linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/sched/signal.h>
  33#include <linux/export.h>
  34#include <linux/swap.h>
  35#include <linux/uio.h>
  36#include <linux/khugepaged.h>
  37#include <linux/hugetlb.h>
  38
  39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
  40
  41static struct vfsmount *shm_mnt;
  42
  43#ifdef CONFIG_SHMEM
  44/*
  45 * This virtual memory filesystem is heavily based on the ramfs. It
  46 * extends ramfs by the ability to use swap and honor resource limits
  47 * which makes it a completely usable filesystem.
  48 */
  49
  50#include <linux/xattr.h>
  51#include <linux/exportfs.h>
  52#include <linux/posix_acl.h>
  53#include <linux/posix_acl_xattr.h>
  54#include <linux/mman.h>
  55#include <linux/string.h>
  56#include <linux/slab.h>
  57#include <linux/backing-dev.h>
  58#include <linux/shmem_fs.h>
  59#include <linux/writeback.h>
  60#include <linux/blkdev.h>
  61#include <linux/pagevec.h>
  62#include <linux/percpu_counter.h>
  63#include <linux/falloc.h>
  64#include <linux/splice.h>
  65#include <linux/security.h>
  66#include <linux/swapops.h>
  67#include <linux/mempolicy.h>
  68#include <linux/namei.h>
  69#include <linux/ctype.h>
  70#include <linux/migrate.h>
  71#include <linux/highmem.h>
  72#include <linux/seq_file.h>
  73#include <linux/magic.h>
  74#include <linux/syscalls.h>
  75#include <linux/fcntl.h>
  76#include <uapi/linux/memfd.h>
  77#include <linux/userfaultfd_k.h>
  78#include <linux/rmap.h>
  79#include <linux/uuid.h>
  80
  81#include <linux/uaccess.h>
  82#include <asm/pgtable.h>
  83
  84#include "internal.h"
  85
  86#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  87#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  88
  89/* Pretend that each entry is of this size in directory's i_size */
  90#define BOGO_DIRENT_SIZE 20
  91
  92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  93#define SHORT_SYMLINK_LEN 128
  94
  95/*
  96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  97 * inode->i_private (with i_mutex making sure that it has only one user at
  98 * a time): we would prefer not to enlarge the shmem inode just for that.
  99 */
 100struct shmem_falloc {
 101        wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 102        pgoff_t start;          /* start of range currently being fallocated */
 103        pgoff_t next;           /* the next page offset to be fallocated */
 104        pgoff_t nr_falloced;    /* how many new pages have been fallocated */
 105        pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
 106};
 107
 108#ifdef CONFIG_TMPFS
 109static unsigned long shmem_default_max_blocks(void)
 110{
 111        return totalram_pages / 2;
 112}
 113
 114static unsigned long shmem_default_max_inodes(void)
 115{
 116        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 117}
 118#endif
 119
 120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 122                                struct shmem_inode_info *info, pgoff_t index);
 123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 124                struct page **pagep, enum sgp_type sgp,
 125                gfp_t gfp, struct vm_area_struct *vma,
 126                struct vm_fault *vmf, int *fault_type);
 127
 128int shmem_getpage(struct inode *inode, pgoff_t index,
 129                struct page **pagep, enum sgp_type sgp)
 130{
 131        return shmem_getpage_gfp(inode, index, pagep, sgp,
 132                mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 133}
 134
 135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 136{
 137        return sb->s_fs_info;
 138}
 139
 140/*
 141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 142 * for shared memory and for shared anonymous (/dev/zero) mappings
 143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 144 * consistent with the pre-accounting of private mappings ...
 145 */
 146static inline int shmem_acct_size(unsigned long flags, loff_t size)
 147{
 148        return (flags & VM_NORESERVE) ?
 149                0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 150}
 151
 152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 153{
 154        if (!(flags & VM_NORESERVE))
 155                vm_unacct_memory(VM_ACCT(size));
 156}
 157
 158static inline int shmem_reacct_size(unsigned long flags,
 159                loff_t oldsize, loff_t newsize)
 160{
 161        if (!(flags & VM_NORESERVE)) {
 162                if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 163                        return security_vm_enough_memory_mm(current->mm,
 164                                        VM_ACCT(newsize) - VM_ACCT(oldsize));
 165                else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 166                        vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 167        }
 168        return 0;
 169}
 170
 171/*
 172 * ... whereas tmpfs objects are accounted incrementally as
 173 * pages are allocated, in order to allow large sparse files.
 174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 176 */
 177static inline int shmem_acct_block(unsigned long flags, long pages)
 178{
 179        if (!(flags & VM_NORESERVE))
 180                return 0;
 181
 182        return security_vm_enough_memory_mm(current->mm,
 183                        pages * VM_ACCT(PAGE_SIZE));
 184}
 185
 186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 187{
 188        if (flags & VM_NORESERVE)
 189                vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 190}
 191
 192static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 193{
 194        struct shmem_inode_info *info = SHMEM_I(inode);
 195        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 196
 197        if (shmem_acct_block(info->flags, pages))
 198                return false;
 199
 200        if (sbinfo->max_blocks) {
 201                if (percpu_counter_compare(&sbinfo->used_blocks,
 202                                           sbinfo->max_blocks - pages) > 0)
 203                        goto unacct;
 204                percpu_counter_add(&sbinfo->used_blocks, pages);
 205        }
 206
 207        return true;
 208
 209unacct:
 210        shmem_unacct_blocks(info->flags, pages);
 211        return false;
 212}
 213
 214static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 215{
 216        struct shmem_inode_info *info = SHMEM_I(inode);
 217        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 218
 219        if (sbinfo->max_blocks)
 220                percpu_counter_sub(&sbinfo->used_blocks, pages);
 221        shmem_unacct_blocks(info->flags, pages);
 222}
 223
 224static const struct super_operations shmem_ops;
 225static const struct address_space_operations shmem_aops;
 226static const struct file_operations shmem_file_operations;
 227static const struct inode_operations shmem_inode_operations;
 228static const struct inode_operations shmem_dir_inode_operations;
 229static const struct inode_operations shmem_special_inode_operations;
 230static const struct vm_operations_struct shmem_vm_ops;
 231static struct file_system_type shmem_fs_type;
 232
 233bool vma_is_shmem(struct vm_area_struct *vma)
 234{
 235        return vma->vm_ops == &shmem_vm_ops;
 236}
 237
 238static LIST_HEAD(shmem_swaplist);
 239static DEFINE_MUTEX(shmem_swaplist_mutex);
 240
 241static int shmem_reserve_inode(struct super_block *sb)
 242{
 243        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 244        if (sbinfo->max_inodes) {
 245                spin_lock(&sbinfo->stat_lock);
 246                if (!sbinfo->free_inodes) {
 247                        spin_unlock(&sbinfo->stat_lock);
 248                        return -ENOSPC;
 249                }
 250                sbinfo->free_inodes--;
 251                spin_unlock(&sbinfo->stat_lock);
 252        }
 253        return 0;
 254}
 255
 256static void shmem_free_inode(struct super_block *sb)
 257{
 258        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 259        if (sbinfo->max_inodes) {
 260                spin_lock(&sbinfo->stat_lock);
 261                sbinfo->free_inodes++;
 262                spin_unlock(&sbinfo->stat_lock);
 263        }
 264}
 265
 266/**
 267 * shmem_recalc_inode - recalculate the block usage of an inode
 268 * @inode: inode to recalc
 269 *
 270 * We have to calculate the free blocks since the mm can drop
 271 * undirtied hole pages behind our back.
 272 *
 273 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 275 *
 276 * It has to be called with the spinlock held.
 277 */
 278static void shmem_recalc_inode(struct inode *inode)
 279{
 280        struct shmem_inode_info *info = SHMEM_I(inode);
 281        long freed;
 282
 283        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 284        if (freed > 0) {
 285                info->alloced -= freed;
 286                inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 287                shmem_inode_unacct_blocks(inode, freed);
 288        }
 289}
 290
 291bool shmem_charge(struct inode *inode, long pages)
 292{
 293        struct shmem_inode_info *info = SHMEM_I(inode);
 294        unsigned long flags;
 295
 296        if (!shmem_inode_acct_block(inode, pages))
 297                return false;
 298
 299        spin_lock_irqsave(&info->lock, flags);
 300        info->alloced += pages;
 301        inode->i_blocks += pages * BLOCKS_PER_PAGE;
 302        shmem_recalc_inode(inode);
 303        spin_unlock_irqrestore(&info->lock, flags);
 304        inode->i_mapping->nrpages += pages;
 305
 306        return true;
 307}
 308
 309void shmem_uncharge(struct inode *inode, long pages)
 310{
 311        struct shmem_inode_info *info = SHMEM_I(inode);
 312        unsigned long flags;
 313
 314        spin_lock_irqsave(&info->lock, flags);
 315        info->alloced -= pages;
 316        inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 317        shmem_recalc_inode(inode);
 318        spin_unlock_irqrestore(&info->lock, flags);
 319
 320        shmem_inode_unacct_blocks(inode, pages);
 321}
 322
 323/*
 324 * Replace item expected in radix tree by a new item, while holding tree lock.
 325 */
 326static int shmem_radix_tree_replace(struct address_space *mapping,
 327                        pgoff_t index, void *expected, void *replacement)
 328{
 329        struct radix_tree_node *node;
 330        void **pslot;
 331        void *item;
 332
 333        VM_BUG_ON(!expected);
 334        VM_BUG_ON(!replacement);
 335        item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
 336        if (!item)
 337                return -ENOENT;
 338        if (item != expected)
 339                return -ENOENT;
 340        __radix_tree_replace(&mapping->page_tree, node, pslot,
 341                             replacement, NULL, NULL);
 342        return 0;
 343}
 344
 345/*
 346 * Sometimes, before we decide whether to proceed or to fail, we must check
 347 * that an entry was not already brought back from swap by a racing thread.
 348 *
 349 * Checking page is not enough: by the time a SwapCache page is locked, it
 350 * might be reused, and again be SwapCache, using the same swap as before.
 351 */
 352static bool shmem_confirm_swap(struct address_space *mapping,
 353                               pgoff_t index, swp_entry_t swap)
 354{
 355        void *item;
 356
 357        rcu_read_lock();
 358        item = radix_tree_lookup(&mapping->page_tree, index);
 359        rcu_read_unlock();
 360        return item == swp_to_radix_entry(swap);
 361}
 362
 363/*
 364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 365 *
 366 * SHMEM_HUGE_NEVER:
 367 *      disables huge pages for the mount;
 368 * SHMEM_HUGE_ALWAYS:
 369 *      enables huge pages for the mount;
 370 * SHMEM_HUGE_WITHIN_SIZE:
 371 *      only allocate huge pages if the page will be fully within i_size,
 372 *      also respect fadvise()/madvise() hints;
 373 * SHMEM_HUGE_ADVISE:
 374 *      only allocate huge pages if requested with fadvise()/madvise();
 375 */
 376
 377#define SHMEM_HUGE_NEVER        0
 378#define SHMEM_HUGE_ALWAYS       1
 379#define SHMEM_HUGE_WITHIN_SIZE  2
 380#define SHMEM_HUGE_ADVISE       3
 381
 382/*
 383 * Special values.
 384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 385 *
 386 * SHMEM_HUGE_DENY:
 387 *      disables huge on shm_mnt and all mounts, for emergency use;
 388 * SHMEM_HUGE_FORCE:
 389 *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 390 *
 391 */
 392#define SHMEM_HUGE_DENY         (-1)
 393#define SHMEM_HUGE_FORCE        (-2)
 394
 395#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 396/* ifdef here to avoid bloating shmem.o when not necessary */
 397
 398int shmem_huge __read_mostly;
 399
 400#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 401static int shmem_parse_huge(const char *str)
 402{
 403        if (!strcmp(str, "never"))
 404                return SHMEM_HUGE_NEVER;
 405        if (!strcmp(str, "always"))
 406                return SHMEM_HUGE_ALWAYS;
 407        if (!strcmp(str, "within_size"))
 408                return SHMEM_HUGE_WITHIN_SIZE;
 409        if (!strcmp(str, "advise"))
 410                return SHMEM_HUGE_ADVISE;
 411        if (!strcmp(str, "deny"))
 412                return SHMEM_HUGE_DENY;
 413        if (!strcmp(str, "force"))
 414                return SHMEM_HUGE_FORCE;
 415        return -EINVAL;
 416}
 417
 418static const char *shmem_format_huge(int huge)
 419{
 420        switch (huge) {
 421        case SHMEM_HUGE_NEVER:
 422                return "never";
 423        case SHMEM_HUGE_ALWAYS:
 424                return "always";
 425        case SHMEM_HUGE_WITHIN_SIZE:
 426                return "within_size";
 427        case SHMEM_HUGE_ADVISE:
 428                return "advise";
 429        case SHMEM_HUGE_DENY:
 430                return "deny";
 431        case SHMEM_HUGE_FORCE:
 432                return "force";
 433        default:
 434                VM_BUG_ON(1);
 435                return "bad_val";
 436        }
 437}
 438#endif
 439
 440static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 441                struct shrink_control *sc, unsigned long nr_to_split)
 442{
 443        LIST_HEAD(list), *pos, *next;
 444        LIST_HEAD(to_remove);
 445        struct inode *inode;
 446        struct shmem_inode_info *info;
 447        struct page *page;
 448        unsigned long batch = sc ? sc->nr_to_scan : 128;
 449        int removed = 0, split = 0;
 450
 451        if (list_empty(&sbinfo->shrinklist))
 452                return SHRINK_STOP;
 453
 454        spin_lock(&sbinfo->shrinklist_lock);
 455        list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 456                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 457
 458                /* pin the inode */
 459                inode = igrab(&info->vfs_inode);
 460
 461                /* inode is about to be evicted */
 462                if (!inode) {
 463                        list_del_init(&info->shrinklist);
 464                        removed++;
 465                        goto next;
 466                }
 467
 468                /* Check if there's anything to gain */
 469                if (round_up(inode->i_size, PAGE_SIZE) ==
 470                                round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 471                        list_move(&info->shrinklist, &to_remove);
 472                        removed++;
 473                        goto next;
 474                }
 475
 476                list_move(&info->shrinklist, &list);
 477next:
 478                if (!--batch)
 479                        break;
 480        }
 481        spin_unlock(&sbinfo->shrinklist_lock);
 482
 483        list_for_each_safe(pos, next, &to_remove) {
 484                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 485                inode = &info->vfs_inode;
 486                list_del_init(&info->shrinklist);
 487                iput(inode);
 488        }
 489
 490        list_for_each_safe(pos, next, &list) {
 491                int ret;
 492
 493                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 494                inode = &info->vfs_inode;
 495
 496                if (nr_to_split && split >= nr_to_split) {
 497                        iput(inode);
 498                        continue;
 499                }
 500
 501                page = find_lock_page(inode->i_mapping,
 502                                (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 503                if (!page)
 504                        goto drop;
 505
 506                if (!PageTransHuge(page)) {
 507                        unlock_page(page);
 508                        put_page(page);
 509                        goto drop;
 510                }
 511
 512                ret = split_huge_page(page);
 513                unlock_page(page);
 514                put_page(page);
 515
 516                if (ret) {
 517                        /* split failed: leave it on the list */
 518                        iput(inode);
 519                        continue;
 520                }
 521
 522                split++;
 523drop:
 524                list_del_init(&info->shrinklist);
 525                removed++;
 526                iput(inode);
 527        }
 528
 529        spin_lock(&sbinfo->shrinklist_lock);
 530        list_splice_tail(&list, &sbinfo->shrinklist);
 531        sbinfo->shrinklist_len -= removed;
 532        spin_unlock(&sbinfo->shrinklist_lock);
 533
 534        return split;
 535}
 536
 537static long shmem_unused_huge_scan(struct super_block *sb,
 538                struct shrink_control *sc)
 539{
 540        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 541
 542        if (!READ_ONCE(sbinfo->shrinklist_len))
 543                return SHRINK_STOP;
 544
 545        return shmem_unused_huge_shrink(sbinfo, sc, 0);
 546}
 547
 548static long shmem_unused_huge_count(struct super_block *sb,
 549                struct shrink_control *sc)
 550{
 551        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 552        return READ_ONCE(sbinfo->shrinklist_len);
 553}
 554#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 555
 556#define shmem_huge SHMEM_HUGE_DENY
 557
 558static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 559                struct shrink_control *sc, unsigned long nr_to_split)
 560{
 561        return 0;
 562}
 563#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 564
 565/*
 566 * Like add_to_page_cache_locked, but error if expected item has gone.
