linux/arch/arm64/kernel/smp.c
<<
>>
Prefs
   1/*
   2 * SMP initialisation and IPI support
   3 * Based on arch/arm/kernel/smp.c
   4 *
   5 * Copyright (C) 2012 ARM Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include <linux/acpi.h>
  21#include <linux/delay.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/sched/mm.h>
  25#include <linux/sched/hotplug.h>
  26#include <linux/sched/task_stack.h>
  27#include <linux/interrupt.h>
  28#include <linux/cache.h>
  29#include <linux/profile.h>
  30#include <linux/errno.h>
  31#include <linux/mm.h>
  32#include <linux/err.h>
  33#include <linux/cpu.h>
  34#include <linux/smp.h>
  35#include <linux/seq_file.h>
  36#include <linux/irq.h>
  37#include <linux/percpu.h>
  38#include <linux/clockchips.h>
  39#include <linux/completion.h>
  40#include <linux/of.h>
  41#include <linux/irq_work.h>
  42#include <linux/kexec.h>
  43
  44#include <asm/alternative.h>
  45#include <asm/atomic.h>
  46#include <asm/cacheflush.h>
  47#include <asm/cpu.h>
  48#include <asm/cputype.h>
  49#include <asm/cpu_ops.h>
  50#include <asm/mmu_context.h>
  51#include <asm/numa.h>
  52#include <asm/pgtable.h>
  53#include <asm/pgalloc.h>
  54#include <asm/processor.h>
  55#include <asm/smp_plat.h>
  56#include <asm/sections.h>
  57#include <asm/tlbflush.h>
  58#include <asm/ptrace.h>
  59#include <asm/virt.h>
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/ipi.h>
  63
  64DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
  65EXPORT_PER_CPU_SYMBOL(cpu_number);
  66
  67/*
  68 * as from 2.5, kernels no longer have an init_tasks structure
  69 * so we need some other way of telling a new secondary core
  70 * where to place its SVC stack
  71 */
  72struct secondary_data secondary_data;
  73/* Number of CPUs which aren't online, but looping in kernel text. */
  74int cpus_stuck_in_kernel;
  75
  76enum ipi_msg_type {
  77        IPI_RESCHEDULE,
  78        IPI_CALL_FUNC,
  79        IPI_CPU_STOP,
  80        IPI_CPU_CRASH_STOP,
  81        IPI_TIMER,
  82        IPI_IRQ_WORK,
  83        IPI_WAKEUP
  84};
  85
  86#ifdef CONFIG_ARM64_VHE
  87
  88/* Whether the boot CPU is running in HYP mode or not*/
  89static bool boot_cpu_hyp_mode;
  90
  91static inline void save_boot_cpu_run_el(void)
  92{
  93        boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
  94}
  95
  96static inline bool is_boot_cpu_in_hyp_mode(void)
  97{
  98        return boot_cpu_hyp_mode;
  99}
 100
 101/*
 102 * Verify that a secondary CPU is running the kernel at the same
 103 * EL as that of the boot CPU.
 104 */
 105void verify_cpu_run_el(void)
 106{
 107        bool in_el2 = is_kernel_in_hyp_mode();
 108        bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
 109
 110        if (in_el2 ^ boot_cpu_el2) {
 111                pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
 112                                        smp_processor_id(),
 113                                        in_el2 ? 2 : 1,
 114                                        boot_cpu_el2 ? 2 : 1);
 115                cpu_panic_kernel();
 116        }
 117}
 118
 119#else
 120static inline void save_boot_cpu_run_el(void) {}
 121#endif
 122
 123#ifdef CONFIG_HOTPLUG_CPU
 124static int op_cpu_kill(unsigned int cpu);
 125#else
 126static inline int op_cpu_kill(unsigned int cpu)
 127{
 128        return -ENOSYS;
 129}
 130#endif
 131
 132
 133/*
 134 * Boot a secondary CPU, and assign it the specified idle task.
 135 * This also gives us the initial stack to use for this CPU.
