }
2087        atomic_set(&new->refcnt, 1);
2088        return new;
2089}
2090
2091/* Slow path of a mempolicy comparison */
2092bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2093{
2094        if (!a || !b)
2095                return false;
2096        if (a->mode != b->mode)
2097                return false;
2098        if (a->flags != b->flags)
2099                return false;
2100        if (mpol_store_user_nodemask(a))
2101                if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2102                        return false;
2103
2104        switch (a->mode) {
2105        case MPOL_BIND:
2106                /* Fall through */
2107        case MPOL_INTERLEAVE:
2108                return !!nodes_equal(a->v.nodes, b->v.nodes);
2109        case MPOL_PREFERRED:
2110                return a->v.preferred_node == b->v.preferred_node;
2111        default:
2112                BUG();
2113                return false;
2114        }
2115}
2116
2117/*
2118 * Shared memory backing store policy support.
2119 *
2120 * Remember policies even when nobody has shared memory mapped.
2121 * The policies are kept in Red-Black tree linked from the inode.
2122 * They are protected by the sp->lock rwlock, which should be held
2123 * for any accesses to the tree.
2124 */
2125
2126/*
2127 * lookup first element intersecting start-end.  Caller holds sp->lock for
2128 * reading or for writing
2129 */
2130static struct sp_node *
2131sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2132{
2133        struct rb_node *n = sp->root.rb_node;
2134
2135        while (n) {
2136                struct sp_node *p = rb_entry(n, struct sp_node, nd);
2137
2138                if (start >= p->end)
2139                        n = n->rb_right;
2140                else if (end <= p->start)
2141                        n = n->rb_left;
2142                else
2143                        break;
2144        }
2145        if (!n)
2146                return NULL;
2147        for (;;) {
2148                struct sp_node *w = NULL;
2149                struct rb_node *prev = rb_prev(n);
2150                if (!prev)
2151                        break;
2152                w = rb_entry(prev, struct sp_node, nd);
2153                if (w->end <= start)
2154                        break;
2155                n = prev;
2156        }
2157        return rb_entry(n, struct sp_node, nd);
2158}
2159
2160/*
2161 * Insert a new shared policy into the list.  Caller holds sp->lock for
2162 * writing.
2163 */
2164static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2165{
2166        struct rb_node **p = &sp->root.rb_node;
2167        struct rb_node *parent = NULL;
2168        struct sp_node *nd;
2169
2170        while (*p) {
2171                parent = *p;
2172                nd = rb_entry(parent, struct sp_node, nd);
2173                if (new->start < nd->start)
2174                        p = &(*p)->rb_left;
2175                else if (new->end > nd->end)
2176                        p = &(*p)->rb_right;
2177                else
2178                        BUG();
2179        }
2180        rb_link_node(&new->nd, parent, p);
2181        rb_insert_color(&new->nd, &sp->root);
2182        pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2183                 new->policy ? new->policy->mode : 0);
2184}
2185
2186/* Find shared policy intersecting idx */
2187struct mempolicy *
2188mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2189{
2190        struct mempolicy *pol = NULL;
2191        struct sp_node *sn;
2192
2193        if (!sp->root.rb_node)
2194                return NULL;
2195        read_lock(&sp->lock);
2196        sn = sp_lookup(sp, idx, idx+1);
2197        if (sn) {
2198                mpol_get(sn->policy);
2199                pol = sn->policy;
2200        }
2201        read_unlock(&sp->lock);
2202        return pol;
2203}
2204
2205static void sp_free(struct sp_node *n)
2206{
2207        mpol_put(n->policy);
2208        kmem_cache_free(sn_cache, n);
2209}
2210
2211/**
2212 * mpol_misplaced - check whether current page node is valid in policy
2213 *
2214 * @page: page to be checked
2215 * @vma: vm area where page mapped
2216 * @addr: virtual address where page mapped
2217 *
2218 * Lookup current policy node id for vma,addr and "compare to" page's
2219 * node id.
2220 *
2221 * Returns:
2222 *      -1      - not misplaced, page is in the right node
2223 *      node    - node id where the page should be
2224 *
2225 * Policy determination "mimics" alloc_page_vma().
2226 * Called from fault path where we know the vma and faulting address.