 567 */
 568static int shmem_add_to_page_cache(struct page *page,
 569                                   struct address_space *mapping,
 570                                   pgoff_t index, void *expected)
 571{
 572        int error, nr = hpage_nr_pages(page);
 573
 574        VM_BUG_ON_PAGE(PageTail(page), page);
 575        VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 576        VM_BUG_ON_PAGE(!PageLocked(page), page);
 577        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 578        VM_BUG_ON(expected && PageTransHuge(page));
 579
 580        page_ref_add(page, nr);
 581        page->mapping = mapping;
 582        page->index = index;
 583
 584        spin_lock_irq(&mapping->tree_lock);
 585        if (PageTransHuge(page)) {
 586                void __rcu **results;
 587                pgoff_t idx;
 588                int i;
 589
 590                error = 0;
 591                if (radix_tree_gang_lookup_slot(&mapping->page_tree,
 592                                        &results, &idx, index, 1) &&
 593                                idx < index + HPAGE_PMD_NR) {
 594                        error = -EEXIST;
 595                }
 596
 597                if (!error) {
 598                        for (i = 0; i < HPAGE_PMD_NR; i++) {
 599                                error = radix_tree_insert(&mapping->page_tree,
 600                                                index + i, page + i);
 601                                VM_BUG_ON(error);
 602                        }
 603                        count_vm_event(THP_FILE_ALLOC);
 604                }
 605        } else if (!expected) {
 606                error = radix_tree_insert(&mapping->page_tree, index, page);
 607        } else {
 608                error = shmem_radix_tree_replace(mapping, index, expected,
 609                                                                 page);
 610        }
 611
 612        if (!error) {
 613                mapping->nrpages += nr;
 614                if (PageTransHuge(page))
 615                        __inc_node_page_state(page, NR_SHMEM_THPS);
 616                __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
 617                __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
 618                spin_unlock_irq(&mapping->tree_lock);
 619        } else {
 620                page->mapping = NULL;
 621                spin_unlock_irq(&mapping->tree_lock);
 622                page_ref_sub(page, nr);
 623        }
 624        return error;
 625}
 626
 627/*
 628 * Like delete_from_page_cache, but substitutes swap for page.
 629 */
 630static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 631{
 632        struct address_space *mapping = page->mapping;
 633        int error;
 634
 635        VM_BUG_ON_PAGE(PageCompound(page), page);
 636
 637        spin_lock_irq(&mapping->tree_lock);
 638        error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 639        page->mapping = NULL;
 640        mapping->nrpages--;
 641        __dec_node_page_state(page, NR_FILE_PAGES);
 642        __dec_node_page_state(page, NR_SHMEM);
 643        spin_unlock_irq(&mapping->tree_lock);
 644        put_page(page);
 645        BUG_ON(error);
 646}
 647
 648/*
 649 * Remove swap entry from radix tree, free the swap and its page cache.
 650 */
 651static int shmem_free_swap(struct address_space *mapping,
 652                           pgoff_t index, void *radswap)
 653{
 654        void *old;
 655
 656        spin_lock_irq(&mapping->tree_lock);
 657        old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 658        spin_unlock_irq(&mapping->tree_lock);
 659        if (old != radswap)
 660                return -ENOENT;
 661        free_swap_and_cache(radix_to_swp_entry(radswap));
 662        return 0;
 663}
 664
 665/*
 666 * Determine (in bytes) how many of the shmem object's pages mapped by the
 667 * given offsets are swapped out.
 668 *
 669 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 670 * as long as the inode doesn't go away and racy results are not a problem.
 671 */
 672unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 673                                                pgoff_t start, pgoff_t end)
 674{
 675        struct radix_tree_iter iter;
 676        void **slot;
 677        struct page *page;
 678        unsigned long swapped = 0;
 679
 680        rcu_read_lock();
 681
 682        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 683                if (iter.index >= end)
 684                        break;
 685
 686                page = radix_tree_deref_slot(slot);
 687
 688                if (radix_tree_deref_retry(page)) {
 689                        slot = radix_tree_iter_retry(&iter);
 690                        continue;
 691                }
 692
 693                if (radix_tree_exceptional_entry(page))
 694                        swapped++;
 695
 696                if (need_resched()) {
 697                        slot = radix_tree_iter_resume(slot, &iter);
 698                        cond_resched_rcu();
 699                }
 700        }
 701
 702        rcu_read_unlock();
 703
 704        return swapped << PAGE_SHIFT;
 705}
 706
 707/*
 708 * Determine (in bytes) how many of the shmem object's pages mapped by the
 709 * given vma is swapped out.
 710 *
 711 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 712 * as long as the inode doesn't go away and racy results are not a problem.
 713 */
 714unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 715{
 716        struct inode *inode = file_inode(vma->vm_file);
 717        struct shmem_inode_info *info = SHMEM_I(inode);
 718        struct address_space *mapping = inode->i_mapping;
 719        unsigned long swapped;
 720
 721        /* Be careful as we don't hold info->lock */
 722        swapped = READ_ONCE(info->swapped);
 723
 724        /*
 725         * The easier cases are when the shmem object has nothing in swap, or
 726         * the vma maps it whole. Then we can simply use the stats that we
 727         * already track.
 728         */
 729        if (!swapped)
 730                return 0;
 731
 732        if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 733                return swapped << PAGE_SHIFT;
 734
 735        /* Here comes the more involved part */
 736        return shmem_partial_swap_usage(mapping,
 737                        linear_page_index(vma, vma->vm_start),
 738                        linear_page_index(vma, vma->vm_end));
 739}
 740
 741/*
 742 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 743 */
 744void shmem_unlock_mapping(struct address_space *mapping)
 745{
 746        struct pagevec pvec;
 747        pgoff_t indices[PAGEVEC_SIZE];
 748        pgoff_t index = 0;
 749
 750        pagevec_init(&pvec, 0);
 751        /*
 752         * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 753         */
 754        while (!mapping_unevictable(mapping)) {
 755                /*
 756                 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 757                 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 758                 */
 759                pvec.nr = find_get_entries(mapping, index,
 760                                           PAGEVEC_SIZE, pvec.pages, indices);
 761                if (!pvec.nr)
 762                        break;
 763                index = indices[pvec.nr - 1] + 1;
 764                pagevec_remove_exceptionals(&pvec);
 765                check_move_unevictable_pages(pvec.pages, pvec.nr);
 766                pagevec_release(&pvec);
 767                cond_resched();
 768        }
 769}
 770
 771/*
 772 * Remove range of pages and swap entries from radix tree, and free them.
 773 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 774 */
 775static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 776                                                                 bool unfalloc)
 777{
 778        struct address_space *mapping = inode->i_mapping;
 779        struct shmem_inode_info *info = SHMEM_I(inode);
 780        pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 781        pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 782        unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 783        unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 784        struct pagevec pvec;
 785        pgoff_t indices[PAGEVEC_SIZE];
 786        long nr_swaps_freed = 0;
 787        pgoff_t index;
 788        int i;
 789
 790        if (lend == -1)
 791                end = -1;       /* unsigned, so actually very big */
 792
 793        pagevec_init(&pvec, 0);
 794        index = start;
 795        while (index < end) {
 796                pvec.nr = find_get_entries(mapping, index,
 797                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 798                        pvec.pages, indices);
 799                if (!pvec.nr)
 800                        break;
 801                for (i = 0; i < pagevec_count(&pvec); i++) {
 802                        struct page *page = pvec.pages[i];
 803
 804                        index = indices[i];
 805                        if (index >= end)
 806                                break;
 807
 808                        if (radix_tree_exceptional_entry(page)) {
 809                                if (unfalloc)
 810                                        continue;
 811                                nr_swaps_freed += !shmem_free_swap(mapping,
 812                                                                index, page);
 813                                continue;
 814                        }
 815
 816                        VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
 817
 818                        if (!trylock_page(page))
 819                                continue;
 820
 821                        if (PageTransTail(page)) {
 822                                /* Middle of THP: zero out the page */
 823                                clear_highpage(page);
 824                                unlock_page(page);
 825                                continue;
 826                        } else if (PageTransHuge(page)) {
 827                                if (index == round_down(end, HPAGE_PMD_NR)) {
 828                                        /*
 829                                         * Range ends in the middle of THP:
 830                                         * zero out the page
 831                                         */
 832                                        clear_highpage(page);
 833                                        unlock_page(page);
 834                                        continue;
 835                                }
 836                                index += HPAGE_PMD_NR - 1;
 837                                i += HPAGE_PMD_NR - 1;
 838                        }
 839
 840                        if (!unfalloc || !PageUptodate(page)) {
 841                                VM_BUG_ON_PAGE(PageTail(page), page);
 842                                if (page_mapping(page) == mapping) {
 843                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 844                                        truncate_inode_page(mapping, page);
 845                                }
 846                        }
 847                        unlock_page(page);
 848                }
 849                pagevec_remove_exceptionals(&pvec);
 850                pagevec_release(&pvec);
 851                cond_resched();
 852                index++;
 853        }
 854
 855        if (partial_start) {
 856                struct page *page = NULL;
 857                shmem_getpage(inode, start - 1, &page, SGP_READ);
 858                if (page) {
 859                        unsigned int top = PAGE_SIZE;
 860                        if (start > end) {
 861                                top = partial_end;
 862                                partial_end = 0;
 863                        }
 864                        zero_user_segment(page, partial_start, top);
 865                        set_page_dirty(page);
 866                        unlock_page(page);
 867                        put_page(page);
 868                }
 869        }
 870        if (partial_end) {
 871                struct page *page = NULL;
 872                shmem_getpage(inode, end, &page, SGP_READ);
 873                if (page) {
 874                        zero_user_segment(page, 0, partial_end);
 875                        set_page_dirty(page);
 876                        unlock_page(page);
 877                        put_page(page);
 878                }
 879        }
 880        if (start >= end)
 881                return;
 882
 883        index = start;
 884        while (index < end) {
 885                cond_resched();
 886
 887                pvec.nr = find_get_entries(mapping, index,
 888                                min(end - index, (pgoff_t)PAGEVEC_SIZE),
 889                                pvec.pages, indices);
 890                if (!pvec.nr) {
 891                        /* If all gone or hole-punch or unfalloc, we're done */
 892                        if (index == start || end != -1)
 893                                break;
 894                        /* But if truncating, restart to make sure all gone */
 895                        index = start;
 896                        continue;
 897                }
 898                for (i = 0; i < pagevec_count(&pvec); i++) {
 899                        struct page *page = pvec.pages[i];
 900
 901                        index = indices[i];
 902                        if (index >= end)
 903                                break;
 904
 905                        if (radix_tree_exceptional_entry(page)) {
 906                                if (unfalloc)
 907                                        continue;
 908                                if (shmem_free_swap(mapping, index, page)) {
 909                                        /* Swap was replaced by page: retry */
 910                                        index--;
 911                                        break;
 912                                }
 913                                nr_swaps_freed++;
 914                                continue;
 915                        }
 916
 917                        lock_page(page);
 918
 919                        if (PageTransTail(page)) {
 920                                /* Middle of THP: zero out the page */
 921                                clear_highpage(page);
 922                                unlock_page(page);
 923                                /*
 924                                 * Partial thp truncate due 'start' in middle
 925                                 * of THP: don't need to look on these pages
 926                                 * again on !pvec.nr restart.
 927                                 */
 928                                if (index != round_down(end, HPAGE_PMD_NR))
 929                                        start++;
 930                                continue;
 931                        } else if (PageTransHuge(page)) {
 932                                if (index == round_down(end, HPAGE_PMD_NR)) {
 933                                        /*
 934                                         * Range ends in the middle of THP:
 935                                         * zero out the page
 936                                         */
 937                                        clear_highpage(page);
 938                                        unlock_page(page);
 939                                        continue;
 940                                }
 941                                index += HPAGE_PMD_NR - 1;
 942                                i += HPAGE_PMD_NR - 1;
 943                        }
 944
 945                        if (!unfalloc || !PageUptodate(page)) {
 946                                VM_BUG_ON_PAGE(PageTail(page), page);
 947                                if (page_mapping(page) == mapping) {
 948                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 949                                        truncate_inode_page(mapping, page);
 950                                } else {
 951                                        /* Page was replaced by swap: retry */
 952                                        unlock_page(page);
 953                                        index--;
 954                                        break;
 955                                }
 956                        }
 957                        unlock_page(page);
 958                }
 959                pagevec_remove_exceptionals(&pvec);
 960                pagevec_release(&pvec);
 961                index++;
 962        }
 963
 964        spin_lock_irq(&info->lock);
 965        info->swapped -= nr_swaps_freed;
 966        shmem_recalc_inode(inode);
 967        spin_unlock_irq(&info->lock);
 968}
 969
 970void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 971{
 972        shmem_undo_range(inode, lstart, lend, false);
 973        inode->i_ctime = inode->i_mtime = current_time(inode);
 974}
 975EXPORT_SYMBOL_GPL(shmem_truncate_range);
 976
 977static int shmem_getattr(const struct path *path, struct kstat *stat,
 978                         u32 request_mask, unsigned int query_flags)
 979{
 980        struct inode *inode = path->dentry->d_inode;
 981        struct shmem_inode_info *info = SHMEM_I(inode);
 982
 983        if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
 984                spin_lock_irq(&info->lock);
 985                shmem_recalc_inode(inode);
 986                spin_unlock_irq(&info->lock);
 987        }
 988        generic_fillattr(inode, stat);
 989        return 0;
 990}
 991
 992static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 993{
 994        struct inode *inode = d_inode(dentry);
 995        struct shmem_inode_info *info = SHMEM_I(inode);
 996        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 997        int error;
 998
 999        error = setattr_prepare(dentry, attr);
1000        if (error)
1001                return error;
1002
1003        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1004                loff_t oldsize = inode->i_size;
1005                loff_t newsize = attr->ia_size;
1006
1007                /* protected by i_mutex */
1008                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1009                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1010                        return -EPERM;
1011
1012                if (newsize != oldsize) {
1013                        error = shmem_reacct_size(SHMEM_I(inode)->flags,
1014                                        oldsize, newsize);
1015                        if (error)
1016                                return error;
1017                        i_size_write(inode, newsize);
1018                        inode->i_ctime = inode->i_mtime = current_time(inode);
1019                }
1020                if (newsize <= oldsize) {
1021                        loff_t holebegin = round_up(newsize, PAGE_SIZE);
1022                        if (oldsize > holebegin)
1023                                unmap_mapping_range(inode->i_mapping,
1024                                                        holebegin, 0, 1);
1025                        if (info->alloced)
1026                                shmem_truncate_range(inode,
1027                                                        newsize, (loff_t)-1);
1028                        /* unmap again to remove racily COWed private pages */
1029                        if (oldsize > holebegin)
1030                                unmap_mapping_range(inode->i_mapping,
1031                                                        holebegin, 0, 1);
1032
1033                        /*
1034                         * Part of the huge page can be beyond i_size: subject
1035                         * to shrink under memory pressure.
1036                         */
1037                        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1038                                spin_lock(&sbinfo->shrinklist_lock);
1039                                /*
1040                                 * _careful to defend against unlocked access to
1041                                 * ->shrink_list in shmem_unused_huge_shrink()
1042                                 */
1043                                if (list_empty_careful(&info->shrinklist)) {
1044                                        list_add_tail(&info->shrinklist,
1045                                                        &sbinfo->shrinklist);
1046                                        sbinfo->shrinklist_len++;
1047                                }
1048                                spin_unlock(&sbinfo->shrinklist_lock);
1049                        }
1050                }
1051        }
1052
1053        setattr_copy(inode, attr);
1054        if (attr->ia_valid & ATTR_MODE)
1055                error = posix_acl_chmod(inode, inode->i_mode);
1056        return error;
1057}
1058
1059static void shmem_evict_inode(struct inode *inode)
1060{
1061        struct shmem_inode_info *info = SHMEM_I(inode);
1062        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1063
1064        if (inode->i_mapping->a_ops == &shmem_aops) {
1065                shmem_unacct_size(info->flags, inode->i_size);
1066                inode->i_size = 0;
1067                shmem_truncate_range(inode, 0, (loff_t)-1);
1068                if (!list_empty(&info->shrinklist)) {
1069                        spin_lock(&sbinfo->shrinklist_lock);
1070                        if (!list_empty(&info->shrinklist)) {
1071                                list_del_init(&info->shrinklist);
1072                                sbinfo->shrinklist_len--;
1073                        }
1074                        spin_unlock(&sbinfo->shrinklist_lock);
1075                }
1076                if (!list_empty(&info->swaplist)) {
1077                        mutex_lock(&shmem_swaplist_mutex);
1078                        list_del_init(&info->swaplist);
1079                        mutex_unlock(&shmem_swaplist_mutex);
1080                }
1081        }
1082
1083        simple_xattrs_free(&info->xattrs);
1084        WARN_ON(inode->i_blocks);
1085        shmem_free_inode(inode->i_sb);
1086        clear_inode(inode);
1087}
1088
1089static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1090{
1091        struct radix_tree_iter iter;
1092        void **slot;
1093        unsigned long found = -1;
1094        unsigned int checked = 0;
1095
1096        rcu_read_lock();
1097        radix_tree_for_each_slot(slot, root, &iter, 0) {
1098                if (*slot == item) {
1099                        found = iter.index;
1100                        break;
1101                }
1102                checked++;
1103                if ((checked % 4096) != 0)
1104                        continue;
1105                slot = radix_tree_iter_resume(slot, &iter);
1106                cond_resched_rcu();
1107        }
1108
1109        rcu_read_unlock();
1110        return found;
1111}
1112
1113/*
1114 * If swap found in inode, free it and move page from swapcache to filecache.