 136 */
 137static int boot_secondary(unsigned int cpu, struct task_struct *idle)
 138{
 139        if (cpu_ops[cpu]->cpu_boot)
 140                return cpu_ops[cpu]->cpu_boot(cpu);
 141
 142        return -EOPNOTSUPP;
 143}
 144
 145static DECLARE_COMPLETION(cpu_running);
 146
 147int __cpu_up(unsigned int cpu, struct task_struct *idle)
 148{
 149        int ret;
 150        long status;
 151
 152        /*
 153         * We need to tell the secondary core where to find its stack and the
 154         * page tables.
 155         */
 156        secondary_data.task = idle;
 157        secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
 158        update_cpu_boot_status(CPU_MMU_OFF);
 159        __flush_dcache_area(&secondary_data, sizeof(secondary_data));
 160
 161        /*
 162         * Now bring the CPU into our world.
 163         */
 164        ret = boot_secondary(cpu, idle);
 165        if (ret == 0) {
 166                /*
 167                 * CPU was successfully started, wait for it to come online or
 168                 * time out.
 169                 */
 170                wait_for_completion_timeout(&cpu_running,
 171                                            msecs_to_jiffies(1000));
 172
 173                if (!cpu_online(cpu)) {
 174                        pr_crit("CPU%u: failed to come online\n", cpu);
 175                        ret = -EIO;
 176                }
 177        } else {
 178                pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 179        }
 180
 181        secondary_data.task = NULL;
 182        secondary_data.stack = NULL;
 183        status = READ_ONCE(secondary_data.status);
 184        if (ret && status) {
 185
 186                if (status == CPU_MMU_OFF)
 187                        status = READ_ONCE(__early_cpu_boot_status);
 188
 189                switch (status) {
 190                default:
 191                        pr_err("CPU%u: failed in unknown state : 0x%lx\n",
 192                                        cpu, status);
 193                        break;
 194                case CPU_KILL_ME:
 195                        if (!op_cpu_kill(cpu)) {
 196                                pr_crit("CPU%u: died during early boot\n", cpu);
 197                                break;
 198                        }
 199                        /* Fall through */
 200                        pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
 201                case CPU_STUCK_IN_KERNEL:
 202                        pr_crit("CPU%u: is stuck in kernel\n", cpu);
 203                        cpus_stuck_in_kernel++;
 204                        break;
 205                case CPU_PANIC_KERNEL:
 206                        panic("CPU%u detected unsupported configuration\n", cpu);
 207                }
 208        }
 209
 210        return ret;
 211}
 212
 213/*
 214 * This is the secondary CPU boot entry.  We're using this CPUs
 215 * idle thread stack, but a set of temporary page tables.
 216 */
 217asmlinkage void secondary_start_kernel(void)
 218{
 219        struct mm_struct *mm = &init_mm;
 220        unsigned int cpu;
 221
 222        cpu = task_cpu(current);
 223        set_my_cpu_offset(per_cpu_offset(cpu));
 224
 225        /*
 226         * All kernel threads share the same mm context; grab a
 227         * reference and switch to it.
 228         */
 229        mmgrab(mm);
 230        current->active_mm = mm;
 231
 232        /*
 233         * TTBR0 is only used for the identity mapping at this stage. Make it
 234         * point to zero page to avoid speculatively fetching new entries.
 235         */
 236        cpu_uninstall_idmap();
 237
 238        preempt_disable();
 239        trace_hardirqs_off();
 240
 241        /*
 242         * If the system has established the capabilities, make sure
 243         * this CPU ticks all of those. If it doesn't, the CPU will
 244         * fail to come online.
 245         */
 246        check_local_cpu_capabilities();
 247
 248        if (cpu_ops[cpu]->cpu_postboot)
 249                cpu_ops[cpu]->cpu_postboot();
 250
 251        /*
 252         * Log the CPU info before it is marked online and might get read.
 253         */
 254        cpuinfo_store_cpu();
 255
 256        /*
 257         * Enable GIC and timers.
