linux/arch/arm/include/asm/pgtable-2level.h
<<
>>
Prefs
   1/*
   2 *  arch/arm/include/asm/pgtable-2level.h
   3 *
   4 *  Copyright (C) 1995-2002 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#ifndef _ASM_PGTABLE_2LEVEL_H
  11#define _ASM_PGTABLE_2LEVEL_H
  12
  13#define __PAGETABLE_PMD_FOLDED
  14
  15/*
  16 * Hardware-wise, we have a two level page table structure, where the first
  17 * level has 4096 entries, and the second level has 256 entries.  Each entry
  18 * is one 32-bit word.  Most of the bits in the second level entry are used
  19 * by hardware, and there aren't any "accessed" and "dirty" bits.
  20 *
  21 * Linux on the other hand has a three level page table structure, which can
  22 * be wrapped to fit a two level page table structure easily - using the PGD
  23 * and PTE only.  However, Linux also expects one "PTE" table per page, and
  24 * at least a "dirty" bit.
  25 *
  26 * Therefore, we tweak the implementation slightly - we tell Linux that we
  27 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
  28 * hardware pointers to the second level.)  The second level contains two
  29 * hardware PTE tables arranged contiguously, preceded by Linux versions
  30 * which contain the state information Linux needs.  We, therefore, end up
  31 * with 512 entries in the "PTE" level.
  32 *
  33 * This leads to the page tables having the following layout:
  34 *
  35 *    pgd             pte
  36 * |        |
  37 * +--------+
  38 * |        |       +------------+ +0
  39 * +- - - - +       | Linux pt 0 |
  40 * |        |       +------------+ +1024
  41 * +--------+ +0    | Linux pt 1 |
  42 * |        |-----> +------------+ +2048
  43 * +- - - - + +4    |  h/w pt 0  |
  44 * |        |-----> +------------+ +3072
  45 * +--------+ +8    |  h/w pt 1  |
  46 * |        |       +------------+ +4096
  47 *
  48 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
  49 * PTE_xxx for definitions of bits appearing in the "h/w pt".
  50 *
  51 * PMD_xxx definitions refer to bits in the first level page table.
  52 *
  53 * The "dirty" bit is emulated by only granting hardware write permission
  54 * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
  55 * means that a write to a clean page will cause a permission fault, and
  56 * the Linux MM layer will mark the page dirty via handle_pte_fault().
  57 * For the hardware to notice the permission change, the TLB entry must
  58 * be flushed, and ptep_set_access_flags() does that for us.
  59 *
  60 * The "accessed" or "young" bit is emulated by a similar method; we only
  61 * allow accesses to the page if the "young" bit is set.  Accesses to the
  62 * page will cause a fault, and handle_pte_fault() will set the young bit
  63 * for us as long as the page is marked present in the corresponding Linux
  64 * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
  65 * up to date.
  66 *
  67 * However, when the "young" bit is cleared, we deny access to the page
  68 * by clearing the hardware PTE.  Currently Linux does not flush the TLB
  69 * for us in this case, which means the TLB will retain the transation
  70 * until either the TLB entry is evicted under pressure, or a context
  71 * switch which changes the user space mapping occurs.
  72 */
  73#define PTRS_PER_PTE            512
  74#define PTRS_PER_PMD            1
  75#define PTRS_PER_PGD            2048
  76
  77#define PTE_HWTABLE_PTRS        (PTRS_PER_PTE)
  78#define PTE_HWTABLE_OFF         (PTE_HWTABLE_PTRS * sizeof(pte_t))
  79#define PTE_HWTABLE_SIZE        (PTRS_PER_PTE * sizeof(u32))
  80
  81/*
  82 * PMD_SHIFT determines the size of the area a second-level page table can map
  83 * PGDIR_SHIFT determines what a third-level page table entry can map
  84 */
  85#define PMD_SHIFT               21
  86#define PGDIR_SHIFT             21
  87
  88#define PMD_SIZE                (1UL << PMD_SHIFT)
  89#define PMD_MASK                (~(PMD_SIZE-1))
  90#define PGDIR_SIZE              (1UL << PGDIR_SHIFT)
  91#define PGDIR_MASK              (~(PGDIR_SIZE-1))
  92
  93/*
  94 * section address mask and size definitions.
  95 */
  96#define SECTION_SHIFT           20
  97#define SECTION_SIZE            (1UL << SECTION_SHIFT)
  98#define SECTION_MASK            (~(SECTION_SIZE-1))
  99
 100/*
 101 * ARMv6 supersection address mask and size definitions.
 102 */
 103#define SUPERSECTION_SHIFT      24
 104#define SUPERSECTION_SIZE       (1UL << SUPERSECTION_SHIFT)
 105#define SUPERSECTION_MASK       (~(SUPERSECTION_SIZE-1))
 106
 107#define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
 108
 109/*
 110 * "Linux" PTE definitions.
 111 *
 112 * We keep two sets of PTEs - the hardware and the linux version.
 113 * This allows greater flexibility in the way we map the Linux bits
 114 * onto the hardware tables, and allows us to have YOUNG and DIRTY
 115 * bits.
 116 *
 117 * The PTE table pointer refers to the hardware entries; the "Linux"
 118 * entries are stored 1024 bytes below.