1115 */
1116static int shmem_unuse_inode(struct shmem_inode_info *info,
1117                             swp_entry_t swap, struct page **pagep)
1118{
1119        struct address_space *mapping = info->vfs_inode.i_mapping;
1120        void *radswap;
1121        pgoff_t index;
1122        gfp_t gfp;
1123        int error = 0;
1124
1125        radswap = swp_to_radix_entry(swap);
1126        index = find_swap_entry(&mapping->page_tree, radswap);
1127        if (index == -1)
1128                return -EAGAIN; /* tell shmem_unuse we found nothing */
1129
1130        /*
1131         * Move _head_ to start search for next from here.
1132         * But be careful: shmem_evict_inode checks list_empty without taking
1133         * mutex, and there's an instant in list_move_tail when info->swaplist
1134         * would appear empty, if it were the only one on shmem_swaplist.
1135         */
1136        if (shmem_swaplist.next != &info->swaplist)
1137                list_move_tail(&shmem_swaplist, &info->swaplist);
1138
1139        gfp = mapping_gfp_mask(mapping);
1140        if (shmem_should_replace_page(*pagep, gfp)) {
1141                mutex_unlock(&shmem_swaplist_mutex);
1142                error = shmem_replace_page(pagep, gfp, info, index);
1143                mutex_lock(&shmem_swaplist_mutex);
1144                /*
1145                 * We needed to drop mutex to make that restrictive page
1146                 * allocation, but the inode might have been freed while we
1147                 * dropped it: although a racing shmem_evict_inode() cannot
1148                 * complete without emptying the radix_tree, our page lock
1149                 * on this swapcache page is not enough to prevent that -
1150                 * free_swap_and_cache() of our swap entry will only
1151                 * trylock_page(), removing swap from radix_tree whatever.
1152                 *
1153                 * We must not proceed to shmem_add_to_page_cache() if the
1154                 * inode has been freed, but of course we cannot rely on
1155                 * inode or mapping or info to check that.  However, we can
1156                 * safely check if our swap entry is still in use (and here
1157                 * it can't have got reused for another page): if it's still
1158                 * in use, then the inode cannot have been freed yet, and we
1159                 * can safely proceed (if it's no longer in use, that tells
1160                 * nothing about the inode, but we don't need to unuse swap).
1161                 */
1162                if (!page_swapcount(*pagep))
1163                        error = -ENOENT;
1164        }
1165
1166        /*
1167         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1168         * but also to hold up shmem_evict_inode(): so inode cannot be freed
1169         * beneath us (pagelock doesn't help until the page is in pagecache).
1170         */
1171        if (!error)
1172                error = shmem_add_to_page_cache(*pagep, mapping, index,
1173                                                radswap);
1174        if (error != -ENOMEM) {
1175                /*
1176                 * Truncation and eviction use free_swap_and_cache(), which
1177                 * only does trylock page: if we raced, best clean up here.
1178                 */
1179                delete_from_swap_cache(*pagep);
1180                set_page_dirty(*pagep);
1181                if (!error) {
1182                        spin_lock_irq(&info->lock);
1183                        info->swapped--;
1184                        spin_unlock_irq(&info->lock);
1185                        swap_free(swap);
1186                }
1187        }
1188        return error;
1189}
1190
1191/*
1192 * Search through swapped inodes to find and replace swap by page.
1193 */
1194int shmem_unuse(swp_entry_t swap, struct page *page)
1195{
1196        struct list_head *this, *next;
1197        struct shmem_inode_info *info;
1198        struct mem_cgroup *memcg;
1199        int error = 0;
1200
1201        /*
1202         * There's a faint possibility that swap page was replaced before
1203         * caller locked it: caller will come back later with the right page.
1204         */
1205        if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1206                goto out;
1207
1208        /*
1209         * Charge page using GFP_KERNEL while we can wait, before taking
1210         * the shmem_swaplist_mutex which might hold up shmem_writepage().
1211         * Charged back to the user (not to caller) when swap account is used.
1212         */
1213        error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1214                        false);
1215        if (error)
1216                goto out;
1217        /* No radix_tree_preload: swap entry keeps a place for page in tree */
1218        error = -EAGAIN;
1219
1220        mutex_lock(&shmem_swaplist_mutex);
1221        list_for_each_safe(this, next, &shmem_swaplist) {
1222                info = list_entry(this, struct shmem_inode_info, swaplist);
1223                if (info->swapped)
1224                        error = shmem_unuse_inode(info, swap, &page);
1225                else
1226                        list_del_init(&info->swaplist);
1227                cond_resched();
1228                if (error != -EAGAIN)
1229                        break;
1230                /* found nothing in this: move on to search the next */
1231        }
1232        mutex_unlock(&shmem_swaplist_mutex);
1233
1234        if (error) {
1235                if (error != -ENOMEM)
1236                        error = 0;
1237                mem_cgroup_cancel_charge(page, memcg, false);
1238        } else
1239                mem_cgroup_commit_charge(page, memcg, true, false);
1240out:
1241        unlock_page(page);
1242        put_page(page);
1243        return error;
1244}
1245
1246/*
1247 * Move the page from the page cache to the swap cache.
1248 */
1249static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1250{
1251        struct shmem_inode_info *info;
1252        struct address_space *mapping;
1253        struct inode *inode;
1254        swp_entry_t swap;
1255        pgoff_t index;
1256
1257        VM_BUG_ON_PAGE(PageCompound(page), page);
1258        BUG_ON(!PageLocked(page));
1259        mapping = page->mapping;
1260        index = page->index;
1261        inode = mapping->host;
1262        info = SHMEM_I(inode);
1263        if (info->flags & VM_LOCKED)
1264                goto redirty;
1265        if (!total_swap_pages)
1266                goto redirty;
1267
1268        /*
1269         * Our capabilities prevent regular writeback or sync from ever calling
1270         * shmem_writepage; but a stacking filesystem might use ->writepage of
1271         * its underlying filesystem, in which case tmpfs should write out to
1272         * swap only in response to memory pressure, and not for the writeback
1273         * threads or sync.
1274         */
1275        if (!wbc->for_reclaim) {
1276                WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1277                goto redirty;
1278        }
1279
1280        /*
1281         * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1282         * value into swapfile.c, the only way we can correctly account for a
1283         * fallocated page arriving here is now to initialize it and write it.
1284         *
1285         * That's okay for a page already fallocated earlier, but if we have
1286         * not yet completed the fallocation, then (a) we want to keep track
1287         * of this page in case we have to undo it, and (b) it may not be a
1288         * good idea to continue anyway, once we're pushing into swap.  So
1289         * reactivate the page, and let shmem_fallocate() quit when too many.
1290         */
1291        if (!PageUptodate(page)) {
1292                if (inode->i_private) {
1293                        struct shmem_falloc *shmem_falloc;
1294                        spin_lock(&inode->i_lock);
1295                        shmem_falloc = inode->i_private;
1296                        if (shmem_falloc &&
1297                            !shmem_falloc->waitq &&
1298                            index >= shmem_falloc->start &&
1299                            index < shmem_falloc->next)
1300                                shmem_falloc->nr_unswapped++;
1301                        else
1302                                shmem_falloc = NULL;
1303                        spin_unlock(&inode->i_lock);
1304                        if (shmem_falloc)
1305                                goto redirty;
1306                }
1307                clear_highpage(page);
1308                flush_dcache_page(page);
1309                SetPageUptodate(page);
1310        }
1311
1312        swap = get_swap_page(page);
1313        if (!swap.val)
1314                goto redirty;
1315
1316        if (mem_cgroup_try_charge_swap(page, swap))
1317                goto free_swap;
1318
1319        /*
1320         * Add inode to shmem_unuse()'s list of swapped-out inodes,
1321         * if it's not already there.  Do it now before the page is
1322         * moved to swap cache, when its pagelock no longer protects
1323         * the inode from eviction.  But don't unlock the mutex until
1324         * we've incremented swapped, because shmem_unuse_inode() will
1325         * prune a !swapped inode from the swaplist under this mutex.
1326         */
1327        mutex_lock(&shmem_swaplist_mutex);
1328        if (list_empty(&info->swaplist))
1329                list_add_tail(&info->swaplist, &shmem_swaplist);
1330
1331        if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1332                spin_lock_irq(&info->lock);
1333                shmem_recalc_inode(inode);
1334                info->swapped++;
1335                spin_unlock_irq(&info->lock);
1336
1337                swap_shmem_alloc(swap);
1338                shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1339
1340                mutex_unlock(&shmem_swaplist_mutex);
1341                BUG_ON(page_mapped(page));
1342                swap_writepage(page, wbc);
1343                return 0;
1344        }
1345
1346        mutex_unlock(&shmem_swaplist_mutex);
1347free_swap:
1348        put_swap_page(page, swap);
1349redirty:
1350        set_page_dirty(page);
1351        if (wbc->for_reclaim)
1352                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1353        unlock_page(page);
1354        return 0;
1355}
1356
1357#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1358static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1359{
1360        char buffer[64];
1361
1362        if (!mpol || mpol->mode == MPOL_DEFAULT)
1363                return;         /* show nothing */
1364
1365        mpol_to_str(buffer, sizeof(buffer), mpol);
1366
1367        seq_printf(seq, ",mpol=%s", buffer);
1368}
1369
1370static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1371{
1372        struct mempolicy *mpol = NULL;
1373        if (sbinfo->mpol) {
1374                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1375                mpol = sbinfo->mpol;
1376                mpol_get(mpol);
1377                spin_unlock(&sbinfo->stat_lock);
1378        }
1379        return mpol;
1380}
1381#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1382static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1383{
1384}
1385static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1386{
1387        return NULL;
1388}
1389#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1390#ifndef CONFIG_NUMA
1391#define vm_policy vm_private_data
1392#endif
1393
1394static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1395                struct shmem_inode_info *info, pgoff_t index)
1396{
1397        /* Create a pseudo vma that just contains the policy */
1398        vma->vm_start = 0;
1399        /* Bias interleave by inode number to distribute better across nodes */
1400        vma->vm_pgoff = index + info->vfs_inode.i_ino;
1401        vma->vm_ops = NULL;
1402        vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1403}
1404
1405static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1406{
1407        /* Drop reference taken by mpol_shared_policy_lookup() */
1408        mpol_cond_put(vma->vm_policy);
1409}
1410
1411static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1412                        struct shmem_inode_info *info, pgoff_t index)
1413{
1414        struct vm_area_struct pvma;
1415        struct page *page;
1416
1417        shmem_pseudo_vma_init(&pvma, info, index);
1418        page = swapin_readahead(swap, gfp, &pvma, 0);
1419        shmem_pseudo_vma_destroy(&pvma);
1420
1421        return page;
1422}
1423
1424static struct page *shmem_alloc_hugepage(gfp_t gfp,
1425                struct shmem_inode_info *info, pgoff_t index)
1426{
1427        struct vm_area_struct pvma;
1428        struct inode *inode = &info->vfs_inode;
1429        struct address_space *mapping = inode->i_mapping;
1430        pgoff_t idx, hindex;
1431        void __rcu **results;
1432        struct page *page;
1433
1434        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1435                return NULL;
1436
1437        hindex = round_down(index, HPAGE_PMD_NR);
1438        rcu_read_lock();
1439        if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1440                                hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1441                rcu_read_unlock();
1442                return NULL;
1443        }
1444        rcu_read_unlock();
1445
1446        shmem_pseudo_vma_init(&pvma, info, hindex);
1447        page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1448                        HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1449        shmem_pseudo_vma_destroy(&pvma);
1450        if (page)
1451                prep_transhuge_page(page);
1452        return page;
1453}
1454
1455static struct page *shmem_alloc_page(gfp_t gfp,
1456                        struct shmem_inode_info *info, pgoff_t index)
1457{
1458        struct vm_area_struct pvma;
1459        struct page *page;
1460
1461        shmem_pseudo_vma_init(&pvma, info, index);
1462        page = alloc_page_vma(gfp, &pvma, 0);
1463        shmem_pseudo_vma_destroy(&pvma);
1464
1465        return page;
1466}
1467
1468static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1469                struct inode *inode,
1470                pgoff_t index, bool huge)
1471{
1472        struct shmem_inode_info *info = SHMEM_I(inode);
1473        struct page *page;
1474        int nr;
1475        int err = -ENOSPC;
1476
1477        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1478                huge = false;
1479        nr = huge ? HPAGE_PMD_NR : 1;
1480
1481        if (!shmem_inode_acct_block(inode, nr))
1482                goto failed;
1483
1484        if (huge)
1485                page = shmem_alloc_hugepage(gfp, info, index);
1486        else
1487                page = shmem_alloc_page(gfp, info, index);
1488        if (page) {
1489                __SetPageLocked(page);
1490                __SetPageSwapBacked(page);
1491                return page;
1492        }
1493
1494        err = -ENOMEM;
1495        shmem_inode_unacct_blocks(inode, nr);
1496failed:
1497        return ERR_PTR(err);
1498}
1499
1500/*
1501 * When a page is moved from swapcache to shmem filecache (either by the
1502 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1503 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1504 * ignorance of the mapping it belongs to.  If that mapping has special
1505 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1506 * we may need to copy to a suitable page before moving to filecache.
1507 *
1508 * In a future release, this may well be extended to respect cpuset and
1509 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1510 * but for now it is a simple matter of zone.
1511 */
1512static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1513{
1514        return page_zonenum(page) > gfp_zone(gfp);
1515}
1516
1517static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1518                                struct shmem_inode_info *info, pgoff_t index)
1519{
1520        struct page *oldpage, *newpage;
1521        struct address_space *swap_mapping;
1522        pgoff_t swap_index;
1523        int error;
1524
1525        oldpage = *pagep;
1526        swap_index = page_private(oldpage);
1527        swap_mapping = page_mapping(oldpage);
1528
1529        /*
1530         * We have arrived here because our zones are constrained, so don't
1531         * limit chance of success by further cpuset and node constraints.
1532         */
1533        gfp &= ~GFP_CONSTRAINT_MASK;
1534        newpage = shmem_alloc_page(gfp, info, index);
1535        if (!newpage)
1536                return -ENOMEM;
1537
1538        get_page(newpage);
1539        copy_highpage(newpage, oldpage);
1540        flush_dcache_page(newpage);
1541
1542        __SetPageLocked(newpage);
1543        __SetPageSwapBacked(newpage);
1544        SetPageUptodate(newpage);
1545        set_page_private(newpage, swap_index);
1546        SetPageSwapCache(newpage);
1547
1548        /*
1549         * Our caller will very soon move newpage out of swapcache, but it's
1550         * a nice clean interface for us to replace oldpage by newpage there.
1551         */
1552        spin_lock_irq(&swap_mapping->tree_lock);
1553        error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1554                                                                   newpage);
1555        if (!error) {
1556                __inc_node_page_state(newpage, NR_FILE_PAGES);
1557                __dec_node_page_state(oldpage, NR_FILE_PAGES);
1558        }
1559        spin_unlock_irq(&swap_mapping->tree_lock);
1560
1561        if (unlikely(error)) {
1562                /*
1563                 * Is this possible?  I think not, now that our callers check
1564                 * both PageSwapCache and page_private after getting page lock;
1565                 * but be defensive.  Reverse old to newpage for clear and free.
1566                 */
1567                oldpage = newpage;
1568        } else {
1569                mem_cgroup_migrate(oldpage, newpage);
1570                lru_cache_add_anon(newpage);
1571                *pagep = newpage;
1572        }
1573
1574        ClearPageSwapCache(oldpage);
1575        set_page_private(oldpage, 0);
1576
1577        unlock_page(oldpage);
1578        put_page(oldpage);
1579        put_page(oldpage);
1580        return error;
1581}
1582
1583/*
1584 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1585 *
1586 * If we allocate a new one we do not mark it dirty. That's up to the
1587 * vm. If we swap it in we mark it dirty since we also free the swap
1588 * entry since a page cannot live in both the swap and page cache.
1589 *
1590 * fault_mm and fault_type are only supplied by shmem_fault:
1591 * otherwise they are NULL.
1592 */
1593static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1594        struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1595        struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1596{
1597        struct address_space *mapping = inode->i_mapping;
1598        struct shmem_inode_info *info = SHMEM_I(inode);
1599        struct shmem_sb_info *sbinfo;
1600        struct mm_struct *charge_mm;
1601        struct mem_cgroup *memcg;
1602        struct page *page;
1603        swp_entry_t swap;
1604        enum sgp_type sgp_huge = sgp;
1605        pgoff_t hindex = index;
1606        int error;
1607        int once = 0;
1608        int alloced = 0;
1609
1610        if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1611                return -EFBIG;
1612        if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1613                sgp = SGP_CACHE;
1614repeat:
1615        swap.val = 0;
1616        page = find_lock_entry(mapping, index);
1617        if (radix_tree_exceptional_entry(page)) {
1618                swap = radix_to_swp_entry(page);
1619                page = NULL;
1620        }
1621
1622        if (sgp <= SGP_CACHE &&
1623            ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1624                error = -EINVAL;
1625                goto unlock;
1626        }
1627
1628        if (page && sgp == SGP_WRITE)
1629                mark_page_accessed(page);
1630
1631        /* fallocated page? */
1632        if (page && !PageUptodate(page)) {
1633                if (sgp != SGP_READ)
1634                        goto clear;
1635                unlock_page(page);
1636                put_page(page);
1637                page = NULL;
1638        }
1639        if (page || (sgp == SGP_READ && !swap.val)) {
1640                *pagep = page;
1641                return 0;
1642        }
1643
1644        /*
1645         * Fast cache lookup did not find it:
1646         * bring it back from swap or allocate.
