linux/security/commoncap.c
<<
>>
Prefs
   1/* Common capabilities, needed by capability.o.
   2 *
   3 *      This program is free software; you can redistribute it and/or modify
   4 *      it under the terms of the GNU General Public License as published by
   5 *      the Free Software Foundation; either version 2 of the License, or
   6 *      (at your option) any later version.
   7 *
   8 */
   9
  10#include <linux/capability.h>
  11#include <linux/audit.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/lsm_hooks.h>
  16#include <linux/file.h>
  17#include <linux/mm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/skbuff.h>
  22#include <linux/netlink.h>
  23#include <linux/ptrace.h>
  24#include <linux/xattr.h>
  25#include <linux/hugetlb.h>
  26#include <linux/mount.h>
  27#include <linux/sched.h>
  28#include <linux/prctl.h>
  29#include <linux/securebits.h>
  30#include <linux/user_namespace.h>
  31#include <linux/binfmts.h>
  32#include <linux/personality.h>
  33
  34/*
  35 * If a non-root user executes a setuid-root binary in
  36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
  37 * However if fE is also set, then the intent is for only
  38 * the file capabilities to be applied, and the setuid-root
  39 * bit is left on either to change the uid (plausible) or
  40 * to get full privilege on a kernel without file capabilities
  41 * support.  So in that case we do not raise capabilities.
  42 *
  43 * Warn if that happens, once per boot.
  44 */
  45static void warn_setuid_and_fcaps_mixed(const char *fname)
  46{
  47        static int warned;
  48        if (!warned) {
  49                printk(KERN_INFO "warning: `%s' has both setuid-root and"
  50                        " effective capabilities. Therefore not raising all"
  51                        " capabilities.\n", fname);
  52                warned = 1;
  53        }
  54}
  55
  56/**
  57 * cap_capable - Determine whether a task has a particular effective capability
  58 * @cred: The credentials to use
  59 * @ns:  The user namespace in which we need the capability
  60 * @cap: The capability to check for
  61 * @audit: Whether to write an audit message or not
  62 *
  63 * Determine whether the nominated task has the specified capability amongst
  64 * its effective set, returning 0 if it does, -ve if it does not.
  65 *
  66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
  67 * and has_capability() functions.  That is, it has the reverse semantics:
  68 * cap_has_capability() returns 0 when a task has a capability, but the
  69 * kernel's capable() and has_capability() returns 1 for this case.
  70 */
  71int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
  72                int cap, int audit)
  73{
  74        struct user_namespace *ns = targ_ns;
  75
  76        /* See if cred has the capability in the target user namespace
  77         * by examining the target user namespace and all of the target
  78         * user namespace's parents.
  79         */
  80        for (;;) {
  81                /* Do we have the necessary capabilities? */
  82                if (ns == cred->user_ns)
  83                        return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
  84
  85                /*
  86                 * If we're already at a lower level than we're looking for,
  87                 * we're done searching.
  88                 */
  89                if (ns->level <= cred->user_ns->level)
  90                        return -EPERM;
  91
  92                /* 
  93                 * The owner of the user namespace in the parent of the
  94                 * user namespace has all caps.
  95                 */
  96                if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
  97                        return 0;
  98
  99                /*
 100                 * If you have a capability in a parent user ns, then you have
 101                 * it over all children user namespaces as well.
 102                 */
 103                ns = ns->parent;
 104        }
 105
 106        /* We never get here */
 107}
 108
 109/**
 110 * cap_settime - Determine whether the current process may set the system clock
 111 * @ts: The time to set
 112 * @tz: The timezone to set
 113 *
 114 * Determine whether the current process may set the system clock and timezone
 115 * information, returning 0 if permission granted, -ve if denied.
 116 */
 117int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
 118{
 119        if (!capable(CAP_SYS_TIME))
 120                return -EPERM;
 121        return 0;
 122}
 123
 124/**
 125 * cap_ptrace_access_check - Determine whether the current process may access
 126 *                         another
 127 * @child: The process to be accessed
 128 * @mode: The mode of attachment.
 129 *
 130 * If we are in the same or an ancestor user_ns and have all the target
 131 * task's capabilities, then ptrace access is allowed.
 132 * If we have the ptrace capability to the target user_ns, then ptrace
 133 * access is allowed.
 134 * Else denied.
 135 *
 136 * Determine whether a process may access another, returning 0 if permission
 137 * granted, -ve if denied.
 138 */
 139int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
 140{
 141        int ret = 0;
 142        const struct cred *cred, *child_cred;
 143        const kernel_cap_t *caller_caps;
 144
 145        rcu_read_lock();
 146        cred = current_cred();
 147        child_cred = __task_cred(child);
 148        if (mode & PTRACE_MODE_FSCREDS)
 149                caller_caps = &cred->cap_effective;
 150        else
 151                caller_caps = &cred->cap_permitted;
 152        if (cred->user_ns == child_cred->user_ns &&
 153            cap_issubset(child_cred->cap_permitted, *caller_caps))
 154                goto out;
 155        if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
 156                goto out;
 157        ret = -EPERM;
 158out:
 159        rcu_read_unlock();
 160        return ret;
 161}
 162
 163/**
 164 * cap_ptrace_traceme - Determine whether another process may trace the current
 165 * @parent: The task proposed to be the tracer
 166 *
 167 * If parent is in the same or an ancestor user_ns and has all current's
 168 * capabilities, then ptrace access is allowed.