 119 */
 120#define L_PTE_VALID             (_AT(pteval_t, 1) << 0)         /* Valid */
 121#define L_PTE_PRESENT           (_AT(pteval_t, 1) << 0)
 122#define L_PTE_YOUNG             (_AT(pteval_t, 1) << 1)
 123#define L_PTE_DIRTY             (_AT(pteval_t, 1) << 6)
 124#define L_PTE_RDONLY            (_AT(pteval_t, 1) << 7)
 125#define L_PTE_USER              (_AT(pteval_t, 1) << 8)
 126#define L_PTE_XN                (_AT(pteval_t, 1) << 9)
 127#define L_PTE_SHARED            (_AT(pteval_t, 1) << 10)        /* shared(v6), coherent(xsc3) */
 128#define L_PTE_NONE              (_AT(pteval_t, 1) << 11)
 129
 130/*
 131 * These are the memory types, defined to be compatible with
 132 * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B
 133 * ARMv6+ without TEX remapping, they are a table index.
 134 * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B
 135 *
 136 * MT type              Pre-ARMv6       ARMv6+ type / cacheable status
 137 * UNCACHED             Uncached        Strongly ordered
 138 * BUFFERABLE           Bufferable      Normal memory / non-cacheable
 139 * WRITETHROUGH         Writethrough    Normal memory / write through
 140 * WRITEBACK            Writeback       Normal memory / write back, read alloc
 141 * MINICACHE            Minicache       N/A
 142 * WRITEALLOC           Writeback       Normal memory / write back, write alloc
 143 * DEV_SHARED           Uncached        Device memory (shared)
 144 * DEV_NONSHARED        Uncached        Device memory (non-shared)
 145 * DEV_WC               Bufferable      Normal memory / non-cacheable
 146 * DEV_CACHED           Writeback       Normal memory / write back, read alloc
 147 * VECTORS              Variable        Normal memory / variable
 148 *
 149 * All normal memory mappings have the following properties:
 150 * - reads can be repeated with no side effects
 151 * - repeated reads return the last value written
 152 * - reads can fetch additional locations without side effects
 153 * - writes can be repeated (in certain cases) with no side effects
 154 * - writes can be merged before accessing the target
 155 * - unaligned accesses can be supported
 156 *
 157 * All device mappings have the following properties:
 158 * - no access speculation
 159 * - no repetition (eg, on return from an exception)
 160 * - number, order and size of accesses are maintained
 161 * - unaligned accesses are "unpredictable"
 162 */
 163#define L_PTE_MT_UNCACHED       (_AT(pteval_t, 0x00) << 2)      /* 0000 */
 164#define L_PTE_MT_BUFFERABLE     (_AT(pteval_t, 0x01) << 2)      /* 0001 */
 165#define L_PTE_MT_WRITETHROUGH   (_AT(pteval_t, 0x02) << 2)      /* 0010 */
 166#define L_PTE_MT_WRITEBACK      (_AT(pteval_t, 0x03) << 2)      /* 0011 */
 167#define L_PTE_MT_MINICACHE      (_AT(pteval_t, 0x06) << 2)      /* 0110 (sa1100, xscale) */
 168#define L_PTE_MT_WRITEALLOC     (_AT(pteval_t, 0x07) << 2)      /* 0111 */
 169#define L_PTE_MT_DEV_SHARED     (_AT(pteval_t, 0x04) << 2)      /* 0100 */
 170#define L_PTE_MT_DEV_NONSHARED  (_AT(pteval_t, 0x0c) << 2)      /* 1100 */
 171#define L_PTE_MT_DEV_WC         (_AT(pteval_t, 0x09) << 2)      /* 1001 */
 172#define L_PTE_MT_DEV_CACHED     (_AT(pteval_t, 0x0b) << 2)      /* 1011 */
 173#define L_PTE_MT_VECTORS        (_AT(pteval_t, 0x0f) << 2)      /* 1111 */
 174#define L_PTE_MT_MASK           (_AT(pteval_t, 0x0f) << 2)
 175
 176#ifndef __ASSEMBLY__
 177
 178/*
 179 * The "pud_xxx()" functions here are trivial when the pmd is folded into
 180 * the pud: the pud entry is never bad, always exists, and can't be set or
 181 * cleared.
 182 */
 183#define pud_none(pud)           (0)
 184#define pud_bad(pud)            (0)
 185#define pud_present(pud)        (1)
 186#define pud_clear(pudp)         do { } while (0)
 187#define set_pud(pud,pudp)       do { } while (0)
 188
 189static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
 190{
 191        return (pmd_t *)pud;
 192}
 193
 194#define pmd_large(pmd)          (pmd_val(pmd) & 2)
 195#define pmd_bad(pmd)            (pmd_val(pmd) & 2)
 196#define pmd_present(pmd)        (pmd_val(pmd))
 197
 198#define copy_pmd(pmdpd,pmdps)           \
 199        do {                            \
 200                pmdpd[0] = pmdps[0];    \
 201                pmdpd[1] = pmdps[1];    \
 202                flush_pmd_entry(pmdpd); \
 203        } while (0)
 204
 205#define pmd_clear(pmdp)                 \
 206        do {                            \
 207                pmdp[0] = __pmd(0);     \
 208                pmdp[1] = __pmd(0);     \
 209                clean_pmd_entry(pmdp);  \
 210        } while (0)
 211
 212/* we don't need complex calculations here as the pmd is folded into the pgd */
 213#define pmd_addr_end(addr,end) (end)
 214
 215#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
 216#define pte_special(pte)        (0)
 217static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
 218
 219/*
 220 * We don't have huge page support for short descriptors, for the moment
 221 * define empty stubs for use by pin_page_for_write.
 222 */
 223#define pmd_hugewillfault(pmd)  (0)
 224#define pmd_thp_or_huge(pmd)    (0)
 225
 226#endif /* __ASSEMBLY__ */
 227
 228#endif /* _ASM_PGTABLE_2LEVEL_H */
 229