2227 */
2228int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2229{
2230        struct mempolicy *pol;
2231        struct zoneref *z;
2232        int curnid = page_to_nid(page);
2233        unsigned long pgoff;
2234        int thiscpu = raw_smp_processor_id();
2235        int thisnid = cpu_to_node(thiscpu);
2236        int polnid = -1;
2237        int ret = -1;
2238
2239        pol = get_vma_policy(vma, addr);
2240        if (!(pol->flags & MPOL_F_MOF))
2241                goto out;
2242
2243        switch (pol->mode) {
2244        case MPOL_INTERLEAVE:
2245                pgoff = vma->vm_pgoff;
2246                pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2247                polnid = offset_il_node(pol, pgoff);
2248                break;
2249
2250        case MPOL_PREFERRED:
2251                if (pol->flags & MPOL_F_LOCAL)
2252                        polnid = numa_node_id();
2253                else
2254                        polnid = pol->v.preferred_node;
2255                break;
2256
2257        case MPOL_BIND:
2258
2259                /*
2260                 * allows binding to multiple nodes.
2261                 * use current page if in policy nodemask,
2262                 * else select nearest allowed node, if any.
2263                 * If no allowed nodes, use current [!misplaced].
2264                 */
2265                if (node_isset(curnid, pol->v.nodes))
2266                        goto out;
2267                z = first_zones_zonelist(
2268                                node_zonelist(numa_node_id(), GFP_HIGHUSER),
2269                                gfp_zone(GFP_HIGHUSER),
2270                                &pol->v.nodes);
2271                polnid = z->zone->node;
2272                break;
2273
2274        default:
2275                BUG();
2276        }
2277
2278        /* Migrate the page towards the node whose CPU is referencing it */
2279        if (pol->flags & MPOL_F_MORON) {
2280                polnid = thisnid;
2281
2282                if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2283                        goto out;
2284        }
2285
2286        if (curnid != polnid)
2287                ret = polnid;
2288out:
2289        mpol_cond_put(pol);
2290
2291        return ret;
2292}
2293
2294/*
2295 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2296 * dropped after task->mempolicy is set to NULL so that any allocation done as
2297 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2298 * policy.
2299 */
2300void mpol_put_task_policy(struct task_struct *task)
2301{
2302        struct mempolicy *pol;
2303
2304        task_lock(task);
2305        pol = task->mempolicy;
2306        task->mempolicy = NULL;
2307        task_unlock(task);
2308        mpol_put(pol);
2309}
2310
2311static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2312{
2313        pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2314        rb_erase(&n->nd, &sp->root);
2315        sp_free(n);
2316}
2317
2318static void sp_node_init(struct sp_node *node, unsigned long start,
2319                        unsigned long end, struct mempolicy *pol)
2320{
2321        node->start = start;
2322        node->end = end;
2323        node->policy = pol;
2324}
2325
2326static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2327                                struct mempolicy *pol)
2328{
2329        struct sp_node *n;
2330        struct mempolicy *newpol;
2331
2332        n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2333        if (!n)
2334                return NULL;
2335
2336        newpol = mpol_dup(pol);
2337        if (IS_ERR(newpol)) {
2338                kmem_cache_free(sn_cache, n);
2339                return NULL;
2340        }
2341        newpol->flags |= MPOL_F_SHARED;
2342        sp_node_init(n, start, end, newpol);
2343
2344        return n;
2345}
2346
2347/* Replace a policy range. */
2348static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2349                                 unsigned long end, struct sp_node *new)
2350{
2351        struct sp_node *n;
2352        struct sp_node *n_new = NULL;
2353        struct mempolicy *mpol_new = NULL;
2354        int ret = 0;
2355
2356restart:
2357        write_lock(&sp->lock);
2358        n = sp_lookup(sp, start, end);
2359        /* Take care of old policies in the same range. */
2360        while (n && n->start < end) {
2361                struct rb_node *next = rb_next(&n->nd);
2362                if (n->start >= start) {
2363                        if (n->end <= end)
2364                                sp_delete(sp, n);
2365                        else
2366                                n->start = end;
2367                } else {
2368                        /* Old policy spanning whole new range. */
2369                        if (n->end > end) {
2370                                if (!n_new)
2371                                        goto alloc_new;
2372
2373                                *mpol_new = *n->policy;
2374                                atomic_set(&mpol_new->refcnt, 1);
2375                                sp_node_init(n_new, end, n->end, mpol_new);
2376                                n->end = start;
2377                                sp_insert(sp, n_new);
2378                                n_new = NULL;
2379                                mpol_new = NULL;
2380                                break;
2381                        } else
2382                                n->end = start;
2383                }
2384                if (!next)
2385                        break;
2386                n = rb_entry(next, struct sp_node, nd);
2387        }
2388        if (new)
2389                sp_insert(sp, new);
2390        write_unlock(&sp->lock);
2391        ret = 0;
2392
2393err_out:
2394        if (mpol_new)
2395                mpol_put(mpol_new);
2396        if (n_new)
2397                kmem_cache_free(sn_cache, n_new);
2398
2399        return ret;
2400
2401alloc_new:
2402        write_unlock(&sp->lock);
2403        ret = -ENOMEM;
2404        n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2405        if (!n_new)
2406                goto err_out;
2407        mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2408        if (!mpol_new)
2409                goto err_out;
2410        goto restart;
2411}
2412
2413/**
2414 * mpol_shared_policy_init - initialize shared policy for inode
2415 * @sp: pointer to inode shared policy
2416 * @mpol:  struct mempolicy to install
2417 *
2418 * Install non-NULL @mpol in inode's shared policy rb-tree.