 169 * If parent has the ptrace capability to current's user_ns, then ptrace
 170 * access is allowed.
 171 * Else denied.
 172 *
 173 * Determine whether the nominated task is permitted to trace the current
 174 * process, returning 0 if permission is granted, -ve if denied.
 175 */
 176int cap_ptrace_traceme(struct task_struct *parent)
 177{
 178        int ret = 0;
 179        const struct cred *cred, *child_cred;
 180
 181        rcu_read_lock();
 182        cred = __task_cred(parent);
 183        child_cred = current_cred();
 184        if (cred->user_ns == child_cred->user_ns &&
 185            cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
 186                goto out;
 187        if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
 188                goto out;
 189        ret = -EPERM;
 190out:
 191        rcu_read_unlock();
 192        return ret;
 193}
 194
 195/**
 196 * cap_capget - Retrieve a task's capability sets
 197 * @target: The task from which to retrieve the capability sets
 198 * @effective: The place to record the effective set
 199 * @inheritable: The place to record the inheritable set
 200 * @permitted: The place to record the permitted set
 201 *
 202 * This function retrieves the capabilities of the nominated task and returns
 203 * them to the caller.
 204 */
 205int cap_capget(struct task_struct *target, kernel_cap_t *effective,
 206               kernel_cap_t *inheritable, kernel_cap_t *permitted)
 207{
 208        const struct cred *cred;
 209
 210        /* Derived from kernel/capability.c:sys_capget. */
 211        rcu_read_lock();
 212        cred = __task_cred(target);
 213        *effective   = cred->cap_effective;
 214        *inheritable = cred->cap_inheritable;
 215        *permitted   = cred->cap_permitted;
 216        rcu_read_unlock();
 217        return 0;
 218}
 219
 220/*
 221 * Determine whether the inheritable capabilities are limited to the old
 222 * permitted set.  Returns 1 if they are limited, 0 if they are not.
 223 */
 224static inline int cap_inh_is_capped(void)
 225{
 226
 227        /* they are so limited unless the current task has the CAP_SETPCAP
 228         * capability
 229         */
 230        if (cap_capable(current_cred(), current_cred()->user_ns,
 231                        CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
 232                return 0;
 233        return 1;
 234}
 235
 236/**
 237 * cap_capset - Validate and apply proposed changes to current's capabilities
 238 * @new: The proposed new credentials; alterations should be made here
 239 * @old: The current task's current credentials
 240 * @effective: A pointer to the proposed new effective capabilities set
 241 * @inheritable: A pointer to the proposed new inheritable capabilities set
 242 * @permitted: A pointer to the proposed new permitted capabilities set
 243 *
 244 * This function validates and applies a proposed mass change to the current
 245 * process's capability sets.  The changes are made to the proposed new
 246 * credentials, and assuming no error, will be committed by the caller of LSM.
 247 */
 248int cap_capset(struct cred *new,
 249               const struct cred *old,
 250               const kernel_cap_t *effective,
 251               const kernel_cap_t *inheritable,
 252               const kernel_cap_t *permitted)
 253{
 254        if (cap_inh_is_capped() &&
 255            !cap_issubset(*inheritable,
 256                          cap_combine(old->cap_inheritable,
 257                                      old->cap_permitted)))
 258                /* incapable of using this inheritable set */
 259                return -EPERM;
 260
 261        if (!cap_issubset(*inheritable,
 262                          cap_combine(old->cap_inheritable,
 263                                      old->cap_bset)))
 264                /* no new pI capabilities outside bounding set */
 265                return -EPERM;
 266
 267        /* verify restrictions on target's new Permitted set */
 268        if (!cap_issubset(*permitted, old->cap_permitted))
 269                return -EPERM;
 270
 271        /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
 272        if (!cap_issubset(*effective, *permitted))
 273                return -EPERM;
 274
 275        new->cap_effective   = *effective;
 276        new->cap_inheritable = *inheritable;
 277        new->cap_permitted   = *permitted;
 278
 279        /*
 280         * Mask off ambient bits that are no longer both permitted and
 281         * inheritable.
 282         */
 283        new->cap_ambient = cap_intersect(new->cap_ambient,
 284                                         cap_intersect(*permitted,
 285                                                       *inheritable));
 286        if (WARN_ON(!cap_ambient_invariant_ok(new)))
 287                return -EINVAL;
 288        return 0;
 289}
 290
 291/**
 292 * cap_inode_need_killpriv - Determine if inode change affects privileges
 293 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
 294 *
 295 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
 296 * affects the security markings on that inode, and if it is, should
 297 * inode_killpriv() be invoked or the change rejected.
 298 *
 299 * Returns 1 if security.capability has a value, meaning inode_killpriv()
 300 * is required, 0 otherwise, meaning inode_killpriv() is not required.
 301 */
 302int cap_inode_need_killpriv(struct dentry *dentry)
 303{
 304        struct inode *inode = d_backing_inode(dentry);
 305        int error;
 306
 307        error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
 308        return error > 0;
 309}
 310
 311/**
 312 * cap_inode_killpriv - Erase the security markings on an inode
 313 * @dentry: The inode/dentry to alter
 314 *
 315 * Erase the privilege-enhancing security markings on an inode.
 316 *
 317 * Returns 0 if successful, -ve on error.
