linux/arch/arm/include/asm/bitops.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Copyright 1995, Russell King.
   4 * Various bits and pieces copyrights include:
   5 *  Linus Torvalds (test_bit).
   6 * Big endian support: Copyright 2001, Nicolas Pitre
   7 *  reworked by rmk.
   8 *
   9 * bit 0 is the LSB of an "unsigned long" quantity.
  10 *
  11 * Please note that the code in this file should never be included
  12 * from user space.  Many of these are not implemented in assembler
  13 * since they would be too costly.  Also, they require privileged
  14 * instructions (which are not available from user mode) to ensure
  15 * that they are atomic.
  16 */
  17
  18#ifndef __ASM_ARM_BITOPS_H
  19#define __ASM_ARM_BITOPS_H
  20
  21#ifdef __KERNEL__
  22
  23#ifndef _LINUX_BITOPS_H
  24#error only <linux/bitops.h> can be included directly
  25#endif
  26
  27#include <linux/compiler.h>
  28#include <linux/irqflags.h>
  29#include <asm/barrier.h>
  30
  31/*
  32 * These functions are the basis of our bit ops.
  33 *
  34 * First, the atomic bitops. These use native endian.
  35 */
  36static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
  37{
  38        unsigned long flags;
  39        unsigned long mask = BIT_MASK(bit);
  40
  41        p += BIT_WORD(bit);
  42
  43        raw_local_irq_save(flags);
  44        *p |= mask;
  45        raw_local_irq_restore(flags);
  46}
  47
  48static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
  49{
  50        unsigned long flags;
  51        unsigned long mask = BIT_MASK(bit);
  52
  53        p += BIT_WORD(bit);
  54
  55        raw_local_irq_save(flags);
  56        *p &= ~mask;
  57        raw_local_irq_restore(flags);
  58}
  59
  60static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
  61{
  62        unsigned long flags;
  63        unsigned long mask = BIT_MASK(bit);
  64
  65        p += BIT_WORD(bit);
  66
  67        raw_local_irq_save(flags);
  68        *p ^= mask;
  69        raw_local_irq_restore(flags);
  70}
  71
  72static inline int
  73____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
  74{
  75        unsigned long flags;
  76        unsigned int res;
  77        unsigned long mask = BIT_MASK(bit);
  78
  79        p += BIT_WORD(bit);
  80
  81        raw_local_irq_save(flags);
  82        res = *p;
  83        *p = res | mask;
  84        raw_local_irq_restore(flags);
  85
  86        return (res & mask) != 0;
  87}
  88
  89static inline int
  90____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
  91{
  92        unsigned long flags;
  93        unsigned int res;
  94        unsigned long mask = BIT_MASK(bit);
  95
  96        p += BIT_WORD(bit);
  97
  98        raw_local_irq_save(flags);
  99        res = *p;
 100        *p = res & ~mask;
 101        raw_local_irq_restore(flags);
 102
 103        return (res & mask) != 0;
 104}
 105
 106static inline int
 107____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
 108{
 109        unsigned long flags;
 110        unsigned int res;
 111        unsigned long mask = BIT_MASK(bit);
 112
 113        p += BIT_WORD(bit);
 114
 115        raw_local_irq_save(flags);
 116        res = *p;
 117        *p = res ^ mask;
 118        raw_local_irq_restore(flags);
 119
 120        return (res & mask) != 0;
 121}
 122
 123#include <asm-generic/bitops/non-atomic.h>
 124
 125/*
 126 *  A note about Endian-ness.
 127 *  -------------------------
 128 *
 129 * When the ARM is put into big endian mode via CR15, the processor
 130 * merely swaps the order of bytes within words, thus:
 131 *
 132 *          ------------ physical data bus bits -----------
 133 *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
 134 * little     byte 3       byte 2       byte 1      byte 0
 135 * big        byte 0       byte 1       byte 2      byte 3
 136 *
 137 * This means that reading a 32-bit word at address 0 returns the same
 138 * value irrespective of the endian mode bit.
 139 *
 140 * Peripheral devices should be connected with the data bus reversed in
 141 * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
 142 * available from http://www.arm.com/.
 143 *
 144 * The following assumes that the data bus connectivity for big endian
 145 * mode has been followed.
 146 *
 147 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
 148 */
 149
 150/*
 151 * Native endian assembly bitops.  nr = 0 -> word 0 bit 0.
 152 */
 153extern void _set_bit(int nr, volatile unsigned long * p);
 154extern void _clear_bit(int nr, volatile unsigned long * p);
 155extern void _change_bit(int nr, volatile unsigned long * p);
 156extern int _test_and_set_bit(int nr, volatile unsigned long * p);
 157extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
 158extern int _test_and_change_bit(int nr, volatile unsigned long * p);
 159
 160/*
 161 * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
 162 */
 163extern int _find_first_zero_bit_le(const unsigned long *p, unsigned size);
 164extern int _find_next_zero_bit_le(const unsigned long *p, int size, int offset);
 165extern int _find_first_bit_le(const unsigned long *p, unsigned size);
 166extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
 167
 168/*
 169 * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
 170 */
 171extern int _find_first_zero_bit_be(const unsigned long *p, unsigned size);
 172extern int _find_next_zero_bit_be(const unsigned long *p, int size, int offset);
 173extern int _find_first_bit_be(const unsigned long *p, unsigned size);
 174extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
 175
 176#ifndef CONFIG_SMP
 177/*
 178 * The __* form of bitops are non-atomic and may be reordered.
 179 */
 180#define ATOMIC_BITOP(name,nr,p)                 \
 181        (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
 182#else
 183#define ATOMIC_BITOP(name,nr,p)         _##name(nr,p)
 184#endif
 185
 186/*
 187 * Native endian atomic definitions.