2419 * On entry, the current task has a reference on a non-NULL @mpol.
2420 * This must be released on exit.
2421 * This is called at get_inode() calls and we can use GFP_KERNEL.
2422 */
2423void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2424{
2425        int ret;
2426
2427        sp->root = RB_ROOT;             /* empty tree == default mempolicy */
2428        rwlock_init(&sp->lock);
2429
2430        if (mpol) {
2431                struct vm_area_struct pvma;
2432                struct mempolicy *new;
2433                NODEMASK_SCRATCH(scratch);
2434
2435                if (!scratch)
2436                        goto put_mpol;
2437                /* contextualize the tmpfs mount point mempolicy */
2438                new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2439                if (IS_ERR(new))
2440                        goto free_scratch; /* no valid nodemask intersection */
2441
2442                task_lock(current);
2443                ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2444                task_unlock(current);
2445                if (ret)
2446                        goto put_new;
2447
2448                /* Create pseudo-vma that contains just the policy */
2449                memset(&pvma, 0, sizeof(struct vm_area_struct));
2450                pvma.vm_end = TASK_SIZE;        /* policy covers entire file */
2451                mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2452
2453put_new:
2454                mpol_put(new);                  /* drop initial ref */
2455free_scratch:
2456                NODEMASK_SCRATCH_FREE(scratch);
2457put_mpol:
2458                mpol_put(mpol); /* drop our incoming ref on sb mpol */
2459        }
2460}
2461
2462int mpol_set_shared_policy(struct shared_policy *info,
2463                        struct vm_area_struct *vma, struct mempolicy *npol)
2464{
2465        int err;
2466        struct sp_node *new = NULL;
2467        unsigned long sz = vma_pages(vma);
2468
2469        pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2470                 vma->vm_pgoff,
2471                 sz, npol ? npol->mode : -1,
2472                 npol ? npol->flags : -1,
2473                 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2474
2475        if (npol) {
2476                new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2477                if (!new)
2478                        return -ENOMEM;
2479        }
2480        err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2481        if (err && new)
2482                sp_free(new);
2483        return err;
2484}
2485
2486/* Free a backing policy store on inode delete. */
2487void mpol_free_shared_policy(struct shared_policy *p)
2488{
2489        struct sp_node *n;
2490        struct rb_node *next;
2491
2492        if (!p->root.rb_node)
2493                return;
2494        write_lock(&p->lock);
2495        next = rb_first(&p->root);
2496        while (next) {
2497                n = rb_entry(next, struct sp_node, nd);
2498                next = rb_next(&n->nd);
2499                sp_delete(p, n);
2500        }
2501        write_unlock(&p->lock);
2502}
2503
2504#ifdef CONFIG_NUMA_BALANCING
2505static int __initdata numabalancing_override;
2506
2507static void __init check_numabalancing_enable(void)
2508{
2509        bool numabalancing_default = false;
2510
2511        if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2512                numabalancing_default = true;
2513
2514        /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2515        if (numabalancing_override)
2516                set_numabalancing_state(numabalancing_override == 1);
2517
2518        if (num_online_nodes() > 1 && !numabalancing_override) {
2519                pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2520                        numabalancing_default ? "Enabling" : "Disabling");
2521                set_numabalancing_state(numabalancing_default);
2522        }
2523}
2524
2525static int __init setup_numabalancing(char *str)
2526{
2527        int ret = 0;
2528        if (!str)
2529                goto out;
2530
2531        if (!strcmp(str, "enable")) {
2532                numabalancing_override = 1;
2533                ret = 1;
2534        } else if (!strcmp(str, "disable")) {
2535                numabalancing_override = -1;
2536                ret = 1;
2537        }
2538out:
2539        if (!ret)
2540                pr_warn("Unable to parse numa_balancing=\n");
2541
2542        return ret;
2543}
2544__setup("numa_balancing=", setup_numabalancing);
2545#else
2546static inline void __init check_numabalancing_enable(void)
2547{
2548}
2549#endif /* CONFIG_NUMA_BALANCING */
2550
2551/* assumes fs == KERNEL_DS */
2552void __init numa_policy_init(void)
2553{
2554        nodemask_t interleave_nodes;
2555        unsigned long largest = 0;
2556        int nid, prefer = 0;
2557
2558        policy_cache = kmem_cache_create("numa_policy",
2559                                         sizeof(struct mempolicy),
2560                                         0, SLAB_PANIC, NULL);
2561
2562        sn_cache = kmem_cache_create("shared_policy_node",
2563                                     sizeof(struct sp_node),
2564                                     0, SLAB_PANIC, NULL);