 258         */
 259        notify_cpu_starting(cpu);
 260
 261        store_cpu_topology(cpu);
 262
 263        /*
 264         * OK, now it's safe to let the boot CPU continue.  Wait for
 265         * the CPU migration code to notice that the CPU is online
 266         * before we continue.
 267         */
 268        pr_info("CPU%u: Booted secondary processor [%08x]\n",
 269                                         cpu, read_cpuid_id());
 270        update_cpu_boot_status(CPU_BOOT_SUCCESS);
 271        set_cpu_online(cpu, true);
 272        complete(&cpu_running);
 273
 274        local_irq_enable();
 275        local_async_enable();
 276
 277        /*
 278         * OK, it's off to the idle thread for us
 279         */
 280        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 281}
 282
 283#ifdef CONFIG_HOTPLUG_CPU
 284static int op_cpu_disable(unsigned int cpu)
 285{
 286        /*
 287         * If we don't have a cpu_die method, abort before we reach the point
 288         * of no return. CPU0 may not have an cpu_ops, so test for it.
 289         */
 290        if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
 291                return -EOPNOTSUPP;
 292
 293        /*
 294         * We may need to abort a hot unplug for some other mechanism-specific
 295         * reason.
 296         */
 297        if (cpu_ops[cpu]->cpu_disable)
 298                return cpu_ops[cpu]->cpu_disable(cpu);
 299
 300        return 0;
 301}
 302
 303/*
 304 * __cpu_disable runs on the processor to be shutdown.
 305 */
 306int __cpu_disable(void)
 307{
 308        unsigned int cpu = smp_processor_id();
 309        int ret;
 310
 311        ret = op_cpu_disable(cpu);
 312        if (ret)
 313                return ret;
 314
 315        /*
 316         * Take this CPU offline.  Once we clear this, we can't return,
 317         * and we must not schedule until we're ready to give up the cpu.
 318         */
 319        set_cpu_online(cpu, false);
 320
 321        /*
 322         * OK - migrate IRQs away from this CPU
 323         */
 324        irq_migrate_all_off_this_cpu();
 325
 326        return 0;
 327}
 328
 329static int op_cpu_kill(unsigned int cpu)
 330{
 331        /*
 332         * If we have no means of synchronising with the dying CPU, then assume
 333         * that it is really dead. We can only wait for an arbitrary length of
 334         * time and hope that it's dead, so let's skip the wait and just hope.
 335         */
 336        if (!cpu_ops[cpu]->cpu_kill)
 337                return 0;
 338
 339        return cpu_ops[cpu]->cpu_kill(cpu);
 340}
 341
 342/*
 343 * called on the thread which is asking for a CPU to be shutdown -
 344 * waits until shutdown has completed, or it is timed out.
 345 */
 346void __cpu_die(unsigned int cpu)
 347{
 348        int err;
 349
 350        if (!cpu_wait_death(cpu, 5)) {
 351                pr_crit("CPU%u: cpu didn't die\n", cpu);
 352                return;
 353        }
 354        pr_notice("CPU%u: shutdown\n", cpu);
 355
 356        /*
 357         * Now that the dying CPU is beyond the point of no return w.r.t.
 358         * in-kernel synchronisation, try to get the firwmare to help us to
 359         * verify that it has really left the kernel before we consider
 360         * clobbering anything it might still be using.
 361         */
 362        err = op_cpu_kill(cpu);
 363        if (err)
 364                pr_warn("CPU%d may not have shut down cleanly: %d\n",
 365                        cpu, err);
 366}
 367
 368/*
 369 * Called from the idle thread for the CPU which has been shutdown.
 370 *
 371 * Note that we disable IRQs here, but do not re-enable them
 372 * before returning to the caller. This is also the behaviour
 373 * of the other hotplug-cpu capable cores, so presumably coming
 374 * out of idle fixes this.
