linux/arch/ia64/kernel/perfmon.c
<<
>>
Prefs
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 *      http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/sched/task.h>
  26#include <linux/sched/task_stack.h>
  27#include <linux/interrupt.h>
  28#include <linux/proc_fs.h>
  29#include <linux/seq_file.h>
  30#include <linux/init.h>
  31#include <linux/vmalloc.h>
  32#include <linux/mm.h>
  33#include <linux/sysctl.h>
  34#include <linux/list.h>
  35#include <linux/file.h>
  36#include <linux/poll.h>
  37#include <linux/vfs.h>
  38#include <linux/smp.h>
  39#include <linux/pagemap.h>
  40#include <linux/mount.h>
  41#include <linux/bitops.h>
  42#include <linux/capability.h>
  43#include <linux/rcupdate.h>
  44#include <linux/completion.h>
  45#include <linux/tracehook.h>
  46#include <linux/slab.h>
  47#include <linux/cpu.h>
  48
  49#include <asm/errno.h>
  50#include <asm/intrinsics.h>
  51#include <asm/page.h>
  52#include <asm/perfmon.h>
  53#include <asm/processor.h>
  54#include <asm/signal.h>
  55#include <linux/uaccess.h>
  56#include <asm/delay.h>
  57
  58#ifdef CONFIG_PERFMON
  59/*
  60 * perfmon context state
  61 */
  62#define PFM_CTX_UNLOADED        1       /* context is not loaded onto any task */
  63#define PFM_CTX_LOADED          2       /* context is loaded onto a task */
  64#define PFM_CTX_MASKED          3       /* context is loaded but monitoring is masked due to overflow */
  65#define PFM_CTX_ZOMBIE          4       /* owner of the context is closing it */
  66
  67#define PFM_INVALID_ACTIVATION  (~0UL)
  68
  69#define PFM_NUM_PMC_REGS        64      /* PMC save area for ctxsw */
  70#define PFM_NUM_PMD_REGS        64      /* PMD save area for ctxsw */
  71
  72/*
  73 * depth of message queue
  74 */
  75#define PFM_MAX_MSGS            32
  76#define PFM_CTXQ_EMPTY(g)       ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  77
  78/*
  79 * type of a PMU register (bitmask).
  80 * bitmask structure:
  81 *      bit0   : register implemented
  82 *      bit1   : end marker
  83 *      bit2-3 : reserved
  84 *      bit4   : pmc has pmc.pm
  85 *      bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  86 *      bit6-7 : register type
  87 *      bit8-31: reserved
  88 */
  89#define PFM_REG_NOTIMPL         0x0 /* not implemented at all */
  90#define PFM_REG_IMPL            0x1 /* register implemented */
  91#define PFM_REG_END             0x2 /* end marker */
  92#define PFM_REG_MONITOR         (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  93#define PFM_REG_COUNTING        (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  94#define PFM_REG_CONTROL         (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  95#define PFM_REG_CONFIG          (0x8<<4|PFM_REG_IMPL) /* configuration register */
  96#define PFM_REG_BUFFER          (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  97
  98#define PMC_IS_LAST(i)  (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  99#define PMD_IS_LAST(i)  (pmu_conf->pmd_desc[i].type & PFM_REG_END)
 100
 101#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
 102
 103/* i assumed unsigned */
 104#define PMC_IS_IMPL(i)    (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 105#define PMD_IS_IMPL(i)    (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 106
 107/* XXX: these assume that register i is implemented */
 108#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 109#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 110#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 111#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 112
 113#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 114#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 115#define PMD_PMD_DEP(i)     pmu_conf->pmd_desc[i].dep_pmd[0]
 116#define PMC_PMD_DEP(i)     pmu_conf->pmc_desc[i].dep_pmd[0]
 117
 118#define PFM_NUM_IBRS      IA64_NUM_DBG_REGS
 119#define PFM_NUM_DBRS      IA64_NUM_DBG_REGS
 120
 121#define CTX_OVFL_NOBLOCK(c)     ((c)->ctx_fl_block == 0)
 122#define CTX_HAS_SMPL(c)         ((c)->ctx_fl_is_sampling)
 123#define PFM_CTX_TASK(h)         (h)->ctx_task
 124
 125#define PMU_PMC_OI              5 /* position of pmc.oi bit */
 126
 127/* XXX: does not support more than 64 PMDs */
 128#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 129#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 130
 131#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 132
 133#define CTX_USED_IBR(ctx,n)     (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 134#define CTX_USED_DBR(ctx,n)     (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 135#define CTX_USES_DBREGS(ctx)    (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 136#define PFM_CODE_RR     0       /* requesting code range restriction */
 137#define PFM_DATA_RR     1       /* requestion data range restriction */
 138
 139#define PFM_CPUINFO_CLEAR(v)    pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 140#define PFM_CPUINFO_SET(v)      pfm_get_cpu_var(pfm_syst_info) |= (v)
 141#define PFM_CPUINFO_GET()       pfm_get_cpu_var(pfm_syst_info)
 142
 143#define RDEP(x) (1UL<<(x))
 144
 145/*
 146 * context protection macros
 147 * in SMP:
 148 *      - we need to protect against CPU concurrency (spin_lock)
 149 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 150 * in UP:
 151 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 152 *
 153 * spin_lock_irqsave()/spin_unlock_irqrestore():
 154 *      in SMP: local_irq_disable + spin_lock
 155 *      in UP : local_irq_disable
 156 *
 157 * spin_lock()/spin_lock():
 158 *      in UP : removed automatically
 159 *      in SMP: protect against context accesses from other CPU. interrupts
 160 *              are not masked. This is useful for the PMU interrupt handler
 161 *              because we know we will not get PMU concurrency in that code.
 162 */
 163#define PROTECT_CTX(c, f) \
 164        do {  \
 165                DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 166                spin_lock_irqsave(&(c)->ctx_lock, f); \
 167                DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 168        } while(0)
 169
 170#define UNPROTECT_CTX(c, f) \
 171        do { \
 172                DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 173                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 174        } while(0)
 175
 176#define PROTECT_CTX_NOPRINT(c, f) \
 177        do {  \
 178                spin_lock_irqsave(&(c)->ctx_lock, f); \
 179        } while(0)
 180
 181
 182#define UNPROTECT_CTX_NOPRINT(c, f) \
 183        do { \
 184                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 185        } while(0)
 186
 187
 188#define PROTECT_CTX_NOIRQ(c) \
 189        do {  \
 190                spin_lock(&(c)->ctx_lock); \
 191        } while(0)
 192
 193#define UNPROTECT_CTX_NOIRQ(c) \
 194        do { \
 195                spin_unlock(&(c)->ctx_lock); \
 196        } while(0)
 197
 198
 199#ifdef CONFIG_SMP
 200
 201#define GET_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)
 202#define INC_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)++
 203#define SET_ACTIVATION(c)       (c)->ctx_last_activation = GET_ACTIVATION()
 204
 205#else /* !CONFIG_SMP */
 206#define SET_ACTIVATION(t)       do {} while(0)
 207#define GET_ACTIVATION(t)       do {} while(0)
 208#define INC_ACTIVATION(t)       do {} while(0)
 209#endif /* CONFIG_SMP */
 210
 211#define SET_PMU_OWNER(t, c)     do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 212#define GET_PMU_OWNER()         pfm_get_cpu_var(pmu_owner)
 213#define GET_PMU_CTX()           pfm_get_cpu_var(pmu_ctx)
 214
 215#define LOCK_PFS(g)             spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 216#define UNLOCK_PFS(g)           spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 217
 218#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 219
 220/*
 221 * cmp0 must be the value of pmc0
 222 */
 223#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 224
 225#define PFMFS_MAGIC 0xa0b4d889
 226
 227/*
 228 * debugging
 229 */
 230#define PFM_DEBUGGING 1
 231#ifdef PFM_DEBUGGING
 232#define DPRINT(a) \
 233        do { \
 234                if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 235        } while (0)
 236
 237#define DPRINT_ovfl(a) \
 238        do { \
 239                if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 240        } while (0)
 241#endif
 242
 243/*
 244 * 64-bit software counter structure
 245 *
 246 * the next_reset_type is applied to the next call to pfm_reset_regs()
 247 */
 248typedef struct {
 249        unsigned long   val;            /* virtual 64bit counter value */
 250        unsigned long   lval;           /* last reset value */
 251        unsigned long   long_reset;     /* reset value on sampling overflow */
 252        unsigned long   short_reset;    /* reset value on overflow */
 253        unsigned long   reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 254        unsigned long   smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 255        unsigned long   seed;           /* seed for random-number generator */
 256        unsigned long   mask;           /* mask for random-number generator */
 257        unsigned int    flags;          /* notify/do not notify */
 258        unsigned long   eventid;        /* overflow event identifier */
 259} pfm_counter_t;
 260
 261/*
 262 * context flags
 263 */
 264typedef struct {
 265        unsigned int block:1;           /* when 1, task will blocked on user notifications */
 266        unsigned int system:1;          /* do system wide monitoring */
 267        unsigned int using_dbreg:1;     /* using range restrictions (debug registers) */
 268        unsigned int is_sampling:1;     /* true if using a custom format */
 269        unsigned int excl_idle:1;       /* exclude idle task in system wide session */
 270        unsigned int going_zombie:1;    /* context is zombie (MASKED+blocking) */
 271        unsigned int trap_reason:2;     /* reason for going into pfm_handle_work() */
 272        unsigned int no_msg:1;          /* no message sent on overflow */
 273        unsigned int can_restart:1;     /* allowed to issue a PFM_RESTART */
 274        unsigned int reserved:22;
 275} pfm_context_flags_t;
 276
 277#define PFM_TRAP_REASON_NONE            0x0     /* default value */
 278#define PFM_TRAP_REASON_BLOCK           0x1     /* we need to block on overflow */
 279#define PFM_TRAP_REASON_RESET           0x2     /* we need to reset PMDs */
 280
 281
 282/*
 283 * perfmon context: encapsulates all the state of a monitoring session
 284 */
 285
 286typedef struct pfm_context {
 287        spinlock_t              ctx_lock;               /* context protection */
 288
 289        pfm_context_flags_t     ctx_flags;              /* bitmask of flags  (block reason incl.) */
 290        unsigned int            ctx_state;              /* state: active/inactive (no bitfield) */
 291
 292        struct task_struct      *ctx_task;              /* task to which context is attached */
 293
 294        unsigned long           ctx_ovfl_regs[4];       /* which registers overflowed (notification) */
 295
 296        struct completion       ctx_restart_done;       /* use for blocking notification mode */
 297
 298        unsigned long           ctx_used_pmds[4];       /* bitmask of PMD used            */
 299        unsigned long           ctx_all_pmds[4];        /* bitmask of all accessible PMDs */
 300        unsigned long           ctx_reload_pmds[4];     /* bitmask of force reload PMD on ctxsw in */
 301
 302        unsigned long           ctx_all_pmcs[4];        /* bitmask of all accessible PMCs */
 303        unsigned long           ctx_reload_pmcs[4];     /* bitmask of force reload PMC on ctxsw in */
 304        unsigned long           ctx_used_monitors[4];   /* bitmask of monitor PMC being used */
 305
 306        unsigned long           ctx_pmcs[PFM_NUM_PMC_REGS];     /*  saved copies of PMC values */
 307
 308        unsigned int            ctx_used_ibrs[1];               /* bitmask of used IBR (speedup ctxsw in) */
 309        unsigned int            ctx_used_dbrs[1];               /* bitmask of used DBR (speedup ctxsw in) */
 310        unsigned long           ctx_dbrs[IA64_NUM_DBG_REGS];    /* DBR values (cache) when not loaded */
 311        unsigned long           ctx_ibrs[IA64_NUM_DBG_REGS];    /* IBR values (cache) when not loaded */
 312
 313        pfm_counter_t           ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 314
 315        unsigned long           th_pmcs[PFM_NUM_PMC_REGS];      /* PMC thread save state */
 316        unsigned long           th_pmds[PFM_NUM_PMD_REGS];      /* PMD thread save state */
 317
 318        unsigned long           ctx_saved_psr_up;       /* only contains psr.up value */
 319
 320        unsigned long           ctx_last_activation;    /* context last activation number for last_cpu */
 321        unsigned int            ctx_last_cpu;           /* CPU id of current or last CPU used (SMP only) */
 322        unsigned int            ctx_cpu;                /* cpu to which perfmon is applied (system wide) */
 323
 324        int                     ctx_fd;                 /* file descriptor used my this context */
 325        pfm_ovfl_arg_t          ctx_ovfl_arg;           /* argument to custom buffer format handler */
 326
 327        pfm_buffer_fmt_t        *ctx_buf_fmt;           /* buffer format callbacks */
 328        void                    *ctx_smpl_hdr;          /* points to sampling buffer header kernel vaddr */
 329        unsigned long           ctx_smpl_size;          /* size of sampling buffer */
 330        void                    *ctx_smpl_vaddr;        /* user level virtual address of smpl buffer */
 331
 332        wait_queue_head_t       ctx_msgq_wait;
 333        pfm_msg_t               ctx_msgq[PFM_MAX_MSGS];
 334        int                     ctx_msgq_head;
 335        int                     ctx_msgq_tail;
 336        struct fasync_struct    *ctx_async_queue;
 337
 338        wait_queue_head_t       ctx_zombieq;            /* termination cleanup wait queue */
 339} pfm_context_t;
 340
 341/*
 342 * magic number used to verify that structure is really
 343 * a perfmon context
 344 */
 345#define PFM_IS_FILE(f)          ((f)->f_op == &pfm_file_ops)
 346
 347#define PFM_GET_CTX(t)          ((pfm_context_t *)(t)->thread.pfm_context)
 348
 349#ifdef CONFIG_SMP
 350#define SET_LAST_CPU(ctx, v)    (ctx)->ctx_last_cpu = (v)
 351#define GET_LAST_CPU(ctx)       (ctx)->ctx_last_cpu
 352#else
 353#define SET_LAST_CPU(ctx, v)    do {} while(0)
 354#define GET_LAST_CPU(ctx)       do {} while(0)
 355#endif
 356
 357
 358#define ctx_fl_block            ctx_flags.block
 359#define ctx_fl_system           ctx_flags.system
 360#define ctx_fl_using_dbreg      ctx_flags.using_dbreg
 361#define ctx_fl_is_sampling      ctx_flags.is_sampling
 362#define ctx_fl_excl_idle        ctx_flags.excl_idle
 363#define ctx_fl_going_zombie     ctx_flags.going_zombie
 364#define ctx_fl_trap_reason      ctx_flags.trap_reason
 365#define ctx_fl_no_msg           ctx_flags.no_msg
 366#define ctx_fl_can_restart      ctx_flags.can_restart
 367
 368#define PFM_SET_WORK_PENDING(t, v)      do { (t)->thread.pfm_needs_checking = v; } while(0);
 369#define PFM_GET_WORK_PENDING(t)         (t)->thread.pfm_needs_checking
 370
 371/*
 372 * global information about all sessions
 373 * mostly used to synchronize between system wide and per-process
 374 */
 375typedef struct {
 376        spinlock_t              pfs_lock;                  /* lock the structure */
 377
 378        unsigned int            pfs_task_sessions;         /* number of per task sessions */
 379        unsigned int            pfs_sys_sessions;          /* number of per system wide sessions */
 380        unsigned int            pfs_sys_use_dbregs;        /* incremented when a system wide session uses debug regs */
 381        unsigned int            pfs_ptrace_use_dbregs;     /* incremented when a process uses debug regs */
 382        struct task_struct      *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 383} pfm_session_t;
 384
 385/*
 386 * information about a PMC or PMD.
 387 * dep_pmd[]: a bitmask of dependent PMD registers
 388 * dep_pmc[]: a bitmask of dependent PMC registers
 389 */
 390typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 391typedef struct {
 392        unsigned int            type;
 393        int                     pm_pos;
 394        unsigned long           default_value;  /* power-on default value */
 395        unsigned long           reserved_mask;  /* bitmask of reserved bits */
 396        pfm_reg_check_t         read_check;
 397        pfm_reg_check_t         write_check;
 398        unsigned long           dep_pmd[4];
 399        unsigned long           dep_pmc[4];
 400} pfm_reg_desc_t;
 401
 402/* assume cnum is a valid monitor */
 403#define PMC_PM(cnum, val)       (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 404
 405/*
 406 * This structure is initialized at boot time and contains
 407 * a description of the PMU main characteristics.