2565
2566        for_each_node(nid) {
2567                preferred_node_policy[nid] = (struct mempolicy) {
2568                        .refcnt = ATOMIC_INIT(1),
2569                        .mode = MPOL_PREFERRED,
2570                        .flags = MPOL_F_MOF | MPOL_F_MORON,
2571                        .v = { .preferred_node = nid, },
2572                };
2573        }
2574
2575        /*
2576         * Set interleaving policy for system init. Interleaving is only
2577         * enabled across suitably sized nodes (default is >= 16MB), or
2578         * fall back to the largest node if they're all smaller.
2579         */
2580        nodes_clear(interleave_nodes);
2581        for_each_node_state(nid, N_MEMORY) {
2582                unsigned long total_pages = node_present_pages(nid);
2583
2584                /* Preserve the largest node */
2585                if (largest < total_pages) {
2586                        largest = total_pages;
2587                        prefer = nid;
2588                }
2589
2590                /* Interleave this node? */
2591                if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2592                        node_set(nid, interleave_nodes);
2593        }
2594
2595        /* All too small, use the largest */
2596        if (unlikely(nodes_empty(interleave_nodes)))
2597                node_set(prefer, interleave_nodes);
2598
2599        if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2600                pr_err("%s: interleaving failed\n", __func__);
2601
2602        check_numabalancing_enable();
2603}
2604
2605/* Reset policy of current process to default */
2606void numa_default_policy(void)
2607{
2608        do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2609}
2610
2611/*
2612 * Parse and format mempolicy from/to strings
2613 */
2614
2615/*
2616 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2617 */
2618static const char * const policy_modes[] =
2619{
2620        [MPOL_DEFAULT]    = "default",
2621        [MPOL_PREFERRED]  = "prefer",
2622        [MPOL_BIND]       = "bind",
2623        [MPOL_INTERLEAVE] = "interleave",
2624        [MPOL_LOCAL]      = "local",
2625};
2626
2627
2628#ifdef CONFIG_TMPFS
2629/**
2630 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2631 * @str:  string containing mempolicy to parse
2632 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2633 *
2634 * Format of input:
2635 *      <mode>[=<flags>][:<nodelist>]
2636 *
2637 * On success, returns 0, else 1
2638 */
2639int mpol_parse_str(char *str, struct mempolicy **mpol)
2640{
2641        struct mempolicy *new = NULL;
2642        unsigned short mode;
2643        unsigned short mode_flags;
2644        nodemask_t nodes;
2645        char *nodelist = strchr(str, ':');
2646        char *flags = strchr(str, '=');
2647        int err = 1;
2648
2649        if (nodelist) {
2650                /* NUL-terminate mode or flags string */
2651                *nodelist++ = '\0';
2652                if (nodelist_parse(nodelist, nodes))
2653                        goto out;
2654                if (!nodes_subset(nodes, node_states[N_MEMORY]))
2655                        goto out;
2656        } else
2657                nodes_clear(nodes);
2658
2659        if (flags)
2660                *flags++ = '\0';        /* terminate mode string */
2661
2662        for (mode = 0; mode < MPOL_MAX; mode++) {
2663                if (!strcmp(str, policy_modes[mode])) {
2664                        break;
2665                }
2666        }
2667        if (mode >= MPOL_MAX)
2668                goto out;
2669
2670        switch (mode) {
2671        case MPOL_PREFERRED:
2672                /*
2673                 * Insist on a nodelist of one node only
2674                 */
2675                if (nodelist) {
2676                        char *rest = nodelist;
2677                        while (isdigit(*rest))
2678                                rest++;
2679                        if (*rest)
2680                                goto out;
2681                }
2682                break;
2683        case MPOL_INTERLEAVE:
2684                /*
2685                 * Default to online nodes with memory if no nodelist
2686                 */
2687                if (!nodelist)
2688                        nodes = node_states[N_MEMORY];
2689                break;
2690        case MPOL_LOCAL:
2691                /*
2692                 * Don't allow a nodelist;  mpol_new() checks flags
2693                 */
2694                if (nodelist)
2695                        goto out;
2696                mode = MPOL_PREFERRED;
2697                break;
2698        case MPOL_DEFAULT:
2699                /*
2700                 * Insist on a empty nodelist
2701                 */
2702                if (!nodelist)
2703                        err = 0;
2704                goto out;
2705        case MPOL_BIND:
2706                /*
2707                 * Insist on a nodelist
2708                 */
2709                if (!nodelist)
2710                        goto out;
2711        }
2712
2713        mode_flags = 0;
2714        if (flags) {
2715                /*
2716                 * Currently, we only support two mutually exclusive
2717                 * mode flags.