 188 */
 189#define set_bit(nr,p)                   ATOMIC_BITOP(set_bit,nr,p)
 190#define clear_bit(nr,p)                 ATOMIC_BITOP(clear_bit,nr,p)
 191#define change_bit(nr,p)                ATOMIC_BITOP(change_bit,nr,p)
 192#define test_and_set_bit(nr,p)          ATOMIC_BITOP(test_and_set_bit,nr,p)
 193#define test_and_clear_bit(nr,p)        ATOMIC_BITOP(test_and_clear_bit,nr,p)
 194#define test_and_change_bit(nr,p)       ATOMIC_BITOP(test_and_change_bit,nr,p)
 195
 196#ifndef __ARMEB__
 197/*
 198 * These are the little endian, atomic definitions.
 199 */
 200#define find_first_zero_bit(p,sz)       _find_first_zero_bit_le(p,sz)
 201#define find_next_zero_bit(p,sz,off)    _find_next_zero_bit_le(p,sz,off)
 202#define find_first_bit(p,sz)            _find_first_bit_le(p,sz)
 203#define find_next_bit(p,sz,off)         _find_next_bit_le(p,sz,off)
 204
 205#else
 206/*
 207 * These are the big endian, atomic definitions.
 208 */
 209#define find_first_zero_bit(p,sz)       _find_first_zero_bit_be(p,sz)
 210#define find_next_zero_bit(p,sz,off)    _find_next_zero_bit_be(p,sz,off)
 211#define find_first_bit(p,sz)            _find_first_bit_be(p,sz)
 212#define find_next_bit(p,sz,off)         _find_next_bit_be(p,sz,off)
 213
 214#endif
 215
 216#if __LINUX_ARM_ARCH__ < 5
 217
 218#include <asm-generic/bitops/ffz.h>
 219#include <asm-generic/bitops/__fls.h>
 220#include <asm-generic/bitops/__ffs.h>
 221#include <asm-generic/bitops/fls.h>
 222#include <asm-generic/bitops/ffs.h>
 223
 224#else
 225
 226static inline int constant_fls(int x)
 227{
 228        int r = 32;
 229
 230        if (!x)
 231                return 0;
 232        if (!(x & 0xffff0000u)) {
 233                x <<= 16;
 234                r -= 16;
 235        }
 236        if (!(x & 0xff000000u)) {
 237                x <<= 8;
 238                r -= 8;
 239        }
 240        if (!(x & 0xf0000000u)) {
 241                x <<= 4;
 242                r -= 4;
 243        }
 244        if (!(x & 0xc0000000u)) {
 245                x <<= 2;
 246                r -= 2;
 247        }
 248        if (!(x & 0x80000000u)) {
 249                x <<= 1;
 250                r -= 1;
 251        }
 252        return r;
 253}
 254
 255/*
 256 * On ARMv5 and above those functions can be implemented around the
 257 * clz instruction for much better code efficiency.  __clz returns
 258 * the number of leading zeros, zero input will return 32, and
 259 * 0x80000000 will return 0.
 260 */
 261static inline unsigned int __clz(unsigned int x)
 262{
 263        unsigned int ret;
 264
 265        asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
 266
 267        return ret;
 268}
 269
 270/*
 271 * fls() returns zero if the input is zero, otherwise returns the bit
 272 * position of the last set bit, where the LSB is 1 and MSB is 32.
 273 */
 274static inline int fls(int x)
 275{
 276        if (__builtin_constant_p(x))
 277               return constant_fls(x);
 278
 279        return 32 - __clz(x);
 280}
 281
 282/*
 283 * __fls() returns the bit position of the last bit set, where the
 284 * LSB is 0 and MSB is 31.  Zero input is undefined.
 285 */
 286static inline unsigned long __fls(unsigned long x)
 287{
 288        return fls(x) - 1;
 289}
 290
 291/*
 292 * ffs() returns zero if the input was zero, otherwise returns the bit
 293 * position of the first set bit, where the LSB is 1 and MSB is 32.
 294 */
 295static inline int ffs(int x)
 296{
 297        return fls(x & -x);
 298}
 299
 300/*
 301 * __ffs() returns the bit position of the first bit set, where the
 302 * LSB is 0 and MSB is 31.  Zero input is undefined.
 303 */
 304static inline unsigned long __ffs(unsigned long x)
 305{
 306        return ffs(x) - 1;
 307}
 308
 309#define ffz(x) __ffs( ~(x) )
 310
 311#endif
 312
 313#include <asm-generic/bitops/fls64.h>
 314
 315#include <asm-generic/bitops/sched.h>
 316#include <asm-generic/bitops/hweight.h>
 317#include <asm-generic/bitops/lock.h>
 318
 319#ifdef __ARMEB__
 320
 321static inline int find_first_zero_bit_le(const void *p, unsigned size)
 322{
 323        return _find_first_zero_bit_le(p, size);
 324}
 325#define find_first_zero_bit_le find_first_zero_bit_le
 326
 327static inline int find_next_zero_bit_le(const void *p, int size, int offset)
 328{
 329        return _find_next_zero_bit_le(p, size, offset);
 330}
 331#define find_next_zero_bit_le find_next_zero_bit_le
 332
 333static inline int find_next_bit_le(const void *p, int size, int offset)
 334{
 335        return _find_next_bit_le(p, size, offset);
 336}
 337#define find_next_bit_le find_next_bit_le
 338
 339#endif
 340
 341#include <asm-generic/bitops/le.h>
 342
 343/*
 344 * Ext2 is defined to use little-endian byte ordering.
 345 */
 346#include <asm-generic/bitops/ext2-atomic-setbit.h>
 347
 348#endif /* __KERNEL__ */
 349
 350#endif /* _ARM_BITOPS_H */
 351