1647         */
1648        sbinfo = SHMEM_SB(inode->i_sb);
1649        charge_mm = vma ? vma->vm_mm : current->mm;
1650
1651        if (swap.val) {
1652                /* Look it up and read it in.. */
1653                page = lookup_swap_cache(swap, NULL, 0);
1654                if (!page) {
1655                        /* Or update major stats only when swapin succeeds?? */
1656                        if (fault_type) {
1657                                *fault_type |= VM_FAULT_MAJOR;
1658                                count_vm_event(PGMAJFAULT);
1659                                count_memcg_event_mm(charge_mm, PGMAJFAULT);
1660                        }
1661                        /* Here we actually start the io */
1662                        page = shmem_swapin(swap, gfp, info, index);
1663                        if (!page) {
1664                                error = -ENOMEM;
1665                                goto failed;
1666                        }
1667                }
1668
1669                /* We have to do this with page locked to prevent races */
1670                lock_page(page);
1671                if (!PageSwapCache(page) || page_private(page) != swap.val ||
1672                    !shmem_confirm_swap(mapping, index, swap)) {
1673                        error = -EEXIST;        /* try again */
1674                        goto unlock;
1675                }
1676                if (!PageUptodate(page)) {
1677                        error = -EIO;
1678                        goto failed;
1679                }
1680                wait_on_page_writeback(page);
1681
1682                if (shmem_should_replace_page(page, gfp)) {
1683                        error = shmem_replace_page(&page, gfp, info, index);
1684                        if (error)
1685                                goto failed;
1686                }
1687
1688                error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1689                                false);
1690                if (!error) {
1691                        error = shmem_add_to_page_cache(page, mapping, index,
1692                                                swp_to_radix_entry(swap));
1693                        /*
1694                         * We already confirmed swap under page lock, and make
1695                         * no memory allocation here, so usually no possibility
1696                         * of error; but free_swap_and_cache() only trylocks a
1697                         * page, so it is just possible that the entry has been
1698                         * truncated or holepunched since swap was confirmed.
1699                         * shmem_undo_range() will have done some of the
1700                         * unaccounting, now delete_from_swap_cache() will do
1701                         * the rest.
1702                         * Reset swap.val? No, leave it so "failed" goes back to
1703                         * "repeat": reading a hole and writing should succeed.
1704                         */
1705                        if (error) {
1706                                mem_cgroup_cancel_charge(page, memcg, false);
1707                                delete_from_swap_cache(page);
1708                        }
1709                }
1710                if (error)
1711                        goto failed;
1712
1713                mem_cgroup_commit_charge(page, memcg, true, false);
1714
1715                spin_lock_irq(&info->lock);
1716                info->swapped--;
1717                shmem_recalc_inode(inode);
1718                spin_unlock_irq(&info->lock);
1719
1720                if (sgp == SGP_WRITE)
1721                        mark_page_accessed(page);
1722
1723                delete_from_swap_cache(page);
1724                set_page_dirty(page);
1725                swap_free(swap);
1726
1727        } else {
1728                if (vma && userfaultfd_missing(vma)) {
1729                        *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1730                        return 0;
1731                }
1732
1733                /* shmem_symlink() */
1734                if (mapping->a_ops != &shmem_aops)
1735                        goto alloc_nohuge;
1736                if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1737                        goto alloc_nohuge;
1738                if (shmem_huge == SHMEM_HUGE_FORCE)
1739                        goto alloc_huge;
1740                switch (sbinfo->huge) {
1741                        loff_t i_size;
1742                        pgoff_t off;
1743                case SHMEM_HUGE_NEVER:
1744                        goto alloc_nohuge;
1745                case SHMEM_HUGE_WITHIN_SIZE:
1746                        off = round_up(index, HPAGE_PMD_NR);
1747                        i_size = round_up(i_size_read(inode), PAGE_SIZE);
1748                        if (i_size >= HPAGE_PMD_SIZE &&
1749                                        i_size >> PAGE_SHIFT >= off)
1750                                goto alloc_huge;
1751                        /* fallthrough */
1752                case SHMEM_HUGE_ADVISE:
1753                        if (sgp_huge == SGP_HUGE)
1754                                goto alloc_huge;
1755                        /* TODO: implement fadvise() hints */
1756                        goto alloc_nohuge;
1757                }
1758
1759alloc_huge:
1760                page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1761                if (IS_ERR(page)) {
1762alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1763                                        index, false);
1764                }
1765                if (IS_ERR(page)) {
1766                        int retry = 5;
1767                        error = PTR_ERR(page);
1768                        page = NULL;
1769                        if (error != -ENOSPC)
1770                                goto failed;
1771                        /*
1772                         * Try to reclaim some spece by splitting a huge page
1773                         * beyond i_size on the filesystem.
1774                         */
1775                        while (retry--) {
1776                                int ret;
1777                                ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1778                                if (ret == SHRINK_STOP)
1779                                        break;
1780                                if (ret)
1781                                        goto alloc_nohuge;
1782                        }
1783                        goto failed;
1784                }
1785
1786                if (PageTransHuge(page))
1787                        hindex = round_down(index, HPAGE_PMD_NR);
1788                else
1789                        hindex = index;
1790
1791                if (sgp == SGP_WRITE)
1792                        __SetPageReferenced(page);
1793
1794                error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1795                                PageTransHuge(page));
1796                if (error)
1797                        goto unacct;
1798                error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1799                                compound_order(page));
1800                if (!error) {
1801                        error = shmem_add_to_page_cache(page, mapping, hindex,
1802                                                        NULL);
1803                        radix_tree_preload_end();
1804                }
1805                if (error) {
1806                        mem_cgroup_cancel_charge(page, memcg,
1807                                        PageTransHuge(page));
1808                        goto unacct;
1809                }
1810                mem_cgroup_commit_charge(page, memcg, false,
1811                                PageTransHuge(page));
1812                lru_cache_add_anon(page);
1813
1814                spin_lock_irq(&info->lock);
1815                info->alloced += 1 << compound_order(page);
1816                inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1817                shmem_recalc_inode(inode);
1818                spin_unlock_irq(&info->lock);
1819                alloced = true;
1820
1821                if (PageTransHuge(page) &&
1822                                DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1823                                hindex + HPAGE_PMD_NR - 1) {
1824                        /*
1825                         * Part of the huge page is beyond i_size: subject
1826                         * to shrink under memory pressure.
1827                         */
1828                        spin_lock(&sbinfo->shrinklist_lock);
1829                        /*
1830                         * _careful to defend against unlocked access to
1831                         * ->shrink_list in shmem_unused_huge_shrink()
1832                         */
1833                        if (list_empty_careful(&info->shrinklist)) {
1834                                list_add_tail(&info->shrinklist,
1835                                                &sbinfo->shrinklist);
1836                                sbinfo->shrinklist_len++;
1837                        }
1838                        spin_unlock(&sbinfo->shrinklist_lock);
1839                }
1840
1841                /*
1842                 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1843                 */
1844                if (sgp == SGP_FALLOC)
1845                        sgp = SGP_WRITE;
1846clear:
1847                /*
1848                 * Let SGP_WRITE caller clear ends if write does not fill page;
1849                 * but SGP_FALLOC on a page fallocated earlier must initialize
1850                 * it now, lest undo on failure cancel our earlier guarantee.
1851                 */
1852                if (sgp != SGP_WRITE && !PageUptodate(page)) {
1853                        struct page *head = compound_head(page);
1854                        int i;
1855
1856                        for (i = 0; i < (1 << compound_order(head)); i++) {
1857                                clear_highpage(head + i);
1858                                flush_dcache_page(head + i);
1859                        }
1860                        SetPageUptodate(head);
1861                }
1862        }
1863
1864        /* Perhaps the file has been truncated since we checked */
1865        if (sgp <= SGP_CACHE &&
1866            ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1867                if (alloced) {
1868                        ClearPageDirty(page);
1869                        delete_from_page_cache(page);
1870                        spin_lock_irq(&info->lock);
1871                        shmem_recalc_inode(inode);
1872                        spin_unlock_irq(&info->lock);
1873                }
1874                error = -EINVAL;
1875                goto unlock;
1876        }
1877        *pagep = page + index - hindex;
1878        return 0;
1879
1880        /*
1881         * Error recovery.
1882         */
1883unacct:
1884        shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1885
1886        if (PageTransHuge(page)) {
1887                unlock_page(page);
1888                put_page(page);
1889                goto alloc_nohuge;
1890        }
1891failed:
1892        if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1893                error = -EEXIST;
1894unlock:
1895        if (page) {
1896                unlock_page(page);
1897                put_page(page);
1898        }
1899        if (error == -ENOSPC && !once++) {
1900                spin_lock_irq(&info->lock);
1901                shmem_recalc_inode(inode);
1902                spin_unlock_irq(&info->lock);
1903                goto repeat;
1904        }
1905        if (error == -EEXIST)   /* from above or from radix_tree_insert */
1906                goto repeat;
1907        return error;
1908}
1909
1910/*
1911 * This is like autoremove_wake_function, but it removes the wait queue
1912 * entry unconditionally - even if something else had already woken the
1913 * target.
1914 */
1915static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1916{
1917        int ret = default_wake_function(wait, mode, sync, key);
1918        list_del_init(&wait->entry);
1919        return ret;
1920}
1921
1922static int shmem_fault(struct vm_fault *vmf)
1923{
1924        struct vm_area_struct *vma = vmf->vma;
1925        struct inode *inode = file_inode(vma->vm_file);
1926        gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1927        enum sgp_type sgp;
1928        int error;
1929        int ret = VM_FAULT_LOCKED;
1930
1931        /*
1932         * Trinity finds that probing a hole which tmpfs is punching can
1933         * prevent the hole-punch from ever completing: which in turn
1934         * locks writers out with its hold on i_mutex.  So refrain from
1935         * faulting pages into the hole while it's being punched.  Although
1936         * shmem_undo_range() does remove the additions, it may be unable to
1937         * keep up, as each new page needs its own unmap_mapping_range() call,
1938         * and the i_mmap tree grows ever slower to scan if new vmas are added.
1939         *
1940         * It does not matter if we sometimes reach this check just before the
1941         * hole-punch begins, so that one fault then races with the punch:
1942         * we just need to make racing faults a rare case.
1943         *
1944         * The implementation below would be much simpler if we just used a
1945         * standard mutex or completion: but we cannot take i_mutex in fault,
1946         * and bloating every shmem inode for this unlikely case would be sad.
1947         */
1948        if (unlikely(inode->i_private)) {
1949                struct shmem_falloc *shmem_falloc;
1950
1951                spin_lock(&inode->i_lock);
1952                shmem_falloc = inode->i_private;
1953                if (shmem_falloc &&
1954                    shmem_falloc->waitq &&
1955                    vmf->pgoff >= shmem_falloc->start &&
1956                    vmf->pgoff < shmem_falloc->next) {
1957                        wait_queue_head_t *shmem_falloc_waitq;
1958                        DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1959
1960                        ret = VM_FAULT_NOPAGE;
1961                        if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1962                           !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1963                                /* It's polite to up mmap_sem if we can */
1964                                up_read(&vma->vm_mm->mmap_sem);
1965                                ret = VM_FAULT_RETRY;
1966                        }
1967
1968                        shmem_falloc_waitq = shmem_falloc->waitq;
1969                        prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1970                                        TASK_UNINTERRUPTIBLE);
1971                        spin_unlock(&inode->i_lock);
1972                        schedule();
1973
1974                        /*
1975                         * shmem_falloc_waitq points into the shmem_fallocate()
1976                         * stack of the hole-punching task: shmem_falloc_waitq
1977                         * is usually invalid by the time we reach here, but
1978                         * finish_wait() does not dereference it in that case;
1979                         * though i_lock needed lest racing with wake_up_all().
1980                         */
1981                        spin_lock(&inode->i_lock);
1982                        finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1983                        spin_unlock(&inode->i_lock);
1984                        return ret;
1985                }
1986                spin_unlock(&inode->i_lock);
1987        }
1988
1989        sgp = SGP_CACHE;
1990
1991        if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1992            test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1993                sgp = SGP_NOHUGE;
1994        else if (vma->vm_flags & VM_HUGEPAGE)
1995                sgp = SGP_HUGE;
1996
1997        error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1998                                  gfp, vma, vmf, &ret);
1999        if (error)
2000                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2001        return ret;
2002}
2003
2004unsigned long shmem_get_unmapped_area(struct file *file,
2005                                      unsigned long uaddr, unsigned long len,
2006                                      unsigned long pgoff, unsigned long flags)
2007{
2008        unsigned long (*get_area)(struct file *,
2009                unsigned long, unsigned long, unsigned long, unsigned long);
2010        unsigned long addr;
2011        unsigned long offset;
2012        unsigned long inflated_len;
2013        unsigned long inflated_addr;
2014        unsigned long inflated_offset;
2015
2016        if (len > TASK_SIZE)
2017                return -ENOMEM;
2018
2019        get_area = current->mm->get_unmapped_area;
2020        addr = get_area(file, uaddr, len, pgoff, flags);
2021
2022        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2023                return addr;
2024        if (IS_ERR_VALUE(addr))
2025                return addr;
2026        if (addr & ~PAGE_MASK)
2027                return addr;
2028        if (addr > TASK_SIZE - len)
2029                return addr;
2030
2031        if (shmem_huge == SHMEM_HUGE_DENY)
2032                return addr;
2033        if (len < HPAGE_PMD_SIZE)
2034                return addr;
2035        if (flags & MAP_FIXED)
2036                return addr;
2037        /*
2038         * Our priority is to support MAP_SHARED mapped hugely;
2039         * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2040         * But if caller specified an address hint, respect that as before.
2041         */
2042        if (uaddr)
2043                return addr;
2044
2045        if (shmem_huge != SHMEM_HUGE_FORCE) {
2046                struct super_block *sb;
2047
2048                if (file) {
2049                        VM_BUG_ON(file->f_op != &shmem_file_operations);
2050                        sb = file_inode(file)->i_sb;
2051                } else {
2052                        /*
2053                         * Called directly from mm/mmap.c, or drivers/char/mem.c
2054                         * for "/dev/zero", to create a shared anonymous object.
2055                         */
2056                        if (IS_ERR(shm_mnt))
2057                                return addr;
2058                        sb = shm_mnt->mnt_sb;
2059                }
2060                if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2061                        return addr;
2062        }
2063
2064        offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2065        if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2066                return addr;
2067        if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2068                return addr;
2069
2070        inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2071        if (inflated_len > TASK_SIZE)
2072                return addr;
2073        if (inflated_len < len)
2074                return addr;
2075
2076        inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2077        if (IS_ERR_VALUE(inflated_addr))
2078                return addr;
2079        if (inflated_addr & ~PAGE_MASK)
2080                return addr;
2081
2082        inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2083        inflated_addr += offset - inflated_offset;
2084        if (inflated_offset > offset)
2085                inflated_addr += HPAGE_PMD_SIZE;
2086
2087        if (inflated_addr > TASK_SIZE - len)
2088                return addr;
2089        return inflated_addr;
2090}
2091
2092#ifdef CONFIG_NUMA
2093static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2094{
2095        struct inode *inode = file_inode(vma->vm_file);
2096        return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2097}
2098
2099static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2100                                          unsigned long addr)
2101{
2102        struct inode *inode = file_inode(vma->vm_file);
2103        pgoff_t index;
2104
2105        index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2106        return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2107}
2108#endif
2109
2110int shmem_lock(struct file *file, int lock, struct user_struct *user)
2111{
2112        struct inode *inode = file_inode(file);
2113        struct shmem_inode_info *info = SHMEM_I(inode);
2114        int retval = -ENOMEM;
2115
2116        spin_lock_irq(&info->lock);
2117        if (lock && !(info->flags & VM_LOCKED)) {
2118                if (!user_shm_lock(inode->i_size, user))
2119                        goto out_nomem;
2120                info->flags |= VM_LOCKED;
2121                mapping_set_unevictable(file->f_mapping);
2122        }
2123        if (!lock && (info->flags & VM_LOCKED) && user) {
2124                user_shm_unlock(inode->i_size, user);
2125                info->flags &= ~VM_LOCKED;
2126                mapping_clear_unevictable(file->f_mapping);
2127        }
2128        retval = 0;
2129
2130out_nomem:
2131        spin_unlock_irq(&info->lock);
2132        return retval;
2133}
2134
2135static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2136{
2137        file_accessed(file);
2138        vma->vm_ops = &shmem_vm_ops;
2139        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2140                        ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2141                        (vma->vm_end & HPAGE_PMD_MASK)) {
2142                khugepaged_enter(vma, vma->vm_flags);
2143        }
2144        return 0;
2145}
2146
2147static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2148                                     umode_t mode, dev_t dev, unsigned long flags)
2149{
2150        struct inode *inode;
2151        struct shmem_inode_info *info;
2152        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2153
2154        if (shmem_reserve_inode(sb))
2155                return NULL;
2156
2157        inode = new_inode(sb);
2158        if (inode) {
2159                inode->i_ino = get_next_ino();
2160                inode_init_owner(inode, dir, mode);
2161                inode->i_blocks = 0;
2162                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2163                inode->i_generation = get_seconds();
2164                info = SHMEM_I(inode);
2165                memset(info, 0, (char *)inode - (char *)info);
2166                spin_lock_init(&info->lock);
2167                info->seals = F_SEAL_SEAL;
2168                info->flags = flags & VM_NORESERVE;
2169                INIT_LIST_HEAD(&info->shrinklist);
2170                INIT_LIST_HEAD(&info->swaplist);
2171                simple_xattrs_init(&info->xattrs);
2172                cache_no_acl(inode);
2173
2174                switch (mode & S_IFMT) {
2175                default:
2176                        inode->i_op = &shmem_special_inode_operations;
2177                        init_special_inode(inode, mode, dev);
2178                        break;
2179                case S_IFREG:
2180                        inode->i_mapping->a_ops = &shmem_aops;
2181                        inode->i_op = &shmem_inode_operations;
2182                        inode->i_fop = &shmem_file_operations;
2183                        mpol_shared_policy_init(&info->policy,
2184                                                 shmem_get_sbmpol(sbinfo));
2185                        break;
2186                case S_IFDIR:
2187                        inc_nlink(inode);
2188                        /* Some things misbehave if size == 0 on a directory */
2189                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
2190                        inode->i_op = &shmem_dir_inode_operations;
2191                        inode->i_fop = &simple_dir_operations;
2192                        break;
2193                case S_IFLNK:
2194                        /*
2195                         * Must not load anything in the rbtree,
2196                         * mpol_free_shared_policy will not be called.