 318 */
 319int cap_inode_killpriv(struct dentry *dentry)
 320{
 321        int error;
 322
 323        error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
 324        if (error == -EOPNOTSUPP)
 325                error = 0;
 326        return error;
 327}
 328
 329static bool rootid_owns_currentns(kuid_t kroot)
 330{
 331        struct user_namespace *ns;
 332
 333        if (!uid_valid(kroot))
 334                return false;
 335
 336        for (ns = current_user_ns(); ; ns = ns->parent) {
 337                if (from_kuid(ns, kroot) == 0)
 338                        return true;
 339                if (ns == &init_user_ns)
 340                        break;
 341        }
 342
 343        return false;
 344}
 345
 346static __u32 sansflags(__u32 m)
 347{
 348        return m & ~VFS_CAP_FLAGS_EFFECTIVE;
 349}
 350
 351static bool is_v2header(size_t size, __le32 magic)
 352{
 353        __u32 m = le32_to_cpu(magic);
 354        if (size != XATTR_CAPS_SZ_2)
 355                return false;
 356        return sansflags(m) == VFS_CAP_REVISION_2;
 357}
 358
 359static bool is_v3header(size_t size, __le32 magic)
 360{
 361        __u32 m = le32_to_cpu(magic);
 362
 363        if (size != XATTR_CAPS_SZ_3)
 364                return false;
 365        return sansflags(m) == VFS_CAP_REVISION_3;
 366}
 367
 368/*
 369 * getsecurity: We are called for security.* before any attempt to read the
 370 * xattr from the inode itself.
 371 *
 372 * This gives us a chance to read the on-disk value and convert it.  If we
 373 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
 374 *
 375 * Note we are not called by vfs_getxattr_alloc(), but that is only called
 376 * by the integrity subsystem, which really wants the unconverted values -
 377 * so that's good.
 378 */
 379int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
 380                          bool alloc)
 381{
 382        int size, ret;
 383        kuid_t kroot;
 384        uid_t root, mappedroot;
 385        char *tmpbuf = NULL;
 386        struct vfs_cap_data *cap;
 387        struct vfs_ns_cap_data *nscap;
 388        struct dentry *dentry;
 389        struct user_namespace *fs_ns;
 390
 391        if (strcmp(name, "capability") != 0)
 392                return -EOPNOTSUPP;
 393
 394        dentry = d_find_alias(inode);
 395        if (!dentry)
 396                return -EINVAL;
 397
 398        size = sizeof(struct vfs_ns_cap_data);
 399        ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
 400                                 &tmpbuf, size, GFP_NOFS);
 401        dput(dentry);
 402
 403        if (ret < 0)
 404                return ret;
 405
 406        fs_ns = inode->i_sb->s_user_ns;
 407        cap = (struct vfs_cap_data *) tmpbuf;
 408        if (is_v2header((size_t) ret, cap->magic_etc)) {
 409                /* If this is sizeof(vfs_cap_data) then we're ok with the
 410                 * on-disk value, so return that.  */
 411                if (alloc)
 412                        *buffer = tmpbuf;
 413                else
 414                        kfree(tmpbuf);
 415                return ret;
 416        } else if (!is_v3header((size_t) ret, cap->magic_etc)) {
 417                kfree(tmpbuf);
 418                return -EINVAL;
 419        }
 420
 421        nscap = (struct vfs_ns_cap_data *) tmpbuf;
 422        root = le32_to_cpu(nscap->rootid);
 423        kroot = make_kuid(fs_ns, root);
 424
 425        /* If the root kuid maps to a valid uid in current ns, then return
 426         * this as a nscap. */
 427        mappedroot = from_kuid(current_user_ns(), kroot);
 428        if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
 429                if (alloc) {
 430                        *buffer = tmpbuf;
 431                        nscap->rootid = cpu_to_le32(mappedroot);
 432                } else
 433                        kfree(tmpbuf);
 434                return size;
 435        }
 436
 437        if (!rootid_owns_currentns(kroot)) {
 438                kfree(tmpbuf);
 439                return -EOPNOTSUPP;
 440        }
 441
 442        /* This comes from a parent namespace.  Return as a v2 capability */
 443        size = sizeof(struct vfs_cap_data);
 444        if (alloc) {
 445                *buffer = kmalloc(size, GFP_ATOMIC);
 446                if (*buffer) {
 447                        struct vfs_cap_data *cap = *buffer;
 448                        __le32 nsmagic, magic;
 449                        magic = VFS_CAP_REVISION_2;
 450                        nsmagic = le32_to_cpu(nscap->magic_etc);
 451                        if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
 452                                magic |= VFS_CAP_FLAGS_EFFECTIVE;
 453                        memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
 454                        cap->magic_etc = cpu_to_le32(magic);
 455                }
 456        }
 457        kfree(tmpbuf);
 458        return size;
 459}
 460
 461static kuid_t rootid_from_xattr(const void *value, size_t size,
 462                                struct user_namespace *task_ns)
 463{
 464        const struct vfs_ns_cap_data *nscap = value;
 465        uid_t rootid = 0;
 466
 467        if (size == XATTR_CAPS_SZ_3)
 468                rootid = le32_to_cpu(nscap->rootid);
 469
 470        return make_kuid(task_ns, rootid);
 471}
 472
 473static bool validheader(size_t size, __le32 magic)
 474{
 475        return is_v2header(size, magic) || is_v3header(size, magic);
 476}
 477
 478/*
 479 * User requested a write of security.capability.  If needed, update the
 480 * xattr to change from v2 to v3, or to fixup the v3 rootid.
 481 *
 482 * If all is ok, we return the new size, on error return < 0.