 375 */
 376void cpu_die(void)
 377{
 378        unsigned int cpu = smp_processor_id();
 379
 380        idle_task_exit();
 381
 382        local_irq_disable();
 383
 384        /* Tell __cpu_die() that this CPU is now safe to dispose of */
 385        (void)cpu_report_death();
 386
 387        /*
 388         * Actually shutdown the CPU. This must never fail. The specific hotplug
 389         * mechanism must perform all required cache maintenance to ensure that
 390         * no dirty lines are lost in the process of shutting down the CPU.
 391         */
 392        cpu_ops[cpu]->cpu_die(cpu);
 393
 394        BUG();
 395}
 396#endif
 397
 398/*
 399 * Kill the calling secondary CPU, early in bringup before it is turned
 400 * online.
 401 */
 402void cpu_die_early(void)
 403{
 404        int cpu = smp_processor_id();
 405
 406        pr_crit("CPU%d: will not boot\n", cpu);
 407
 408        /* Mark this CPU absent */
 409        set_cpu_present(cpu, 0);
 410
 411#ifdef CONFIG_HOTPLUG_CPU
 412        update_cpu_boot_status(CPU_KILL_ME);
 413        /* Check if we can park ourselves */
 414        if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
 415                cpu_ops[cpu]->cpu_die(cpu);
 416#endif
 417        update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
 418
 419        cpu_park_loop();
 420}
 421
 422static void __init hyp_mode_check(void)
 423{
 424        if (is_hyp_mode_available())
 425                pr_info("CPU: All CPU(s) started at EL2\n");
 426        else if (is_hyp_mode_mismatched())
 427                WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
 428                           "CPU: CPUs started in inconsistent modes");
 429        else
 430                pr_info("CPU: All CPU(s) started at EL1\n");
 431}
 432
 433void __init smp_cpus_done(unsigned int max_cpus)
 434{
 435        pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
 436        setup_cpu_features();
 437        hyp_mode_check();
 438        apply_alternatives_all();
 439        mark_linear_text_alias_ro();
 440}
 441
 442void __init smp_prepare_boot_cpu(void)
 443{
 444        set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 445        /*
 446         * Initialise the static keys early as they may be enabled by the
 447         * cpufeature code.
 448         */
 449        jump_label_init();
 450        cpuinfo_store_boot_cpu();
 451        save_boot_cpu_run_el();
 452        /*
 453         * Run the errata work around checks on the boot CPU, once we have
 454         * initialised the cpu feature infrastructure from
 455         * cpuinfo_store_boot_cpu() above.
 456         */
 457        update_cpu_errata_workarounds();
 458}
 459
 460static u64 __init of_get_cpu_mpidr(struct device_node *dn)
 461{
 462        const __be32 *cell;
 463        u64 hwid;
 464
 465        /*
 466         * A cpu node with missing "reg" property is
 467         * considered invalid to build a cpu_logical_map
 468         * entry.
 469         */
 470        cell = of_get_property(dn, "reg", NULL);
 471        if (!cell) {
 472                pr_err("%pOF: missing reg property\n", dn);
 473                return INVALID_HWID;
 474        }
 475
 476        hwid = of_read_number(cell, of_n_addr_cells(dn));
 477        /*
 478         * Non affinity bits must be set to 0 in the DT
 479         */
 480        if (hwid & ~MPIDR_HWID_BITMASK) {
 481                pr_err("%pOF: invalid reg property\n", dn);
 482                return INVALID_HWID;
 483        }
 484        return hwid;
 485}
 486
 487/*
 488 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
 489 * entries and check for duplicates. If any is found just ignore the
 490 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
 491 * matching valid MPIDR values.