2197                         */
2198                        mpol_shared_policy_init(&info->policy, NULL);
2199                        break;
2200                }
2201        } else
2202                shmem_free_inode(sb);
2203        return inode;
2204}
2205
2206bool shmem_mapping(struct address_space *mapping)
2207{
2208        return mapping->a_ops == &shmem_aops;
2209}
2210
2211static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2212                                  pmd_t *dst_pmd,
2213                                  struct vm_area_struct *dst_vma,
2214                                  unsigned long dst_addr,
2215                                  unsigned long src_addr,
2216                                  bool zeropage,
2217                                  struct page **pagep)
2218{
2219        struct inode *inode = file_inode(dst_vma->vm_file);
2220        struct shmem_inode_info *info = SHMEM_I(inode);
2221        struct address_space *mapping = inode->i_mapping;
2222        gfp_t gfp = mapping_gfp_mask(mapping);
2223        pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2224        struct mem_cgroup *memcg;
2225        spinlock_t *ptl;
2226        void *page_kaddr;
2227        struct page *page;
2228        pte_t _dst_pte, *dst_pte;
2229        int ret;
2230
2231        ret = -ENOMEM;
2232        if (!shmem_inode_acct_block(inode, 1))
2233                goto out;
2234
2235        if (!*pagep) {
2236                page = shmem_alloc_page(gfp, info, pgoff);
2237                if (!page)
2238                        goto out_unacct_blocks;
2239
2240                if (!zeropage) {        /* mcopy_atomic */
2241                        page_kaddr = kmap_atomic(page);
2242                        ret = copy_from_user(page_kaddr,
2243                                             (const void __user *)src_addr,
2244                                             PAGE_SIZE);
2245                        kunmap_atomic(page_kaddr);
2246
2247                        /* fallback to copy_from_user outside mmap_sem */
2248                        if (unlikely(ret)) {
2249                                *pagep = page;
2250                                shmem_inode_unacct_blocks(inode, 1);
2251                                /* don't free the page */
2252                                return -EFAULT;
2253                        }
2254                } else {                /* mfill_zeropage_atomic */
2255                        clear_highpage(page);
2256                }
2257        } else {
2258                page = *pagep;
2259                *pagep = NULL;
2260        }
2261
2262        VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2263        __SetPageLocked(page);
2264        __SetPageSwapBacked(page);
2265        __SetPageUptodate(page);
2266
2267        ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2268        if (ret)
2269                goto out_release;
2270
2271        ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2272        if (!ret) {
2273                ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2274                radix_tree_preload_end();
2275        }
2276        if (ret)
2277                goto out_release_uncharge;
2278
2279        mem_cgroup_commit_charge(page, memcg, false, false);
2280
2281        _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2282        if (dst_vma->vm_flags & VM_WRITE)
2283                _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2284
2285        ret = -EEXIST;
2286        dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2287        if (!pte_none(*dst_pte))
2288                goto out_release_uncharge_unlock;
2289
2290        lru_cache_add_anon(page);
2291
2292        spin_lock(&info->lock);
2293        info->alloced++;
2294        inode->i_blocks += BLOCKS_PER_PAGE;
2295        shmem_recalc_inode(inode);
2296        spin_unlock(&info->lock);
2297
2298        inc_mm_counter(dst_mm, mm_counter_file(page));
2299        page_add_file_rmap(page, false);
2300        set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2301
2302        /* No need to invalidate - it was non-present before */
2303        update_mmu_cache(dst_vma, dst_addr, dst_pte);
2304        unlock_page(page);
2305        pte_unmap_unlock(dst_pte, ptl);
2306        ret = 0;
2307out:
2308        return ret;
2309out_release_uncharge_unlock:
2310        pte_unmap_unlock(dst_pte, ptl);
2311out_release_uncharge:
2312        mem_cgroup_cancel_charge(page, memcg, false);
2313out_release:
2314        unlock_page(page);
2315        put_page(page);
2316out_unacct_blocks:
2317        shmem_inode_unacct_blocks(inode, 1);
2318        goto out;
2319}
2320
2321int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2322                           pmd_t *dst_pmd,
2323                           struct vm_area_struct *dst_vma,
2324                           unsigned long dst_addr,
2325                           unsigned long src_addr,
2326                           struct page **pagep)
2327{
2328        return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2329                                      dst_addr, src_addr, false, pagep);
2330}
2331
2332int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2333                             pmd_t *dst_pmd,
2334                             struct vm_area_struct *dst_vma,
2335                             unsigned long dst_addr)
2336{
2337        struct page *page = NULL;
2338
2339        return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2340                                      dst_addr, 0, true, &page);
2341}
2342
2343#ifdef CONFIG_TMPFS
2344static const struct inode_operations shmem_symlink_inode_operations;
2345static const struct inode_operations shmem_short_symlink_operations;
2346
2347#ifdef CONFIG_TMPFS_XATTR
2348static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2349#else
2350#define shmem_initxattrs NULL
2351#endif
2352
2353static int
2354shmem_write_begin(struct file *file, struct address_space *mapping,
2355                        loff_t pos, unsigned len, unsigned flags,
2356                        struct page **pagep, void **fsdata)
2357{
2358        struct inode *inode = mapping->host;
2359        struct shmem_inode_info *info = SHMEM_I(inode);
2360        pgoff_t index = pos >> PAGE_SHIFT;
2361
2362        /* i_mutex is held by caller */
2363        if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2364                if (info->seals & F_SEAL_WRITE)
2365                        return -EPERM;
2366                if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2367                        return -EPERM;
2368        }
2369
2370        return shmem_getpage(inode, index, pagep, SGP_WRITE);
2371}
2372
2373static int
2374shmem_write_end(struct file *file, struct address_space *mapping,
2375                        loff_t pos, unsigned len, unsigned copied,
2376                        struct page *page, void *fsdata)
2377{
2378        struct inode *inode = mapping->host;
2379
2380        if (pos + copied > inode->i_size)
2381                i_size_write(inode, pos + copied);
2382
2383        if (!PageUptodate(page)) {
2384                struct page *head = compound_head(page);
2385                if (PageTransCompound(page)) {
2386                        int i;
2387
2388                        for (i = 0; i < HPAGE_PMD_NR; i++) {
2389                                if (head + i == page)
2390                                        continue;
2391                                clear_highpage(head + i);
2392                                flush_dcache_page(head + i);
2393                        }
2394                }
2395                if (copied < PAGE_SIZE) {
2396                        unsigned from = pos & (PAGE_SIZE - 1);
2397                        zero_user_segments(page, 0, from,
2398                                        from + copied, PAGE_SIZE);
2399                }
2400                SetPageUptodate(head);
2401        }
2402        set_page_dirty(page);
2403        unlock_page(page);
2404        put_page(page);
2405
2406        return copied;
2407}
2408
2409static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2410{
2411        struct file *file = iocb->ki_filp;
2412        struct inode *inode = file_inode(file);
2413        struct address_space *mapping = inode->i_mapping;
2414        pgoff_t index;
2415        unsigned long offset;
2416        enum sgp_type sgp = SGP_READ;
2417        int error = 0;
2418        ssize_t retval = 0;
2419        loff_t *ppos = &iocb->ki_pos;
2420
2421        /*
2422         * Might this read be for a stacking filesystem?  Then when reading
2423         * holes of a sparse file, we actually need to allocate those pages,
2424         * and even mark them dirty, so it cannot exceed the max_blocks limit.
2425         */
2426        if (!iter_is_iovec(to))
2427                sgp = SGP_CACHE;
2428
2429        index = *ppos >> PAGE_SHIFT;
2430        offset = *ppos & ~PAGE_MASK;
2431
2432        for (;;) {
2433                struct page *page = NULL;
2434                pgoff_t end_index;
2435                unsigned long nr, ret;
2436                loff_t i_size = i_size_read(inode);
2437
2438                end_index = i_size >> PAGE_SHIFT;
2439                if (index > end_index)
2440                        break;
2441                if (index == end_index) {
2442                        nr = i_size & ~PAGE_MASK;
2443                        if (nr <= offset)
2444                                break;
2445                }
2446
2447                error = shmem_getpage(inode, index, &page, sgp);
2448                if (error) {
2449                        if (error == -EINVAL)
2450                                error = 0;
2451                        break;
2452                }
2453                if (page) {
2454                        if (sgp == SGP_CACHE)
2455                                set_page_dirty(page);
2456                        unlock_page(page);
2457                }
2458
2459                /*
2460                 * We must evaluate after, since reads (unlike writes)
2461                 * are called without i_mutex protection against truncate
2462                 */
2463                nr = PAGE_SIZE;
2464                i_size = i_size_read(inode);
2465                end_index = i_size >> PAGE_SHIFT;
2466                if (index == end_index) {
2467                        nr = i_size & ~PAGE_MASK;
2468                        if (nr <= offset) {
2469                                if (page)
2470                                        put_page(page);
2471                                break;
2472                        }
2473                }
2474                nr -= offset;
2475
2476                if (page) {
2477                        /*
2478                         * If users can be writing to this page using arbitrary
2479                         * virtual addresses, take care about potential aliasing
2480                         * before reading the page on the kernel side.
2481                         */
2482                        if (mapping_writably_mapped(mapping))
2483                                flush_dcache_page(page);
2484                        /*
2485                         * Mark the page accessed if we read the beginning.
2486                         */
2487                        if (!offset)
2488                                mark_page_accessed(page);
2489                } else {
2490                        page = ZERO_PAGE(0);
2491                        get_page(page);
2492                }
2493
2494                /*
2495                 * Ok, we have the page, and it's up-to-date, so
2496                 * now we can copy it to user space...
2497                 */
2498                ret = copy_page_to_iter(page, offset, nr, to);
2499                retval += ret;
2500                offset += ret;
2501                index += offset >> PAGE_SHIFT;
2502                offset &= ~PAGE_MASK;
2503
2504                put_page(page);
2505                if (!iov_iter_count(to))
2506                        break;
2507                if (ret < nr) {
2508                        error = -EFAULT;
2509                        break;
2510                }
2511                cond_resched();
2512        }
2513
2514        *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2515        file_accessed(file);
2516        return retval ? retval : error;
2517}
2518
2519/*
2520 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2521 */
2522static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2523                                    pgoff_t index, pgoff_t end, int whence)
2524{
2525        struct page *page;
2526        struct pagevec pvec;
2527        pgoff_t indices[PAGEVEC_SIZE];
2528        bool done = false;
2529        int i;
2530
2531        pagevec_init(&pvec, 0);
2532        pvec.nr = 1;            /* start small: we may be there already */
2533        while (!done) {
2534                pvec.nr = find_get_entries(mapping, index,
2535                                        pvec.nr, pvec.pages, indices);
2536                if (!pvec.nr) {
2537                        if (whence == SEEK_DATA)
2538                                index = end;
2539                        break;
2540                }
2541                for (i = 0; i < pvec.nr; i++, index++) {
2542                        if (index < indices[i]) {
2543                                if (whence == SEEK_HOLE) {
2544                                        done = true;
2545                                        break;
2546                                }
2547                                index = indices[i];
2548                        }
2549                        page = pvec.pages[i];
2550                        if (page && !radix_tree_exceptional_entry(page)) {
2551                                if (!PageUptodate(page))
2552                                        page = NULL;
2553                        }
2554                        if (index >= end ||
2555                            (page && whence == SEEK_DATA) ||
2556                            (!page && whence == SEEK_HOLE)) {
2557                                done = true;
2558                                break;
2559                        }
2560                }
2561                pagevec_remove_exceptionals(&pvec);
2562                pagevec_release(&pvec);
2563                pvec.nr = PAGEVEC_SIZE;
2564                cond_resched();
2565        }
2566        return index;
2567}
2568
2569static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2570{
2571        struct address_space *mapping = file->f_mapping;
2572        struct inode *inode = mapping->host;
2573        pgoff_t start, end;
2574        loff_t new_offset;
2575
2576        if (whence != SEEK_DATA && whence != SEEK_HOLE)
2577                return generic_file_llseek_size(file, offset, whence,
2578                                        MAX_LFS_FILESIZE, i_size_read(inode));
2579        inode_lock(inode);
2580        /* We're holding i_mutex so we can access i_size directly */
2581
2582        if (offset < 0)
2583                offset = -EINVAL;
2584        else if (offset >= inode->i_size)
2585                offset = -ENXIO;
2586        else {
2587                start = offset >> PAGE_SHIFT;
2588                end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2589                new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2590                new_offset <<= PAGE_SHIFT;
2591                if (new_offset > offset) {
2592                        if (new_offset < inode->i_size)
2593                                offset = new_offset;
2594                        else if (whence == SEEK_DATA)
2595                                offset = -ENXIO;
2596                        else
2597                                offset = inode->i_size;
2598                }
2599        }
2600
2601        if (offset >= 0)
2602                offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2603        inode_unlock(inode);
2604        return offset;
2605}
2606
2607/*
2608 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2609 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2610 */
2611#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2612#define LAST_SCAN               4       /* about 150ms max */
2613
2614static void shmem_tag_pins(struct address_space *mapping)
2615{
2616        struct radix_tree_iter iter;
2617        void **slot;
2618        pgoff_t start;
2619        struct page *page;
2620
2621        lru_add_drain();
2622        start = 0;
2623        rcu_read_lock();
2624
2625        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2626                page = radix_tree_deref_slot(slot);
2627                if (!page || radix_tree_exception(page)) {
2628                        if (radix_tree_deref_retry(page)) {
2629                                slot = radix_tree_iter_retry(&iter);
2630                                continue;
2631                        }
2632                } else if (page_count(page) - page_mapcount(page) > 1) {
2633                        spin_lock_irq(&mapping->tree_lock);
2634                        radix_tree_tag_set(&mapping->page_tree, iter.index,
2635                                           SHMEM_TAG_PINNED);
2636                        spin_unlock_irq(&mapping->tree_lock);
2637                }
2638
2639                if (need_resched()) {
2640                        slot = radix_tree_iter_resume(slot, &iter);
2641                        cond_resched_rcu();
2642                }
2643        }
2644        rcu_read_unlock();
2645}
2646
2647/*
2648 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2649 * via get_user_pages(), drivers might have some pending I/O without any active
2650 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2651 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2652 * them to be dropped.
2653 * The caller must guarantee that no new user will acquire writable references
2654 * to those pages to avoid races.
2655 */
2656static int shmem_wait_for_pins(struct address_space *mapping)
2657{
2658        struct radix_tree_iter iter;
2659        void **slot;
2660        pgoff_t start;
2661        struct page *page;
2662        int error, scan;
2663
2664        shmem_tag_pins(mapping);
2665
2666        error = 0;
2667        for (scan = 0; scan <= LAST_SCAN; scan++) {
2668                if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2669                        break;
2670
2671                if (!scan)
2672                        lru_add_drain_all();
2673                else if (schedule_timeout_killable((HZ << scan) / 200))
2674                        scan = LAST_SCAN;
2675
2676                start = 0;
2677                rcu_read_lock();
2678                radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2679                                           start, SHMEM_TAG_PINNED) {
2680
2681                        page = radix_tree_deref_slot(slot);
2682                        if (radix_tree_exception(page)) {
2683                                if (radix_tree_deref_retry(page)) {
2684                                        slot = radix_tree_iter_retry(&iter);
2685                                        continue;
2686                                }
2687
2688                                page = NULL;
2689                        }
2690
2691                        if (page &&
2692                            page_count(page) - page_mapcount(page) != 1) {
2693                                if (scan < LAST_SCAN)
2694                                        goto continue_resched;
2695
2696                                /*
2697                                 * On the last scan, we clean up all those tags
2698                                 * we inserted; but make a note that we still
2699                                 * found pages pinned.