 483 */
 484int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
 485{
 486        struct vfs_ns_cap_data *nscap;
 487        uid_t nsrootid;
 488        const struct vfs_cap_data *cap = *ivalue;
 489        __u32 magic, nsmagic;
 490        struct inode *inode = d_backing_inode(dentry);
 491        struct user_namespace *task_ns = current_user_ns(),
 492                *fs_ns = inode->i_sb->s_user_ns;
 493        kuid_t rootid;
 494        size_t newsize;
 495
 496        if (!*ivalue)
 497                return -EINVAL;
 498        if (!validheader(size, cap->magic_etc))
 499                return -EINVAL;
 500        if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
 501                return -EPERM;
 502        if (size == XATTR_CAPS_SZ_2)
 503                if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
 504                        /* user is privileged, just write the v2 */
 505                        return size;
 506
 507        rootid = rootid_from_xattr(*ivalue, size, task_ns);
 508        if (!uid_valid(rootid))
 509                return -EINVAL;
 510
 511        nsrootid = from_kuid(fs_ns, rootid);
 512        if (nsrootid == -1)
 513                return -EINVAL;
 514
 515        newsize = sizeof(struct vfs_ns_cap_data);
 516        nscap = kmalloc(newsize, GFP_ATOMIC);
 517        if (!nscap)
 518                return -ENOMEM;
 519        nscap->rootid = cpu_to_le32(nsrootid);
 520        nsmagic = VFS_CAP_REVISION_3;
 521        magic = le32_to_cpu(cap->magic_etc);
 522        if (magic & VFS_CAP_FLAGS_EFFECTIVE)
 523                nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
 524        nscap->magic_etc = cpu_to_le32(nsmagic);
 525        memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
 526
 527        kvfree(*ivalue);
 528        *ivalue = nscap;
 529        return newsize;
 530}
 531
 532/*
 533 * Calculate the new process capability sets from the capability sets attached
 534 * to a file.
 535 */
 536static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
 537                                          struct linux_binprm *bprm,
 538                                          bool *effective,
 539                                          bool *has_cap)
 540{
 541        struct cred *new = bprm->cred;
 542        unsigned i;
 543        int ret = 0;
 544
 545        if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
 546                *effective = true;
 547
 548        if (caps->magic_etc & VFS_CAP_REVISION_MASK)
 549                *has_cap = true;
 550
 551        CAP_FOR_EACH_U32(i) {
 552                __u32 permitted = caps->permitted.cap[i];
 553                __u32 inheritable = caps->inheritable.cap[i];
 554
 555                /*
 556                 * pP' = (X & fP) | (pI & fI)
 557                 * The addition of pA' is handled later.
 558                 */
 559                new->cap_permitted.cap[i] =
 560                        (new->cap_bset.cap[i] & permitted) |
 561                        (new->cap_inheritable.cap[i] & inheritable);
 562
 563                if (permitted & ~new->cap_permitted.cap[i])
 564                        /* insufficient to execute correctly */
 565                        ret = -EPERM;
 566        }
 567
 568        /*
 569         * For legacy apps, with no internal support for recognizing they
 570         * do not have enough capabilities, we return an error if they are
 571         * missing some "forced" (aka file-permitted) capabilities.
 572         */
 573        return *effective ? ret : 0;
 574}
 575
 576/*
 577 * Extract the on-exec-apply capability sets for an executable file.
 578 */
 579int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
 580{
 581        struct inode *inode = d_backing_inode(dentry);
 582        __u32 magic_etc;
 583        unsigned tocopy, i;
 584        int size;
 585        struct vfs_ns_cap_data data, *nscaps = &data;
 586        struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
 587        kuid_t rootkuid;
 588        struct user_namespace *fs_ns;
 589
 590        memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
 591
 592        if (!inode)
 593                return -ENODATA;
 594
 595        fs_ns = inode->i_sb->s_user_ns;
 596        size = __vfs_getxattr((struct dentry *)dentry, inode,
 597                              XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
 598        if (size == -ENODATA || size == -EOPNOTSUPP)
 599                /* no data, that's ok */
 600                return -ENODATA;
 601
 602        if (size < 0)
 603                return size;
 604
 605        if (size < sizeof(magic_etc))
 606                return -EINVAL;
 607
 608        cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
 609
 610        rootkuid = make_kuid(fs_ns, 0);
 611        switch (magic_etc & VFS_CAP_REVISION_MASK) {
 612        case VFS_CAP_REVISION_1:
 613                if (size != XATTR_CAPS_SZ_1)
 614                        return -EINVAL;
 615                tocopy = VFS_CAP_U32_1;
 616                break;
 617        case VFS_CAP_REVISION_2:
 618                if (size != XATTR_CAPS_SZ_2)
 619                        return -EINVAL;
 620                tocopy = VFS_CAP_U32_2;
 621                break;
 622        case VFS_CAP_REVISION_3:
 623                if (size != XATTR_CAPS_SZ_3)
 624                        return -EINVAL;
 625                tocopy = VFS_CAP_U32_3;
 626                rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
 627                break;
 628
 629        default:
 630                return -EINVAL;
 631        }
 632        /* Limit the caps to the mounter of the filesystem
 633         * or the more limited uid specified in the xattr.