 492 */
 493static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
 494{
 495        unsigned int i;
 496
 497        for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
 498                if (cpu_logical_map(i) == hwid)
 499                        return true;
 500        return false;
 501}
 502
 503/*
 504 * Initialize cpu operations for a logical cpu and
 505 * set it in the possible mask on success
 506 */
 507static int __init smp_cpu_setup(int cpu)
 508{
 509        if (cpu_read_ops(cpu))
 510                return -ENODEV;
 511
 512        if (cpu_ops[cpu]->cpu_init(cpu))
 513                return -ENODEV;
 514
 515        set_cpu_possible(cpu, true);
 516
 517        return 0;
 518}
 519
 520static bool bootcpu_valid __initdata;
 521static unsigned int cpu_count = 1;
 522
 523#ifdef CONFIG_ACPI
 524static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
 525
 526struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
 527{
 528        return &cpu_madt_gicc[cpu];
 529}
 530
 531/*
 532 * acpi_map_gic_cpu_interface - parse processor MADT entry
 533 *
 534 * Carry out sanity checks on MADT processor entry and initialize
 535 * cpu_logical_map on success
 536 */
 537static void __init
 538acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
 539{
 540        u64 hwid = processor->arm_mpidr;
 541
 542        if (!(processor->flags & ACPI_MADT_ENABLED)) {
 543                pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
 544                return;
 545        }
 546
 547        if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
 548                pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
 549                return;
 550        }
 551
 552        if (is_mpidr_duplicate(cpu_count, hwid)) {
 553                pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
 554                return;
 555        }
 556
 557        /* Check if GICC structure of boot CPU is available in the MADT */
 558        if (cpu_logical_map(0) == hwid) {
 559                if (bootcpu_valid) {
 560                        pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
 561                               hwid);
 562                        return;
 563                }
 564                bootcpu_valid = true;
 565                cpu_madt_gicc[0] = *processor;
 566                early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid));
 567                return;
 568        }
 569
 570        if (cpu_count >= NR_CPUS)
 571                return;
 572
 573        /* map the logical cpu id to cpu MPIDR */
 574        cpu_logical_map(cpu_count) = hwid;
 575
 576        cpu_madt_gicc[cpu_count] = *processor;
 577
 578        /*
 579         * Set-up the ACPI parking protocol cpu entries
 580         * while initializing the cpu_logical_map to
 581         * avoid parsing MADT entries multiple times for
 582         * nothing (ie a valid cpu_logical_map entry should
 583         * contain a valid parking protocol data set to
 584         * initialize the cpu if the parking protocol is
 585         * the only available enable method).
 586         */
 587        acpi_set_mailbox_entry(cpu_count, processor);
 588
 589        early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
 590
 591        cpu_count++;
 592}
 593
 594static int __init
 595acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
 596                             const unsigned long end)
 597{
 598        struct acpi_madt_generic_interrupt *processor;
 599
 600        processor = (struct acpi_madt_generic_interrupt *)header;
 601        if (BAD_MADT_GICC_ENTRY(processor, end))
 602                return -EINVAL;
 603
 604        acpi_table_print_madt_entry(header);
 605
 606        acpi_map_gic_cpu_interface(processor);
 607
 608        return 0;
 609}
 610#else
 611#define acpi_table_parse_madt(...)      do { } while (0)
 612#endif
 613
 614/*
 615 * Enumerate the possible CPU set from the device tree and build the
 616 * cpu logical map array containing MPIDR values related to logical
 617 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
 618 */
 619static void __init of_parse_and_init_cpus(void)
 620{
 621        struct device_node *dn;
 622
 623        for_each_node_by_type(dn, "cpu") {
 624                u64 hwid = of_get_cpu_mpidr(dn);
 625
 626                if (hwid == INVALID_HWID)
 627                        goto next;
 628
 629                if (is_mpidr_duplicate(cpu_count, hwid)) {
 630                        pr_err("%pOF: duplicate cpu reg properties in the DT\n",
 631                                dn);
 632                        goto next;
 633                }
 634
 635                /*
 636                 * The numbering scheme requires that the boot CPU
 637                 * must be assigned logical id 0. Record it so that
 638                 * the logical map built from DT is validated and can
 639                 * be used.