2700                                 */
2701                                error = -EBUSY;
2702                        }
2703
2704                        spin_lock_irq(&mapping->tree_lock);
2705                        radix_tree_tag_clear(&mapping->page_tree,
2706                                             iter.index, SHMEM_TAG_PINNED);
2707                        spin_unlock_irq(&mapping->tree_lock);
2708continue_resched:
2709                        if (need_resched()) {
2710                                slot = radix_tree_iter_resume(slot, &iter);
2711                                cond_resched_rcu();
2712                        }
2713                }
2714                rcu_read_unlock();
2715        }
2716
2717        return error;
2718}
2719
2720#define F_ALL_SEALS (F_SEAL_SEAL | \
2721                     F_SEAL_SHRINK | \
2722                     F_SEAL_GROW | \
2723                     F_SEAL_WRITE)
2724
2725int shmem_add_seals(struct file *file, unsigned int seals)
2726{
2727        struct inode *inode = file_inode(file);
2728        struct shmem_inode_info *info = SHMEM_I(inode);
2729        int error;
2730
2731        /*
2732         * SEALING
2733         * Sealing allows multiple parties to share a shmem-file but restrict
2734         * access to a specific subset of file operations. Seals can only be
2735         * added, but never removed. This way, mutually untrusted parties can
2736         * share common memory regions with a well-defined policy. A malicious
2737         * peer can thus never perform unwanted operations on a shared object.
2738         *
2739         * Seals are only supported on special shmem-files and always affect
2740         * the whole underlying inode. Once a seal is set, it may prevent some
2741         * kinds of access to the file. Currently, the following seals are
2742         * defined:
2743         *   SEAL_SEAL: Prevent further seals from being set on this file
2744         *   SEAL_SHRINK: Prevent the file from shrinking
2745         *   SEAL_GROW: Prevent the file from growing
2746         *   SEAL_WRITE: Prevent write access to the file
2747         *
2748         * As we don't require any trust relationship between two parties, we
2749         * must prevent seals from being removed. Therefore, sealing a file
2750         * only adds a given set of seals to the file, it never touches
2751         * existing seals. Furthermore, the "setting seals"-operation can be
2752         * sealed itself, which basically prevents any further seal from being
2753         * added.
2754         *
2755         * Semantics of sealing are only defined on volatile files. Only
2756         * anonymous shmem files support sealing. More importantly, seals are
2757         * never written to disk. Therefore, there's no plan to support it on
2758         * other file types.
2759         */
2760
2761        if (file->f_op != &shmem_file_operations)
2762                return -EINVAL;
2763        if (!(file->f_mode & FMODE_WRITE))
2764                return -EPERM;
2765        if (seals & ~(unsigned int)F_ALL_SEALS)
2766                return -EINVAL;
2767
2768        inode_lock(inode);
2769
2770        if (info->seals & F_SEAL_SEAL) {
2771                error = -EPERM;
2772                goto unlock;
2773        }
2774
2775        if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2776                error = mapping_deny_writable(file->f_mapping);
2777                if (error)
2778                        goto unlock;
2779
2780                error = shmem_wait_for_pins(file->f_mapping);
2781                if (error) {
2782                        mapping_allow_writable(file->f_mapping);
2783                        goto unlock;
2784                }
2785        }
2786
2787        info->seals |= seals;
2788        error = 0;
2789
2790unlock:
2791        inode_unlock(inode);
2792        return error;
2793}
2794EXPORT_SYMBOL_GPL(shmem_add_seals);
2795
2796int shmem_get_seals(struct file *file)
2797{
2798        if (file->f_op != &shmem_file_operations)
2799                return -EINVAL;
2800
2801        return SHMEM_I(file_inode(file))->seals;
2802}
2803EXPORT_SYMBOL_GPL(shmem_get_seals);
2804
2805long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2806{
2807        long error;
2808
2809        switch (cmd) {
2810        case F_ADD_SEALS:
2811                /* disallow upper 32bit */
2812                if (arg > UINT_MAX)
2813                        return -EINVAL;
2814
2815                error = shmem_add_seals(file, arg);
2816                break;
2817        case F_GET_SEALS:
2818                error = shmem_get_seals(file);
2819                break;
2820        default:
2821                error = -EINVAL;
2822                break;
2823        }
2824
2825        return error;
2826}
2827
2828static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2829                                                         loff_t len)
2830{
2831        struct inode *inode = file_inode(file);
2832        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2833        struct shmem_inode_info *info = SHMEM_I(inode);
2834        struct shmem_falloc shmem_falloc;
2835        pgoff_t start, index, end;
2836        int error;
2837
2838        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2839                return -EOPNOTSUPP;
2840
2841        inode_lock(inode);
2842
2843        if (mode & FALLOC_FL_PUNCH_HOLE) {
2844                struct address_space *mapping = file->f_mapping;
2845                loff_t unmap_start = round_up(offset, PAGE_SIZE);
2846                loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2847                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2848
2849                /* protected by i_mutex */
2850                if (info->seals & F_SEAL_WRITE) {
2851                        error = -EPERM;
2852                        goto out;
2853                }
2854
2855                shmem_falloc.waitq = &shmem_falloc_waitq;
2856                shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2857                shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2858                spin_lock(&inode->i_lock);
2859                inode->i_private = &shmem_falloc;
2860                spin_unlock(&inode->i_lock);
2861
2862                if ((u64)unmap_end > (u64)unmap_start)
2863                        unmap_mapping_range(mapping, unmap_start,
2864                                            1 + unmap_end - unmap_start, 0);
2865                shmem_truncate_range(inode, offset, offset + len - 1);
2866                /* No need to unmap again: hole-punching leaves COWed pages */
2867
2868                spin_lock(&inode->i_lock);
2869                inode->i_private = NULL;
2870                wake_up_all(&shmem_falloc_waitq);
2871                WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2872                spin_unlock(&inode->i_lock);
2873                error = 0;
2874                goto out;
2875        }
2876
2877        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2878        error = inode_newsize_ok(inode, offset + len);
2879        if (error)
2880                goto out;
2881
2882        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2883                error = -EPERM;
2884                goto out;
2885        }
2886
2887        start = offset >> PAGE_SHIFT;
2888        end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2889        /* Try to avoid a swapstorm if len is impossible to satisfy */
2890        if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2891                error = -ENOSPC;
2892                goto out;
2893        }
2894
2895        shmem_falloc.waitq = NULL;
2896        shmem_falloc.start = start;
2897        shmem_falloc.next  = start;
2898        shmem_falloc.nr_falloced = 0;
2899        shmem_falloc.nr_unswapped = 0;
2900        spin_lock(&inode->i_lock);
2901        inode->i_private = &shmem_falloc;
2902        spin_unlock(&inode->i_lock);
2903
2904        for (index = start; index < end; index++) {
2905                struct page *page;
2906
2907                /*
2908                 * Good, the fallocate(2) manpage permits EINTR: we may have
2909                 * been interrupted because we are using up too much memory.
2910                 */
2911                if (signal_pending(current))
2912                        error = -EINTR;
2913                else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2914                        error = -ENOMEM;
2915                else
2916                        error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2917                if (error) {
2918                        /* Remove the !PageUptodate pages we added */
2919                        if (index > start) {
2920                                shmem_undo_range(inode,
2921                                    (loff_t)start << PAGE_SHIFT,
2922                                    ((loff_t)index << PAGE_SHIFT) - 1, true);
2923                        }
2924                        goto undone;
2925                }
2926
2927                /*
2928                 * Inform shmem_writepage() how far we have reached.
2929                 * No need for lock or barrier: we have the page lock.
2930                 */
2931                shmem_falloc.next++;
2932                if (!PageUptodate(page))
2933                        shmem_falloc.nr_falloced++;
2934
2935                /*
2936                 * If !PageUptodate, leave it that way so that freeable pages
2937                 * can be recognized if we need to rollback on error later.
2938                 * But set_page_dirty so that memory pressure will swap rather
2939                 * than free the pages we are allocating (and SGP_CACHE pages
2940                 * might still be clean: we now need to mark those dirty too).
2941                 */
2942                set_page_dirty(page);
2943                unlock_page(page);
2944                put_page(page);
2945                cond_resched();
2946        }
2947
2948        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2949                i_size_write(inode, offset + len);
2950        inode->i_ctime = current_time(inode);
2951undone:
2952        spin_lock(&inode->i_lock);
2953        inode->i_private = NULL;
2954        spin_unlock(&inode->i_lock);
2955out:
2956        inode_unlock(inode);
2957        return error;
2958}
2959
2960static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2961{
2962        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2963
2964        buf->f_type = TMPFS_MAGIC;
2965        buf->f_bsize = PAGE_SIZE;
2966        buf->f_namelen = NAME_MAX;
2967        if (sbinfo->max_blocks) {
2968                buf->f_blocks = sbinfo->max_blocks;
2969                buf->f_bavail =
2970                buf->f_bfree  = sbinfo->max_blocks -
2971                                percpu_counter_sum(&sbinfo->used_blocks);
2972        }
2973        if (sbinfo->max_inodes) {
2974                buf->f_files = sbinfo->max_inodes;
2975                buf->f_ffree = sbinfo->free_inodes;
2976        }
2977        /* else leave those fields 0 like simple_statfs */
2978        return 0;
2979}
2980
2981/*
2982 * File creation. Allocate an inode, and we're done..
2983 */
2984static int
2985shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2986{
2987        struct inode *inode;
2988        int error = -ENOSPC;
2989
2990        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2991        if (inode) {
2992                error = simple_acl_create(dir, inode);
2993                if (error)
2994                        goto out_iput;
2995                error = security_inode_init_security(inode, dir,
2996                                                     &dentry->d_name,
2997                                                     shmem_initxattrs, NULL);
2998                if (error && error != -EOPNOTSUPP)
2999                        goto out_iput;
3000
3001                error = 0;
3002                dir->i_size += BOGO_DIRENT_SIZE;
3003                dir->i_ctime = dir->i_mtime = current_time(dir);
3004                d_instantiate(dentry, inode);
3005                dget(dentry); /* Extra count - pin the dentry in core */
3006        }
3007        return error;
3008out_iput:
3009        iput(inode);
3010        return error;
3011}
3012
3013static int
3014shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3015{
3016        struct inode *inode;
3017        int error = -ENOSPC;
3018
3019        inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3020        if (inode) {
3021                error = security_inode_init_security(inode, dir,
3022                                                     NULL,
3023                                                     shmem_initxattrs, NULL);
3024                if (error && error != -EOPNOTSUPP)
3025                        goto out_iput;
3026                error = simple_acl_create(dir, inode);
3027                if (error)
3028                        goto out_iput;
3029                d_tmpfile(dentry, inode);
3030        }
3031        return error;
3032out_iput:
3033        iput(inode);
3034        return error;
3035}
3036
3037static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3038{
3039        int error;
3040
3041        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3042                return error;
3043        inc_nlink(dir);
3044        return 0;
3045}
3046
3047static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3048                bool excl)
3049{
3050        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3051}
3052
3053/*
3054 * Link a file..
3055 */
3056static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3057{
3058        struct inode *inode = d_inode(old_dentry);
3059        int ret;
3060
3061        /*
3062         * No ordinary (disk based) filesystem counts links as inodes;
3063         * but each new link needs a new dentry, pinning lowmem, and
3064         * tmpfs dentries cannot be pruned until they are unlinked.
3065         */
3066        ret = shmem_reserve_inode(inode->i_sb);
3067        if (ret)
3068                goto out;
3069
3070        dir->i_size += BOGO_DIRENT_SIZE;
3071        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3072        inc_nlink(inode);
3073        ihold(inode);   /* New dentry reference */
3074        dget(dentry);           /* Extra pinning count for the created dentry */
3075        d_instantiate(dentry, inode);
3076out:
3077        return ret;
3078}
3079
3080static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3081{
3082        struct inode *inode = d_inode(dentry);
3083
3084        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3085                shmem_free_inode(inode->i_sb);
3086
3087        dir->i_size -= BOGO_DIRENT_SIZE;
3088        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3089        drop_nlink(inode);
3090        dput(dentry);   /* Undo the count from "create" - this does all the work */
3091        return 0;
3092}
3093
3094static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3095{
3096        if (!simple_empty(dentry))
3097                return -ENOTEMPTY;
3098
3099        drop_nlink(d_inode(dentry));
3100        drop_nlink(dir);
3101        return shmem_unlink(dir, dentry);
3102}
3103
3104static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3105{
3106        bool old_is_dir = d_is_dir(old_dentry);
3107        bool new_is_dir = d_is_dir(new_dentry);
3108
3109        if (old_dir != new_dir && old_is_dir != new_is_dir) {
3110                if (old_is_dir) {
3111                        drop_nlink(old_dir);
3112                        inc_nlink(new_dir);
3113                } else {
3114                        drop_nlink(new_dir);
3115                        inc_nlink(old_dir);
3116                }
3117        }
3118        old_dir->i_ctime = old_dir->i_mtime =
3119        new_dir->i_ctime = new_dir->i_mtime =
3120        d_inode(old_dentry)->i_ctime =
3121        d_inode(new_dentry)->i_ctime = current_time(old_dir);
3122
3123        return 0;
3124}
3125
3126static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3127{
3128        struct dentry *whiteout;
3129        int error;
3130
3131        whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3132        if (!whiteout)
3133                return -ENOMEM;
3134
3135        error = shmem_mknod(old_dir, whiteout,
3136                            S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3137        dput(whiteout);
3138        if (error)
3139                return error;
3140
3141        /*
3142         * Cheat and hash the whiteout while the old dentry is still in
3143         * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3144         *
3145         * d_lookup() will consistently find one of them at this point,
3146         * not sure which one, but that isn't even important.
3147         */
3148        d_rehash(whiteout);
3149        return 0;
3150}
3151
3152/*
3153 * The VFS layer already does all the dentry stuff for rename,
3154 * we just have to decrement the usage count for the target if
3155 * it exists so that the VFS layer correctly free's it when it
3156 * gets overwritten.
3157 */
3158static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3159{
3160        struct inode *inode = d_inode(old_dentry);
3161        int they_are_dirs = S_ISDIR(inode->i_mode);
3162
3163        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3164                return -EINVAL;
3165
3166        if (flags & RENAME_EXCHANGE)
3167                return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3168
3169        if (!simple_empty(new_dentry))
3170                return -ENOTEMPTY;
3171
3172        if (flags & RENAME_WHITEOUT) {
3173                int error;
3174
3175                error = shmem_whiteout(old_dir, old_dentry);
3176                if (error)
3177                        return error;
3178        }
3179
3180        if (d_really_is_positive(new_dentry)) {
3181                (void) shmem_unlink(new_dir, new_dentry);
3182                if (they_are_dirs) {
3183                        drop_nlink(d_inode(new_dentry));
3184                        drop_nlink(old_dir);
3185                }
3186        } else if (they_are_dirs) {
3187                drop_nlink(old_dir);
3188                inc_nlink(new_dir);
3189        }
3190
3191        old_dir->i_size -= BOGO_DIRENT_SIZE;
3192        new_dir->i_size += BOGO_DIRENT_SIZE;
3193        old_dir->i_ctime = old_dir->i_mtime =
3194        new_dir->i_ctime = new_dir->i_mtime =
3195        inode->i_ctime = current_time(old_dir);
3196        return 0;
3197}
3198
3199static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3200{
3201        int error;
3202        int len;
3203        struct inode *inode;
3204        struct page *page;
3205        struct shmem_inode_info *info;
3206
3207        len = strlen(symname) + 1;
3208        if (len > PAGE_SIZE)
3209                return -ENAMETOOLONG;
3210
3211        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3212        if (!inode)
3213                return -ENOSPC;
3214
3215        error = security_inode_init_security(inode, dir, &dentry->d_name,
3216                                             shmem_initxattrs, NULL);
3217        if (error) {
3218                if (error != -EOPNOTSUPP) {
3219                        iput(inode);
3220                        return error;
3221                }
3222                error = 0;
3223        }
3224
3225        info = SHMEM_I(inode);
3226        inode->i_size = len-1;
3227        if (len <= SHORT_SYMLINK_LEN) {
3228                inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3229                if (!inode->i_link) {
3230                        iput(inode);
3231                        return -ENOMEM;
3232                }
3233                inode->i_op = &shmem_short_symlink_operations;
3234        } else {
3235                inode_nohighmem(inode);
3236                error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3237                if (error) {
3238                        iput(inode);
3239                        return error;
3240                }
3241                inode->i_mapping->a_ops = &shmem_aops;
3242                inode->i_op = &shmem_symlink_inode_operations;
3243                memcpy(page_address(page), symname, len);
3244                SetPageUptodate(page);
3245                set_page_dirty(page);
3246                unlock_page(page);
3247                put_page(page);
3248        }
3249        dir->i_size += BOGO_DIRENT_SIZE;
3250        dir->i_ctime = dir->i_mtime = current_time(dir);
3251        d_instantiate(dentry, inode);
3252        dget(dentry);
3253        return 0;
3254}
3255
3256static void shmem_put_link(void *arg)
3257{
3258        mark_page_accessed(arg);
3259        put_page(arg);
3260}
3261
3262static const char *shmem_get_link(struct dentry *dentry,
3263                                  struct inode *inode,
3264                                  struct delayed_call *done)
3265{
3266        struct page *page = NULL;
3267        int error;
3268        if (!dentry) {
3269                page = find_get_page(inode->i_mapping, 0);
3270                if (!page)
3271                        return ERR_PTR(-ECHILD);
3272                if (!PageUptodate(page)) {
3273                        put_page(page);
3274                        return ERR_PTR(-ECHILD);
3275                }
3276        } else {
3277                error = shmem_getpage(inode, 0, &page, SGP_READ);
3278                if (error)
3279                        return ERR_PTR(error);
3280                unlock_page(page);
3281        }
3282        set_delayed_call(done, shmem_put_link, page);
3283        return page_address(page);
3284}
3285
3286#ifdef CONFIG_TMPFS_XATTR
3287/*
3288 * Superblocks without xattr inode operations may get some security.* xattr
3289 * support from the LSM "for free". As soon as we have any other xattrs
3290 * like ACLs, we also need to implement the security.* handlers at
3291 * filesystem level, though.