 634         */
 635        if (!rootid_owns_currentns(rootkuid))
 636                return -ENODATA;
 637
 638        CAP_FOR_EACH_U32(i) {
 639                if (i >= tocopy)
 640                        break;
 641                cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
 642                cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
 643        }
 644
 645        cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
 646        cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
 647
 648        return 0;
 649}
 650
 651/*
 652 * Attempt to get the on-exec apply capability sets for an executable file from
 653 * its xattrs and, if present, apply them to the proposed credentials being
 654 * constructed by execve().
 655 */
 656static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
 657{
 658        int rc = 0;
 659        struct cpu_vfs_cap_data vcaps;
 660
 661        cap_clear(bprm->cred->cap_permitted);
 662
 663        if (!file_caps_enabled)
 664                return 0;
 665
 666        if (!mnt_may_suid(bprm->file->f_path.mnt))
 667                return 0;
 668
 669        /*
 670         * This check is redundant with mnt_may_suid() but is kept to make
 671         * explicit that capability bits are limited to s_user_ns and its
 672         * descendants.
 673         */
 674        if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
 675                return 0;
 676
 677        rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
 678        if (rc < 0) {
 679                if (rc == -EINVAL)
 680                        printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
 681                                        bprm->filename);
 682                else if (rc == -ENODATA)
 683                        rc = 0;
 684                goto out;
 685        }
 686
 687        rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
 688        if (rc == -EINVAL)
 689                printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
 690                       __func__, rc, bprm->filename);
 691
 692out:
 693        if (rc)
 694                cap_clear(bprm->cred->cap_permitted);
 695
 696        return rc;
 697}
 698
 699/**
 700 * cap_bprm_set_creds - Set up the proposed credentials for execve().
 701 * @bprm: The execution parameters, including the proposed creds
 702 *
 703 * Set up the proposed credentials for a new execution context being
 704 * constructed by execve().  The proposed creds in @bprm->cred is altered,
 705 * which won't take effect immediately.  Returns 0 if successful, -ve on error.
 706 */
 707int cap_bprm_set_creds(struct linux_binprm *bprm)
 708{
 709        const struct cred *old = current_cred();
 710        struct cred *new = bprm->cred;
 711        bool effective, has_cap = false, is_setid;
 712        int ret;
 713        kuid_t root_uid;
 714
 715        if (WARN_ON(!cap_ambient_invariant_ok(old)))
 716                return -EPERM;
 717
 718        effective = false;
 719        ret = get_file_caps(bprm, &effective, &has_cap);
 720        if (ret < 0)
 721                return ret;
 722
 723        root_uid = make_kuid(new->user_ns, 0);
 724
 725        if (!issecure(SECURE_NOROOT)) {
 726                /*
 727                 * If the legacy file capability is set, then don't set privs
 728                 * for a setuid root binary run by a non-root user.  Do set it
 729                 * for a root user just to cause least surprise to an admin.
 730                 */
 731                if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
 732                        warn_setuid_and_fcaps_mixed(bprm->filename);
 733                        goto skip;
 734                }
 735                /*
 736                 * To support inheritance of root-permissions and suid-root
 737                 * executables under compatibility mode, we override the
 738                 * capability sets for the file.
 739                 *
 740                 * If only the real uid is 0, we do not set the effective bit.
 741                 */
 742                if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
 743                        /* pP' = (cap_bset & ~0) | (pI & ~0) */
 744                        new->cap_permitted = cap_combine(old->cap_bset,
 745                                                         old->cap_inheritable);
 746                }
 747                if (uid_eq(new->euid, root_uid))
 748                        effective = true;
 749        }
 750skip:
 751
 752        /* if we have fs caps, clear dangerous personality flags */
 753        if (!cap_issubset(new->cap_permitted, old->cap_permitted))
 754                bprm->per_clear |= PER_CLEAR_ON_SETID;
 755
 756
 757        /* Don't let someone trace a set[ug]id/setpcap binary with the revised
 758         * credentials unless they have the appropriate permit.
 759         *
 760         * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
 761         */
 762        is_setid = !uid_eq(new->euid, old->uid) || !gid_eq(new->egid, old->gid);
 763
 764        if ((is_setid ||
 765             !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
 766            ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
 767             !ptracer_capable(current, new->user_ns))) {
 768                /* downgrade; they get no more than they had, and maybe less */
 769                if (!ns_capable(new->user_ns, CAP_SETUID) ||
 770                    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
 771                        new->euid = new->uid;
 772                        new->egid = new->gid;
 773                }
 774                new->cap_permitted = cap_intersect(new->cap_permitted,
 775                                                   old->cap_permitted);
 776        }
 777
 778        new->suid = new->fsuid = new->euid;
 779        new->sgid = new->fsgid = new->egid;
 780
 781        /* File caps or setid cancels ambient. */
 782        if (has_cap || is_setid)
 783                cap_clear(new->cap_ambient);
 784
 785        /*
 786         * Now that we've computed pA', update pP' to give:
 787         *   pP' = (X & fP) | (pI & fI) | pA'
 788         */
 789        new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
 790
 791        /*
 792         * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
 793         * this is the same as pE' = (fE ? pP' : 0) | pA'.
 794         */
 795        if (effective)
 796                new->cap_effective = new->cap_permitted;
 797        else
 798                new->cap_effective = new->cap_ambient;
 799
 800        if (WARN_ON(!cap_ambient_invariant_ok(new)))
 801                return -EPERM;
 802
 803        /*
 804         * Audit candidate if current->cap_effective is set
 805         *
 806         * We do not bother to audit if 3 things are true:
 807         *   1) cap_effective has all caps
 808         *   2) we are root
 809         *   3) root is supposed to have all caps (SECURE_NOROOT)
 810         * Since this is just a normal root execing a process.