 640                 */
 641                if (hwid == cpu_logical_map(0)) {
 642                        if (bootcpu_valid) {
 643                                pr_err("%pOF: duplicate boot cpu reg property in DT\n",
 644                                        dn);
 645                                goto next;
 646                        }
 647
 648                        bootcpu_valid = true;
 649                        early_map_cpu_to_node(0, of_node_to_nid(dn));
 650
 651                        /*
 652                         * cpu_logical_map has already been
 653                         * initialized and the boot cpu doesn't need
 654                         * the enable-method so continue without
 655                         * incrementing cpu.
 656                         */
 657                        continue;
 658                }
 659
 660                if (cpu_count >= NR_CPUS)
 661                        goto next;
 662
 663                pr_debug("cpu logical map 0x%llx\n", hwid);
 664                cpu_logical_map(cpu_count) = hwid;
 665
 666                early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
 667next:
 668                cpu_count++;
 669        }
 670}
 671
 672/*
 673 * Enumerate the possible CPU set from the device tree or ACPI and build the
 674 * cpu logical map array containing MPIDR values related to logical
 675 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
 676 */
 677void __init smp_init_cpus(void)
 678{
 679        int i;
 680
 681        if (acpi_disabled)
 682                of_parse_and_init_cpus();
 683        else
 684                /*
 685                 * do a walk of MADT to determine how many CPUs
 686                 * we have including disabled CPUs, and get information
 687                 * we need for SMP init
 688                 */
 689                acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
 690                                      acpi_parse_gic_cpu_interface, 0);
 691
 692        if (cpu_count > nr_cpu_ids)
 693                pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
 694                        cpu_count, nr_cpu_ids);
 695
 696        if (!bootcpu_valid) {
 697                pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
 698                return;
 699        }
 700
 701        /*
 702         * We need to set the cpu_logical_map entries before enabling
 703         * the cpus so that cpu processor description entries (DT cpu nodes
 704         * and ACPI MADT entries) can be retrieved by matching the cpu hwid
 705         * with entries in cpu_logical_map while initializing the cpus.
 706         * If the cpu set-up fails, invalidate the cpu_logical_map entry.
 707         */
 708        for (i = 1; i < nr_cpu_ids; i++) {
 709                if (cpu_logical_map(i) != INVALID_HWID) {
 710                        if (smp_cpu_setup(i))
 711                                cpu_logical_map(i) = INVALID_HWID;
 712                }
 713        }
 714}
 715
 716void __init smp_prepare_cpus(unsigned int max_cpus)
 717{
 718        int err;
 719        unsigned int cpu;
 720        unsigned int this_cpu;
 721
 722        init_cpu_topology();
 723
 724        this_cpu = smp_processor_id();
 725        store_cpu_topology(this_cpu);
 726        numa_store_cpu_info(this_cpu);
 727
 728        /*
 729         * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
 730         * secondary CPUs present.
 731         */
 732        if (max_cpus == 0)
 733                return;
 734
 735        /*
 736         * Initialise the present map (which describes the set of CPUs
 737         * actually populated at the present time) and release the
 738         * secondaries from the bootloader.