 408 *
 409 * If the probe function is defined, detection is based
 410 * on its return value: 
 411 *      - 0 means recognized PMU
 412 *      - anything else means not supported
 413 * When the probe function is not defined, then the pmu_family field
 414 * is used and it must match the host CPU family such that:
 415 *      - cpu->family & config->pmu_family != 0
 416 */
 417typedef struct {
 418        unsigned long  ovfl_val;        /* overflow value for counters */
 419
 420        pfm_reg_desc_t *pmc_desc;       /* detailed PMC register dependencies descriptions */
 421        pfm_reg_desc_t *pmd_desc;       /* detailed PMD register dependencies descriptions */
 422
 423        unsigned int   num_pmcs;        /* number of PMCS: computed at init time */
 424        unsigned int   num_pmds;        /* number of PMDS: computed at init time */
 425        unsigned long  impl_pmcs[4];    /* bitmask of implemented PMCS */
 426        unsigned long  impl_pmds[4];    /* bitmask of implemented PMDS */
 427
 428        char          *pmu_name;        /* PMU family name */
 429        unsigned int  pmu_family;       /* cpuid family pattern used to identify pmu */
 430        unsigned int  flags;            /* pmu specific flags */
 431        unsigned int  num_ibrs;         /* number of IBRS: computed at init time */
 432        unsigned int  num_dbrs;         /* number of DBRS: computed at init time */
 433        unsigned int  num_counters;     /* PMC/PMD counting pairs : computed at init time */
 434        int           (*probe)(void);   /* customized probe routine */
 435        unsigned int  use_rr_dbregs:1;  /* set if debug registers used for range restriction */
 436} pmu_config_t;
 437/*
 438 * PMU specific flags
 439 */
 440#define PFM_PMU_IRQ_RESEND      1       /* PMU needs explicit IRQ resend */
 441
 442/*
 443 * debug register related type definitions
 444 */
 445typedef struct {
 446        unsigned long ibr_mask:56;
 447        unsigned long ibr_plm:4;
 448        unsigned long ibr_ig:3;
 449        unsigned long ibr_x:1;
 450} ibr_mask_reg_t;
 451
 452typedef struct {
 453        unsigned long dbr_mask:56;
 454        unsigned long dbr_plm:4;
 455        unsigned long dbr_ig:2;
 456        unsigned long dbr_w:1;
 457        unsigned long dbr_r:1;
 458} dbr_mask_reg_t;
 459
 460typedef union {
 461        unsigned long  val;
 462        ibr_mask_reg_t ibr;
 463        dbr_mask_reg_t dbr;
 464} dbreg_t;
 465
 466
 467/*
 468 * perfmon command descriptions
 469 */
 470typedef struct {
 471        int             (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 472        char            *cmd_name;
 473        int             cmd_flags;
 474        unsigned int    cmd_narg;
 475        size_t          cmd_argsize;
 476        int             (*cmd_getsize)(void *arg, size_t *sz);
 477} pfm_cmd_desc_t;
 478
 479#define PFM_CMD_FD              0x01    /* command requires a file descriptor */
 480#define PFM_CMD_ARG_READ        0x02    /* command must read argument(s) */
 481#define PFM_CMD_ARG_RW          0x04    /* command must read/write argument(s) */
 482#define PFM_CMD_STOP            0x08    /* command does not work on zombie context */
 483
 484
 485#define PFM_CMD_NAME(cmd)       pfm_cmd_tab[(cmd)].cmd_name
 486#define PFM_CMD_READ_ARG(cmd)   (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 487#define PFM_CMD_RW_ARG(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 488#define PFM_CMD_USE_FD(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 489#define PFM_CMD_STOPPED(cmd)    (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 490
 491#define PFM_CMD_ARG_MANY        -1 /* cannot be zero */
 492
 493typedef struct {
 494        unsigned long pfm_spurious_ovfl_intr_count;     /* keep track of spurious ovfl interrupts */
 495        unsigned long pfm_replay_ovfl_intr_count;       /* keep track of replayed ovfl interrupts */
 496        unsigned long pfm_ovfl_intr_count;              /* keep track of ovfl interrupts */
 497        unsigned long pfm_ovfl_intr_cycles;             /* cycles spent processing ovfl interrupts */
 498        unsigned long pfm_ovfl_intr_cycles_min;         /* min cycles spent processing ovfl interrupts */
 499        unsigned long pfm_ovfl_intr_cycles_max;         /* max cycles spent processing ovfl interrupts */
 500        unsigned long pfm_smpl_handler_calls;
 501        unsigned long pfm_smpl_handler_cycles;
 502        char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 503} pfm_stats_t;
 504
 505/*
 506 * perfmon internal variables
 507 */
 508static pfm_stats_t              pfm_stats[NR_CPUS];
 509static pfm_session_t            pfm_sessions;   /* global sessions information */
 510
 511static DEFINE_SPINLOCK(pfm_alt_install_check);
 512static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 513
 514static struct proc_dir_entry    *perfmon_dir;
 515static pfm_uuid_t               pfm_null_uuid = {0,};
 516
 517static spinlock_t               pfm_buffer_fmt_lock;
 518static LIST_HEAD(pfm_buffer_fmt_list);
 519
 520static pmu_config_t             *pmu_conf;
 521
 522/* sysctl() controls */
 523pfm_sysctl_t pfm_sysctl;
 524EXPORT_SYMBOL(pfm_sysctl);
 525
 526static struct ctl_table pfm_ctl_table[] = {
 527        {
 528                .procname       = "debug",
 529                .data           = &pfm_sysctl.debug,
 530                .maxlen         = sizeof(int),
 531                .mode           = 0666,
 532                .proc_handler   = proc_dointvec,
 533        },
 534        {
 535                .procname       = "debug_ovfl",
 536                .data           = &pfm_sysctl.debug_ovfl,
 537                .maxlen         = sizeof(int),
 538                .mode           = 0666,
 539                .proc_handler   = proc_dointvec,
 540        },
 541        {
 542                .procname       = "fastctxsw",
 543                .data           = &pfm_sysctl.fastctxsw,
 544                .maxlen         = sizeof(int),
 545                .mode           = 0600,
 546                .proc_handler   = proc_dointvec,
 547        },
 548        {
 549                .procname       = "expert_mode",
 550                .data           = &pfm_sysctl.expert_mode,
 551                .maxlen         = sizeof(int),
 552                .mode           = 0600,
 553                .proc_handler   = proc_dointvec,
 554        },
 555        {}
 556};
 557static struct ctl_table pfm_sysctl_dir[] = {
 558        {
 559                .procname       = "perfmon",
 560                .mode           = 0555,
 561                .child          = pfm_ctl_table,
 562        },
 563        {}
 564};
 565static struct ctl_table pfm_sysctl_root[] = {
 566        {
 567                .procname       = "kernel",
 568                .mode           = 0555,
 569                .child          = pfm_sysctl_dir,
 570        },
 571        {}
 572};
 573static struct ctl_table_header *pfm_sysctl_header;
 574
 575static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 576
 577#define pfm_get_cpu_var(v)              __ia64_per_cpu_var(v)
 578#define pfm_get_cpu_data(a,b)           per_cpu(a, b)
 579
 580static inline void
 581pfm_put_task(struct task_struct *task)
 582{
 583        if (task != current) put_task_struct(task);
 584}
 585
 586static inline void
 587pfm_reserve_page(unsigned long a)
 588{
 589        SetPageReserved(vmalloc_to_page((void *)a));
 590}
 591static inline void
 592pfm_unreserve_page(unsigned long a)
 593{
 594        ClearPageReserved(vmalloc_to_page((void*)a));
 595}
 596
 597static inline unsigned long
 598pfm_protect_ctx_ctxsw(pfm_context_t *x)
 599{
 600        spin_lock(&(x)->ctx_lock);
 601        return 0UL;
 602}
 603
 604static inline void
 605pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 606{
 607        spin_unlock(&(x)->ctx_lock);
 608}
 609
 610/* forward declaration */
 611static const struct dentry_operations pfmfs_dentry_operations;
 612
 613static struct dentry *
 614pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 615{
 616        return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 617                        PFMFS_MAGIC);
 618}
 619
 620static struct file_system_type pfm_fs_type = {
 621        .name     = "pfmfs",
 622        .mount    = pfmfs_mount,
 623        .kill_sb  = kill_anon_super,
 624};
 625MODULE_ALIAS_FS("pfmfs");
 626
 627DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 628DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 629DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 630DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 631EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 632
 633
 634/* forward declaration */
 635static const struct file_operations pfm_file_ops;
 636
 637/*
 638 * forward declarations
 639 */
 640#ifndef CONFIG_SMP
 641static void pfm_lazy_save_regs (struct task_struct *ta);
 642#endif
 643
 644void dump_pmu_state(const char *);
 645static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 646
 647#include "perfmon_itanium.h"
 648#include "perfmon_mckinley.h"
 649#include "perfmon_montecito.h"
 650#include "perfmon_generic.h"
 651
 652static pmu_config_t *pmu_confs[]={
 653        &pmu_conf_mont,
 654        &pmu_conf_mck,
 655        &pmu_conf_ita,
 656        &pmu_conf_gen, /* must be last */
 657        NULL
 658};
 659
 660
 661static int pfm_end_notify_user(pfm_context_t *ctx);
 662
 663static inline void
 664pfm_clear_psr_pp(void)
 665{
 666        ia64_rsm(IA64_PSR_PP);
 667        ia64_srlz_i();
 668}
 669
 670static inline void
 671pfm_set_psr_pp(void)
 672{
 673        ia64_ssm(IA64_PSR_PP);
 674        ia64_srlz_i();
 675}
 676
 677static inline void
 678pfm_clear_psr_up(void)
 679{
 680        ia64_rsm(IA64_PSR_UP);
 681        ia64_srlz_i();
 682}
 683
 684static inline void
 685pfm_set_psr_up(void)
 686{
 687        ia64_ssm(IA64_PSR_UP);
 688        ia64_srlz_i();
 689}
 690
 691static inline unsigned long
 692pfm_get_psr(void)
 693{
 694        unsigned long tmp;
 695        tmp = ia64_getreg(_IA64_REG_PSR);
 696        ia64_srlz_i();
 697        return tmp;
 698}
 699
 700static inline void
 701pfm_set_psr_l(unsigned long val)
 702{
 703        ia64_setreg(_IA64_REG_PSR_L, val);
 704        ia64_srlz_i();
 705}
 706
 707static inline void
 708pfm_freeze_pmu(void)
 709{
 710        ia64_set_pmc(0,1UL);
 711        ia64_srlz_d();
 712}
 713
 714static inline void
 715pfm_unfreeze_pmu(void)
 716{
 717        ia64_set_pmc(0,0UL);
 718        ia64_srlz_d();
 719}
 720
 721static inline void
 722pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 723{
 724        int i;
 725
 726        for (i=0; i < nibrs; i++) {
 727                ia64_set_ibr(i, ibrs[i]);
 728                ia64_dv_serialize_instruction();
 729        }
 730        ia64_srlz_i();
 731}
 732
 733static inline void
 734pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 735{
 736        int i;
 737
 738        for (i=0; i < ndbrs; i++) {
 739                ia64_set_dbr(i, dbrs[i]);
 740                ia64_dv_serialize_data();
 741        }
 742        ia64_srlz_d();
 743}
 744
 745/*
 746 * PMD[i] must be a counter. no check is made
 747 */
 748static inline unsigned long
 749pfm_read_soft_counter(pfm_context_t *ctx, int i)
 750{
 751        return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 752}
 753
 754/*
 755 * PMD[i] must be a counter. no check is made
 756 */
 757static inline void
 758pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 759{
 760        unsigned long ovfl_val = pmu_conf->ovfl_val;
 761
 762        ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 763        /*
 764         * writing to unimplemented part is ignore, so we do not need to
 765         * mask off top part
 766         */
 767        ia64_set_pmd(i, val & ovfl_val);
 768}
 769
 770static pfm_msg_t *
 771pfm_get_new_msg(pfm_context_t *ctx)
 772{
 773        int idx, next;
 774
 775        next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 776
 777        DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 778        if (next == ctx->ctx_msgq_head) return NULL;
 779
 780        idx =   ctx->ctx_msgq_tail;
 781        ctx->ctx_msgq_tail = next;
 782
 783        DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 784
 785        return ctx->ctx_msgq+idx;
 786}
 787
 788static pfm_msg_t *
 789pfm_get_next_msg(pfm_context_t *ctx)
 790{
 791        pfm_msg_t *msg;
 792
 793        DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 794
 795        if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 796
 797        /*
 798         * get oldest message
 799         */
 800        msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 801
 802        /*
 803         * and move forward
 804         */
 805        ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 806
 807        DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 808
 809        return msg;
 810}
 811
 812static void
 813pfm_reset_msgq(pfm_context_t *ctx)
 814{
 815        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 816        DPRINT(("ctx=%p msgq reset\n", ctx));
 817}
 818
 819static void *
 820pfm_rvmalloc(unsigned long size)
 821{
 822        void *mem;
 823        unsigned long addr;
 824
 825        size = PAGE_ALIGN(size);
 826        mem  = vzalloc(size);
 827        if (mem) {
 828                //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 829                addr = (unsigned long)mem;
 830                while (size > 0) {
 831                        pfm_reserve_page(addr);
 832                        addr+=PAGE_SIZE;
 833                        size-=PAGE_SIZE;
 834                }
 835        }
 836        return mem;
 837}
 838
 839static void
 840pfm_rvfree(void *mem, unsigned long size)
 841{
 842        unsigned long addr;
 843
 844        if (mem) {
 845                DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 846                addr = (unsigned long) mem;
 847                while ((long) size > 0) {
 848                        pfm_unreserve_page(addr);
 849                        addr+=PAGE_SIZE;
 850                        size-=PAGE_SIZE;
 851                }
 852                vfree(mem);
 853        }
 854        return;
 855}
 856
 857static pfm_context_t *
 858pfm_context_alloc(int ctx_flags)
 859{
 860        pfm_context_t *ctx;
 861
 862        /* 
 863         * allocate context descriptor 
 864         * must be able to free with interrupts disabled
 865         */
 866        ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 867        if (ctx) {
 868                DPRINT(("alloc ctx @%p\n", ctx));
 869
 870                /*
 871                 * init context protection lock
 872                 */
 873                spin_lock_init(&ctx->ctx_lock);
 874
 875                /*
 876                 * context is unloaded
 877                 */
 878                ctx->ctx_state = PFM_CTX_UNLOADED;
 879
 880                /*
 881                 * initialization of context's flags
 882                 */
 883                ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 884                ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 885                ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 886                /*
 887                 * will move to set properties
 888                 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 889                 */
 890
 891                /*
 892                 * init restart semaphore to locked
 893                 */
 894                init_completion(&ctx->ctx_restart_done);
 895
 896                /*
 897                 * activation is used in SMP only
 898                 */
 899                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 900                SET_LAST_CPU(ctx, -1);
 901
 902                /*
 903                 * initialize notification message queue
 904                 */
 905                ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 906                init_waitqueue_head(&ctx->ctx_msgq_wait);
 907                init_waitqueue_head(&ctx->ctx_zombieq);
 908
 909        }
 910        return ctx;
 911}
 912
 913static void
 914pfm_context_free(pfm_context_t *ctx)
 915{
 916        if (ctx) {
 917                DPRINT(("free ctx @%p\n", ctx));
 918                kfree(ctx);
 919        }
 920}
 921
 922static void
 923pfm_mask_monitoring(struct task_struct *task)
 924{
 925        pfm_context_t *ctx = PFM_GET_CTX(task);
 926        unsigned long mask, val, ovfl_mask;
 927        int i;
 928
 929        DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 930
 931        ovfl_mask = pmu_conf->ovfl_val;
 932        /*
 933         * monitoring can only be masked as a result of a valid
 934         * counter overflow. In UP, it means that the PMU still
 935         * has an owner. Note that the owner can be different
 936         * from the current task. However the PMU state belongs
 937         * to the owner.
 938         * In SMP, a valid overflow only happens when task is
 939         * current. Therefore if we come here, we know that
 940         * the PMU state belongs to the current task, therefore
 941         * we can access the live registers.
 942         *
 943         * So in both cases, the live register contains the owner's
 944         * state. We can ONLY touch the PMU registers and NOT the PSR.
 945         *
 946         * As a consequence to this call, the ctx->th_pmds[] array
 947         * contains stale information which must be ignored
 948         * when context is reloaded AND monitoring is active (see
 949         * pfm_restart).
 950         */
 951        mask = ctx->ctx_used_pmds[0];
 952        for (i = 0; mask; i++, mask>>=1) {
 953                /* skip non used pmds */
 954                if ((mask & 0x1) == 0) continue;
 955                val = ia64_get_pmd(i);
 956
 957                if (PMD_IS_COUNTING(i)) {
 958                        /*
 959                         * we rebuild the full 64 bit value of the counter
 960                         */
 961                        ctx->ctx_pmds[i].val += (val & ovfl_mask);
 962                } else {
 963                        ctx->ctx_pmds[i].val = val;
 964                }
 965                DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 966                        i,
 967                        ctx->ctx_pmds[i].val,
 968                        val & ovfl_mask));
 969        }
 970        /*
 971         * mask monitoring by setting the privilege level to 0
 972         * we cannot use psr.pp/psr.up for this, it is controlled by
 973         * the user
 974         *
 975         * if task is current, modify actual registers, otherwise modify
 976         * thread save state, i.e., what will be restored in pfm_load_regs()
 977         */
 978        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 979        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 980                if ((mask & 0x1) == 0UL) continue;
 981                ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 982                ctx->th_pmcs[i] &= ~0xfUL;
 983                DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 984        }
 985        /*
 986         * make all of this visible
 987         */
 988        ia64_srlz_d();
 989}
 990
 991/*
 992 * must always be done with task == current
 993 *
 994 * context must be in MASKED state when calling
 995 */
 996static void
 997pfm_restore_monitoring(struct task_struct *task)
 998{
 999        pfm_context_t *ctx = PFM_GET_CTX(task);
1000        unsigned long mask, ovfl_mask;
1001        unsigned long psr, val;
1002        int i, is_system;
1003
1004        is_system = ctx->ctx_fl_system;
1005        ovfl_mask = pmu_conf->ovfl_val;
1006
1007        if (task != current) {
1008                printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1009                return;
1010        }
1011        if (ctx->ctx_state != PFM_CTX_MASKED) {
1012                printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1013                        task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1014                return;
1015        }
1016        psr = pfm_get_psr();
1017        /*
1018         * monitoring is masked via the PMC.
1019         * As we restore their value, we do not want each counter to
1020         * restart right away. We stop monitoring using the PSR,
1021         * restore the PMC (and PMD) and then re-establish the psr
1022         * as it was. Note that there can be no pending overflow at
1023         * this point, because monitoring was MASKED.
1024         *
1025         * system-wide session are pinned and self-monitoring
1026         */
1027        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1028                /* disable dcr pp */
1029                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1030                pfm_clear_psr_pp();
1031        } else {
1032                pfm_clear_psr_up();
1033        }
1034        /*
1035         * first, we restore the PMD
1036         */
1037        mask = ctx->ctx_used_pmds[0];
1038        for (i = 0; mask; i++, mask>>=1) {
1039                /* skip non used pmds */
1040                if ((mask & 0x1) == 0) continue;
1041
1042                if (PMD_IS_COUNTING(i)) {
1043                        /*
1044                         * we split the 64bit value according to
1045                         * counter width
1046                         */
1047                        val = ctx->ctx_pmds[i].val & ovfl_mask;
1048                        ctx->ctx_pmds[i].val &= ~ovfl_mask;
1049                } else {
1050                        val = ctx->ctx_pmds[i].val;
1051                }
1052                ia64_set_pmd(i, val);
1053
1054                DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1055                        i,
1056                        ctx->ctx_pmds[i].val,
1057                        val));
1058        }
1059        /*
1060         * restore the PMCs
1061         */
1062        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1063        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1064                if ((mask & 0x1) == 0UL) continue;
1065                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1066                ia64_set_pmc(i, ctx->th_pmcs[i]);
1067                DPRINT(("[%d] pmc[%d]=0x%lx\n",
1068                                        task_pid_nr(task), i, ctx->th_pmcs[i]));
1069        }
1070        ia64_srlz_d();
1071
1072        /*
1073         * must restore DBR/IBR because could be modified while masked
1074         * XXX: need to optimize 
1075         */
1076        if (ctx->ctx_fl_using_dbreg) {
1077                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1078                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1079        }
1080
1081        /*
1082         * now restore PSR
1083         */
1084        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1085                /* enable dcr pp */
1086                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1087                ia64_srlz_i();
1088        }
1089        pfm_set_psr_l(psr);
1090}
1091
1092static inline void
1093pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1094{
1095        int i;
1096
1097        ia64_srlz_d();
1098
1099        for (i=0; mask; i++, mask>>=1) {
1100                if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1101        }
1102}
1103
1104/*
1105 * reload from thread state (used for ctxw only)
1106 */
1107static inline void
1108pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1109{
1110        int i;
1111        unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1112
1113        for (i=0; mask; i++, mask>>=1) {
1114                if ((mask & 0x1) == 0) continue;
1115                val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1116                ia64_set_pmd(i, val);
1117        }
1118        ia64_srlz_d();
1119}
1120
1121/*
1122 * propagate PMD from context to thread-state
1123 */
1124static inline void
1125pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1126{
1127        unsigned long ovfl_val = pmu_conf->ovfl_val;
1128        unsigned long mask = ctx->ctx_all_pmds[0];
1129        unsigned long val;
1130        int i;
1131
1132        DPRINT(("mask=0x%lx\n", mask));
1133
1134        for (i=0; mask; i++, mask>>=1) {
1135
1136                val = ctx->ctx_pmds[i].val;
1137
1138                /*
1139                 * We break up the 64 bit value into 2 pieces
1140                 * the lower bits go to the machine state in the
1141                 * thread (will be reloaded on ctxsw in).
1142                 * The upper part stays in the soft-counter.
1143                 */
1144                if (PMD_IS_COUNTING(i)) {
1145                        ctx->ctx_pmds[i].val = val & ~ovfl_val;
1146                         val &= ovfl_val;
1147                }
1148                ctx->th_pmds[i] = val;
1149
1150                DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1151                        i,
1152                        ctx->th_pmds[i],
1153                        ctx->ctx_pmds[i].val));
1154        }
1155}
1156
1157/*
1158 * propagate PMC from context to thread-state
1159 */
1160static inline void
1161pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1162{
1163        unsigned long mask = ctx->ctx_all_pmcs[0];
1164        int i;
1165
1166        DPRINT(("mask=0x%lx\n", mask));
1167
1168        for (i=0; mask; i++, mask>>=1) {
1169                /* masking 0 with ovfl_val yields 0 */
1170                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1171                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1172        }
1173}
1174
1175
1176
1177static inline void
1178pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1179{
1180        int i;
1181
1182        for (i=0; mask; i++, mask>>=1) {
1183                if ((mask & 0x1) == 0) continue;
1184                ia64_set_pmc(i, pmcs[i]);
1185        }
1186        ia64_srlz_d();
1187}
1188
1189static inline int
1190pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1191{
1192        return memcmp(a, b, sizeof(pfm_uuid_t));
1193}
1194
1195static inline int
1196pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1197{
1198        int ret = 0;
1199        if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1200        return ret;
1201}
1202
1203static inline int
1204pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1205{
1206        int ret = 0;
1207        if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1208        return ret;
1209}
1210
1211
1212static inline int
1213pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1214                     int cpu, void *arg)
1215{
1216        int ret = 0;
1217        if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1218        return ret;
1219}
1220
1221static inline int
1222pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1223                     int cpu, void *arg)
1224{
1225        int ret = 0;
1226        if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1227        return ret;
1228}
1229
1230static inline int
1231pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1232{
1233        int ret = 0;
1234        if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1235        return ret;
1236}
1237
1238static inline int
1239pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1240{
1241        int ret = 0;
1242        if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1243        return ret;
1244}
1245
1246static pfm_buffer_fmt_t *
1247__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1248{
1249        struct list_head * pos;
1250        pfm_buffer_fmt_t * entry;
1251
1252        list_for_each(pos, &pfm_buffer_fmt_list) {
1253                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1254                if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1255                        return entry;
1256        }
1257        return NULL;
1258}
1259 
1260/*
1261 * find a buffer format based on its uuid
1262 */
1263static pfm_buffer_fmt_t *
1264pfm_find_buffer_fmt(pfm_uuid_t uuid)
1265{
1266        pfm_buffer_fmt_t * fmt;
1267        spin_lock(&pfm_buffer_fmt_lock);
1268        fmt = __pfm_find_buffer_fmt(uuid);
1269        spin_unlock(&pfm_buffer_fmt_lock);
1270        return fmt;
1271}
1272 
1273int
1274pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1275{
1276        int ret = 0;
1277
1278        /* some sanity checks */
1279        if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1280
1281        /* we need at least a handler */
1282        if (fmt->fmt_handler == NULL) return -EINVAL;
1283
1284        /*
1285         * XXX: need check validity of fmt_arg_size
1286         */
1287
1288        spin_lock(&pfm_buffer_fmt_lock);
1289
1290        if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1291                printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1292                ret = -EBUSY;
1293                goto out;
1294        } 
1295        list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1296        printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1297
1298out:
1299        spin_unlock(&pfm_buffer_fmt_lock);
1300        return ret;
1301}
1302EXPORT_SYMBOL(pfm_register_buffer_fmt);
1303
1304int
1305pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1306{
1307        pfm_buffer_fmt_t *fmt;
1308        int ret = 0;
1309
1310        spin_lock(&pfm_buffer_fmt_lock);
1311
1312        fmt = __pfm_find_buffer_fmt(uuid);
1313        if (!fmt) {
1314                printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1315                ret = -EINVAL;
1316                goto out;
1317        }
1318        list_del_init(&fmt->fmt_list);
1319        printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1320
1321out:
1322        spin_unlock(&pfm_buffer_fmt_lock);
1323        return ret;
1324
1325}
1326EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1327
1328static int
1329pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1330{
1331        unsigned long flags;
1332        /*
1333         * validity checks on cpu_mask have been done upstream
1334         */
1335        LOCK_PFS(flags);
1336
1337        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1338                pfm_sessions.pfs_sys_sessions,
1339                pfm_sessions.pfs_task_sessions,
1340                pfm_sessions.pfs_sys_use_dbregs,
1341                is_syswide,
1342                cpu));
1343
1344        if (is_syswide) {
1345                /*
1346                 * cannot mix system wide and per-task sessions
1347                 */
1348                if (pfm_sessions.pfs_task_sessions > 0UL) {
1349                        DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1350                                pfm_sessions.pfs_task_sessions));
1351                        goto abort;
1352                }
1353
1354                if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1355
1356                DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1357
1358                pfm_sessions.pfs_sys_session[cpu] = task;
1359
1360                pfm_sessions.pfs_sys_sessions++ ;
1361
1362        } else {
1363                if (pfm_sessions.pfs_sys_sessions) goto abort;
1364                pfm_sessions.pfs_task_sessions++;
1365        }
1366
1367        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1368                pfm_sessions.pfs_sys_sessions,
1369                pfm_sessions.pfs_task_sessions,
1370                pfm_sessions.pfs_sys_use_dbregs,
1371                is_syswide,
1372                cpu));
1373
1374        /*
1375         * Force idle() into poll mode
1376         */
1377        cpu_idle_poll_ctrl(true);
1378
1379        UNLOCK_PFS(flags);
1380
1381        return 0;
1382
1383error_conflict:
1384        DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1385                task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1386                cpu));
1387abort:
1388        UNLOCK_PFS(flags);
1389
1390        return -EBUSY;
1391
1392}
1393
1394static int
1395pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1396{
1397        unsigned long flags;
1398        /*
1399         * validity checks on cpu_mask have been done upstream
1400         */
1401        LOCK_PFS(flags);
1402
1403        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1404                pfm_sessions.pfs_sys_sessions,
1405                pfm_sessions.pfs_task_sessions,
1406                pfm_sessions.pfs_sys_use_dbregs,
1407                is_syswide,
1408                cpu));
1409
1410
1411        if (is_syswide) {
1412                pfm_sessions.pfs_sys_session[cpu] = NULL;
1413                /*
1414                 * would not work with perfmon+more than one bit in cpu_mask
1415                 */
1416                if (ctx && ctx->ctx_fl_using_dbreg) {
1417                        if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1418                                printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1419                        } else {
1420                                pfm_sessions.pfs_sys_use_dbregs--;
1421                        }
1422                }
1423                pfm_sessions.pfs_sys_sessions--;
1424        } else {
1425                pfm_sessions.pfs_task_sessions--;
1426        }
1427        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1428                pfm_sessions.pfs_sys_sessions,
1429                pfm_sessions.pfs_task_sessions,
1430                pfm_sessions.pfs_sys_use_dbregs,
1431                is_syswide,
1432                cpu));
1433
1434        /* Undo forced polling. Last session reenables pal_halt */
1435        cpu_idle_poll_ctrl(false);
1436
1437        UNLOCK_PFS(flags);
1438
1439        return 0;
1440}
1441
1442/*
1443 * removes virtual mapping of the sampling buffer.