 811         *
 812         * Number 1 above might fail if you don't have a full bset, but I think
 813         * that is interesting information to audit.
 814         */
 815        if (!cap_issubset(new->cap_effective, new->cap_ambient)) {
 816                if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
 817                    !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
 818                    issecure(SECURE_NOROOT)) {
 819                        ret = audit_log_bprm_fcaps(bprm, new, old);
 820                        if (ret < 0)
 821                                return ret;
 822                }
 823        }
 824
 825        new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
 826
 827        if (WARN_ON(!cap_ambient_invariant_ok(new)))
 828                return -EPERM;
 829
 830        /* Check for privilege-elevated exec. */
 831        bprm->cap_elevated = 0;
 832        if (is_setid) {
 833                bprm->cap_elevated = 1;
 834        } else if (!uid_eq(new->uid, root_uid)) {
 835                if (effective ||
 836                    !cap_issubset(new->cap_permitted, new->cap_ambient))
 837                        bprm->cap_elevated = 1;
 838        }
 839
 840        return 0;
 841}
 842
 843/**
 844 * cap_inode_setxattr - Determine whether an xattr may be altered
 845 * @dentry: The inode/dentry being altered
 846 * @name: The name of the xattr to be changed
 847 * @value: The value that the xattr will be changed to
 848 * @size: The size of value
 849 * @flags: The replacement flag
 850 *
 851 * Determine whether an xattr may be altered or set on an inode, returning 0 if
 852 * permission is granted, -ve if denied.
 853 *
 854 * This is used to make sure security xattrs don't get updated or set by those
 855 * who aren't privileged to do so.
 856 */
 857int cap_inode_setxattr(struct dentry *dentry, const char *name,
 858                       const void *value, size_t size, int flags)
 859{
 860        /* Ignore non-security xattrs */
 861        if (strncmp(name, XATTR_SECURITY_PREFIX,
 862                        sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
 863                return 0;
 864
 865        /*
 866         * For XATTR_NAME_CAPS the check will be done in
 867         * cap_convert_nscap(), called by setxattr()
 868         */
 869        if (strcmp(name, XATTR_NAME_CAPS) == 0)
 870                return 0;
 871
 872        if (!capable(CAP_SYS_ADMIN))
 873                return -EPERM;
 874        return 0;
 875}
 876
 877/**
 878 * cap_inode_removexattr - Determine whether an xattr may be removed
 879 * @dentry: The inode/dentry being altered
 880 * @name: The name of the xattr to be changed
 881 *
 882 * Determine whether an xattr may be removed from an inode, returning 0 if
 883 * permission is granted, -ve if denied.
 884 *
 885 * This is used to make sure security xattrs don't get removed by those who
 886 * aren't privileged to remove them.
 887 */
 888int cap_inode_removexattr(struct dentry *dentry, const char *name)
 889{
 890        /* Ignore non-security xattrs */
 891        if (strncmp(name, XATTR_SECURITY_PREFIX,
 892                        sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
 893                return 0;
 894
 895        if (strcmp(name, XATTR_NAME_CAPS) == 0) {
 896                /* security.capability gets namespaced */
 897                struct inode *inode = d_backing_inode(dentry);
 898                if (!inode)
 899                        return -EINVAL;
 900                if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
 901                        return -EPERM;
 902                return 0;
 903        }
 904
 905        if (!capable(CAP_SYS_ADMIN))
 906                return -EPERM;
 907        return 0;
 908}
 909
 910/*
 911 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
 912 * a process after a call to setuid, setreuid, or setresuid.
 913 *
 914 *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
 915 *  {r,e,s}uid != 0, the permitted and effective capabilities are
 916 *  cleared.
 917 *
 918 *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
 919 *  capabilities of the process are cleared.
 920 *
 921 *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
 922 *  capabilities are set to the permitted capabilities.
 923 *
 924 *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
 925 *  never happen.
 926 *
 927 *  -astor
 928 *
 929 * cevans - New behaviour, Oct '99
 930 * A process may, via prctl(), elect to keep its capabilities when it
 931 * calls setuid() and switches away from uid==0. Both permitted and
 932 * effective sets will be retained.
 933 * Without this change, it was impossible for a daemon to drop only some
 934 * of its privilege. The call to setuid(!=0) would drop all privileges!
 935 * Keeping uid 0 is not an option because uid 0 owns too many vital
 936 * files..
 937 * Thanks to Olaf Kirch and Peter Benie for spotting this.
 938 */
 939static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
 940{
 941        kuid_t root_uid = make_kuid(old->user_ns, 0);
 942
 943        if ((uid_eq(old->uid, root_uid) ||
 944             uid_eq(old->euid, root_uid) ||
 945             uid_eq(old->suid, root_uid)) &&
 946            (!uid_eq(new->uid, root_uid) &&
 947             !uid_eq(new->euid, root_uid) &&
 948             !uid_eq(new->suid, root_uid))) {
 949                if (!issecure(SECURE_KEEP_CAPS)) {
 950                        cap_clear(new->cap_permitted);
 951                        cap_clear(new->cap_effective);
 952                }
 953
 954                /*
 955                 * Pre-ambient programs expect setresuid to nonroot followed
 956                 * by exec to drop capabilities.  We should make sure that
 957                 * this remains the case.