 739         */
 740        for_each_possible_cpu(cpu) {
 741
 742                per_cpu(cpu_number, cpu) = cpu;
 743
 744                if (cpu == smp_processor_id())
 745                        continue;
 746
 747                if (!cpu_ops[cpu])
 748                        continue;
 749
 750                err = cpu_ops[cpu]->cpu_prepare(cpu);
 751                if (err)
 752                        continue;
 753
 754                set_cpu_present(cpu, true);
 755                numa_store_cpu_info(cpu);
 756        }
 757}
 758
 759void (*__smp_cross_call)(const struct cpumask *, unsigned int);
 760
 761void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
 762{
 763        __smp_cross_call = fn;
 764}
 765
 766static const char *ipi_types[NR_IPI] __tracepoint_string = {
 767#define S(x,s)  [x] = s
 768        S(IPI_RESCHEDULE, "Rescheduling interrupts"),
 769        S(IPI_CALL_FUNC, "Function call interrupts"),
 770        S(IPI_CPU_STOP, "CPU stop interrupts"),
 771        S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
 772        S(IPI_TIMER, "Timer broadcast interrupts"),
 773        S(IPI_IRQ_WORK, "IRQ work interrupts"),
 774        S(IPI_WAKEUP, "CPU wake-up interrupts"),
 775};
 776
 777static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
 778{
 779        trace_ipi_raise(target, ipi_types[ipinr]);
 780        __smp_cross_call(target, ipinr);
 781}
 782
 783void show_ipi_list(struct seq_file *p, int prec)
 784{
 785        unsigned int cpu, i;
 786
 787        for (i = 0; i < NR_IPI; i++) {
 788                seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
 789                           prec >= 4 ? " " : "");
 790                for_each_online_cpu(cpu)
 791                        seq_printf(p, "%10u ",
 792                                   __get_irq_stat(cpu, ipi_irqs[i]));
 793                seq_printf(p, "      %s\n", ipi_types[i]);
 794        }
 795}
 796
 797u64 smp_irq_stat_cpu(unsigned int cpu)
 798{
 799        u64 sum = 0;
 800        int i;
 801
 802        for (i = 0; i < NR_IPI; i++)
 803                sum += __get_irq_stat(cpu, ipi_irqs[i]);
 804
 805        return sum;
 806}
 807
 808void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 809{
 810        smp_cross_call(mask, IPI_CALL_FUNC);
 811}
 812
 813void arch_send_call_function_single_ipi(int cpu)
 814{
 815        smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
 816}
 817
 818#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
 819void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 820{
 821        smp_cross_call(mask, IPI_WAKEUP);
 822}
 823#endif
 824
 825#ifdef CONFIG_IRQ_WORK
 826void arch_irq_work_raise(void)
 827{
 828        if (__smp_cross_call)
 829                smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 830}
 831#endif
 832
 833/*
 834 * ipi_cpu_stop - handle IPI from smp_send_stop()
 835 */
 836static void ipi_cpu_stop(unsigned int cpu)
 837{
 838        set_cpu_online(cpu, false);
 839
 840        local_irq_disable();
 841
 842        while (1)
 843                cpu_relax();
 844}
 845
 846#ifdef CONFIG_KEXEC_CORE
 847static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
 848#endif
 849
 850static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
 851{
 852#ifdef CONFIG_KEXEC_CORE
 853        crash_save_cpu(regs, cpu);
 854
 855        atomic_dec(&waiting_for_crash_ipi);
 856
 857        local_irq_disable();
 858
 859#ifdef CONFIG_HOTPLUG_CPU
 860        if (cpu_ops[cpu]->cpu_die)
 861                cpu_ops[cpu]->cpu_die(cpu);
 862#endif
 863
 864        /* just in case */
 865        cpu_park_loop();
 866#endif
 867}
 868
 869/*
 870 * Main handler for inter-processor interrupts
 871 */
 872void handle_IPI(int ipinr, struct pt_regs *regs)
 873{
 874        unsigned int cpu = smp_processor_id();
 875        struct pt_regs *old_regs = set_irq_regs(regs);
 876
 877        if ((unsigned)ipinr < NR_IPI) {
 878                trace_ipi_entry_rcuidle(ipi_types[ipinr]);
 879                __inc_irq_stat(cpu, ipi_irqs[ipinr]);
 880        }
 881
 882        switch (ipinr) {
 883        case IPI_RESCHEDULE:
 884                scheduler_ipi();
 885                break;
 886
 887        case IPI_CALL_FUNC:
 888                irq_enter();
 889                generic_smp_call_function_interrupt();
 890                irq_exit();
 891                break;
 892
 893        case IPI_CPU_STOP:
 894                irq_enter();
 895                ipi_cpu_stop(cpu);
 896                irq_exit();