1444 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1445 * a PROTECT_CTX() section.
1446 */
1447static int
1448pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1449{
1450        struct task_struct *task = current;
1451        int r;
1452
1453        /* sanity checks */
1454        if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1455                printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1456                return -EINVAL;
1457        }
1458
1459        DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1460
1461        /*
1462         * does the actual unmapping
1463         */
1464        r = vm_munmap((unsigned long)vaddr, size);
1465
1466        if (r !=0) {
1467                printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1468        }
1469
1470        DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1471
1472        return 0;
1473}
1474
1475/*
1476 * free actual physical storage used by sampling buffer
1477 */
1478#if 0
1479static int
1480pfm_free_smpl_buffer(pfm_context_t *ctx)
1481{
1482        pfm_buffer_fmt_t *fmt;
1483
1484        if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1485
1486        /*
1487         * we won't use the buffer format anymore
1488         */
1489        fmt = ctx->ctx_buf_fmt;
1490
1491        DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1492                ctx->ctx_smpl_hdr,
1493                ctx->ctx_smpl_size,
1494                ctx->ctx_smpl_vaddr));
1495
1496        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497
1498        /*
1499         * free the buffer
1500         */
1501        pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1502
1503        ctx->ctx_smpl_hdr  = NULL;
1504        ctx->ctx_smpl_size = 0UL;
1505
1506        return 0;
1507
1508invalid_free:
1509        printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1510        return -EINVAL;
1511}
1512#endif
1513
1514static inline void
1515pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1516{
1517        if (fmt == NULL) return;
1518
1519        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1520
1521}
1522
1523/*
1524 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1525 * no real gain from having the whole whorehouse mounted. So we don't need
1526 * any operations on the root directory. However, we need a non-trivial
1527 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1528 */
1529static struct vfsmount *pfmfs_mnt __read_mostly;
1530
1531static int __init
1532init_pfm_fs(void)
1533{
1534        int err = register_filesystem(&pfm_fs_type);
1535        if (!err) {
1536                pfmfs_mnt = kern_mount(&pfm_fs_type);
1537                err = PTR_ERR(pfmfs_mnt);
1538                if (IS_ERR(pfmfs_mnt))
1539                        unregister_filesystem(&pfm_fs_type);
1540                else
1541                        err = 0;
1542        }
1543        return err;
1544}
1545
1546static ssize_t
1547pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1548{
1549        pfm_context_t *ctx;
1550        pfm_msg_t *msg;
1551        ssize_t ret;
1552        unsigned long flags;
1553        DECLARE_WAITQUEUE(wait, current);
1554        if (PFM_IS_FILE(filp) == 0) {
1555                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1556                return -EINVAL;
1557        }
1558
1559        ctx = filp->private_data;
1560        if (ctx == NULL) {
1561                printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1562                return -EINVAL;
1563        }
1564
1565        /*
1566         * check even when there is no message
1567         */
1568        if (size < sizeof(pfm_msg_t)) {
1569                DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1570                return -EINVAL;
1571        }
1572
1573        PROTECT_CTX(ctx, flags);
1574
1575        /*
1576         * put ourselves on the wait queue
1577         */
1578        add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579
1580
1581        for(;;) {
1582                /*
1583                 * check wait queue
1584                 */
1585
1586                set_current_state(TASK_INTERRUPTIBLE);
1587
1588                DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1589
1590                ret = 0;
1591                if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1592
1593                UNPROTECT_CTX(ctx, flags);
1594
1595                /*
1596                 * check non-blocking read
1597                 */
1598                ret = -EAGAIN;
1599                if(filp->f_flags & O_NONBLOCK) break;
1600
1601                /*
1602                 * check pending signals
1603                 */
1604                if(signal_pending(current)) {
1605                        ret = -EINTR;
1606                        break;
1607                }
1608                /*
1609                 * no message, so wait
1610                 */
1611                schedule();
1612
1613                PROTECT_CTX(ctx, flags);
1614        }
1615        DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1616        set_current_state(TASK_RUNNING);
1617        remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1618
1619        if (ret < 0) goto abort;
1620
1621        ret = -EINVAL;
1622        msg = pfm_get_next_msg(ctx);
1623        if (msg == NULL) {
1624                printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1625                goto abort_locked;
1626        }
1627
1628        DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1629
1630        ret = -EFAULT;
1631        if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1632
1633abort_locked:
1634        UNPROTECT_CTX(ctx, flags);
1635abort:
1636        return ret;
1637}
1638
1639static ssize_t
1640pfm_write(struct file *file, const char __user *ubuf,
1641                          size_t size, loff_t *ppos)
1642{
1643        DPRINT(("pfm_write called\n"));
1644        return -EINVAL;
1645}
1646
1647static unsigned int
1648pfm_poll(struct file *filp, poll_table * wait)
1649{
1650        pfm_context_t *ctx;
1651        unsigned long flags;
1652        unsigned int mask = 0;
1653
1654        if (PFM_IS_FILE(filp) == 0) {
1655                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1656                return 0;
1657        }
1658
1659        ctx = filp->private_data;
1660        if (ctx == NULL) {
1661                printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1662                return 0;
1663        }
1664
1665
1666        DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1667
1668        poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1669
1670        PROTECT_CTX(ctx, flags);
1671
1672        if (PFM_CTXQ_EMPTY(ctx) == 0)
1673                mask =  POLLIN | POLLRDNORM;
1674
1675        UNPROTECT_CTX(ctx, flags);
1676
1677        DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1678
1679        return mask;
1680}
1681
1682static long
1683pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1684{
1685        DPRINT(("pfm_ioctl called\n"));
1686        return -EINVAL;
1687}
1688
1689/*
1690 * interrupt cannot be masked when coming here
1691 */
1692static inline int
1693pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1694{
1695        int ret;
1696
1697        ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1698
1699        DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1700                task_pid_nr(current),
1701                fd,
1702                on,
1703                ctx->ctx_async_queue, ret));
1704
1705        return ret;
1706}
1707
1708static int
1709pfm_fasync(int fd, struct file *filp, int on)
1710{
1711        pfm_context_t *ctx;
1712        int ret;
1713
1714        if (PFM_IS_FILE(filp) == 0) {
1715                printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1716                return -EBADF;
1717        }
1718
1719        ctx = filp->private_data;
1720        if (ctx == NULL) {
1721                printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1722                return -EBADF;
1723        }
1724        /*
1725         * we cannot mask interrupts during this call because this may
1726         * may go to sleep if memory is not readily avalaible.
1727         *
1728         * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1729         * done in caller. Serialization of this function is ensured by caller.
1730         */
1731        ret = pfm_do_fasync(fd, filp, ctx, on);
1732
1733
1734        DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735                fd,
1736                on,
1737                ctx->ctx_async_queue, ret));
1738
1739        return ret;
1740}
1741
1742#ifdef CONFIG_SMP
1743/*
1744 * this function is exclusively called from pfm_close().
1745 * The context is not protected at that time, nor are interrupts
1746 * on the remote CPU. That's necessary to avoid deadlocks.
1747 */
1748static void
1749pfm_syswide_force_stop(void *info)
1750{
1751        pfm_context_t   *ctx = (pfm_context_t *)info;
1752        struct pt_regs *regs = task_pt_regs(current);
1753        struct task_struct *owner;
1754        unsigned long flags;
1755        int ret;
1756
1757        if (ctx->ctx_cpu != smp_processor_id()) {
1758                printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1759                        ctx->ctx_cpu,
1760                        smp_processor_id());
1761                return;
1762        }
1763        owner = GET_PMU_OWNER();
1764        if (owner != ctx->ctx_task) {
1765                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1766                        smp_processor_id(),
1767                        task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1768                return;
1769        }
1770        if (GET_PMU_CTX() != ctx) {
1771                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1772                        smp_processor_id(),
1773                        GET_PMU_CTX(), ctx);
1774                return;
1775        }
1776
1777        DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1778        /*
1779         * the context is already protected in pfm_close(), we simply
1780         * need to mask interrupts to avoid a PMU interrupt race on
1781         * this CPU
1782         */
1783        local_irq_save(flags);
1784
1785        ret = pfm_context_unload(ctx, NULL, 0, regs);
1786        if (ret) {
1787                DPRINT(("context_unload returned %d\n", ret));
1788        }
1789
1790        /*
1791         * unmask interrupts, PMU interrupts are now spurious here
1792         */
1793        local_irq_restore(flags);
1794}
1795
1796static void
1797pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1798{
1799        int ret;
1800
1801        DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1802        ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1803        DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1804}
1805#endif /* CONFIG_SMP */
1806
1807/*
1808 * called for each close(). Partially free resources.
1809 * When caller is self-monitoring, the context is unloaded.
1810 */
1811static int
1812pfm_flush(struct file *filp, fl_owner_t id)
1813{
1814        pfm_context_t *ctx;
1815        struct task_struct *task;
1816        struct pt_regs *regs;
1817        unsigned long flags;
1818        unsigned long smpl_buf_size = 0UL;
1819        void *smpl_buf_vaddr = NULL;
1820        int state, is_system;
1821
1822        if (PFM_IS_FILE(filp) == 0) {
1823                DPRINT(("bad magic for\n"));
1824                return -EBADF;
1825        }
1826
1827        ctx = filp->private_data;
1828        if (ctx == NULL) {
1829                printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1830                return -EBADF;
1831        }
1832
1833        /*
1834         * remove our file from the async queue, if we use this mode.
1835         * This can be done without the context being protected. We come
1836         * here when the context has become unreachable by other tasks.
1837         *
1838         * We may still have active monitoring at this point and we may
1839         * end up in pfm_overflow_handler(). However, fasync_helper()
1840         * operates with interrupts disabled and it cleans up the
1841         * queue. If the PMU handler is called prior to entering
1842         * fasync_helper() then it will send a signal. If it is
1843         * invoked after, it will find an empty queue and no
1844         * signal will be sent. In both case, we are safe
1845         */
1846        PROTECT_CTX(ctx, flags);
1847
1848        state     = ctx->ctx_state;
1849        is_system = ctx->ctx_fl_system;
1850
1851        task = PFM_CTX_TASK(ctx);
1852        regs = task_pt_regs(task);
1853
1854        DPRINT(("ctx_state=%d is_current=%d\n",
1855                state,
1856                task == current ? 1 : 0));
1857
1858        /*
1859         * if state == UNLOADED, then task is NULL
1860         */
1861
1862        /*
1863         * we must stop and unload because we are losing access to the context.
1864         */
1865        if (task == current) {
1866#ifdef CONFIG_SMP
1867                /*
1868                 * the task IS the owner but it migrated to another CPU: that's bad
1869                 * but we must handle this cleanly. Unfortunately, the kernel does
1870                 * not provide a mechanism to block migration (while the context is loaded).
1871                 *
1872                 * We need to release the resource on the ORIGINAL cpu.
1873                 */
1874                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1875
1876                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1877                        /*
1878                         * keep context protected but unmask interrupt for IPI
1879                         */
1880                        local_irq_restore(flags);
1881
1882                        pfm_syswide_cleanup_other_cpu(ctx);
1883
1884                        /*
1885                         * restore interrupt masking
1886                         */
1887                        local_irq_save(flags);
1888
1889                        /*
1890                         * context is unloaded at this point
1891                         */
1892                } else
1893#endif /* CONFIG_SMP */
1894                {
1895
1896                        DPRINT(("forcing unload\n"));
1897                        /*
1898                        * stop and unload, returning with state UNLOADED
1899                        * and session unreserved.
1900                        */
1901                        pfm_context_unload(ctx, NULL, 0, regs);
1902
1903                        DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1904                }
1905        }
1906
1907        /*
1908         * remove virtual mapping, if any, for the calling task.
1909         * cannot reset ctx field until last user is calling close().
1910         *
1911         * ctx_smpl_vaddr must never be cleared because it is needed
1912         * by every task with access to the context
1913         *
1914         * When called from do_exit(), the mm context is gone already, therefore
1915         * mm is NULL, i.e., the VMA is already gone  and we do not have to
1916         * do anything here
1917         */
1918        if (ctx->ctx_smpl_vaddr && current->mm) {
1919                smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1920                smpl_buf_size  = ctx->ctx_smpl_size;
1921        }
1922
1923        UNPROTECT_CTX(ctx, flags);
1924
1925        /*
1926         * if there was a mapping, then we systematically remove it
1927         * at this point. Cannot be done inside critical section
1928         * because some VM function reenables interrupts.
1929         *
1930         */
1931        if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1932
1933        return 0;
1934}
1935/*
1936 * called either on explicit close() or from exit_files(). 
1937 * Only the LAST user of the file gets to this point, i.e., it is
1938 * called only ONCE.
1939 *
1940 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1941 * (fput()),i.e, last task to access the file. Nobody else can access the 
1942 * file at this point.
1943 *
1944 * When called from exit_files(), the VMA has been freed because exit_mm()
1945 * is executed before exit_files().
1946 *
1947 * When called from exit_files(), the current task is not yet ZOMBIE but we
1948 * flush the PMU state to the context. 
1949 */
1950static int
1951pfm_close(struct inode *inode, struct file *filp)
1952{
1953        pfm_context_t *ctx;
1954        struct task_struct *task;
1955        struct pt_regs *regs;
1956        DECLARE_WAITQUEUE(wait, current);
1957        unsigned long flags;
1958        unsigned long smpl_buf_size = 0UL;
1959        void *smpl_buf_addr = NULL;
1960        int free_possible = 1;
1961        int state, is_system;
1962
1963        DPRINT(("pfm_close called private=%p\n", filp->private_data));
1964
1965        if (PFM_IS_FILE(filp) == 0) {
1966                DPRINT(("bad magic\n"));
1967                return -EBADF;
1968        }
1969        
1970        ctx = filp->private_data;
1971        if (ctx == NULL) {
1972                printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1973                return -EBADF;
1974        }
1975
1976        PROTECT_CTX(ctx, flags);
1977
1978        state     = ctx->ctx_state;
1979        is_system = ctx->ctx_fl_system;
1980
1981        task = PFM_CTX_TASK(ctx);
1982        regs = task_pt_regs(task);
1983
1984        DPRINT(("ctx_state=%d is_current=%d\n", 
1985                state,
1986                task == current ? 1 : 0));
1987
1988        /*
1989         * if task == current, then pfm_flush() unloaded the context
1990         */
1991        if (state == PFM_CTX_UNLOADED) goto doit;
1992
1993        /*
1994         * context is loaded/masked and task != current, we need to
1995         * either force an unload or go zombie
1996         */
1997
1998        /*
1999         * The task is currently blocked or will block after an overflow.
2000         * we must force it to wakeup to get out of the
2001         * MASKED state and transition to the unloaded state by itself.
2002         *
2003         * This situation is only possible for per-task mode
2004         */
2005        if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2006
2007                /*
2008                 * set a "partial" zombie state to be checked
2009                 * upon return from down() in pfm_handle_work().
2010                 *
2011                 * We cannot use the ZOMBIE state, because it is checked
2012                 * by pfm_load_regs() which is called upon wakeup from down().
2013                 * In such case, it would free the context and then we would
2014                 * return to pfm_handle_work() which would access the
2015                 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2016                 * but visible to pfm_handle_work().
2017                 *
2018                 * For some window of time, we have a zombie context with
2019                 * ctx_state = MASKED  and not ZOMBIE
2020                 */
2021                ctx->ctx_fl_going_zombie = 1;
2022
2023                /*
2024                 * force task to wake up from MASKED state
2025                 */
2026                complete(&ctx->ctx_restart_done);
2027
2028                DPRINT(("waking up ctx_state=%d\n", state));
2029
2030                /*
2031                 * put ourself to sleep waiting for the other
2032                 * task to report completion
2033                 *
2034                 * the context is protected by mutex, therefore there
2035                 * is no risk of being notified of completion before
2036                 * begin actually on the waitq.
2037                 */
2038                set_current_state(TASK_INTERRUPTIBLE);
2039                add_wait_queue(&ctx->ctx_zombieq, &wait);
2040
2041                UNPROTECT_CTX(ctx, flags);
2042
2043                /*
2044                 * XXX: check for signals :
2045                 *      - ok for explicit close
2046                 *      - not ok when coming from exit_files()
2047                 */
2048                schedule();
2049
2050
2051                PROTECT_CTX(ctx, flags);
2052
2053
2054                remove_wait_queue(&ctx->ctx_zombieq, &wait);
2055                set_current_state(TASK_RUNNING);
2056
2057                /*
2058                 * context is unloaded at this point
2059                 */
2060                DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2061        }
2062        else if (task != current) {
2063#ifdef CONFIG_SMP
2064                /*
2065                 * switch context to zombie state
2066                 */
2067                ctx->ctx_state = PFM_CTX_ZOMBIE;
2068
2069                DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2070                /*
2071                 * cannot free the context on the spot. deferred until
2072                 * the task notices the ZOMBIE state
2073                 */
2074                free_possible = 0;
2075#else
2076                pfm_context_unload(ctx, NULL, 0, regs);
2077#endif
2078        }
2079
2080doit:
2081        /* reload state, may have changed during  opening of critical section */
2082        state = ctx->ctx_state;
2083
2084        /*
2085         * the context is still attached to a task (possibly current)
2086         * we cannot destroy it right now
2087         */
2088
2089        /*
2090         * we must free the sampling buffer right here because
2091         * we cannot rely on it being cleaned up later by the
2092         * monitored task. It is not possible to free vmalloc'ed
2093         * memory in pfm_load_regs(). Instead, we remove the buffer
2094         * now. should there be subsequent PMU overflow originally
2095         * meant for sampling, the will be converted to spurious
2096         * and that's fine because the monitoring tools is gone anyway.