3292 */
3293
3294/*
3295 * Callback for security_inode_init_security() for acquiring xattrs.
3296 */
3297static int shmem_initxattrs(struct inode *inode,
3298                            const struct xattr *xattr_array,
3299                            void *fs_info)
3300{
3301        struct shmem_inode_info *info = SHMEM_I(inode);
3302        const struct xattr *xattr;
3303        struct simple_xattr *new_xattr;
3304        size_t len;
3305
3306        for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3307                new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3308                if (!new_xattr)
3309                        return -ENOMEM;
3310
3311                len = strlen(xattr->name) + 1;
3312                new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3313                                          GFP_KERNEL);
3314                if (!new_xattr->name) {
3315                        kfree(new_xattr);
3316                        return -ENOMEM;
3317                }
3318
3319                memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3320                       XATTR_SECURITY_PREFIX_LEN);
3321                memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3322                       xattr->name, len);
3323
3324                simple_xattr_list_add(&info->xattrs, new_xattr);
3325        }
3326
3327        return 0;
3328}
3329
3330static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3331                                   struct dentry *unused, struct inode *inode,
3332                                   const char *name, void *buffer, size_t size)
3333{
3334        struct shmem_inode_info *info = SHMEM_I(inode);
3335
3336        name = xattr_full_name(handler, name);
3337        return simple_xattr_get(&info->xattrs, name, buffer, size);
3338}
3339
3340static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3341                                   struct dentry *unused, struct inode *inode,
3342                                   const char *name, const void *value,
3343                                   size_t size, int flags)
3344{
3345        struct shmem_inode_info *info = SHMEM_I(inode);
3346
3347        name = xattr_full_name(handler, name);
3348        return simple_xattr_set(&info->xattrs, name, value, size, flags);
3349}
3350
3351static const struct xattr_handler shmem_security_xattr_handler = {
3352        .prefix = XATTR_SECURITY_PREFIX,
3353        .get = shmem_xattr_handler_get,
3354        .set = shmem_xattr_handler_set,
3355};
3356
3357static const struct xattr_handler shmem_trusted_xattr_handler = {
3358        .prefix = XATTR_TRUSTED_PREFIX,
3359        .get = shmem_xattr_handler_get,
3360        .set = shmem_xattr_handler_set,
3361};
3362
3363static const struct xattr_handler *shmem_xattr_handlers[] = {
3364#ifdef CONFIG_TMPFS_POSIX_ACL
3365        &posix_acl_access_xattr_handler,
3366        &posix_acl_default_xattr_handler,
3367#endif
3368        &shmem_security_xattr_handler,
3369        &shmem_trusted_xattr_handler,
3370        NULL
3371};
3372
3373static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3374{
3375        struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3376        return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3377}
3378#endif /* CONFIG_TMPFS_XATTR */
3379
3380static const struct inode_operations shmem_short_symlink_operations = {
3381        .get_link       = simple_get_link,
3382#ifdef CONFIG_TMPFS_XATTR
3383        .listxattr      = shmem_listxattr,
3384#endif
3385};
3386
3387static const struct inode_operations shmem_symlink_inode_operations = {
3388        .get_link       = shmem_get_link,
3389#ifdef CONFIG_TMPFS_XATTR
3390        .listxattr      = shmem_listxattr,
3391#endif
3392};
3393
3394static struct dentry *shmem_get_parent(struct dentry *child)
3395{
3396        return ERR_PTR(-ESTALE);
3397}
3398
3399static int shmem_match(struct inode *ino, void *vfh)
3400{
3401        __u32 *fh = vfh;
3402        __u64 inum = fh[2];
3403        inum = (inum << 32) | fh[1];
3404        return ino->i_ino == inum && fh[0] == ino->i_generation;
3405}
3406
3407static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3408                struct fid *fid, int fh_len, int fh_type)
3409{
3410        struct inode *inode;
3411        struct dentry *dentry = NULL;
3412        u64 inum;
3413
3414        if (fh_len < 3)
3415                return NULL;
3416
3417        inum = fid->raw[2];
3418        inum = (inum << 32) | fid->raw[1];
3419
3420        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3421                        shmem_match, fid->raw);
3422        if (inode) {
3423                dentry = d_find_alias(inode);
3424                iput(inode);
3425        }
3426
3427        return dentry;
3428}
3429
3430static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3431                                struct inode *parent)
3432{
3433        if (*len < 3) {
3434                *len = 3;
3435                return FILEID_INVALID;
3436        }
3437
3438        if (inode_unhashed(inode)) {
3439                /* Unfortunately insert_inode_hash is not idempotent,
3440                 * so as we hash inodes here rather than at creation
3441                 * time, we need a lock to ensure we only try
3442                 * to do it once
3443                 */
3444                static DEFINE_SPINLOCK(lock);
3445                spin_lock(&lock);
3446                if (inode_unhashed(inode))
3447                        __insert_inode_hash(inode,
3448                                            inode->i_ino + inode->i_generation);
3449                spin_unlock(&lock);
3450        }
3451
3452        fh[0] = inode->i_generation;
3453        fh[1] = inode->i_ino;
3454        fh[2] = ((__u64)inode->i_ino) >> 32;
3455
3456        *len = 3;
3457        return 1;
3458}
3459
3460static const struct export_operations shmem_export_ops = {
3461        .get_parent     = shmem_get_parent,
3462        .encode_fh      = shmem_encode_fh,
3463        .fh_to_dentry   = shmem_fh_to_dentry,
3464};
3465
3466static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3467                               bool remount)
3468{
3469        char *this_char, *value, *rest;
3470        struct mempolicy *mpol = NULL;
3471        uid_t uid;
3472        gid_t gid;
3473
3474        while (options != NULL) {
3475                this_char = options;
3476                for (;;) {
3477                        /*
3478                         * NUL-terminate this option: unfortunately,
3479                         * mount options form a comma-separated list,
3480                         * but mpol's nodelist may also contain commas.
3481                         */
3482                        options = strchr(options, ',');
3483                        if (options == NULL)
3484                                break;
3485                        options++;
3486                        if (!isdigit(*options)) {
3487                                options[-1] = '\0';
3488                                break;
3489                        }
3490                }
3491                if (!*this_char)
3492                        continue;
3493                if ((value = strchr(this_char,'=')) != NULL) {
3494                        *value++ = 0;
3495                } else {
3496                        pr_err("tmpfs: No value for mount option '%s'\n",
3497                               this_char);
3498                        goto error;
3499                }
3500
3501                if (!strcmp(this_char,"size")) {
3502                        unsigned long long size;
3503                        size = memparse(value,&rest);
3504                        if (*rest == '%') {
3505                                size <<= PAGE_SHIFT;
3506                                size *= totalram_pages;
3507                                do_div(size, 100);
3508                                rest++;
3509                        }
3510                        if (*rest)
3511                                goto bad_val;
3512                        sbinfo->max_blocks =
3513                                DIV_ROUND_UP(size, PAGE_SIZE);
3514                } else if (!strcmp(this_char,"nr_blocks")) {
3515                        sbinfo->max_blocks = memparse(value, &rest);
3516                        if (*rest)
3517                                goto bad_val;
3518                } else if (!strcmp(this_char,"nr_inodes")) {
3519                        sbinfo->max_inodes = memparse(value, &rest);
3520                        if (*rest)
3521                                goto bad_val;
3522                } else if (!strcmp(this_char,"mode")) {
3523                        if (remount)
3524                                continue;
3525                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3526                        if (*rest)
3527                                goto bad_val;
3528                } else if (!strcmp(this_char,"uid")) {
3529                        if (remount)
3530                                continue;
3531                        uid = simple_strtoul(value, &rest, 0);
3532                        if (*rest)
3533                                goto bad_val;
3534                        sbinfo->uid = make_kuid(current_user_ns(), uid);
3535                        if (!uid_valid(sbinfo->uid))
3536                                goto bad_val;
3537                } else if (!strcmp(this_char,"gid")) {
3538                        if (remount)
3539                                continue;
3540                        gid = simple_strtoul(value, &rest, 0);
3541                        if (*rest)
3542                                goto bad_val;
3543                        sbinfo->gid = make_kgid(current_user_ns(), gid);
3544                        if (!gid_valid(sbinfo->gid))
3545                                goto bad_val;
3546#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3547                } else if (!strcmp(this_char, "huge")) {
3548                        int huge;
3549                        huge = shmem_parse_huge(value);
3550                        if (huge < 0)
3551                                goto bad_val;
3552                        if (!has_transparent_hugepage() &&
3553                                        huge != SHMEM_HUGE_NEVER)
3554                                goto bad_val;
3555                        sbinfo->huge = huge;
3556#endif
3557#ifdef CONFIG_NUMA
3558                } else if (!strcmp(this_char,"mpol")) {
3559                        mpol_put(mpol);
3560                        mpol = NULL;
3561                        if (mpol_parse_str(value, &mpol))
3562                                goto bad_val;
3563#endif
3564                } else {
3565                        pr_err("tmpfs: Bad mount option %s\n", this_char);
3566                        goto error;
3567                }
3568        }
3569        sbinfo->mpol = mpol;
3570        return 0;
3571
3572bad_val:
3573        pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3574               value, this_char);
3575error:
3576        mpol_put(mpol);
3577        return 1;
3578
3579}
3580
3581static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3582{
3583        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3584        struct shmem_sb_info config = *sbinfo;
3585        unsigned long inodes;
3586        int error = -EINVAL;
3587
3588        config.mpol = NULL;
3589        if (shmem_parse_options(data, &config, true))
3590                return error;
3591
3592        spin_lock(&sbinfo->stat_lock);
3593        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3594        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3595                goto out;
3596        if (config.max_inodes < inodes)
3597                goto out;
3598        /*
3599         * Those tests disallow limited->unlimited while any are in use;
3600         * but we must separately disallow unlimited->limited, because
3601         * in that case we have no record of how much is already in use.
3602         */
3603        if (config.max_blocks && !sbinfo->max_blocks)
3604                goto out;
3605        if (config.max_inodes && !sbinfo->max_inodes)
3606                goto out;
3607
3608        error = 0;
3609        sbinfo->huge = config.huge;
3610        sbinfo->max_blocks  = config.max_blocks;
3611        sbinfo->max_inodes  = config.max_inodes;
3612        sbinfo->free_inodes = config.max_inodes - inodes;
3613
3614        /*
3615         * Preserve previous mempolicy unless mpol remount option was specified.
3616         */
3617        if (config.mpol) {
3618                mpol_put(sbinfo->mpol);
3619                sbinfo->mpol = config.mpol;     /* transfers initial ref */
3620        }
3621out:
3622        spin_unlock(&sbinfo->stat_lock);
3623        return error;
3624}
3625
3626static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3627{
3628        struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3629
3630        if (sbinfo->max_blocks != shmem_default_max_blocks())
3631                seq_printf(seq, ",size=%luk",
3632                        sbinfo->max_blocks << (PAGE_SHIFT - 10));
3633        if (sbinfo->max_inodes != shmem_default_max_inodes())
3634                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3635        if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3636                seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3637        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3638                seq_printf(seq, ",uid=%u",
3639                                from_kuid_munged(&init_user_ns, sbinfo->uid));
3640        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3641                seq_printf(seq, ",gid=%u",
3642                                from_kgid_munged(&init_user_ns, sbinfo->gid));
3643#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3644        /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3645        if (sbinfo->huge)
3646                seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3647#endif
3648        shmem_show_mpol(seq, sbinfo->mpol);
3649        return 0;
3650}
3651
3652#define MFD_NAME_PREFIX "memfd:"
3653#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3654#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3655
3656#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3657
3658SYSCALL_DEFINE2(memfd_create,
3659                const char __user *, uname,
3660                unsigned int, flags)
3661{
3662        struct shmem_inode_info *info;
3663        struct file *file;
3664        int fd, error;
3665        char *name;
3666        long len;
3667
3668        if (!(flags & MFD_HUGETLB)) {
3669                if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3670                        return -EINVAL;
3671        } else {
3672                /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3673                if (flags & MFD_ALLOW_SEALING)
3674                        return -EINVAL;
3675                /* Allow huge page size encoding in flags. */
3676                if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3677                                (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3678                        return -EINVAL;
3679        }
3680
3681        /* length includes terminating zero */
3682        len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3683        if (len <= 0)
3684                return -EFAULT;
3685        if (len > MFD_NAME_MAX_LEN + 1)
3686                return -EINVAL;
3687
3688        name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3689        if (!name)
3690                return -ENOMEM;
3691
3692        strcpy(name, MFD_NAME_PREFIX);
3693        if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3694                error = -EFAULT;
3695                goto err_name;
3696        }
3697
3698        /* terminating-zero may have changed after strnlen_user() returned */
3699        if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3700                error = -EFAULT;
3701                goto err_name;
3702        }
3703
3704        fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3705        if (fd < 0) {
3706                error = fd;
3707                goto err_name;
3708        }
3709
3710        if (flags & MFD_HUGETLB) {
3711                struct user_struct *user = NULL;
3712
3713                file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3714                                        HUGETLB_ANONHUGE_INODE,
3715                                        (flags >> MFD_HUGE_SHIFT) &
3716                                        MFD_HUGE_MASK);
3717        } else
3718                file = shmem_file_setup(name, 0, VM_NORESERVE);
3719        if (IS_ERR(file)) {
3720                error = PTR_ERR(file);
3721                goto err_fd;
3722        }
3723        file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3724        file->f_flags |= O_RDWR | O_LARGEFILE;
3725
3726        if (flags & MFD_ALLOW_SEALING) {
3727                /*
3728                 * flags check at beginning of function ensures
3729                 * this is not a hugetlbfs (MFD_HUGETLB) file.
3730                 */
3731                info = SHMEM_I(file_inode(file));
3732                info->seals &= ~F_SEAL_SEAL;
3733        }
3734
3735        fd_install(fd, file);
3736        kfree(name);
3737        return fd;
3738
3739err_fd:
3740        put_unused_fd(fd);
3741err_name:
3742        kfree(name);
3743        return error;
3744}
3745
3746#endif /* CONFIG_TMPFS */
3747
3748static void shmem_put_super(struct super_block *sb)
3749{
3750        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3751
3752        percpu_counter_destroy(&sbinfo->used_blocks);
3753        mpol_put(sbinfo->mpol);
3754        kfree(sbinfo);
3755        sb->s_fs_info = NULL;
3756}
3757
3758int shmem_fill_super(struct super_block *sb, void *data, int silent)
3759{
3760        struct inode *inode;
3761        struct shmem_sb_info *sbinfo;
3762        int err = -ENOMEM;
3763
3764        /* Round up to L1_CACHE_BYTES to resist false sharing */
3765        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3766                                L1_CACHE_BYTES), GFP_KERNEL);
3767        if (!sbinfo)
3768                return -ENOMEM;
3769
3770        sbinfo->mode = S_IRWXUGO | S_ISVTX;
3771        sbinfo->uid = current_fsuid();
3772        sbinfo->gid = current_fsgid();
3773        sb->s_fs_info = sbinfo;
3774
3775#ifdef CONFIG_TMPFS
3776        /*
3777         * Per default we only allow half of the physical ram per
3778         * tmpfs instance, limiting inodes to one per page of lowmem;
3779         * but the internal instance is left unlimited.