 897                break;
 898
 899        case IPI_CPU_CRASH_STOP:
 900                if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
 901                        irq_enter();
 902                        ipi_cpu_crash_stop(cpu, regs);
 903
 904                        unreachable();
 905                }
 906                break;
 907
 908#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 909        case IPI_TIMER:
 910                irq_enter();
 911                tick_receive_broadcast();
 912                irq_exit();
 913                break;
 914#endif
 915
 916#ifdef CONFIG_IRQ_WORK
 917        case IPI_IRQ_WORK:
 918                irq_enter();
 919                irq_work_run();
 920                irq_exit();
 921                break;
 922#endif
 923
 924#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
 925        case IPI_WAKEUP:
 926                WARN_ONCE(!acpi_parking_protocol_valid(cpu),
 927                          "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
 928                          cpu);
 929                break;
 930#endif
 931
 932        default:
 933                pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
 934                break;
 935        }
 936
 937        if ((unsigned)ipinr < NR_IPI)
 938                trace_ipi_exit_rcuidle(ipi_types[ipinr]);
 939        set_irq_regs(old_regs);
 940}
 941
 942void smp_send_reschedule(int cpu)
 943{
 944        smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
 945}
 946
 947#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 948void tick_broadcast(const struct cpumask *mask)
 949{
 950        smp_cross_call(mask, IPI_TIMER);
 951}
 952#endif
 953
 954void smp_send_stop(void)
 955{
 956        unsigned long timeout;
 957
 958        if (num_online_cpus() > 1) {
 959                cpumask_t mask;
 960
 961                cpumask_copy(&mask, cpu_online_mask);
 962                cpumask_clear_cpu(smp_processor_id(), &mask);
 963
 964                if (system_state <= SYSTEM_RUNNING)
 965                        pr_crit("SMP: stopping secondary CPUs\n");
 966                smp_cross_call(&mask, IPI_CPU_STOP);
 967        }
 968
 969        /* Wait up to one second for other CPUs to stop */
 970        timeout = USEC_PER_SEC;
 971        while (num_online_cpus() > 1 && timeout--)
 972                udelay(1);
 973
 974        if (num_online_cpus() > 1)
 975                pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
 976                           cpumask_pr_args(cpu_online_mask));
 977}
 978
 979#ifdef CONFIG_KEXEC_CORE
 980void crash_smp_send_stop(void)
 981{
 982        static int cpus_stopped;
 983        cpumask_t mask;
 984        unsigned long timeout;
 985
 986        /*
 987         * This function can be called twice in panic path, but obviously
 988         * we execute this only once.
 989         */
 990        if (cpus_stopped)
 991                return;
 992
 993        cpus_stopped = 1;
 994
 995        if (num_online_cpus() == 1)
 996                return;
 997
 998        cpumask_copy(&mask, cpu_online_mask);
 999        cpumask_clear_cpu(smp_processor_id(), &mask);
1000
1001        atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1002
1003        pr_crit("SMP: stopping secondary CPUs\n");
1004        smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1005
1006        /* Wait up to one second for other CPUs to stop */
1007        timeout = USEC_PER_SEC;
1008        while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1009                udelay(1);
1010
1011        if (atomic_read(&waiting_for_crash_ipi) > 0)
1012                pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1013                           cpumask_pr_args(&mask));
1014}
1015
1016bool smp_crash_stop_failed(void)
1017{
1018        return (atomic_read(&waiting_for_crash_ipi) > 0);
1019}
1020#endif
1021
1022/*
1023 * not supported here
1024 */
1025int setup_profiling_timer(unsigned int multiplier)
1026{
1027        return -EINVAL;
1028}
1029
1030static bool have_cpu_die(void)
1031{
1032#ifdef CONFIG_HOTPLUG_CPU
1033        int any_cpu = raw_smp_processor_id();
1034
1035        if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1036                return true;
1037#endif
1038        return false;
1039}
1040
1041bool cpus_are_stuck_in_kernel(void)
1042{
1043        bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1044
1045        return !!cpus_stuck_in_kernel || smp_spin_tables;
1046}
1047