2097         */
2098        if (ctx->ctx_smpl_hdr) {
2099                smpl_buf_addr = ctx->ctx_smpl_hdr;
2100                smpl_buf_size = ctx->ctx_smpl_size;
2101                /* no more sampling */
2102                ctx->ctx_smpl_hdr = NULL;
2103                ctx->ctx_fl_is_sampling = 0;
2104        }
2105
2106        DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2107                state,
2108                free_possible,
2109                smpl_buf_addr,
2110                smpl_buf_size));
2111
2112        if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2113
2114        /*
2115         * UNLOADED that the session has already been unreserved.
2116         */
2117        if (state == PFM_CTX_ZOMBIE) {
2118                pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2119        }
2120
2121        /*
2122         * disconnect file descriptor from context must be done
2123         * before we unlock.
2124         */
2125        filp->private_data = NULL;
2126
2127        /*
2128         * if we free on the spot, the context is now completely unreachable
2129         * from the callers side. The monitored task side is also cut, so we
2130         * can freely cut.
2131         *
2132         * If we have a deferred free, only the caller side is disconnected.
2133         */
2134        UNPROTECT_CTX(ctx, flags);
2135
2136        /*
2137         * All memory free operations (especially for vmalloc'ed memory)
2138         * MUST be done with interrupts ENABLED.
2139         */
2140        if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2141
2142        /*
2143         * return the memory used by the context
2144         */
2145        if (free_possible) pfm_context_free(ctx);
2146
2147        return 0;
2148}
2149
2150static const struct file_operations pfm_file_ops = {
2151        .llseek         = no_llseek,
2152        .read           = pfm_read,
2153        .write          = pfm_write,
2154        .poll           = pfm_poll,
2155        .unlocked_ioctl = pfm_ioctl,
2156        .fasync         = pfm_fasync,
2157        .release        = pfm_close,
2158        .flush          = pfm_flush
2159};
2160
2161static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2162{
2163        return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2164                             d_inode(dentry)->i_ino);
2165}
2166
2167static const struct dentry_operations pfmfs_dentry_operations = {
2168        .d_delete = always_delete_dentry,
2169        .d_dname = pfmfs_dname,
2170};
2171
2172
2173static struct file *
2174pfm_alloc_file(pfm_context_t *ctx)
2175{
2176        struct file *file;
2177        struct inode *inode;
2178        struct path path;
2179        struct qstr this = { .name = "" };
2180
2181        /*
2182         * allocate a new inode
2183         */
2184        inode = new_inode(pfmfs_mnt->mnt_sb);
2185        if (!inode)
2186                return ERR_PTR(-ENOMEM);
2187
2188        DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2189
2190        inode->i_mode = S_IFCHR|S_IRUGO;
2191        inode->i_uid  = current_fsuid();
2192        inode->i_gid  = current_fsgid();
2193
2194        /*
2195         * allocate a new dcache entry
2196         */
2197        path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2198        if (!path.dentry) {
2199                iput(inode);
2200                return ERR_PTR(-ENOMEM);
2201        }
2202        path.mnt = mntget(pfmfs_mnt);
2203
2204        d_add(path.dentry, inode);
2205
2206        file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2207        if (IS_ERR(file)) {
2208                path_put(&path);
2209                return file;
2210        }
2211
2212        file->f_flags = O_RDONLY;
2213        file->private_data = ctx;
2214
2215        return file;
2216}
2217
2218static int
2219pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2220{
2221        DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2222
2223        while (size > 0) {
2224                unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2225
2226
2227                if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2228                        return -ENOMEM;
2229
2230                addr  += PAGE_SIZE;
2231                buf   += PAGE_SIZE;
2232                size  -= PAGE_SIZE;
2233        }
2234        return 0;
2235}
2236
2237/*
2238 * allocate a sampling buffer and remaps it into the user address space of the task
2239 */
2240static int
2241pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2242{
2243        struct mm_struct *mm = task->mm;
2244        struct vm_area_struct *vma = NULL;
2245        unsigned long size;
2246        void *smpl_buf;
2247
2248
2249        /*
2250         * the fixed header + requested size and align to page boundary
2251         */
2252        size = PAGE_ALIGN(rsize);
2253
2254        DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2255
2256        /*
2257         * check requested size to avoid Denial-of-service attacks
2258         * XXX: may have to refine this test
2259         * Check against address space limit.
2260         *
2261         * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2262         *      return -ENOMEM;
2263         */
2264        if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2265                return -ENOMEM;
2266
2267        /*
2268         * We do the easy to undo allocations first.
2269         *
2270         * pfm_rvmalloc(), clears the buffer, so there is no leak
2271         */
2272        smpl_buf = pfm_rvmalloc(size);
2273        if (smpl_buf == NULL) {
2274                DPRINT(("Can't allocate sampling buffer\n"));
2275                return -ENOMEM;
2276        }
2277
2278        DPRINT(("smpl_buf @%p\n", smpl_buf));
2279
2280        /* allocate vma */
2281        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2282        if (!vma) {
2283                DPRINT(("Cannot allocate vma\n"));
2284                goto error_kmem;
2285        }
2286        INIT_LIST_HEAD(&vma->anon_vma_chain);
2287
2288        /*
2289         * partially initialize the vma for the sampling buffer
2290         */
2291        vma->vm_mm           = mm;
2292        vma->vm_file         = get_file(filp);
2293        vma->vm_flags        = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2294        vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2295
2296        /*
2297         * Now we have everything we need and we can initialize
2298         * and connect all the data structures
2299         */
2300
2301        ctx->ctx_smpl_hdr   = smpl_buf;
2302        ctx->ctx_smpl_size  = size; /* aligned size */
2303
2304        /*
2305         * Let's do the difficult operations next.
2306         *
2307         * now we atomically find some area in the address space and
2308         * remap the buffer in it.
2309         */
2310        down_write(&task->mm->mmap_sem);
2311
2312        /* find some free area in address space, must have mmap sem held */
2313        vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2314        if (IS_ERR_VALUE(vma->vm_start)) {
2315                DPRINT(("Cannot find unmapped area for size %ld\n", size));
2316                up_write(&task->mm->mmap_sem);
2317                goto error;
2318        }
2319        vma->vm_end = vma->vm_start + size;
2320        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2321
2322        DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2323
2324        /* can only be applied to current task, need to have the mm semaphore held when called */
2325        if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2326                DPRINT(("Can't remap buffer\n"));
2327                up_write(&task->mm->mmap_sem);
2328                goto error;
2329        }
2330
2331        /*
2332         * now insert the vma in the vm list for the process, must be
2333         * done with mmap lock held
2334         */
2335        insert_vm_struct(mm, vma);
2336
2337        vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
2338        up_write(&task->mm->mmap_sem);
2339
2340        /*
2341         * keep track of user level virtual address
2342         */
2343        ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2344        *(unsigned long *)user_vaddr = vma->vm_start;
2345
2346        return 0;
2347
2348error:
2349        kmem_cache_free(vm_area_cachep, vma);
2350error_kmem:
2351        pfm_rvfree(smpl_buf, size);
2352
2353        return -ENOMEM;
2354}
2355
2356/*
2357 * XXX: do something better here
2358 */
2359static int
2360pfm_bad_permissions(struct task_struct *task)
2361{
2362        const struct cred *tcred;
2363        kuid_t uid = current_uid();
2364        kgid_t gid = current_gid();
2365        int ret;
2366
2367        rcu_read_lock();
2368        tcred = __task_cred(task);
2369
2370        /* inspired by ptrace_attach() */
2371        DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2372                from_kuid(&init_user_ns, uid),
2373                from_kgid(&init_user_ns, gid),
2374                from_kuid(&init_user_ns, tcred->euid),
2375                from_kuid(&init_user_ns, tcred->suid),
2376                from_kuid(&init_user_ns, tcred->uid),
2377                from_kgid(&init_user_ns, tcred->egid),
2378                from_kgid(&init_user_ns, tcred->sgid)));
2379
2380        ret = ((!uid_eq(uid, tcred->euid))
2381               || (!uid_eq(uid, tcred->suid))
2382               || (!uid_eq(uid, tcred->uid))
2383               || (!gid_eq(gid, tcred->egid))
2384               || (!gid_eq(gid, tcred->sgid))
2385               || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2386
2387        rcu_read_unlock();
2388        return ret;
2389}
2390
2391static int
2392pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2393{
2394        int ctx_flags;
2395
2396        /* valid signal */
2397
2398        ctx_flags = pfx->ctx_flags;
2399
2400        if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2401
2402                /*
2403                 * cannot block in this mode
2404                 */
2405                if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2406                        DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2407                        return -EINVAL;
2408                }
2409        } else {
2410        }
2411        /* probably more to add here */
2412
2413        return 0;
2414}
2415
2416static int
2417pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2418                     unsigned int cpu, pfarg_context_t *arg)
2419{
2420        pfm_buffer_fmt_t *fmt = NULL;
2421        unsigned long size = 0UL;
2422        void *uaddr = NULL;
2423        void *fmt_arg = NULL;
2424        int ret = 0;
2425#define PFM_CTXARG_BUF_ARG(a)   (pfm_buffer_fmt_t *)(a+1)
2426
2427        /* invoke and lock buffer format, if found */
2428        fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2429        if (fmt == NULL) {
2430                DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2431                return -EINVAL;
2432        }
2433
2434        /*
2435         * buffer argument MUST be contiguous to pfarg_context_t
2436         */
2437        if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2438
2439        ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2440
2441        DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2442
2443        if (ret) goto error;
2444
2445        /* link buffer format and context */
2446        ctx->ctx_buf_fmt = fmt;
2447        ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2448
2449        /*
2450         * check if buffer format wants to use perfmon buffer allocation/mapping service
2451         */
2452        ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2453        if (ret) goto error;
2454
2455        if (size) {
2456                /*
2457                 * buffer is always remapped into the caller's address space
2458                 */
2459                ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2460                if (ret) goto error;
2461
2462                /* keep track of user address of buffer */
2463                arg->ctx_smpl_vaddr = uaddr;
2464        }
2465        ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2466
2467error:
2468        return ret;
2469}
2470
2471static void
2472pfm_reset_pmu_state(pfm_context_t *ctx)
2473{
2474        int i;
2475
2476        /*
2477         * install reset values for PMC.
2478         */
2479        for (i=1; PMC_IS_LAST(i) == 0; i++) {
2480                if (PMC_IS_IMPL(i) == 0) continue;
2481                ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2482                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2483        }
2484        /*
2485         * PMD registers are set to 0UL when the context in memset()
2486         */
2487
2488        /*
2489         * On context switched restore, we must restore ALL pmc and ALL pmd even
2490         * when they are not actively used by the task. In UP, the incoming process
2491         * may otherwise pick up left over PMC, PMD state from the previous process.
2492         * As opposed to PMD, stale PMC can cause harm to the incoming
2493         * process because they may change what is being measured.
2494         * Therefore, we must systematically reinstall the entire
2495         * PMC state. In SMP, the same thing is possible on the
2496         * same CPU but also on between 2 CPUs.
2497         *
2498         * The problem with PMD is information leaking especially
2499         * to user level when psr.sp=0
2500         *
2501         * There is unfortunately no easy way to avoid this problem
2502         * on either UP or SMP. This definitively slows down the
2503         * pfm_load_regs() function.
2504         */
2505
2506         /*
2507          * bitmask of all PMCs accessible to this context
2508          *
2509          * PMC0 is treated differently.
2510          */
2511        ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2512
2513        /*
2514         * bitmask of all PMDs that are accessible to this context
2515         */
2516        ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2517
2518        DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2519
2520        /*
2521         * useful in case of re-enable after disable
2522         */
2523        ctx->ctx_used_ibrs[0] = 0UL;
2524        ctx->ctx_used_dbrs[0] = 0UL;
2525}
2526
2527static int
2528pfm_ctx_getsize(void *arg, size_t *sz)
2529{
2530        pfarg_context_t *req = (pfarg_context_t *)arg;
2531        pfm_buffer_fmt_t *fmt;
2532
2533        *sz = 0;
2534
2535        if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2536
2537        fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2538        if (fmt == NULL) {
2539                DPRINT(("cannot find buffer format\n"));
2540                return -EINVAL;
2541        }
2542        /* get just enough to copy in user parameters */
2543        *sz = fmt->fmt_arg_size;
2544        DPRINT(("arg_size=%lu\n", *sz));
2545
2546        return 0;
2547}
2548
2549
2550
2551/*
2552 * cannot attach if :
2553 *      - kernel task
2554 *      - task not owned by caller
2555 *      - task incompatible with context mode
2556 */
2557static int
2558pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2559{
2560        /*
2561         * no kernel task or task not owner by caller
2562         */
2563        if (task->mm == NULL) {
2564                DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2565                return -EPERM;
2566        }
2567        if (pfm_bad_permissions(task)) {
2568                DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2569                return -EPERM;
2570        }
2571        /*
2572         * cannot block in self-monitoring mode
2573         */
2574        if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2575                DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2576                return -EINVAL;
2577        }
2578
2579        if (task->exit_state == EXIT_ZOMBIE) {
2580                DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2581                return -EBUSY;
2582        }
2583
2584        /*
2585         * always ok for self
2586         */
2587        if (task == current) return 0;
2588
2589        if (!task_is_stopped_or_traced(task)) {
2590                DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2591                return -EBUSY;
2592        }
2593        /*
2594         * make sure the task is off any CPU
2595         */
2596        wait_task_inactive(task, 0);
2597
2598        /* more to come... */
2599
2600        return 0;
2601}
2602
2603static int
2604pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2605{
2606        struct task_struct *p = current;
2607        int ret;
2608
2609        /* XXX: need to add more checks here */
2610        if (pid < 2) return -EPERM;
2611
2612        if (pid != task_pid_vnr(current)) {
2613
2614                read_lock(&tasklist_lock);
2615
2616                p = find_task_by_vpid(pid);
2617
2618                /* make sure task cannot go away while we operate on it */
2619                if (p) get_task_struct(p);
2620
2621                read_unlock(&tasklist_lock);
2622
2623                if (p == NULL) return -ESRCH;
2624        }
2625
2626        ret = pfm_task_incompatible(ctx, p);
2627        if (ret == 0) {
2628                *task = p;
2629        } else if (p != current) {
2630                pfm_put_task(p);
2631        }
2632        return ret;
2633}
2634
2635
2636
2637static int
2638pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2639{
2640        pfarg_context_t *req = (pfarg_context_t *)arg;
2641        struct file *filp;
2642        struct path path;
2643        int ctx_flags;
2644        int fd;
2645        int ret;
2646
2647        /* let's check the arguments first */
2648        ret = pfarg_is_sane(current, req);
2649        if (ret < 0)
2650                return ret;
2651
2652        ctx_flags = req->ctx_flags;
2653
2654        ret = -ENOMEM;
2655
2656        fd = get_unused_fd_flags(0);
2657        if (fd < 0)
2658                return fd;
2659
2660        ctx = pfm_context_alloc(ctx_flags);
2661        if (!ctx)
2662                goto error;
2663
2664        filp = pfm_alloc_file(ctx);
2665        if (IS_ERR(filp)) {
2666                ret = PTR_ERR(filp);
2667                goto error_file;
2668        }
2669
2670        req->ctx_fd = ctx->ctx_fd = fd;
2671
2672        /*
2673         * does the user want to sample?
2674         */
2675        if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2676                ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2677                if (ret)
2678                        goto buffer_error;
2679        }
2680
2681        DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2682                ctx,
2683                ctx_flags,
2684                ctx->ctx_fl_system,
2685                ctx->ctx_fl_block,
2686                ctx->ctx_fl_excl_idle,
2687                ctx->ctx_fl_no_msg,
2688                ctx->ctx_fd));
2689
2690        /*
2691         * initialize soft PMU state
2692         */
2693        pfm_reset_pmu_state(ctx);
2694
2695        fd_install(fd, filp);
2696
2697        return 0;
2698
2699buffer_error:
2700        path = filp->f_path;
2701        put_filp(filp);
2702        path_put(&path);
2703
2704        if (ctx->ctx_buf_fmt) {
2705                pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2706        }
2707error_file:
2708        pfm_context_free(ctx);
2709
2710error:
2711        put_unused_fd(fd);
2712        return ret;
2713}
2714
2715static inline unsigned long
2716pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2717{
2718        unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2719        unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2720        extern unsigned long carta_random32 (unsigned long seed);
2721
2722        if (reg->flags & PFM_REGFL_RANDOM) {
2723                new_seed = carta_random32(old_seed);
2724                val -= (old_seed & mask);       /* counter values are negative numbers! */
2725                if ((mask >> 32) != 0)
2726                        /* construct a full 64-bit random value: */
2727                        new_seed |= carta_random32(old_seed >> 32) << 32;
2728                reg->seed = new_seed;
2729        }
2730        reg->lval = val;
2731        return val;
2732}
2733
2734static void
2735pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2736{
2737        unsigned long mask = ovfl_regs[0];
2738        unsigned long reset_others = 0UL;
2739        unsigned long val;
2740        int i;
2741
2742        /*
2743         * now restore reset value on sampling overflowed counters
2744         */
2745        mask >>= PMU_FIRST_COUNTER;
2746        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2747
2748                if ((mask & 0x1UL) == 0UL) continue;
2749
2750                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2751                reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2752
2753                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2754        }
2755
2756        /*
2757         * Now take care of resetting the other registers
2758         */
2759        for(i = 0; reset_others; i++, reset_others >>= 1) {
2760
2761                if ((reset_others & 0x1) == 0) continue;
2762
2763                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2764
2765                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2766                          is_long_reset ? "long" : "short", i, val));
2767        }
2768}
2769
2770static void
2771pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2772{
2773        unsigned long mask = ovfl_regs[0];
2774        unsigned long reset_others = 0UL;
2775        unsigned long val;
2776        int i;
2777
2778        DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2779
2780        if (ctx->ctx_state == PFM_CTX_MASKED) {
2781                pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2782                return;
2783        }
2784
2785        /*
2786         * now restore reset value on sampling overflowed counters
2787         */
2788        mask >>= PMU_FIRST_COUNTER;
2789        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2790
2791                if ((mask & 0x1UL) == 0UL) continue;
2792
2793                val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2794                reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2795
2796                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2797
2798                pfm_write_soft_counter(ctx, i, val);
2799        }
2800
2801        /*
2802         * Now take care of resetting the other registers
2803         */
2804        for(i = 0; reset_others; i++, reset_others >>= 1) {
2805
2806                if ((reset_others & 0x1) == 0) continue;
2807
2808                val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2809
2810                if (PMD_IS_COUNTING(i)) {
2811                        pfm_write_soft_counter(ctx, i, val);
2812                } else {
2813                        ia64_set_pmd(i, val);
2814                }
2815                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2816                          is_long_reset ? "long" : "short", i, val));
2817        }
2818        ia64_srlz_d();
2819}
2820
2821static int
2822pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2823{
2824        struct task_struct *task;
2825        pfarg_reg_t *req = (pfarg_reg_t *)arg;
2826        unsigned long value, pmc_pm;
2827        unsigned long smpl_pmds, reset_pmds, impl_pmds;
2828        unsigned int cnum, reg_flags, flags, pmc_type;
2829        int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2830        int is_monitor, is_counting, state;
2831        int ret = -EINVAL;
2832        pfm_reg_check_t wr_func;
2833#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2834
2835        state     = ctx->ctx_state;
2836        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2837        is_system = ctx->ctx_fl_system;
2838        task      = ctx->ctx_task;
2839        impl_pmds = pmu_conf->impl_pmds[0];
2840
2841        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2842
2843        if (is_loaded) {
2844                /*
2845                 * In system wide and when the context is loaded, access can only happen
2846                 * when the caller is running on the CPU being monitored by the session.
2847                 * It does not have to be the owner (ctx_task) of the context per se.
2848                 */
2849                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2850                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2851                        return -EBUSY;
2852                }
2853                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2854        }
2855        expert_mode = pfm_sysctl.expert_mode; 
2856
2857        for (i = 0; i < count; i++, req++) {
2858
2859                cnum       = req->reg_num;
2860                reg_flags  = req->reg_flags;
2861                value      = req->reg_value;
2862                smpl_pmds  = req->reg_smpl_pmds[0];
2863                reset_pmds = req->reg_reset_pmds[0];
2864                flags      = 0;
2865
2866
2867                if (cnum >= PMU_MAX_PMCS) {
2868                        DPRINT(("pmc%u is invalid\n", cnum));
2869                        goto error;
2870                }
2871
2872                pmc_type   = pmu_conf->pmc_desc[cnum].type;
2873                pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2874                is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2875                is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2876
2877                /*
2878                 * we reject all non implemented PMC as well
2879                 * as attempts to modify PMC[0-3] which are used
2880                 * as status registers by the PMU
2881                 */
2882                if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2883                        DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2884                        goto error;
2885                }
2886                wr_func = pmu_conf->pmc_desc[cnum].write_check;
2887                /*
2888                 * If the PMC is a monitor, then if the value is not the default:
2889                 *      - system-wide session: PMCx.pm=1 (privileged monitor)
2890                 *      - per-task           : PMCx.pm=0 (user monitor)
2891                 */
2892                if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2893                        DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2894                                cnum,
2895                                pmc_pm,
2896                                is_system));
2897                        goto error;
2898                }
2899
2900                if (is_counting) {
2901                        /*
2902                         * enforce generation of overflow interrupt. Necessary on all
2903                         * CPUs.