3780         */
3781        if (!(sb->s_flags & MS_KERNMOUNT)) {
3782                sbinfo->max_blocks = shmem_default_max_blocks();
3783                sbinfo->max_inodes = shmem_default_max_inodes();
3784                if (shmem_parse_options(data, sbinfo, false)) {
3785                        err = -EINVAL;
3786                        goto failed;
3787                }
3788        } else {
3789                sb->s_flags |= MS_NOUSER;
3790        }
3791        sb->s_export_op = &shmem_export_ops;
3792        sb->s_flags |= MS_NOSEC;
3793#else
3794        sb->s_flags |= MS_NOUSER;
3795#endif
3796
3797        spin_lock_init(&sbinfo->stat_lock);
3798        if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3799                goto failed;
3800        sbinfo->free_inodes = sbinfo->max_inodes;
3801        spin_lock_init(&sbinfo->shrinklist_lock);
3802        INIT_LIST_HEAD(&sbinfo->shrinklist);
3803
3804        sb->s_maxbytes = MAX_LFS_FILESIZE;
3805        sb->s_blocksize = PAGE_SIZE;
3806        sb->s_blocksize_bits = PAGE_SHIFT;
3807        sb->s_magic = TMPFS_MAGIC;
3808        sb->s_op = &shmem_ops;
3809        sb->s_time_gran = 1;
3810#ifdef CONFIG_TMPFS_XATTR
3811        sb->s_xattr = shmem_xattr_handlers;
3812#endif
3813#ifdef CONFIG_TMPFS_POSIX_ACL
3814        sb->s_flags |= MS_POSIXACL;
3815#endif
3816        uuid_gen(&sb->s_uuid);
3817
3818        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3819        if (!inode)
3820                goto failed;
3821        inode->i_uid = sbinfo->uid;
3822        inode->i_gid = sbinfo->gid;
3823        sb->s_root = d_make_root(inode);
3824        if (!sb->s_root)
3825                goto failed;
3826        return 0;
3827
3828failed:
3829        shmem_put_super(sb);
3830        return err;
3831}
3832
3833static struct kmem_cache *shmem_inode_cachep;
3834
3835static struct inode *shmem_alloc_inode(struct super_block *sb)
3836{
3837        struct shmem_inode_info *info;
3838        info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3839        if (!info)
3840                return NULL;
3841        return &info->vfs_inode;
3842}
3843
3844static void shmem_destroy_callback(struct rcu_head *head)
3845{
3846        struct inode *inode = container_of(head, struct inode, i_rcu);
3847        if (S_ISLNK(inode->i_mode))
3848                kfree(inode->i_link);
3849        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3850}
3851
3852static void shmem_destroy_inode(struct inode *inode)
3853{
3854        if (S_ISREG(inode->i_mode))
3855                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3856        call_rcu(&inode->i_rcu, shmem_destroy_callback);
3857}
3858
3859static void shmem_init_inode(void *foo)
3860{
3861        struct shmem_inode_info *info = foo;
3862        inode_init_once(&info->vfs_inode);
3863}
3864
3865static int shmem_init_inodecache(void)
3866{
3867        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3868                                sizeof(struct shmem_inode_info),
3869                                0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3870        return 0;
3871}
3872
3873static void shmem_destroy_inodecache(void)
3874{
3875        kmem_cache_destroy(shmem_inode_cachep);
3876}
3877
3878static const struct address_space_operations shmem_aops = {
3879        .writepage      = shmem_writepage,
3880        .set_page_dirty = __set_page_dirty_no_writeback,
3881#ifdef CONFIG_TMPFS
3882        .write_begin    = shmem_write_begin,
3883        .write_end      = shmem_write_end,
3884#endif
3885#ifdef CONFIG_MIGRATION
3886        .migratepage    = migrate_page,
3887#endif
3888        .error_remove_page = generic_error_remove_page,
3889};
3890
3891static const struct file_operations shmem_file_operations = {
3892        .mmap           = shmem_mmap,
3893        .get_unmapped_area = shmem_get_unmapped_area,
3894#ifdef CONFIG_TMPFS
3895        .llseek         = shmem_file_llseek,
3896        .read_iter      = shmem_file_read_iter,
3897        .write_iter     = generic_file_write_iter,
3898        .fsync          = noop_fsync,
3899        .splice_read    = generic_file_splice_read,
3900        .splice_write   = iter_file_splice_write,
3901        .fallocate      = shmem_fallocate,
3902#endif
3903};
3904
3905static const struct inode_operations shmem_inode_operations = {
3906        .getattr        = shmem_getattr,
3907        .setattr        = shmem_setattr,
3908#ifdef CONFIG_TMPFS_XATTR
3909        .listxattr      = shmem_listxattr,
3910        .set_acl        = simple_set_acl,
3911#endif
3912};
3913
3914static const struct inode_operations shmem_dir_inode_operations = {
3915#ifdef CONFIG_TMPFS
3916        .create         = shmem_create,
3917        .lookup         = simple_lookup,
3918        .link           = shmem_link,
3919        .unlink         = shmem_unlink,
3920        .symlink        = shmem_symlink,
3921        .mkdir          = shmem_mkdir,
3922        .rmdir          = shmem_rmdir,
3923        .mknod          = shmem_mknod,
3924        .rename         = shmem_rename2,
3925        .tmpfile        = shmem_tmpfile,
3926#endif
3927#ifdef CONFIG_TMPFS_XATTR
3928        .listxattr      = shmem_listxattr,
3929#endif
3930#ifdef CONFIG_TMPFS_POSIX_ACL
3931        .setattr        = shmem_setattr,
3932        .set_acl        = simple_set_acl,
3933#endif
3934};
3935
3936static const struct inode_operations shmem_special_inode_operations = {
3937#ifdef CONFIG_TMPFS_XATTR
3938        .listxattr      = shmem_listxattr,
3939#endif
3940#ifdef CONFIG_TMPFS_POSIX_ACL
3941        .setattr        = shmem_setattr,
3942        .set_acl        = simple_set_acl,
3943#endif
3944};
3945
3946static const struct super_operations shmem_ops = {
3947        .alloc_inode    = shmem_alloc_inode,
3948        .destroy_inode  = shmem_destroy_inode,
3949#ifdef CONFIG_TMPFS
3950        .statfs         = shmem_statfs,
3951        .remount_fs     = shmem_remount_fs,
3952        .show_options   = shmem_show_options,
3953#endif
3954        .evict_inode    = shmem_evict_inode,
3955        .drop_inode     = generic_delete_inode,
3956        .put_super      = shmem_put_super,
3957#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3958        .nr_cached_objects      = shmem_unused_huge_count,
3959        .free_cached_objects    = shmem_unused_huge_scan,
3960#endif
3961};
3962
3963static const struct vm_operations_struct shmem_vm_ops = {
3964        .fault          = shmem_fault,
3965        .map_pages      = filemap_map_pages,
3966#ifdef CONFIG_NUMA
3967        .set_policy     = shmem_set_policy,
3968        .get_policy     = shmem_get_policy,
3969#endif
3970};
3971
3972static struct dentry *shmem_mount(struct file_system_type *fs_type,
3973        int flags, const char *dev_name, void *data)
3974{
3975        return mount_nodev(fs_type, flags, data, shmem_fill_super);
3976}
3977
3978static struct file_system_type shmem_fs_type = {
3979        .owner          = THIS_MODULE,
3980        .name           = "tmpfs",
3981        .mount          = shmem_mount,
3982        .kill_sb        = kill_litter_super,
3983        .fs_flags       = FS_USERNS_MOUNT,
3984};
3985
3986int __init shmem_init(void)
3987{
3988        int error;
3989
3990        /* If rootfs called this, don't re-init */
3991        if (shmem_inode_cachep)
3992                return 0;
3993
3994        error = shmem_init_inodecache();
3995        if (error)
3996                goto out3;
3997
3998        error = register_filesystem(&shmem_fs_type);
3999        if (error) {
4000                pr_err("Could not register tmpfs\n");
4001                goto out2;
4002        }
4003
4004        shm_mnt = kern_mount(&shmem_fs_type);
4005        if (IS_ERR(shm_mnt)) {
4006                error = PTR_ERR(shm_mnt);
4007                pr_err("Could not kern_mount tmpfs\n");
4008                goto out1;
4009        }
4010
4011#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4012        if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4013                SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4014        else
4015                shmem_huge = 0; /* just in case it was patched */
4016#endif
4017        return 0;
4018
4019out1:
4020        unregister_filesystem(&shmem_fs_type);
4021out2:
4022        shmem_destroy_inodecache();
4023out3:
4024        shm_mnt = ERR_PTR(error);
4025        return error;
4026}
4027
4028#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4029static ssize_t shmem_enabled_show(struct kobject *kobj,
4030                struct kobj_attribute *attr, char *buf)
4031{
4032        int values[] = {
4033                SHMEM_HUGE_ALWAYS,
4034                SHMEM_HUGE_WITHIN_SIZE,
4035                SHMEM_HUGE_ADVISE,
4036                SHMEM_HUGE_NEVER,
4037                SHMEM_HUGE_DENY,
4038                SHMEM_HUGE_FORCE,
4039        };
4040        int i, count;
4041
4042        for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4043                const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4044
4045                count += sprintf(buf + count, fmt,
4046                                shmem_format_huge(values[i]));
4047        }
4048        buf[count - 1] = '\n';
4049        return count;
4050}
4051
4052static ssize_t shmem_enabled_store(struct kobject *kobj,
4053                struct kobj_attribute *attr, const char *buf, size_t count)
4054{
4055        char tmp[16];
4056        int huge;
4057
4058        if (count + 1 > sizeof(tmp))
4059                return -EINVAL;
4060        memcpy(tmp, buf, count);
4061        tmp[count] = '\0';
4062        if (count && tmp[count - 1] == '\n')
4063                tmp[count - 1] = '\0';
4064
4065        huge = shmem_parse_huge(tmp);
4066        if (huge == -EINVAL)
4067                return -EINVAL;
4068        if (!has_transparent_hugepage() &&
4069                        huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4070                return -EINVAL;
4071
4072        shmem_huge = huge;
4073        if (shmem_huge > SHMEM_HUGE_DENY)
4074                SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4075        return count;
4076}
4077
4078struct kobj_attribute shmem_enabled_attr =
4079        __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4080#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4081
4082#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4083bool shmem_huge_enabled(struct vm_area_struct *vma)
4084{
4085        struct inode *inode = file_inode(vma->vm_file);
4086        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4087        loff_t i_size;
4088        pgoff_t off;
4089
4090        if (shmem_huge == SHMEM_HUGE_FORCE)
4091                return true;
4092        if (shmem_huge == SHMEM_HUGE_DENY)
4093                return false;
4094        switch (sbinfo->huge) {
4095                case SHMEM_HUGE_NEVER:
4096                        return false;
4097                case SHMEM_HUGE_ALWAYS:
4098                        return true;
4099                case SHMEM_HUGE_WITHIN_SIZE:
4100                        off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4101                        i_size = round_up(i_size_read(inode), PAGE_SIZE);
4102                        if (i_size >= HPAGE_PMD_SIZE &&
4103                                        i_size >> PAGE_SHIFT >= off)
4104                                return true;
4105                case SHMEM_HUGE_ADVISE:
4106                        /* TODO: implement fadvise() hints */
4107                        return (vma->vm_flags & VM_HUGEPAGE);
4108                default:
4109                        VM_BUG_ON(1);
4110                        return false;
4111        }
4112}
4113#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4114
4115#else /* !CONFIG_SHMEM */
4116
4117/*
4118 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4119 *
4120 * This is intended for small system where the benefits of the full
4121 * shmem code (swap-backed and resource-limited) are outweighed by
4122 * their complexity. On systems without swap this code should be
4123 * effectively equivalent, but much lighter weight.
4124 */
4125
4126static struct file_system_type shmem_fs_type = {
4127        .name           = "tmpfs",
4128        .mount          = ramfs_mount,
4129        .kill_sb        = kill_litter_super,
4130        .fs_flags       = FS_USERNS_MOUNT,
4131};
4132
4133int __init shmem_init(void)
4134{
4135        BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4136
4137        shm_mnt = kern_mount(&shmem_fs_type);
4138        BUG_ON(IS_ERR(shm_mnt));
4139
4140        return 0;
4141}
4142
4143int shmem_unuse(swp_entry_t swap, struct page *page)
4144{
4145        return 0;
4146}
4147
4148int shmem_lock(struct file *file, int lock, struct user_struct *user)
4149{
4150        return 0;
4151}
4152
4153void shmem_unlock_mapping(struct address_space *mapping)
4154{
4155}
4156
4157#ifdef CONFIG_MMU
4158unsigned long shmem_get_unmapped_area(struct file *file,
4159                                      unsigned long addr, unsigned long len,
4160                                      unsigned long pgoff, unsigned long flags)
4161{
4162        return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4163}
4164#endif
4165
4166void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4167{
4168        truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4169}
4170EXPORT_SYMBOL_GPL(shmem_truncate_range);
4171
4172#define shmem_vm_ops                            generic_file_vm_ops
4173#define shmem_file_operations                   ramfs_file_operations
4174#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4175#define shmem_acct_size(flags, size)            0
4176#define shmem_unacct_size(flags, size)          do {} while (0)
4177
4178#endif /* CONFIG_SHMEM */
4179
4180/* common code */
4181
4182static const struct dentry_operations anon_ops = {
4183        .d_dname = simple_dname
4184};
4185
4186static struct file *__shmem_file_setup(const char *name, loff_t size,
4187                                       unsigned long flags, unsigned int i_flags)
4188{
4189        struct file *res;
4190        struct inode *inode;
4191        struct path path;
4192        struct super_block *sb;
4193        struct qstr this;
4194
4195        if (IS_ERR(shm_mnt))
4196                return ERR_CAST(shm_mnt);
4197
4198        if (size < 0 || size > MAX_LFS_FILESIZE)
4199                return ERR_PTR(-EINVAL);
4200
4201        if (shmem_acct_size(flags, size))
4202                return ERR_PTR(-ENOMEM);
4203
4204        res = ERR_PTR(-ENOMEM);
4205        this.name = name;
4206        this.len = strlen(name);
4207        this.hash = 0; /* will go */
4208        sb = shm_mnt->mnt_sb;
4209        path.mnt = mntget(shm_mnt);
4210        path.dentry = d_alloc_pseudo(sb, &this);
4211        if (!path.dentry)
4212                goto put_memory;
4213        d_set_d_op(path.dentry, &anon_ops);
4214
4215        res = ERR_PTR(-ENOSPC);
4216        inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4217        if (!inode)
4218                goto put_memory;
4219
4220        inode->i_flags |= i_flags;
4221        d_instantiate(path.dentry, inode);
4222        inode->i_size = size;
4223        clear_nlink(inode);     /* It is unlinked */
4224        res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4225        if (IS_ERR(res))
4226                goto put_path;
4227
4228        res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4229                  &shmem_file_operations);
4230        if (IS_ERR(res))
4231                goto put_path;
4232
4233        return res;
4234
4235put_memory:
4236        shmem_unacct_size(flags, size);
4237put_path:
4238        path_put(&path);
4239        return res;
4240}
4241
4242/**
4243 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4244 *      kernel internal.  There will be NO LSM permission checks against the
4245 *      underlying inode.  So users of this interface must do LSM checks at a
4246 *      higher layer.  The users are the big_key and shm implementations.  LSM
4247 *      checks are provided at the key or shm level rather than the inode.
4248 * @name: name for dentry (to be seen in /proc/<pid>/maps
4249 * @size: size to be set for the file
4250 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4251 */
4252struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4253{
4254        return __shmem_file_setup(name, size, flags, S_PRIVATE);
4255}
4256
4257/**
4258 * shmem_file_setup - get an unlinked file living in tmpfs
4259 * @name: name for dentry (to be seen in /proc/<pid>/maps
4260 * @size: size to be set for the file
4261 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4262 */
4263struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4264{
4265        return __shmem_file_setup(name, size, flags, 0);
4266}
4267EXPORT_SYMBOL_GPL(shmem_file_setup);
4268
4269/**
4270 * shmem_zero_setup - setup a shared anonymous mapping
4271 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4272 */
4273int shmem_zero_setup(struct vm_area_struct *vma)
4274{
4275        struct file *file;
4276        loff_t size = vma->vm_end - vma->vm_start;
4277
4278        /*
4279         * Cloning a new file under mmap_sem leads to a lock ordering conflict
4280         * between XFS directory reading and selinux: since this file is only
4281         * accessible to the user through its mapping, use S_PRIVATE flag to
4282         * bypass file security, in the same way as shmem_kernel_file_setup().
4283         */
4284        file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4285        if (IS_ERR(file))
4286                return PTR_ERR(file);
4287
4288        if (vma->vm_file)
4289                fput(vma->vm_file);
4290        vma->vm_file = file;
4291        vma->vm_ops = &shmem_vm_ops;
4292
4293        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4294                        ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4295                        (vma->vm_end & HPAGE_PMD_MASK)) {
4296                khugepaged_enter(vma, vma->vm_flags);
4297        }
4298
4299        return 0;
4300}
4301
4302/**
4303 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4304 * @mapping:    the page's address_space
4305 * @index:      the page index
4306 * @gfp:        the page allocator flags to use if allocating
4307 *
4308 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4309 * with any new page allocations done using the specified allocation flags.
4310 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4311 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4312 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4313 *
4314 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4315 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4316 */
4317struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4318                                         pgoff_t index, gfp_t gfp)
4319{
4320#ifdef CONFIG_SHMEM
4321        struct inode *inode = mapping->host;
4322        struct page *page;
4323        int error;
4324
4325        BUG_ON(mapping->a_ops != &shmem_aops);
4326        error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4327                                  gfp, NULL, NULL, NULL);
4328        if (error)
4329                page = ERR_PTR(error);
4330        else
4331                unlock_page(page);
4332        return page;
4333#else
4334        /*
4335         * The tiny !SHMEM case uses ramfs without swap
4336         */
4337        return read_cache_page_gfp(mapping, index, gfp);
4338#endif
4339}
4340EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4341