 958                 */
 959                cap_clear(new->cap_ambient);
 960        }
 961        if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
 962                cap_clear(new->cap_effective);
 963        if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
 964                new->cap_effective = new->cap_permitted;
 965}
 966
 967/**
 968 * cap_task_fix_setuid - Fix up the results of setuid() call
 969 * @new: The proposed credentials
 970 * @old: The current task's current credentials
 971 * @flags: Indications of what has changed
 972 *
 973 * Fix up the results of setuid() call before the credential changes are
 974 * actually applied, returning 0 to grant the changes, -ve to deny them.
 975 */
 976int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
 977{
 978        switch (flags) {
 979        case LSM_SETID_RE:
 980        case LSM_SETID_ID:
 981        case LSM_SETID_RES:
 982                /* juggle the capabilities to follow [RES]UID changes unless
 983                 * otherwise suppressed */
 984                if (!issecure(SECURE_NO_SETUID_FIXUP))
 985                        cap_emulate_setxuid(new, old);
 986                break;
 987
 988        case LSM_SETID_FS:
 989                /* juggle the capabilties to follow FSUID changes, unless
 990                 * otherwise suppressed
 991                 *
 992                 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
 993                 *          if not, we might be a bit too harsh here.
 994                 */
 995                if (!issecure(SECURE_NO_SETUID_FIXUP)) {
 996                        kuid_t root_uid = make_kuid(old->user_ns, 0);
 997                        if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
 998                                new->cap_effective =
 999                                        cap_drop_fs_set(new->cap_effective);
1000
1001                        if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1002                                new->cap_effective =
1003                                        cap_raise_fs_set(new->cap_effective,
1004                                                         new->cap_permitted);
1005                }
1006                break;
1007
1008        default:
1009                return -EINVAL;
1010        }
1011
1012        return 0;
1013}
1014
1015/*
1016 * Rationale: code calling task_setscheduler, task_setioprio, and
1017 * task_setnice, assumes that
1018 *   . if capable(cap_sys_nice), then those actions should be allowed
1019 *   . if not capable(cap_sys_nice), but acting on your own processes,
1020 *      then those actions should be allowed
1021 * This is insufficient now since you can call code without suid, but
1022 * yet with increased caps.
1023 * So we check for increased caps on the target process.
1024 */
1025static int cap_safe_nice(struct task_struct *p)
1026{
1027        int is_subset, ret = 0;
1028
1029        rcu_read_lock();
1030        is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1031                                 current_cred()->cap_permitted);
1032        if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1033                ret = -EPERM;
1034        rcu_read_unlock();
1035
1036        return ret;
1037}
1038
1039/**
1040 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1041 * @p: The task to affect
1042 *
1043 * Detemine if the requested scheduler policy change is permitted for the
1044 * specified task, returning 0 if permission is granted, -ve if denied.
1045 */
1046int cap_task_setscheduler(struct task_struct *p)
1047{
1048        return cap_safe_nice(p);
1049}
1050
1051/**
1052 * cap_task_ioprio - Detemine if I/O priority change is permitted
1053 * @p: The task to affect
1054 * @ioprio: The I/O priority to set
1055 *
1056 * Detemine if the requested I/O priority change is permitted for the specified
1057 * task, returning 0 if permission is granted, -ve if denied.
1058 */
1059int cap_task_setioprio(struct task_struct *p, int ioprio)
1060{
1061        return cap_safe_nice(p);
1062}
1063
1064/**
1065 * cap_task_ioprio - Detemine if task priority change is permitted
1066 * @p: The task to affect
1067 * @nice: The nice value to set
1068 *
1069 * Detemine if the requested task priority change is permitted for the
1070 * specified task, returning 0 if permission is granted, -ve if denied.
1071 */
1072int cap_task_setnice(struct task_struct *p, int nice)
1073{
1074        return cap_safe_nice(p);
1075}
1076
1077/*
1078 * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
1079 * the current task's bounding set.  Returns 0 on success, -ve on error.
1080 */
1081static int cap_prctl_drop(unsigned long cap)
1082{
1083        struct cred *new;
1084
1085        if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1086                return -EPERM;
1087        if (!cap_valid(cap))
1088                return -EINVAL;
1089
1090        new = prepare_creds();
1091        if (!new)
1092                return -ENOMEM;
1093        cap_lower(new->cap_bset, cap);
1094        return commit_creds(new);
1095}
1096
1097/**
1098 * cap_task_prctl - Implement process control functions for this security module
1099 * @option: The process control function requested
1100 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1101 *
1102 * Allow process control functions (sys_prctl()) to alter capabilities; may
1103 * also deny access to other functions not otherwise implemented here.
1104 *
1105 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1106 * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
1107 * modules will consider performing the function.
1108 */
1109int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1110                   unsigned long arg4, unsigned long arg5)
1111{
1112        const struct cred *old = current_cred();
1113        struct cred *new;
1114
1115        switch (option) {
1116        case PR_CAPBSET_READ:
1117                if (!cap_valid(arg2))
1118                        return -EINVAL;
1119                return !!cap_raised(old->cap_bset, arg2);
1120
1121        case PR_CAPBSET_DROP:
1122                return cap_prctl_drop(arg2);
1123
1124        /*
1125         * The next four prctl's remain to assist with transitioning a
1126         * system from legacy UID=0 based privilege (when filesystem
1127         * capabilities are not in use) to a system using filesystem
1128         * capabilities only - as the POSIX.1e draft intended.