2904                         */
2905                        value |= 1 << PMU_PMC_OI;
2906
2907                        if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2908                                flags |= PFM_REGFL_OVFL_NOTIFY;
2909                        }
2910
2911                        if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2912
2913                        /* verify validity of smpl_pmds */
2914                        if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2915                                DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2916                                goto error;
2917                        }
2918
2919                        /* verify validity of reset_pmds */
2920                        if ((reset_pmds & impl_pmds) != reset_pmds) {
2921                                DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2922                                goto error;
2923                        }
2924                } else {
2925                        if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2926                                DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2927                                goto error;
2928                        }
2929                        /* eventid on non-counting monitors are ignored */
2930                }
2931
2932                /*
2933                 * execute write checker, if any
2934                 */
2935                if (likely(expert_mode == 0 && wr_func)) {
2936                        ret = (*wr_func)(task, ctx, cnum, &value, regs);
2937                        if (ret) goto error;
2938                        ret = -EINVAL;
2939                }
2940
2941                /*
2942                 * no error on this register
2943                 */
2944                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2945
2946                /*
2947                 * Now we commit the changes to the software state
2948                 */
2949
2950                /*
2951                 * update overflow information
2952                 */
2953                if (is_counting) {
2954                        /*
2955                         * full flag update each time a register is programmed
2956                         */
2957                        ctx->ctx_pmds[cnum].flags = flags;
2958
2959                        ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2960                        ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2961                        ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2962
2963                        /*
2964                         * Mark all PMDS to be accessed as used.
2965                         *
2966                         * We do not keep track of PMC because we have to
2967                         * systematically restore ALL of them.
2968                         *
2969                         * We do not update the used_monitors mask, because
2970                         * if we have not programmed them, then will be in
2971                         * a quiescent state, therefore we will not need to
2972                         * mask/restore then when context is MASKED.
2973                         */
2974                        CTX_USED_PMD(ctx, reset_pmds);
2975                        CTX_USED_PMD(ctx, smpl_pmds);
2976                        /*
2977                         * make sure we do not try to reset on
2978                         * restart because we have established new values
2979                         */
2980                        if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2981                }
2982                /*
2983                 * Needed in case the user does not initialize the equivalent
2984                 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2985                 * possible leak here.
2986                 */
2987                CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2988
2989                /*
2990                 * keep track of the monitor PMC that we are using.
2991                 * we save the value of the pmc in ctx_pmcs[] and if
2992                 * the monitoring is not stopped for the context we also
2993                 * place it in the saved state area so that it will be
2994                 * picked up later by the context switch code.
2995                 *
2996                 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2997                 *
2998                 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2999                 * monitoring needs to be stopped.
3000                 */
3001                if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3002
3003                /*
3004                 * update context state
3005                 */
3006                ctx->ctx_pmcs[cnum] = value;
3007
3008                if (is_loaded) {
3009                        /*
3010                         * write thread state
3011                         */
3012                        if (is_system == 0) ctx->th_pmcs[cnum] = value;
3013
3014                        /*
3015                         * write hardware register if we can
3016                         */
3017                        if (can_access_pmu) {
3018                                ia64_set_pmc(cnum, value);
3019                        }
3020#ifdef CONFIG_SMP
3021                        else {
3022                                /*
3023                                 * per-task SMP only here
3024                                 *
3025                                 * we are guaranteed that the task is not running on the other CPU,
3026                                 * we indicate that this PMD will need to be reloaded if the task
3027                                 * is rescheduled on the CPU it ran last on.
3028                                 */
3029                                ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3030                        }
3031#endif
3032                }
3033
3034                DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3035                          cnum,
3036                          value,
3037                          is_loaded,
3038                          can_access_pmu,
3039                          flags,
3040                          ctx->ctx_all_pmcs[0],
3041                          ctx->ctx_used_pmds[0],
3042                          ctx->ctx_pmds[cnum].eventid,
3043                          smpl_pmds,
3044                          reset_pmds,
3045                          ctx->ctx_reload_pmcs[0],
3046                          ctx->ctx_used_monitors[0],
3047                          ctx->ctx_ovfl_regs[0]));
3048        }
3049
3050        /*
3051         * make sure the changes are visible
3052         */
3053        if (can_access_pmu) ia64_srlz_d();
3054
3055        return 0;
3056error:
3057        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3058        return ret;
3059}
3060
3061static int
3062pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3063{
3064        struct task_struct *task;
3065        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3066        unsigned long value, hw_value, ovfl_mask;
3067        unsigned int cnum;
3068        int i, can_access_pmu = 0, state;
3069        int is_counting, is_loaded, is_system, expert_mode;
3070        int ret = -EINVAL;
3071        pfm_reg_check_t wr_func;
3072
3073
3074        state     = ctx->ctx_state;
3075        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3076        is_system = ctx->ctx_fl_system;
3077        ovfl_mask = pmu_conf->ovfl_val;
3078        task      = ctx->ctx_task;
3079
3080        if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3081
3082        /*
3083         * on both UP and SMP, we can only write to the PMC when the task is
3084         * the owner of the local PMU.
3085         */
3086        if (likely(is_loaded)) {
3087                /*
3088                 * In system wide and when the context is loaded, access can only happen
3089                 * when the caller is running on the CPU being monitored by the session.
3090                 * It does not have to be the owner (ctx_task) of the context per se.
3091                 */
3092                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3093                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3094                        return -EBUSY;
3095                }
3096                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3097        }
3098        expert_mode = pfm_sysctl.expert_mode; 
3099
3100        for (i = 0; i < count; i++, req++) {
3101
3102                cnum  = req->reg_num;
3103                value = req->reg_value;
3104
3105                if (!PMD_IS_IMPL(cnum)) {
3106                        DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3107                        goto abort_mission;
3108                }
3109                is_counting = PMD_IS_COUNTING(cnum);
3110                wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3111
3112                /*
3113                 * execute write checker, if any
3114                 */
3115                if (unlikely(expert_mode == 0 && wr_func)) {
3116                        unsigned long v = value;
3117
3118                        ret = (*wr_func)(task, ctx, cnum, &v, regs);
3119                        if (ret) goto abort_mission;
3120
3121                        value = v;
3122                        ret   = -EINVAL;
3123                }
3124
3125                /*
3126                 * no error on this register
3127                 */
3128                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3129
3130                /*
3131                 * now commit changes to software state
3132                 */
3133                hw_value = value;
3134
3135                /*
3136                 * update virtualized (64bits) counter
3137                 */
3138                if (is_counting) {
3139                        /*
3140                         * write context state
3141                         */
3142                        ctx->ctx_pmds[cnum].lval = value;
3143
3144                        /*
3145                         * when context is load we use the split value
3146                         */
3147                        if (is_loaded) {
3148                                hw_value = value &  ovfl_mask;
3149                                value    = value & ~ovfl_mask;
3150                        }
3151                }
3152                /*
3153                 * update reset values (not just for counters)
3154                 */
3155                ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3156                ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3157
3158                /*
3159                 * update randomization parameters (not just for counters)
3160                 */
3161                ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3162                ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3163
3164                /*
3165                 * update context value
3166                 */
3167                ctx->ctx_pmds[cnum].val  = value;
3168
3169                /*
3170                 * Keep track of what we use
3171                 *
3172                 * We do not keep track of PMC because we have to
3173                 * systematically restore ALL of them.
3174                 */
3175                CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3176
3177                /*
3178                 * mark this PMD register used as well
3179                 */
3180                CTX_USED_PMD(ctx, RDEP(cnum));
3181
3182                /*
3183                 * make sure we do not try to reset on
3184                 * restart because we have established new values
3185                 */
3186                if (is_counting && state == PFM_CTX_MASKED) {
3187                        ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3188                }
3189
3190                if (is_loaded) {
3191                        /*
3192                         * write thread state
3193                         */
3194                        if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3195
3196                        /*
3197                         * write hardware register if we can
3198                         */
3199                        if (can_access_pmu) {
3200                                ia64_set_pmd(cnum, hw_value);
3201                        } else {
3202#ifdef CONFIG_SMP
3203                                /*
3204                                 * we are guaranteed that the task is not running on the other CPU,
3205                                 * we indicate that this PMD will need to be reloaded if the task
3206                                 * is rescheduled on the CPU it ran last on.
3207                                 */
3208                                ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3209#endif
3210                        }
3211                }
3212
3213                DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3214                          "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3215                        cnum,
3216                        value,
3217                        is_loaded,
3218                        can_access_pmu,
3219                        hw_value,
3220                        ctx->ctx_pmds[cnum].val,
3221                        ctx->ctx_pmds[cnum].short_reset,
3222                        ctx->ctx_pmds[cnum].long_reset,
3223                        PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3224                        ctx->ctx_pmds[cnum].seed,
3225                        ctx->ctx_pmds[cnum].mask,
3226                        ctx->ctx_used_pmds[0],
3227                        ctx->ctx_pmds[cnum].reset_pmds[0],
3228                        ctx->ctx_reload_pmds[0],
3229                        ctx->ctx_all_pmds[0],
3230                        ctx->ctx_ovfl_regs[0]));
3231        }
3232
3233        /*
3234         * make changes visible
3235         */
3236        if (can_access_pmu) ia64_srlz_d();
3237
3238        return 0;
3239
3240abort_mission:
3241        /*
3242         * for now, we have only one possibility for error
3243         */
3244        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3245        return ret;
3246}
3247
3248/*
3249 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3250 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3251 * interrupt is delivered during the call, it will be kept pending until we leave, making
3252 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3253 * guaranteed to return consistent data to the user, it may simply be old. It is not
3254 * trivial to treat the overflow while inside the call because you may end up in
3255 * some module sampling buffer code causing deadlocks.
3256 */
3257static int
3258pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3259{
3260        struct task_struct *task;
3261        unsigned long val = 0UL, lval, ovfl_mask, sval;
3262        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3263        unsigned int cnum, reg_flags = 0;
3264        int i, can_access_pmu = 0, state;
3265        int is_loaded, is_system, is_counting, expert_mode;
3266        int ret = -EINVAL;
3267        pfm_reg_check_t rd_func;
3268
3269        /*
3270         * access is possible when loaded only for
3271         * self-monitoring tasks or in UP mode
3272         */
3273
3274        state     = ctx->ctx_state;
3275        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3276        is_system = ctx->ctx_fl_system;
3277        ovfl_mask = pmu_conf->ovfl_val;
3278        task      = ctx->ctx_task;
3279
3280        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3281
3282        if (likely(is_loaded)) {
3283                /*
3284                 * In system wide and when the context is loaded, access can only happen
3285                 * when the caller is running on the CPU being monitored by the session.
3286                 * It does not have to be the owner (ctx_task) of the context per se.
3287                 */
3288                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3289                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3290                        return -EBUSY;
3291                }
3292                /*
3293                 * this can be true when not self-monitoring only in UP
3294                 */
3295                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3296
3297                if (can_access_pmu) ia64_srlz_d();
3298        }
3299        expert_mode = pfm_sysctl.expert_mode; 
3300
3301        DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3302                is_loaded,
3303                can_access_pmu,
3304                state));
3305
3306        /*
3307         * on both UP and SMP, we can only read the PMD from the hardware register when
3308         * the task is the owner of the local PMU.
3309         */
3310
3311        for (i = 0; i < count; i++, req++) {
3312
3313                cnum        = req->reg_num;
3314                reg_flags   = req->reg_flags;
3315
3316                if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3317                /*
3318                 * we can only read the register that we use. That includes
3319                 * the one we explicitly initialize AND the one we want included
3320                 * in the sampling buffer (smpl_regs).
3321                 *
3322                 * Having this restriction allows optimization in the ctxsw routine
3323                 * without compromising security (leaks)
3324                 */
3325                if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3326
3327                sval        = ctx->ctx_pmds[cnum].val;
3328                lval        = ctx->ctx_pmds[cnum].lval;
3329                is_counting = PMD_IS_COUNTING(cnum);
3330
3331                /*
3332                 * If the task is not the current one, then we check if the
3333                 * PMU state is still in the local live register due to lazy ctxsw.
3334                 * If true, then we read directly from the registers.
3335                 */
3336                if (can_access_pmu){
3337                        val = ia64_get_pmd(cnum);
3338                } else {
3339                        /*
3340                         * context has been saved
3341                         * if context is zombie, then task does not exist anymore.
3342                         * In this case, we use the full value saved in the context (pfm_flush_regs()).
3343                         */
3344                        val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3345                }
3346                rd_func = pmu_conf->pmd_desc[cnum].read_check;
3347
3348                if (is_counting) {
3349                        /*
3350                         * XXX: need to check for overflow when loaded
3351                         */
3352                        val &= ovfl_mask;
3353                        val += sval;
3354                }
3355
3356                /*
3357                 * execute read checker, if any
3358                 */
3359                if (unlikely(expert_mode == 0 && rd_func)) {
3360                        unsigned long v = val;
3361                        ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3362                        if (ret) goto error;
3363                        val = v;
3364                        ret = -EINVAL;
3365                }
3366
3367                PFM_REG_RETFLAG_SET(reg_flags, 0);
3368
3369                DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3370
3371                /*
3372                 * update register return value, abort all if problem during copy.
3373                 * we only modify the reg_flags field. no check mode is fine because
3374                 * access has been verified upfront in sys_perfmonctl().
3375                 */
3376                req->reg_value            = val;
3377                req->reg_flags            = reg_flags;
3378                req->reg_last_reset_val   = lval;
3379        }
3380
3381        return 0;
3382
3383error:
3384        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3385        return ret;
3386}
3387
3388int
3389pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3390{
3391        pfm_context_t *ctx;
3392
3393        if (req == NULL) return -EINVAL;
3394
3395        ctx = GET_PMU_CTX();
3396
3397        if (ctx == NULL) return -EINVAL;
3398
3399        /*
3400         * for now limit to current task, which is enough when calling
3401         * from overflow handler
3402         */
3403        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3404
3405        return pfm_write_pmcs(ctx, req, nreq, regs);
3406}
3407EXPORT_SYMBOL(pfm_mod_write_pmcs);
3408
3409int
3410pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3411{
3412        pfm_context_t *ctx;
3413
3414        if (req == NULL) return -EINVAL;
3415
3416        ctx = GET_PMU_CTX();
3417
3418        if (ctx == NULL) return -EINVAL;
3419
3420        /*
3421         * for now limit to current task, which is enough when calling
3422         * from overflow handler
3423         */
3424        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3425
3426        return pfm_read_pmds(ctx, req, nreq, regs);
3427}
3428EXPORT_SYMBOL(pfm_mod_read_pmds);
3429
3430/*
3431 * Only call this function when a process it trying to
3432 * write the debug registers (reading is always allowed)
3433 */
3434int
3435pfm_use_debug_registers(struct task_struct *task)
3436{
3437        pfm_context_t *ctx = task->thread.pfm_context;
3438        unsigned long flags;
3439        int ret = 0;
3440
3441        if (pmu_conf->use_rr_dbregs == 0) return 0;
3442
3443        DPRINT(("called for [%d]\n", task_pid_nr(task)));
3444
3445        /*
3446         * do it only once
3447         */
3448        if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3449
3450        /*
3451         * Even on SMP, we do not need to use an atomic here because
3452         * the only way in is via ptrace() and this is possible only when the
3453         * process is stopped. Even in the case where the ctxsw out is not totally
3454         * completed by the time we come here, there is no way the 'stopped' process
3455         * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3456         * So this is always safe.
3457         */
3458        if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3459
3460        LOCK_PFS(flags);
3461
3462        /*
3463         * We cannot allow setting breakpoints when system wide monitoring
3464         * sessions are using the debug registers.
3465         */
3466        if (pfm_sessions.pfs_sys_use_dbregs> 0)
3467                ret = -1;
3468        else
3469                pfm_sessions.pfs_ptrace_use_dbregs++;
3470
3471        DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3472                  pfm_sessions.pfs_ptrace_use_dbregs,
3473                  pfm_sessions.pfs_sys_use_dbregs,
3474                  task_pid_nr(task), ret));
3475
3476        UNLOCK_PFS(flags);
3477
3478        return ret;
3479}
3480
3481/*
3482 * This function is called for every task that exits with the
3483 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3484 * able to use the debug registers for debugging purposes via
3485 * ptrace(). Therefore we know it was not using them for
3486 * performance monitoring, so we only decrement the number
3487 * of "ptraced" debug register users to keep the count up to date
3488 */
3489int
3490pfm_release_debug_registers(struct task_struct *task)
3491{
3492        unsigned long flags;
3493        int ret;
3494
3495        if (pmu_conf->use_rr_dbregs == 0) return 0;
3496
3497        LOCK_PFS(flags);
3498        if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3499                printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3500                ret = -1;
3501        }  else {
3502                pfm_sessions.pfs_ptrace_use_dbregs--;
3503                ret = 0;
3504        }
3505        UNLOCK_PFS(flags);
3506
3507        return ret;
3508}
3509
3510static int
3511pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3512{
3513        struct task_struct *task;
3514        pfm_buffer_fmt_t *fmt;
3515        pfm_ovfl_ctrl_t rst_ctrl;
3516        int state, is_system;
3517        int ret = 0;
3518
3519        state     = ctx->ctx_state;
3520        fmt       = ctx->ctx_buf_fmt;
3521        is_system = ctx->ctx_fl_system;
3522        task      = PFM_CTX_TASK(ctx);
3523
3524        switch(state) {
3525                case PFM_CTX_MASKED:
3526                        break;
3527                case PFM_CTX_LOADED: 
3528                        if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3529                        /* fall through */
3530                case PFM_CTX_UNLOADED:
3531                case PFM_CTX_ZOMBIE:
3532                        DPRINT(("invalid state=%d\n", state));
3533                        return -EBUSY;
3534                default:
3535                        DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3536                        return -EINVAL;
3537        }
3538
3539        /*
3540         * In system wide and when the context is loaded, access can only happen
3541         * when the caller is running on the CPU being monitored by the session.
3542         * It does not have to be the owner (ctx_task) of the context per se.
3543         */
3544        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3545                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3546                return -EBUSY;
3547        }
3548
3549        /* sanity check */
3550        if (unlikely(task == NULL)) {
3551                printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3552                return -EINVAL;
3553        }
3554
3555        if (task == current || is_system) {
3556
3557                fmt = ctx->ctx_buf_fmt;
3558
3559                DPRINT(("restarting self %d ovfl=0x%lx\n",
3560                        task_pid_nr(task),
3561                        ctx->ctx_ovfl_regs[0]));
3562
3563                if (CTX_HAS_SMPL(ctx)) {
3564
3565                        prefetch(ctx->ctx_smpl_hdr);
3566
3567                        rst_ctrl.bits.mask_monitoring = 0;
3568                        rst_ctrl.bits.reset_ovfl_pmds = 0;
3569
3570                        if (state == PFM_CTX_LOADED)
3571                                ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3572                        else
3573                                ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3574                } else {
3575                        rst_ctrl.bits.mask_monitoring = 0;
3576                        rst_ctrl.bits.reset_ovfl_pmds = 1;
3577                }
3578
3579                if (ret == 0) {
3580                        if (rst_ctrl.bits.reset_ovfl_pmds)
3581                                pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3582
3583                        if (rst_ctrl.bits.mask_monitoring == 0) {
3584                                DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3585
3586                                if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3587                        } else {
3588                                DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3589
3590                                // cannot use pfm_stop_monitoring(task, regs);
3591                        }
3592                }
3593                /*
3594                 * clear overflowed PMD mask to remove any stale information
3595                 */
3596                ctx->ctx_ovfl_regs[0] = 0UL;
3597
3598                /*
3599                 * back to LOADED state
3600                 */
3601                ctx->ctx_state = PFM_CTX_LOADED;
3602
3603                /*
3604                 * XXX: not really useful for self monitoring
3605                 */
3606                ctx->ctx_fl_can_restart = 0;
3607
3608                return 0;
3609        }
3610
3611        /* 
3612         * restart another task
3613         */
3614
3615        /*
3616         * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3617         * one is seen by the task.
3618         */
3619        if (state == PFM_CTX_MASKED) {
3620                if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3621                /*
3622                 * will prevent subsequent restart before this one is
3623                 * seen by other task
3624                 */
3625                ctx->ctx_fl_can_restart = 0;
3626        }
3627
3628        /*
3629         * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3630         * the task is blocked or on its way to block. That's the normal
3631         * restart path. If the monitoring is not masked, then the task
3632         * can be actively monitoring and we cannot directly intervene.
3633         * Therefore we use the trap mechanism to catch the task and
3634         * force it to reset the buffer/reset PMDs.
3635         *
3636         * if non-blocking, then we ensure that the task will go into
3637         * pfm_handle_work() before returning to user mode.
3638         *
3639         * We cannot explicitly reset another task, it MUST always
3640         * be done by the task itself. This works for system wide because
3641         * the tool that is controlling the session is logically doing 
3642         * "self-monitoring".