2718                 */
2719                if (!strcmp(flags, "static"))
2720                        mode_flags |= MPOL_F_STATIC_NODES;
2721                else if (!strcmp(flags, "relative"))
2722                        mode_flags |= MPOL_F_RELATIVE_NODES;
2723                else
2724                        goto out;
2725        }
2726
2727        new = mpol_new(mode, mode_flags, &nodes);
2728        if (IS_ERR(new))
2729                goto out;
2730
2731        /*
2732         * Save nodes for mpol_to_str() to show the tmpfs mount options
2733         * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2734         */
2735        if (mode != MPOL_PREFERRED)
2736                new->v.nodes = nodes;
2737        else if (nodelist)
2738                new->v.preferred_node = first_node(nodes);
2739        else
2740                new->flags |= MPOL_F_LOCAL;
2741
2742        /*
2743         * Save nodes for contextualization: this will be used to "clone"
2744         * the mempolicy in a specific context [cpuset] at a later time.
2745         */
2746        new->w.user_nodemask = nodes;
2747
2748        err = 0;
2749
2750out:
2751        /* Restore string for error message */
2752        if (nodelist)
2753                *--nodelist = ':';
2754        if (flags)
2755                *--flags = '=';
2756        if (!err)
2757                *mpol = new;
2758        return err;
2759}
2760#endif /* CONFIG_TMPFS */
2761
2762/**
2763 * mpol_to_str - format a mempolicy structure for printing
2764 * @buffer:  to contain formatted mempolicy string
2765 * @maxlen:  length of @buffer
2766 * @pol:  pointer to mempolicy to be formatted
2767 *
2768 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2769 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2770 * longest flag, "relative", and to display at least a few node ids.
2771 */
2772void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2773{
2774        char *p = buffer;
2775        nodemask_t nodes = NODE_MASK_NONE;
2776        unsigned short mode = MPOL_DEFAULT;
2777        unsigned short flags = 0;
2778
2779        if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2780                mode = pol->mode;
2781                flags = pol->flags;
2782        }
2783
2784        switch (mode) {
2785        case MPOL_DEFAULT:
2786                break;
2787        case MPOL_PREFERRED:
2788                if (flags & MPOL_F_LOCAL)
2789                        mode = MPOL_LOCAL;
2790                else
2791                        node_set(pol->v.preferred_node, nodes);
2792                break;
2793        case MPOL_BIND:
2794        case MPOL_INTERLEAVE:
2795                nodes = pol->v.nodes;
2796                break;
2797        default:
2798                WARN_ON_ONCE(1);
2799                snprintf(p, maxlen, "unknown");
2800                return;
2801        }
2802
2803        p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2804
2805        if (flags & MPOL_MODE_FLAGS) {
2806                p += snprintf(p, buffer + maxlen - p, "=");
2807
2808                /*
2809                 * Currently, the only defined flags are mutually exclusive
2810                 */
2811                if (flags & MPOL_F_STATIC_NODES)
2812                        p += snprintf(p, buffer + maxlen - p, "static");
2813                else if (flags & MPOL_F_RELATIVE_NODES)
2814                        p += snprintf(p, buffer + maxlen - p, "relative");
2815        }
2816
2817        if (!nodes_empty(nodes))
2818                p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2819                               nodemask_pr_args(&nodes));
2820}
2821