1129         *
1130         * Note:
1131         *
1132         *  PR_SET_SECUREBITS =
1133         *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1134         *    | issecure_mask(SECURE_NOROOT)
1135         *    | issecure_mask(SECURE_NOROOT_LOCKED)
1136         *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
1137         *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1138         *
1139         * will ensure that the current process and all of its
1140         * children will be locked into a pure
1141         * capability-based-privilege environment.
1142         */
1143        case PR_SET_SECUREBITS:
1144                if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1145                     & (old->securebits ^ arg2))                        /*[1]*/
1146                    || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))   /*[2]*/
1147                    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))   /*[3]*/
1148                    || (cap_capable(current_cred(),
1149                                    current_cred()->user_ns, CAP_SETPCAP,
1150                                    SECURITY_CAP_AUDIT) != 0)           /*[4]*/
1151                        /*
1152                         * [1] no changing of bits that are locked
1153                         * [2] no unlocking of locks
1154                         * [3] no setting of unsupported bits
1155                         * [4] doing anything requires privilege (go read about
1156                         *     the "sendmail capabilities bug")
1157                         */
1158                    )
1159                        /* cannot change a locked bit */
1160                        return -EPERM;
1161
1162                new = prepare_creds();
1163                if (!new)
1164                        return -ENOMEM;
1165                new->securebits = arg2;
1166                return commit_creds(new);
1167
1168        case PR_GET_SECUREBITS:
1169                return old->securebits;
1170
1171        case PR_GET_KEEPCAPS:
1172                return !!issecure(SECURE_KEEP_CAPS);
1173
1174        case PR_SET_KEEPCAPS:
1175                if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1176                        return -EINVAL;
1177                if (issecure(SECURE_KEEP_CAPS_LOCKED))
1178                        return -EPERM;
1179
1180                new = prepare_creds();
1181                if (!new)
1182                        return -ENOMEM;
1183                if (arg2)
1184                        new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1185                else
1186                        new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1187                return commit_creds(new);
1188
1189        case PR_CAP_AMBIENT:
1190                if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1191                        if (arg3 | arg4 | arg5)
1192                                return -EINVAL;
1193
1194                        new = prepare_creds();
1195                        if (!new)
1196                                return -ENOMEM;
1197                        cap_clear(new->cap_ambient);
1198                        return commit_creds(new);
1199                }
1200
1201                if (((!cap_valid(arg3)) | arg4 | arg5))
1202                        return -EINVAL;
1203
1204                if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1205                        return !!cap_raised(current_cred()->cap_ambient, arg3);
1206                } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1207                           arg2 != PR_CAP_AMBIENT_LOWER) {
1208                        return -EINVAL;
1209                } else {
1210                        if (arg2 == PR_CAP_AMBIENT_RAISE &&
1211                            (!cap_raised(current_cred()->cap_permitted, arg3) ||
1212                             !cap_raised(current_cred()->cap_inheritable,
1213                                         arg3) ||
1214                             issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1215                                return -EPERM;
1216
1217                        new = prepare_creds();
1218                        if (!new)
1219                                return -ENOMEM;
1220                        if (arg2 == PR_CAP_AMBIENT_RAISE)
1221                                cap_raise(new->cap_ambient, arg3);
1222                        else
1223                                cap_lower(new->cap_ambient, arg3);
1224                        return commit_creds(new);
1225                }
1226
1227        default:
1228                /* No functionality available - continue with default */
1229                return -ENOSYS;
1230        }
1231}
1232
1233/**
1234 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1235 * @mm: The VM space in which the new mapping is to be made
1236 * @pages: The size of the mapping
1237 *
1238 * Determine whether the allocation of a new virtual mapping by the current
1239 * task is permitted, returning 1 if permission is granted, 0 if not.
1240 */
1241int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1242{
1243        int cap_sys_admin = 0;
1244
1245        if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1246                        SECURITY_CAP_NOAUDIT) == 0)
1247                cap_sys_admin = 1;
1248        return cap_sys_admin;
1249}
1250
1251/*
1252 * cap_mmap_addr - check if able to map given addr
1253 * @addr: address attempting to be mapped
1254 *
1255 * If the process is attempting to map memory below dac_mmap_min_addr they need
1256 * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
1257 * capability security module.  Returns 0 if this mapping should be allowed
1258 * -EPERM if not.
1259 */
1260int cap_mmap_addr(unsigned long addr)
1261{
1262        int ret = 0;
1263
1264        if (addr < dac_mmap_min_addr) {
1265                ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1266                                  SECURITY_CAP_AUDIT);
1267                /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1268                if (ret == 0)
1269                        current->flags |= PF_SUPERPRIV;
1270        }
1271        return ret;
1272}
1273
1274int cap_mmap_file(struct file *file, unsigned long reqprot,
1275                  unsigned long prot, unsigned long flags)
1276{
1277        return 0;
1278}
1279
1280#ifdef CONFIG_SECURITY
1281
1282struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1283        LSM_HOOK_INIT(capable, cap_capable),
1284        LSM_HOOK_INIT(settime, cap_settime),
1285        LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1286        LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1287        LSM_HOOK_INIT(capget, cap_capget),
1288        LSM_HOOK_INIT(capset, cap_capset),
1289        LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
1290        LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1291        LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1292        LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1293        LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1294        LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1295        LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1296        LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1297        LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1298        LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1299        LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1300        LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1301};
1302
1303void __init capability_add_hooks(void)
1304{
1305        security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1306                                "capability");
1307}
1308
1309#endif /* CONFIG_SECURITY */
1310