3643         */
3644        if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3645                DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3646                complete(&ctx->ctx_restart_done);
3647        } else {
3648                DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3649
3650                ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3651
3652                PFM_SET_WORK_PENDING(task, 1);
3653
3654                set_notify_resume(task);
3655
3656                /*
3657                 * XXX: send reschedule if task runs on another CPU
3658                 */
3659        }
3660        return 0;
3661}
3662
3663static int
3664pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3665{
3666        unsigned int m = *(unsigned int *)arg;
3667
3668        pfm_sysctl.debug = m == 0 ? 0 : 1;
3669
3670        printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3671
3672        if (m == 0) {
3673                memset(pfm_stats, 0, sizeof(pfm_stats));
3674                for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3675        }
3676        return 0;
3677}
3678
3679/*
3680 * arg can be NULL and count can be zero for this function
3681 */
3682static int
3683pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3684{
3685        struct thread_struct *thread = NULL;
3686        struct task_struct *task;
3687        pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3688        unsigned long flags;
3689        dbreg_t dbreg;
3690        unsigned int rnum;
3691        int first_time;
3692        int ret = 0, state;
3693        int i, can_access_pmu = 0;
3694        int is_system, is_loaded;
3695
3696        if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3697
3698        state     = ctx->ctx_state;
3699        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3700        is_system = ctx->ctx_fl_system;
3701        task      = ctx->ctx_task;
3702
3703        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3704
3705        /*
3706         * on both UP and SMP, we can only write to the PMC when the task is
3707         * the owner of the local PMU.
3708         */
3709        if (is_loaded) {
3710                thread = &task->thread;
3711                /*
3712                 * In system wide and when the context is loaded, access can only happen
3713                 * when the caller is running on the CPU being monitored by the session.
3714                 * It does not have to be the owner (ctx_task) of the context per se.
3715                 */
3716                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3717                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3718                        return -EBUSY;
3719                }
3720                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3721        }
3722
3723        /*
3724         * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3725         * ensuring that no real breakpoint can be installed via this call.
3726         *
3727         * IMPORTANT: regs can be NULL in this function
3728         */
3729
3730        first_time = ctx->ctx_fl_using_dbreg == 0;
3731
3732        /*
3733         * don't bother if we are loaded and task is being debugged
3734         */
3735        if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3736                DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3737                return -EBUSY;
3738        }
3739
3740        /*
3741         * check for debug registers in system wide mode
3742         *
3743         * If though a check is done in pfm_context_load(),
3744         * we must repeat it here, in case the registers are
3745         * written after the context is loaded
3746         */
3747        if (is_loaded) {
3748                LOCK_PFS(flags);
3749
3750                if (first_time && is_system) {
3751                        if (pfm_sessions.pfs_ptrace_use_dbregs)
3752                                ret = -EBUSY;
3753                        else
3754                                pfm_sessions.pfs_sys_use_dbregs++;
3755                }
3756                UNLOCK_PFS(flags);
3757        }
3758
3759        if (ret != 0) return ret;
3760
3761        /*
3762         * mark ourself as user of the debug registers for
3763         * perfmon purposes.
3764         */
3765        ctx->ctx_fl_using_dbreg = 1;
3766
3767        /*
3768         * clear hardware registers to make sure we don't
3769         * pick up stale state.
3770         *
3771         * for a system wide session, we do not use
3772         * thread.dbr, thread.ibr because this process
3773         * never leaves the current CPU and the state
3774         * is shared by all processes running on it
3775         */
3776        if (first_time && can_access_pmu) {
3777                DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3778                for (i=0; i < pmu_conf->num_ibrs; i++) {
3779                        ia64_set_ibr(i, 0UL);
3780                        ia64_dv_serialize_instruction();
3781                }
3782                ia64_srlz_i();
3783                for (i=0; i < pmu_conf->num_dbrs; i++) {
3784                        ia64_set_dbr(i, 0UL);
3785                        ia64_dv_serialize_data();
3786                }
3787                ia64_srlz_d();
3788        }
3789
3790        /*
3791         * Now install the values into the registers
3792         */
3793        for (i = 0; i < count; i++, req++) {
3794
3795                rnum      = req->dbreg_num;
3796                dbreg.val = req->dbreg_value;
3797
3798                ret = -EINVAL;
3799
3800                if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3801                        DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3802                                  rnum, dbreg.val, mode, i, count));
3803
3804                        goto abort_mission;
3805                }
3806
3807                /*
3808                 * make sure we do not install enabled breakpoint
3809                 */
3810                if (rnum & 0x1) {
3811                        if (mode == PFM_CODE_RR)
3812                                dbreg.ibr.ibr_x = 0;
3813                        else
3814                                dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3815                }
3816
3817                PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3818
3819                /*
3820                 * Debug registers, just like PMC, can only be modified
3821                 * by a kernel call. Moreover, perfmon() access to those
3822                 * registers are centralized in this routine. The hardware
3823                 * does not modify the value of these registers, therefore,
3824                 * if we save them as they are written, we can avoid having
3825                 * to save them on context switch out. This is made possible
3826                 * by the fact that when perfmon uses debug registers, ptrace()
3827                 * won't be able to modify them concurrently.
3828                 */
3829                if (mode == PFM_CODE_RR) {
3830                        CTX_USED_IBR(ctx, rnum);
3831
3832                        if (can_access_pmu) {
3833                                ia64_set_ibr(rnum, dbreg.val);
3834                                ia64_dv_serialize_instruction();
3835                        }
3836
3837                        ctx->ctx_ibrs[rnum] = dbreg.val;
3838
3839                        DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3840                                rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3841                } else {
3842                        CTX_USED_DBR(ctx, rnum);
3843
3844                        if (can_access_pmu) {
3845                                ia64_set_dbr(rnum, dbreg.val);
3846                                ia64_dv_serialize_data();
3847                        }
3848                        ctx->ctx_dbrs[rnum] = dbreg.val;
3849
3850                        DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3851                                rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3852                }
3853        }
3854
3855        return 0;
3856
3857abort_mission:
3858        /*
3859         * in case it was our first attempt, we undo the global modifications
3860         */
3861        if (first_time) {
3862                LOCK_PFS(flags);
3863                if (ctx->ctx_fl_system) {
3864                        pfm_sessions.pfs_sys_use_dbregs--;
3865                }
3866                UNLOCK_PFS(flags);
3867                ctx->ctx_fl_using_dbreg = 0;
3868        }
3869        /*
3870         * install error return flag
3871         */
3872        PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3873
3874        return ret;
3875}
3876
3877static int
3878pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3879{
3880        return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3881}
3882
3883static int
3884pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3885{
3886        return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3887}
3888
3889int
3890pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3891{
3892        pfm_context_t *ctx;
3893
3894        if (req == NULL) return -EINVAL;
3895
3896        ctx = GET_PMU_CTX();
3897
3898        if (ctx == NULL) return -EINVAL;
3899
3900        /*
3901         * for now limit to current task, which is enough when calling
3902         * from overflow handler
3903         */
3904        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3905
3906        return pfm_write_ibrs(ctx, req, nreq, regs);
3907}
3908EXPORT_SYMBOL(pfm_mod_write_ibrs);
3909
3910int
3911pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3912{
3913        pfm_context_t *ctx;
3914
3915        if (req == NULL) return -EINVAL;
3916
3917        ctx = GET_PMU_CTX();
3918
3919        if (ctx == NULL) return -EINVAL;
3920
3921        /*
3922         * for now limit to current task, which is enough when calling
3923         * from overflow handler
3924         */
3925        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3926
3927        return pfm_write_dbrs(ctx, req, nreq, regs);
3928}
3929EXPORT_SYMBOL(pfm_mod_write_dbrs);
3930
3931
3932static int
3933pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3934{
3935        pfarg_features_t *req = (pfarg_features_t *)arg;
3936
3937        req->ft_version = PFM_VERSION;
3938        return 0;
3939}
3940
3941static int
3942pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3943{
3944        struct pt_regs *tregs;
3945        struct task_struct *task = PFM_CTX_TASK(ctx);
3946        int state, is_system;
3947
3948        state     = ctx->ctx_state;
3949        is_system = ctx->ctx_fl_system;
3950
3951        /*
3952         * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3953         */
3954        if (state == PFM_CTX_UNLOADED) return -EINVAL;
3955
3956        /*
3957         * In system wide and when the context is loaded, access can only happen
3958         * when the caller is running on the CPU being monitored by the session.
3959         * It does not have to be the owner (ctx_task) of the context per se.
3960         */
3961        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3962                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3963                return -EBUSY;
3964        }
3965        DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3966                task_pid_nr(PFM_CTX_TASK(ctx)),
3967                state,
3968                is_system));
3969        /*
3970         * in system mode, we need to update the PMU directly
3971         * and the user level state of the caller, which may not
3972         * necessarily be the creator of the context.
3973         */
3974        if (is_system) {
3975                /*
3976                 * Update local PMU first
3977                 *
3978                 * disable dcr pp
3979                 */
3980                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3981                ia64_srlz_i();
3982
3983                /*
3984                 * update local cpuinfo
3985                 */
3986                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3987
3988                /*
3989                 * stop monitoring, does srlz.i
3990                 */
3991                pfm_clear_psr_pp();
3992
3993                /*
3994                 * stop monitoring in the caller
3995                 */
3996                ia64_psr(regs)->pp = 0;
3997
3998                return 0;
3999        }
4000        /*
4001         * per-task mode
4002         */
4003
4004        if (task == current) {
4005                /* stop monitoring  at kernel level */
4006                pfm_clear_psr_up();
4007
4008                /*
4009                 * stop monitoring at the user level
4010                 */
4011                ia64_psr(regs)->up = 0;
4012        } else {
4013                tregs = task_pt_regs(task);
4014
4015                /*
4016                 * stop monitoring at the user level
4017                 */
4018                ia64_psr(tregs)->up = 0;
4019
4020                /*
4021                 * monitoring disabled in kernel at next reschedule
4022                 */
4023                ctx->ctx_saved_psr_up = 0;
4024                DPRINT(("task=[%d]\n", task_pid_nr(task)));
4025        }
4026        return 0;
4027}
4028
4029
4030static int
4031pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4032{
4033        struct pt_regs *tregs;
4034        int state, is_system;
4035
4036        state     = ctx->ctx_state;
4037        is_system = ctx->ctx_fl_system;
4038
4039        if (state != PFM_CTX_LOADED) return -EINVAL;
4040
4041        /*
4042         * In system wide and when the context is loaded, access can only happen
4043         * when the caller is running on the CPU being monitored by the session.
4044         * It does not have to be the owner (ctx_task) of the context per se.
4045         */
4046        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4047                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4048                return -EBUSY;
4049        }
4050
4051        /*
4052         * in system mode, we need to update the PMU directly
4053         * and the user level state of the caller, which may not
4054         * necessarily be the creator of the context.
4055         */
4056        if (is_system) {
4057
4058                /*
4059                 * set user level psr.pp for the caller
4060                 */
4061                ia64_psr(regs)->pp = 1;
4062
4063                /*
4064                 * now update the local PMU and cpuinfo
4065                 */
4066                PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4067
4068                /*
4069                 * start monitoring at kernel level
4070                 */
4071                pfm_set_psr_pp();
4072
4073                /* enable dcr pp */
4074                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4075                ia64_srlz_i();
4076
4077                return 0;
4078        }
4079
4080        /*
4081         * per-process mode
4082         */
4083
4084        if (ctx->ctx_task == current) {
4085
4086                /* start monitoring at kernel level */
4087                pfm_set_psr_up();
4088
4089                /*
4090                 * activate monitoring at user level
4091                 */
4092                ia64_psr(regs)->up = 1;
4093
4094        } else {
4095                tregs = task_pt_regs(ctx->ctx_task);
4096
4097                /*
4098                 * start monitoring at the kernel level the next
4099                 * time the task is scheduled
4100                 */
4101                ctx->ctx_saved_psr_up = IA64_PSR_UP;
4102
4103                /*
4104                 * activate monitoring at user level
4105                 */
4106                ia64_psr(tregs)->up = 1;
4107        }
4108        return 0;
4109}
4110
4111static int
4112pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4113{
4114        pfarg_reg_t *req = (pfarg_reg_t *)arg;
4115        unsigned int cnum;
4116        int i;
4117        int ret = -EINVAL;
4118
4119        for (i = 0; i < count; i++, req++) {
4120
4121                cnum = req->reg_num;
4122
4123                if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4124
4125                req->reg_value = PMC_DFL_VAL(cnum);
4126
4127                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4128
4129                DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4130        }
4131        return 0;
4132
4133abort_mission:
4134        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4135        return ret;
4136}
4137
4138static int
4139pfm_check_task_exist(pfm_context_t *ctx)
4140{
4141        struct task_struct *g, *t;
4142        int ret = -ESRCH;
4143
4144        read_lock(&tasklist_lock);
4145
4146        do_each_thread (g, t) {
4147                if (t->thread.pfm_context == ctx) {
4148                        ret = 0;
4149                        goto out;
4150                }
4151        } while_each_thread (g, t);
4152out:
4153        read_unlock(&tasklist_lock);
4154
4155        DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4156
4157        return ret;
4158}
4159
4160static int
4161pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4162{
4163        struct task_struct *task;
4164        struct thread_struct *thread;
4165        struct pfm_context_t *old;
4166        unsigned long flags;
4167#ifndef CONFIG_SMP
4168        struct task_struct *owner_task = NULL;
4169#endif
4170        pfarg_load_t *req = (pfarg_load_t *)arg;
4171        unsigned long *pmcs_source, *pmds_source;
4172        int the_cpu;
4173        int ret = 0;
4174        int state, is_system, set_dbregs = 0;
4175
4176        state     = ctx->ctx_state;
4177        is_system = ctx->ctx_fl_system;
4178        /*
4179         * can only load from unloaded or terminated state
4180         */
4181        if (state != PFM_CTX_UNLOADED) {
4182                DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4183                        req->load_pid,
4184                        ctx->ctx_state));
4185                return -EBUSY;
4186        }
4187
4188        DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4189
4190        if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4191                DPRINT(("cannot use blocking mode on self\n"));
4192                return -EINVAL;
4193        }
4194
4195        ret = pfm_get_task(ctx, req->load_pid, &task);
4196        if (ret) {
4197                DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4198                return ret;
4199        }
4200
4201        ret = -EINVAL;
4202
4203        /*
4204         * system wide is self monitoring only
4205         */
4206        if (is_system && task != current) {
4207                DPRINT(("system wide is self monitoring only load_pid=%d\n",
4208                        req->load_pid));
4209                goto error;
4210        }
4211
4212        thread = &task->thread;
4213
4214        ret = 0;
4215        /*
4216         * cannot load a context which is using range restrictions,
4217         * into a task that is being debugged.
4218         */
4219        if (ctx->ctx_fl_using_dbreg) {
4220                if (thread->flags & IA64_THREAD_DBG_VALID) {
4221                        ret = -EBUSY;
4222                        DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4223                        goto error;
4224                }
4225                LOCK_PFS(flags);
4226
4227                if (is_system) {
4228                        if (pfm_sessions.pfs_ptrace_use_dbregs) {
4229                                DPRINT(("cannot load [%d] dbregs in use\n",
4230                                                        task_pid_nr(task)));
4231                                ret = -EBUSY;
4232                        } else {
4233                                pfm_sessions.pfs_sys_use_dbregs++;
4234                                DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4235                                set_dbregs = 1;
4236                        }
4237                }
4238
4239                UNLOCK_PFS(flags);
4240
4241                if (ret) goto error;
4242        }
4243
4244        /*
4245         * SMP system-wide monitoring implies self-monitoring.
4246         *
4247         * The programming model expects the task to
4248         * be pinned on a CPU throughout the session.
4249         * Here we take note of the current CPU at the
4250         * time the context is loaded. No call from
4251         * another CPU will be allowed.
4252         *
4253         * The pinning via shed_setaffinity()
4254         * must be done by the calling task prior
4255         * to this call.
4256         *
4257         * systemwide: keep track of CPU this session is supposed to run on
4258         */
4259        the_cpu = ctx->ctx_cpu = smp_processor_id();
4260
4261        ret = -EBUSY;
4262        /*
4263         * now reserve the session
4264         */
4265        ret = pfm_reserve_session(current, is_system, the_cpu);
4266        if (ret) goto error;
4267
4268        /*
4269         * task is necessarily stopped at this point.
4270         *
4271         * If the previous context was zombie, then it got removed in
4272         * pfm_save_regs(). Therefore we should not see it here.
4273         * If we see a context, then this is an active context
4274         *
4275         * XXX: needs to be atomic
4276         */
4277        DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4278                thread->pfm_context, ctx));
4279
4280        ret = -EBUSY;
4281        old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4282        if (old != NULL) {
4283                DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4284                goto error_unres;
4285        }
4286
4287        pfm_reset_msgq(ctx);
4288
4289        ctx->ctx_state = PFM_CTX_LOADED;
4290
4291        /*
4292         * link context to task
4293         */
4294        ctx->ctx_task = task;
4295
4296        if (is_system) {
4297                /*
4298                 * we load as stopped
4299                 */
4300                PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4301                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4302
4303                if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4304        } else {
4305                thread->flags |= IA64_THREAD_PM_VALID;
4306        }
4307
4308        /*
4309         * propagate into thread-state
4310         */
4311        pfm_copy_pmds(task, ctx);
4312        pfm_copy_pmcs(task, ctx);
4313
4314        pmcs_source = ctx->th_pmcs;
4315        pmds_source = ctx->th_pmds;
4316
4317        /*
4318         * always the case for system-wide
4319         */
4320        if (task == current) {
4321
4322                if (is_system == 0) {
4323
4324                        /* allow user level control */
4325                        ia64_psr(regs)->sp = 0;
4326                        DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4327
4328                        SET_LAST_CPU(ctx, smp_processor_id());
4329                        INC_ACTIVATION();
4330                        SET_ACTIVATION(ctx);
4331#ifndef CONFIG_SMP
4332                        /*
4333                         * push the other task out, if any
4334                         */
4335                        owner_task = GET_PMU_OWNER();
4336                        if (owner_task) pfm_lazy_save_regs(owner_task);
4337#endif
4338                }
4339                /*
4340                 * load all PMD from ctx to PMU (as opposed to thread state)
4341                 * restore all PMC from ctx to PMU
4342                 */
4343                pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4344                pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4345
4346                ctx->ctx_reload_pmcs[0] = 0UL;
4347                ctx->ctx_reload_pmds[0] = 0UL;
4348
4349                /*
4350                 * guaranteed safe by earlier check against DBG_VALID
4351                 */
4352                if (ctx->ctx_fl_using_dbreg) {
4353                        pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4354                        pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4355                }
4356                /*
4357                 * set new ownership
4358                 */
4359                SET_PMU_OWNER(task, ctx);
4360
4361                DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4362        } else {
4363                /*
4364                 * when not current, task MUST be stopped, so this is safe
4365                 */
4366                regs = task_pt_regs(task);
4367
4368                /* force a full reload */
4369                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4370                SET_LAST_CPU(ctx, -1);
4371
4372                /* initial saved psr (stopped) */
4373                ctx->ctx_saved_psr_up = 0UL;
4374                ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4375        }
4376
4377        ret = 0;
4378
4379error_unres:
4380        if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4381error:
4382        /*
4383         * we must undo the dbregs setting (for system-wide)
4384         */
4385        if (ret && set_dbregs) {
4386                LOCK_PFS(flags);
4387                pfm_sessions.pfs_sys_use_dbregs--;
4388                UNLOCK_PFS(flags);
4389        }
4390        /*
4391         * release task, there is now a link with the context
4392         */
4393        if (is_system == 0 && task != current) {
4394                pfm_put_task(task);
4395
4396                if (ret == 0) {
4397                        ret = pfm_check_task_exist(ctx);
4398                        if (ret) {
4399                                ctx->ctx_state = PFM_CTX_UNLOADED;
4400                                ctx->ctx_task  = NULL;
4401                        }
4402                }
4403        }
4404        return ret;
4405}
4406
4407/*
4408 * in this function, we do not need to increase the use count
4409 * for the task via get_task_struct(), because we hold the
4410 * context lock. If the task were to disappear while having
4411 * a context attached, it would go through pfm_exit_thread()
4412 * which also grabs the context lock  and would therefore be blocked
4413 * until we are here.
4414 */
4415static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4416
4417static int
4418pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4419{
4420        struct task_struct *task = PFM_CTX_TASK(ctx);
4421        struct pt_regs *tregs;
4422        int prev_state, is_system;
4423        int ret;
4424
4425        DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4426
4427        prev_state = ctx->ctx_state;
4428        is_system  = ctx->ctx_fl_system;
4429
4430        /*
4431         * unload only when necessary
4432         */
4433        if (prev_state == PFM_CTX_UNLOADED) {
4434                DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4435                return 0;
4436        }
4437
4438        /*
4439         * clear psr and dcr bits
4440         */
4441        ret = pfm_stop(ctx, NULL, 0, regs);
4442        if (ret) return ret;
4443
4444        ctx->ctx_state = PFM_CTX_UNLOADED;
4445
4446        /*
4447         * in system mode, we need to update the PMU directly
4448         * and the user level state of the caller, which may not
4449         * necessarily be the creator of the context.
4450         */
4451        if (is_system) {
4452
4453                /*
4454                 * Update cpuinfo
4455                 *
4456                 * local PMU is taken care of in pfm_stop()
4457                 */
4458                PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4459                PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4460
4461                /*
4462                 * save PMDs in context
4463                 * release ownership
4464                 */
4465                pfm_flush_pmds(current, ctx);
4466
4467                /*
4468                 * at this point we are done with the PMU
4469                 * so we can unreserve the resource.
4470                 */
4471                if (prev_state != PFM_CTX_ZOMBIE) 
4472                        pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4473
4474                /*
4475                 * disconnect context from task
4476                 */
4477                task->thread.pfm_context = NULL;
4478                /*
4479                 * disconnect task from context
4480                 */
4481                ctx->ctx_task = NULL;
4482
4483                /*
4484                 * There is nothing more to cleanup here.
4485                 */
4486                return 0;
4487        }
4488
4489        /*
4490         * per-task mode
4491         */
4492        tregs = task == current ? regs : task_pt_regs(task);
4493
4494        if (task == current) {
4495                /*
4496                 * cancel user level control
4497                 */
4498                ia64_psr(regs)->sp = 1;
4499
4500                DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4501        }
4502        /*
4503         * save PMDs to context
4504         * release ownership
4505         */
4506        pfm_flush_pmds(task, ctx);
4507
4508        /*
4509         * at this point we are done with the PMU
4510         * so we can unreserve the resource.
4511         *
4512         * when state was ZOMBIE, we have already unreserved.
4513         */
4514        if (prev_state != PFM_CTX_ZOMBIE) 
4515                pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4516
4517        /*
4518         * reset activation counter and psr
4519         */
4520        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4521        SET_LAST_CPU(ctx, -1);
4522
4523        /*
4524         * PMU state will not be restored
4525         */
4526        task->thread.flags &= ~IA64_THREAD_PM_VALID;
4527
4528        /*
4529         * break links between context and task
4530         */
4531        task->thread.pfm_context  = NULL;
4532        ctx->ctx_task             = NULL;
4533
4534        PFM_SET_WORK_PENDING(task, 0);
4535
4536        ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4537        ctx->ctx_fl_can_restart  = 0;
4538        ctx->ctx_fl_going_zombie = 0;
4539
4540        DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4541
4542        return 0;
4543}
4544
4545
4546/*
4547 * called only from exit_thread()
4548 * we come here only if the task has a context attached (loaded or masked)
4549 */
4550void
4551pfm_exit_thread(struct task_struct *task)
4552{
4553        pfm_context_t *ctx;
4554        unsigned long flags;
4555        struct pt_regs *regs = task_pt_regs(task);
4556        int ret, state;
4557        int free_ok = 0;
4558
4559        ctx = PFM_GET_CTX(task);
4560
4561        PROTECT_CTX(ctx, flags);
4562
4563        DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4564
4565        state = ctx->ctx_state;
4566        switch(state) {
4567                case PFM_CTX_UNLOADED:
4568                        /*
4569                         * only comes to this function if pfm_context is not NULL, i.e., cannot
4570                         * be in unloaded state
4571                         */
4572                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4573                        break;
4574                case PFM_CTX_LOADED:
4575                case PFM_CTX_MASKED:
4576                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4577                        if (ret) {
4578                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4579                        }
4580                        DPRINT(("ctx unloaded for current state was %d\n", state));
4581
4582                        pfm_end_notify_user(ctx);
4583                        break;
4584                case PFM_CTX_ZOMBIE:
4585                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4586                        if (ret) {
4587                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4588                        }
4589                        free_ok = 1;
4590                        break;
4591                default:
4592                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4593                        break;
4594        }
4595        UNPROTECT_CTX(ctx, flags);
4596
4597        { u64 psr = pfm_get_psr();
4598          BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4599          BUG_ON(GET_PMU_OWNER());
4600          BUG_ON(ia64_psr(regs)->up);
4601          BUG_ON(ia64_psr(regs)->pp);
4602        }
4603
4604        /*
4605         * All memory free operations (especially for vmalloc'ed memory)
4606         * MUST be done with interrupts ENABLED.
4607         */
4608        if (free_ok) pfm_context_free(ctx);
4609}
4610
4611/*
4612 * functions MUST be listed in the increasing order of their index (see permfon.h)
4613 */
4614#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4615#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4616#define PFM_CMD_PCLRWS  (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4617#define PFM_CMD_PCLRW   (PFM_CMD_FD|PFM_CMD_ARG_RW)
4618#define PFM_CMD_NONE    { NULL, "no-cmd", 0, 0, 0, NULL}
4619
4620static pfm_cmd_desc_t pfm_cmd_tab[]={
4621/* 0  */PFM_CMD_NONE,
4622/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4623/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4624/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4625/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4626/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4627/* 6  */PFM_CMD_NONE,
4628/* 7  */PFM_CMD_NONE,
4629/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4630/* 9  */PFM_CMD_NONE,
4631/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4632/* 11 */PFM_CMD_NONE,
4633/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4634/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4635/* 14 */PFM_CMD_NONE,
4636/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4637/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4638/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4639/* 18 */PFM_CMD_NONE,
4640/* 19 */PFM_CMD_NONE,
4641/* 20 */PFM_CMD_NONE,
4642/* 21 */PFM_CMD_NONE,
4643/* 22 */PFM_CMD_NONE,
4644/* 23 */PFM_CMD_NONE,
4645/* 24 */PFM_CMD_NONE,
4646/* 25 */PFM_CMD_NONE,
4647/* 26 */PFM_CMD_NONE,
4648/* 27 */PFM_CMD_NONE,
4649/* 28 */PFM_CMD_NONE,
4650/* 29 */PFM_CMD_NONE,
4651/* 30 */PFM_CMD_NONE,
4652/* 31 */PFM_CMD_NONE,
4653/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4654/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4655};
4656#define PFM_CMD_COUNT   (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4657
4658static int
4659pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4660{
4661        struct task_struct *task;
4662        int state, old_state;
4663
4664recheck:
4665        state = ctx->ctx_state;
4666        task  = ctx->ctx_task;
4667
4668        if (task == NULL) {
4669                DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4670                return 0;
4671        }
4672
4673        DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4674                ctx->ctx_fd,
4675                state,
4676                task_pid_nr(task),
4677                task->state, PFM_CMD_STOPPED(cmd)));
4678
4679        /*
4680         * self-monitoring always ok.
4681         *
4682         * for system-wide the caller can either be the creator of the
4683         * context (to one to which the context is attached to) OR
4684         * a task running on the same CPU as the session.
4685         */
4686        if (task == current || ctx->ctx_fl_system) return 0;
4687
4688        /*
4689         * we are monitoring another thread
4690         */
4691        switch(state) {
4692                case PFM_CTX_UNLOADED:
4693                        /*
4694                         * if context is UNLOADED we are safe to go
4695                         */
4696                        return 0;
4697                case PFM_CTX_ZOMBIE:
4698                        /*
4699                         * no command can operate on a zombie context
4700                         */
4701                        DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4702                        return -EINVAL;
4703                case PFM_CTX_MASKED:
4704                        /*
4705                         * PMU state has been saved to software even though
4706                         * the thread may still be running.
4707                         */
4708                        if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4709        }
4710
4711        /*
4712         * context is LOADED or MASKED. Some commands may need to have 
4713         * the task stopped.
4714         *
4715         * We could lift this restriction for UP but it would mean that
4716         * the user has no guarantee the task would not run between
4717         * two successive calls to perfmonctl(). That's probably OK.
4718         * If this user wants to ensure the task does not run, then
4719         * the task must be stopped.
4720         */
4721        if (PFM_CMD_STOPPED(cmd)) {
4722                if (!task_is_stopped_or_traced(task)) {
4723                        DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4724                        return -EBUSY;
4725                }
4726                /*
4727                 * task is now stopped, wait for ctxsw out
4728                 *
4729                 * This is an interesting point in the code.
4730                 * We need to unprotect the context because
4731                 * the pfm_save_regs() routines needs to grab
4732                 * the same lock. There are danger in doing
4733                 * this because it leaves a window open for
4734                 * another task to get access to the context
4735                 * and possibly change its state. The one thing
4736                 * that is not possible is for the context to disappear
4737                 * because we are protected by the VFS layer, i.e.,
4738                 * get_fd()/put_fd().
4739                 */
4740                old_state = state;
4741
4742                UNPROTECT_CTX(ctx, flags);
4743
4744                wait_task_inactive(task, 0);
4745
4746                PROTECT_CTX(ctx, flags);
4747
4748                /*
4749                 * we must recheck to verify if state has changed
4750                 */
4751                if (ctx->ctx_state != old_state) {
4752                        DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4753                        goto recheck;
4754                }
4755        }
4756        return 0;
4757}
4758
4759/*
4760 * system-call entry point (must return long)
4761 */
4762asmlinkage long
4763sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4764{
4765        struct fd f = {NULL, 0};
4766        pfm_context_t *ctx = NULL;
4767        unsigned long flags = 0UL;
4768        void *args_k = NULL;
4769        long ret; /* will expand int return types */
4770        size_t base_sz, sz, xtra_sz = 0;
4771        int narg, completed_args = 0, call_made = 0, cmd_flags;
4772        int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4773        int (*getsize)(void *arg, size_t *sz);
4774#define PFM_MAX_ARGSIZE 4096
4775
4776        /*
4777         * reject any call if perfmon was disabled at initialization
4778         */
4779        if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4780
4781        if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4782                DPRINT(("invalid cmd=%d\n", cmd));
4783                return -EINVAL;
4784        }
4785
4786        func      = pfm_cmd_tab[cmd].cmd_func;
4787        narg      = pfm_cmd_tab[cmd].cmd_narg;
4788        base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4789        getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4790        cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4791
4792        if (unlikely(func == NULL)) {
4793                DPRINT(("invalid cmd=%d\n", cmd));
4794                return -EINVAL;
4795        }
4796
4797        DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4798                PFM_CMD_NAME(cmd),
4799                cmd,
4800                narg,
4801                base_sz,
4802                count));
4803
4804        /*
4805         * check if number of arguments matches what the command expects
4806         */
4807        if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4808                return -EINVAL;
4809
4810restart_args:
4811        sz = xtra_sz + base_sz*count;
4812        /*
4813         * limit abuse to min page size
4814         */
4815        if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4816                printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4817                return -E2BIG;
4818        }
4819
4820        /*
4821         * allocate default-sized argument buffer
4822         */
4823        if (likely(count && args_k == NULL)) {
4824                args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4825                if (args_k == NULL) return -ENOMEM;
4826        }
4827
4828        ret = -EFAULT;
4829
4830        /*
4831         * copy arguments
4832         *
4833         * assume sz = 0 for command without parameters
4834         */
4835        if (sz && copy_from_user(args_k, arg, sz)) {
4836                DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4837                goto error_args;
4838        }
4839
4840        /*
4841         * check if command supports extra parameters
4842         */
4843        if (completed_args == 0 && getsize) {
4844                /*
4845                 * get extra parameters size (based on main argument)
4846                 */
4847                ret = (*getsize)(args_k, &xtra_sz);
4848                if (ret) goto error_args;
4849
4850                completed_args = 1;
4851
4852                DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4853
4854                /* retry if necessary */
4855                if (likely(xtra_sz)) goto restart_args;
4856        }
4857
4858        if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4859
4860        ret = -EBADF;
4861
4862        f = fdget(fd);
4863        if (unlikely(f.file == NULL)) {
4864                DPRINT(("invalid fd %d\n", fd));
4865                goto error_args;
4866        }
4867        if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4868                DPRINT(("fd %d not related to perfmon\n", fd));
4869                goto error_args;
4870        }
4871
4872        ctx = f.file->private_data;
4873        if (unlikely(ctx == NULL)) {
4874                DPRINT(("no context for fd %d\n", fd));
4875                goto error_args;
4876        }
4877        prefetch(&ctx->ctx_state);
4878
4879        PROTECT_CTX(ctx, flags);
4880
4881        /*
4882         * check task is stopped
4883         */
4884        ret = pfm_check_task_state(ctx, cmd, flags);
4885        if (unlikely(ret)) goto abort_locked;
4886
4887skip_fd:
4888        ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4889
4890        call_made = 1;
4891
4892abort_locked:
4893        if (likely(ctx)) {
4894                DPRINT(("context unlocked\n"));
4895                UNPROTECT_CTX(ctx, flags);
4896        }
4897
4898        /* copy argument back to user, if needed */
4899        if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4900
4901error_args:
4902        if (f.file)
4903                fdput(f);
4904
4905        kfree(args_k);
4906
4907        DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4908
4909        return ret;
4910}
4911
4912static void
4913pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4914{
4915        pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4916        pfm_ovfl_ctrl_t rst_ctrl;
4917        int state;
4918        int ret = 0;
4919
4920        state = ctx->ctx_state;
4921        /*
4922         * Unlock sampling buffer and reset index atomically
4923         * XXX: not really needed when blocking
4924         */
4925        if (CTX_HAS_SMPL(ctx)) {
4926
4927                rst_ctrl.bits.mask_monitoring = 0;
4928                rst_ctrl.bits.reset_ovfl_pmds = 0;
4929
4930                if (state == PFM_CTX_LOADED)
4931                        ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4932                else
4933                        ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4934        } else {
4935                rst_ctrl.bits.mask_monitoring = 0;
4936                rst_ctrl.bits.reset_ovfl_pmds = 1;
4937        }
4938
4939        if (ret == 0) {
4940                if (rst_ctrl.bits.reset_ovfl_pmds) {
4941                        pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4942                }
4943                if (rst_ctrl.bits.mask_monitoring == 0) {
4944                        DPRINT(("resuming monitoring\n"));
4945                        if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4946                } else {
4947                        DPRINT(("stopping monitoring\n"));
4948                        //pfm_stop_monitoring(current, regs);
4949                }
4950                ctx->ctx_state = PFM_CTX_LOADED;
4951        }
4952}
4953
4954/*
4955 * context MUST BE LOCKED when calling
4956 * can only be called for current
4957 */
4958static void
4959pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4960{
4961        int ret;
4962
4963        DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4964
4965        ret = pfm_context_unload(ctx, NULL, 0, regs);
4966        if (ret) {
4967                printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4968        }
4969
4970        /*
4971         * and wakeup controlling task, indicating we are now disconnected
4972         */
4973        wake_up_interruptible(&ctx->ctx_zombieq);
4974
4975        /*
4976         * given that context is still locked, the controlling
4977         * task will only get access when we return from
4978         * pfm_handle_work().
4979         */
4980}
4981
4982static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4983
4984 /*
4985  * pfm_handle_work() can be called with interrupts enabled
4986  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4987  * call may sleep, therefore we must re-enable interrupts
4988  * to avoid deadlocks. It is safe to do so because this function
4989  * is called ONLY when returning to user level (pUStk=1), in which case
4990  * there is no risk of kernel stack overflow due to deep
4991  * interrupt nesting.
4992  */
4993void
4994pfm_handle_work(void)
4995{
4996        pfm_context_t *ctx;
4997        struct pt_regs *regs;
4998        unsigned long flags, dummy_flags;
4999        unsigned long ovfl_regs;
5000        unsigned int reason;
5001        int ret;
5002
5003        ctx = PFM_GET_CTX(current);
5004        if (ctx == NULL) {
5005                printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5006                        task_pid_nr(current));
5007                return;
5008        }
5009
5010        PROTECT_CTX(ctx, flags);
5011
5012        PFM_SET_WORK_PENDING(current, 0);
5013
5014        regs = task_pt_regs(current);
5015
5016        /*
5017         * extract reason for being here and clear
5018         */
5019        reason = ctx->ctx_fl_trap_reason;
5020        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5021        ovfl_regs = ctx->ctx_ovfl_regs[0];
5022
5023        DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5024
5025        /*
5026         * must be done before we check for simple-reset mode
5027         */
5028        if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5029                goto do_zombie;
5030
5031        //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5032        if (reason == PFM_TRAP_REASON_RESET)
5033                goto skip_blocking;
5034
5035        /*
5036         * restore interrupt mask to what it was on entry.
5037         * Could be enabled/diasbled.
5038         */
5039        UNPROTECT_CTX(ctx, flags);
5040
5041        /*
5042         * force interrupt enable because of down_interruptible()
5043         */
5044        local_irq_enable();
5045
5046        DPRINT(("before block sleeping\n"));
5047
5048        /*
5049         * may go through without blocking on SMP systems
5050         * if restart has been received already by the time we call down()
5051         */
5052        ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5053
5054        DPRINT(("after block sleeping ret=%d\n", ret));
5055
5056        /*
5057         * lock context and mask interrupts again
5058         * We save flags into a dummy because we may have
5059         * altered interrupts mask compared to entry in this
5060         * function.
5061         */
5062        PROTECT_CTX(ctx, dummy_flags);
5063
5064        /*
5065         * we need to read the ovfl_regs only after wake-up
5066         * because we may have had pfm_write_pmds() in between
5067         * and that can changed PMD values and therefore 
5068         * ovfl_regs is reset for these new PMD values.
5069         */
5070        ovfl_regs = ctx->ctx_ovfl_regs[0];
5071
5072        if (ctx->ctx_fl_going_zombie) {
5073do_zombie:
5074                DPRINT(("context is zombie, bailing out\n"));
5075                pfm_context_force_terminate(ctx, regs);
5076                goto nothing_to_do;
5077        }
5078        /*
5079         * in case of interruption of down() we don't restart anything
5080         */
5081        if (ret < 0)
5082                goto nothing_to_do;
5083
5084skip_blocking:
5085        pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5086        ctx->ctx_ovfl_regs[0] = 0UL;
5087
5088nothing_to_do:
5089        /*
5090         * restore flags as they were upon entry
5091         */
5092        UNPROTECT_CTX(ctx, flags);
5093}
5094
5095static int
5096pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5097{
5098        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5099                DPRINT(("ignoring overflow notification, owner is zombie\n"));
5100                return 0;
5101        }
5102
5103        DPRINT(("waking up somebody\n"));
5104
5105        if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5106
5107        /*
5108         * safe, we are not in intr handler, nor in ctxsw when
5109         * we come here
5110         */
5111        kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5112
5113        return 0;
5114}
5115
5116static int
5117pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5118{
5119        pfm_msg_t *msg = NULL;
5120
5121        if (ctx->ctx_fl_no_msg == 0) {
5122                msg = pfm_get_new_msg(ctx);
5123                if (msg == NULL) {
5124                        printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5125                        return -1;
5126                }
5127
5128                msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5129                msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5130                msg->pfm_ovfl_msg.msg_active_set   = 0;
5131                msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5132                msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5133                msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5134                msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5135                msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5136        }
5137
5138        DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5139                msg,
5140                ctx->ctx_fl_no_msg,
5141                ctx->ctx_fd,
5142                ovfl_pmds));
5143
5144        return pfm_notify_user(ctx, msg);
5145}
5146
5147static int
5148pfm_end_notify_user(pfm_context_t *ctx)
5149{
5150        pfm_msg_t *msg;
5151
5152        msg = pfm_get_new_msg(ctx);
5153        if (msg == NULL) {
5154                printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5155                return -1;
5156        }
5157        /* no leak */
5158        memset(msg, 0, sizeof(*msg));
5159
5160        msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5161        msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5162        msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5163
5164        DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5165                msg,
5166                ctx->ctx_fl_no_msg,
5167                ctx->ctx_fd));
5168
5169        return pfm_notify_user(ctx, msg);
5170}
5171
5172/*
5173 * main overflow processing routine.
5174 * it can be called from the interrupt path or explicitly during the context switch code
5175 */
5176static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5177                                unsigned long pmc0, struct pt_regs *regs)
5178{
5179        pfm_ovfl_arg_t *ovfl_arg;
5180        unsigned long mask;
5181        unsigned long old_val, ovfl_val, new_val;
5182        unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5183        unsigned long tstamp;
5184        pfm_ovfl_ctrl_t ovfl_ctrl;
5185        unsigned int i, has_smpl;
5186        int must_notify = 0;
5187
5188        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5189
5190        /*
5191         * sanity test. Should never happen
5192         */
5193        if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5194
5195        tstamp   = ia64_get_itc();
5196        mask     = pmc0 >> PMU_FIRST_COUNTER;
5197        ovfl_val = pmu_conf->ovfl_val;
5198        has_smpl = CTX_HAS_SMPL(ctx);
5199
5200        DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5201                     "used_pmds=0x%lx\n",
5202                        pmc0,
5203                        task ? task_pid_nr(task): -1,
5204                        (regs ? regs->cr_iip : 0),
5205                        CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5206                        ctx->ctx_used_pmds[0]));
5207
5208
5209        /*
5210         * first we update the virtual counters
5211         * assume there was a prior ia64_srlz_d() issued
5212         */
5213        for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5214
5215                /* skip pmd which did not overflow */
5216                if ((mask & 0x1) == 0) continue;
5217
5218                /*
5219                 * Note that the pmd is not necessarily 0 at this point as qualified events
5220                 * may have happened before the PMU was frozen. The residual count is not
5221                 * taken into consideration here but will be with any read of the pmd via
5222                 * pfm_read_pmds().
5223                 */
5224                old_val              = new_val = ctx->ctx_pmds[i].val;
5225                new_val             += 1 + ovfl_val;
5226                ctx->ctx_pmds[i].val = new_val;
5227
5228                /*
5229                 * check for overflow condition
5230                 */
5231                if (likely(old_val > new_val)) {
5232                        ovfl_pmds |= 1UL << i;
5233                        if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5234                }
5235
5236                DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5237                        i,
5238                        new_val,
5239                        old_val,
5240                        ia64_get_pmd(i) & ovfl_val,
5241                        ovfl_pmds,
5242                        ovfl_notify));
5243        }
5244
5245        /*
5246         * there was no 64-bit overflow, nothing else to do
5247         */
5248        if (ovfl_pmds == 0UL) return;
5249
5250        /* 
5251         * reset all control bits
5252         */
5253        ovfl_ctrl.val = 0;
5254        reset_pmds    = 0UL;
5255
5256        /*
5257         * if a sampling format module exists, then we "cache" the overflow by 
5258         * calling the module's handler() routine.
5259         */
5260        if (has_smpl) {
5261                unsigned long start_cycles, end_cycles;
5262                unsigned long pmd_mask;
5263                int j, k, ret = 0;
5264                int this_cpu = smp_processor_id();
5265
5266                pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5267                ovfl_arg = &ctx->ctx_ovfl_arg;
5268
5269                prefetch(ctx->ctx_smpl_hdr);
5270
5271                for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5272
5273                        mask = 1UL << i;
5274
5275                        if ((pmd_mask & 0x1) == 0) continue;
5276
5277                        ovfl_arg->ovfl_pmd      = (unsigned char )i;
5278                        ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5279                        ovfl_arg->active_set    = 0;
5280                        ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5281                        ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5282
5283                        ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5284                        ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5285                        ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5286
5287                        /*
5288                         * copy values of pmds of interest. Sampling format may copy them
5289                         * into sampling buffer.
5290                         */
5291                        if (smpl_pmds) {
5292                                for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5293                                        if ((smpl_pmds & 0x1) == 0) continue;
5294                                        ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5295                                        DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5296                                }
5297                        }
5298
5299                        pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5300
5301                        start_cycles = ia64_get_itc();
5302
5303                        /*
5304                         * call custom buffer format record (handler) routine
5305                         */
5306                        ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5307
5308                        end_cycles = ia64_get_itc();
5309
5310                        /*
5311                         * For those controls, we take the union because they have
5312                         * an all or nothing behavior.
5313                         */
5314                        ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5315                        ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5316                        ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5317                        /*
5318                         * build the bitmask of pmds to reset now
5319                         */
5320                        if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5321
5322                        pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5323                }
5324                /*
5325                 * when the module cannot handle the rest of the overflows, we abort right here
5326                 */
5327                if (ret && pmd_mask) {
5328                        DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5329                                pmd_mask<<PMU_FIRST_COUNTER));
5330                }
5331                /*
5332                 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5333                 */
5334                ovfl_pmds &= ~reset_pmds;
5335        } else {
5336                /*
5337                 * when no sampling module is used, then the default
5338                 * is to notify on overflow if requested by user
5339                 */
5340                ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5341                ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5342                ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5343                ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5344                /*
5345                 * if needed, we reset all overflowed pmds
5346                 */
5347                if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5348        }
5349
5350        DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5351
5352        /*
5353         * reset the requested PMD registers using the short reset values
5354         */
5355        if (reset_pmds) {
5356                unsigned long bm = reset_pmds;
5357                pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5358        }
5359
5360        if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5361                /*
5362                 * keep track of what to reset when unblocking
5363                 */
5364                ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5365
5366                /*
5367                 * check for blocking context 
5368                 */
5369                if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5370
5371                        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5372
5373                        /*
5374                         * set the perfmon specific checking pending work for the task
5375                         */
5376                        PFM_SET_WORK_PENDING(task, 1);
5377
5378                        /*
5379                         * when coming from ctxsw, current still points to the
5380                         * previous task, therefore we must work with task and not current.
5381                         */
5382                        set_notify_resume(task);
5383                }
5384                /*
5385                 * defer until state is changed (shorten spin window). the context is locked
5386                 * anyway, so the signal receiver would come spin for nothing.
5387                 */
5388                must_notify = 1;
5389        }
5390
5391        DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5392                        GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5393                        PFM_GET_WORK_PENDING(task),
5394                        ctx->ctx_fl_trap_reason,
5395                        ovfl_pmds,
5396                        ovfl_notify,
5397                        ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5398        /*
5399         * in case monitoring must be stopped, we toggle the psr bits
5400         */
5401        if (ovfl_ctrl.bits.mask_monitoring) {
5402                pfm_mask_monitoring(task);
5403                ctx->ctx_state = PFM_CTX_MASKED;
5404                ctx->ctx_fl_can_restart = 1;
5405        }
5406
5407        /*
5408         * send notification now
5409         */
5410        if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5411
5412        return;
5413
5414sanity_check:
5415        printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5416                        smp_processor_id(),
5417                        task ? task_pid_nr(task) : -1,
5418                        pmc0);
5419        return;
5420
5421stop_monitoring:
5422        /*
5423         * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5424         * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5425         * come here as zombie only if the task is the current task. In which case, we
5426         * can access the PMU  hardware directly.
5427         *
5428         * Note that zombies do have PM_VALID set. So here we do the minimal.
5429         *
5430         * In case the context was zombified it could not be reclaimed at the time
5431         * the monitoring program exited. At this point, the PMU reservation has been
5432         * returned, the sampiing buffer has been freed. We must convert this call
5433         * into a spurious interrupt. However, we must also avoid infinite overflows
5434         * by stopping monitoring for this task. We can only come here for a per-task
5435         * context. All we need to do is to stop monitoring using the psr bits which
5436         * are always task private. By re-enabling secure montioring, we ensure that
5437         * the monitored task will not be able to re-activate monitoring.
5438         * The task will eventually be context switched out, at which point the context
5439         * will be reclaimed (that includes releasing ownership of the PMU).
5440         *
5441         * So there might be a window of time where the number of per-task session is zero
5442         * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5443         * context. This is safe because if a per-task session comes in, it will push this one
5444         * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5445         * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5446         * also push our zombie context out.
5447         *
5448         * Overall pretty hairy stuff....
5449         */
5450        DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5451        pfm_clear_psr_up();
5452        ia64_psr(regs)->up = 0;
5453        ia64_psr(regs)->sp = 1;
5454        return;
5455}
5456
5457static int
5458pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5459{
5460        struct task_struct *task;
5461        pfm_context_t *ctx;
5462        unsigned long flags;
5463        u64 pmc0;
5464        int this_cpu = smp_processor_id();
5465        int retval = 0;
5466
5467        pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5468
5469        /*
5470         * srlz.d done before arriving here
5471         */
5472        pmc0 = ia64_get_pmc(0);
5473
5474        task = GET_PMU_OWNER();
5475        ctx  = GET_PMU_CTX();
5476
5477        /*
5478         * if we have some pending bits set
5479         * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5480         */
5481        if (PMC0_HAS_OVFL(pmc0) && task) {
5482                /*
5483                 * we assume that pmc0.fr is always set here
5484                 */
5485
5486                /* sanity check */
5487                if (!ctx) goto report_spurious1;
5488
5489                if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5490                        goto report_spurious2;
5491
5492                PROTECT_CTX_NOPRINT(ctx, flags);
5493
5494                pfm_overflow_handler(task, ctx, pmc0, regs);
5495
5496                UNPROTECT_CTX_NOPRINT(ctx, flags);
5497
5498        } else {
5499                pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5500                retval = -1;
5501        }
5502        /*
5503         * keep it unfrozen at all times
5504         */
5505        pfm_unfreeze_pmu();
5506
5507        return retval;
5508
5509report_spurious1:
5510        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5511                this_cpu, task_pid_nr(task));
5512        pfm_unfreeze_pmu();
5513        return -1;
5514report_spurious2:
5515        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5516                this_cpu, 
5517                task_pid_nr(task));
5518        pfm_unfreeze_pmu();
5519        return -1;
5520}
5521
5522static irqreturn_t
5523pfm_interrupt_handler(int irq, void *arg)
5524{
5525        unsigned long start_cycles, total_cycles;
5526        unsigned long min, max;
5527        int this_cpu;
5528        int ret;
5529        struct pt_regs *regs = get_irq_regs();
5530
5531        this_cpu = get_cpu();
5532        if (likely(!pfm_alt_intr_handler)) {
5533                min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5534                max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5535
5536                start_cycles = ia64_get_itc();
5537
5538                ret = pfm_do_interrupt_handler(arg, regs);
5539
5540                total_cycles = ia64_get_itc();
5541
5542                /*
5543                 * don't measure spurious interrupts
5544                 */
5545                if (likely(ret == 0)) {
5546                        total_cycles -= start_cycles;
5547
5548                        if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5549                        if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5550
5551                        pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5552                }
5553        }
5554        else {
5555                (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5556        }
5557
5558        put_cpu();
5559        return IRQ_HANDLED;
5560}
5561
5562/*
5563 * /proc/perfmon interface, for debug only
5564 */
5565
5566#define PFM_PROC_SHOW_HEADER    ((void *)(long)nr_cpu_ids+1)
5567
5568static void *
5569pfm_proc_start(struct seq_file *m, loff_t *pos)
5570{
5571        if (*pos == 0) {
5572                return PFM_PROC_SHOW_HEADER;
5573        }
5574
5575        while (*pos <= nr_cpu_ids) {
5576                if (cpu_online(*pos - 1)) {
5577                        return (void *)*pos;
5578                }
5579                ++*pos;
5580        }
5581        return NULL;
5582}
5583
5584static void *
5585pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5586{
5587        ++*pos;
5588        return pfm_proc_start(m, pos);
5589}
5590
5591static void
5592pfm_proc_stop(struct seq_file *m, void *v)
5593{
5594}
5595
5596static void
5597pfm_proc_show_header(struct seq_file *m)
5598{
5599        struct list_head * pos;
5600        pfm_buffer_fmt_t * entry;
5601        unsigned long flags;
5602
5603        seq_printf(m,
5604                "perfmon version           : %u.%u\n"
5605                "model                     : %s\n"
5606                "fastctxsw                 : %s\n"
5607                "expert mode               : %s\n"
5608                "ovfl_mask                 : 0x%lx\n"
5609                "PMU flags                 : 0x%x\n",
5610                PFM_VERSION_MAJ, PFM_VERSION_MIN,
5611                pmu_conf->pmu_name,
5612                pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5613                pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5614                pmu_conf->ovfl_val,
5615                pmu_conf->flags);
5616
5617        LOCK_PFS(flags);
5618
5619        seq_printf(m,
5620                "proc_sessions             : %u\n"
5621                "sys_sessions              : %u\n"
5622                "sys_use_dbregs            : %u\n"
5623                "ptrace_use_dbregs         : %u\n",
5624                pfm_sessions.pfs_task_sessions,
5625                pfm_sessions.pfs_sys_sessions,
5626                pfm_sessions.pfs_sys_use_dbregs,
5627                pfm_sessions.pfs_ptrace_use_dbregs);
5628
5629        UNLOCK_PFS(flags);
5630
5631        spin_lock(&pfm_buffer_fmt_lock);
5632
5633        list_for_each(pos, &pfm_buffer_fmt_list) {
5634                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5635                seq_printf(m, "format                    : %16phD %s\n",
5636                           entry->fmt_uuid, entry->fmt_name);
5637        }
5638        spin_unlock(&pfm_buffer_fmt_lock);
5639
5640}
5641
5642static int
5643pfm_proc_show(struct seq_file *m, void *v)
5644{
5645        unsigned long psr;
5646        unsigned int i;
5647        int cpu;
5648
5649        if (v == PFM_PROC_SHOW_HEADER) {
5650                pfm_proc_show_header(m);
5651                return 0;
5652        }
5653
5654        /* show info for CPU (v - 1) */
5655
5656        cpu = (long)v - 1;
5657        seq_printf(m,
5658                "CPU%-2d overflow intrs      : %lu\n"
5659                "CPU%-2d overflow cycles     : %lu\n"
5660                "CPU%-2d overflow min        : %lu\n"
5661                "CPU%-2d overflow max        : %lu\n"
5662                "CPU%-2d smpl handler calls  : %lu\n"
5663                "CPU%-2d smpl handler cycles : %lu\n"
5664                "CPU%-2d spurious intrs      : %lu\n"
5665                "CPU%-2d replay   intrs      : %lu\n"
5666                "CPU%-2d syst_wide           : %d\n"
5667                "CPU%-2d dcr_pp              : %d\n"
5668                "CPU%-2d exclude idle        : %d\n"
5669                "CPU%-2d owner               : %d\n"
5670                "CPU%-2d context             : %p\n"
5671                "CPU%-2d activations         : %lu\n",
5672                cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5673                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5674                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5675                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5676                cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5677                cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5678                cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5679                cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5680                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5681                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5682                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5683                cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5684                cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5685                cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5686
5687        if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5688
5689                psr = pfm_get_psr();
5690
5691                ia64_srlz_d();
5692
5693                seq_printf(m, 
5694                        "CPU%-2d psr                 : 0x%lx\n"
5695                        "CPU%-2d pmc0                : 0x%lx\n", 
5696                        cpu, psr,
5697                        cpu, ia64_get_pmc(0));
5698
5699                for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5700                        if (PMC_IS_COUNTING(i) == 0) continue;
5701                        seq_printf(m, 
5702                                "CPU%-2d pmc%u                : 0x%lx\n"
5703                                "CPU%-2d pmd%u                : 0x%lx\n", 
5704                                cpu, i, ia64_get_pmc(i),
5705                                cpu, i, ia64_get_pmd(i));
5706                }
5707        }
5708        return 0;
5709}
5710
5711const struct seq_operations pfm_seq_ops = {
5712        .start =        pfm_proc_start,
5713        .next =         pfm_proc_next,
5714        .stop =         pfm_proc_stop,
5715        .show =         pfm_proc_show
5716};
5717
5718static int
5719pfm_proc_open(struct inode *inode, struct file *file)
5720{
5721        return seq_open(file, &pfm_seq_ops);
5722}
5723
5724
5725/*
5726 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5727 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5728 * is active or inactive based on mode. We must rely on the value in
5729 * local_cpu_data->pfm_syst_info
5730 */
5731void
5732pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5733{
5734        struct pt_regs *regs;
5735        unsigned long dcr;
5736        unsigned long dcr_pp;
5737
5738        dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5739
5740        /*
5741         * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5742         * on every CPU, so we can rely on the pid to identify the idle task.
5743         */
5744        if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5745                regs = task_pt_regs(task);
5746                ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5747                return;
5748        }
5749        /*
5750         * if monitoring has started
5751         */
5752        if (dcr_pp) {
5753                dcr = ia64_getreg(_IA64_REG_CR_DCR);
5754                /*
5755                 * context switching in?
5756                 */
5757                if (is_ctxswin) {
5758                        /* mask monitoring for the idle task */
5759                        ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5760                        pfm_clear_psr_pp();
5761                        ia64_srlz_i();
5762                        return;
5763                }
5764                /*
5765                 * context switching out
5766                 * restore monitoring for next task
5767                 *
5768                 * Due to inlining this odd if-then-else construction generates
5769                 * better code.
5770                 */
5771                ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5772                pfm_set_psr_pp();
5773                ia64_srlz_i();
5774        }
5775}
5776
5777#ifdef CONFIG_SMP
5778
5779static void
5780pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5781{
5782        struct task_struct *task = ctx->ctx_task;
5783
5784        ia64_psr(regs)->up = 0;
5785        ia64_psr(regs)->sp = 1;
5786
5787        if (GET_PMU_OWNER() == task) {
5788                DPRINT(("cleared ownership for [%d]\n",
5789                                        task_pid_nr(ctx->ctx_task)));
5790                SET_PMU_OWNER(NULL, NULL);
5791        }
5792
5793        /*
5794         * disconnect the task from the context and vice-versa
5795         */
5796        PFM_SET_WORK_PENDING(task, 0);
5797
5798        task->thread.pfm_context  = NULL;
5799        task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5800
5801        DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5802}
5803
5804
5805/*
5806 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5807 */
5808void
5809pfm_save_regs(struct task_struct *task)
5810{
5811        pfm_context_t *ctx;
5812        unsigned long flags;
5813        u64 psr;
5814
5815
5816        ctx = PFM_GET_CTX(task);
5817        if (ctx == NULL) return;
5818
5819        /*
5820         * we always come here with interrupts ALREADY disabled by
5821         * the scheduler. So we simply need to protect against concurrent
5822         * access, not CPU concurrency.
5823         */
5824        flags = pfm_protect_ctx_ctxsw(ctx);
5825
5826        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5827                struct pt_regs *regs = task_pt_regs(task);
5828
5829                pfm_clear_psr_up();
5830
5831                pfm_force_cleanup(ctx, regs);
5832
5833                BUG_ON(ctx->ctx_smpl_hdr);
5834
5835                pfm_unprotect_ctx_ctxsw(ctx, flags);
5836
5837                pfm_context_free(ctx);
5838                return;
5839        }
5840
5841        /*
5842         * save current PSR: needed because we modify it
5843         */
5844        ia64_srlz_d();
5845        psr = pfm_get_psr();
5846
5847        BUG_ON(psr & (IA64_PSR_I));
5848
5849        /*
5850         * stop monitoring:
5851         * This is the last instruction which may generate an overflow
5852         *
5853         * We do not need to set psr.sp because, it is irrelevant in kernel.
5854         * It will be restored from ipsr when going back to user level
5855         */
5856        pfm_clear_psr_up();
5857
5858        /*
5859         * keep a copy of psr.up (for reload)
5860         */
5861        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5862
5863        /*
5864         * release ownership of this PMU.
5865         * PM interrupts are masked, so nothing
5866         * can happen.
5867         */
5868        SET_PMU_OWNER(NULL, NULL);
5869
5870        /*
5871         * we systematically save the PMD as we have no
5872         * guarantee we will be schedule at that same
5873         * CPU again.
5874         */
5875        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5876
5877        /*
5878         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5879         * we will need it on the restore path to check
5880         * for pending overflow.
5881         */
5882        ctx->th_pmcs[0] = ia64_get_pmc(0);
5883
5884        /*
5885         * unfreeze PMU if had pending overflows
5886         */
5887        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5888
5889        /*
5890         * finally, allow context access.
5891         * interrupts will still be masked after this call.
5892         */
5893        pfm_unprotect_ctx_ctxsw(ctx, flags);
5894}
5895
5896#else /* !CONFIG_SMP */
5897void
5898pfm_save_regs(struct task_struct *task)
5899{
5900        pfm_context_t *ctx;
5901        u64 psr;
5902
5903        ctx = PFM_GET_CTX(task);
5904        if (ctx == NULL) return;
5905
5906        /*
5907         * save current PSR: needed because we modify it
5908         */
5909        psr = pfm_get_psr();
5910
5911        BUG_ON(psr & (IA64_PSR_I));
5912
5913        /*
5914         * stop monitoring:
5915         * This is the last instruction which may generate an overflow
5916         *
5917         * We do not need to set psr.sp because, it is irrelevant in kernel.
5918         * It will be restored from ipsr when going back to user level
5919         */
5920        pfm_clear_psr_up();
5921
5922        /*
5923         * keep a copy of psr.up (for reload)
5924         */
5925        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5926}
5927
5928static void
5929pfm_lazy_save_regs (struct task_struct *task)
5930{
5931        pfm_context_t *ctx;
5932        unsigned long flags;
5933
5934        { u64 psr  = pfm_get_psr();
5935          BUG_ON(psr & IA64_PSR_UP);
5936        }
5937
5938        ctx = PFM_GET_CTX(task);
5939
5940        /*
5941         * we need to mask PMU overflow here to
5942         * make sure that we maintain pmc0 until
5943         * we save it. overflow interrupts are
5944         * treated as spurious if there is no
5945         * owner.
5946         *
5947         * XXX: I don't think this is necessary
5948         */
5949        PROTECT_CTX(ctx,flags);
5950
5951        /*
5952         * release ownership of this PMU.
5953         * must be done before we save the registers.
5954         *
5955         * after this call any PMU interrupt is treated
5956         * as spurious.
5957         */
5958        SET_PMU_OWNER(NULL, NULL);
5959
5960        /*
5961         * save all the pmds we use
5962         */
5963        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5964
5965        /*
5966         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5967         * it is needed to check for pended overflow
5968         * on the restore path
5969         */
5970        ctx->th_pmcs[0] = ia64_get_pmc(0);
5971
5972        /*
5973         * unfreeze PMU if had pending overflows
5974         */
5975        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5976
5977        /*
5978         * now get can unmask PMU interrupts, they will
5979         * be treated as purely spurious and we will not
5980         * lose any information
5981         */
5982        UNPROTECT_CTX(ctx,flags);
5983}
5984#endif /* CONFIG_SMP */
5985
5986#ifdef CONFIG_SMP
5987/*
5988 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5989 */
5990void
5991pfm_load_regs (struct task_struct *task)
5992{
5993        pfm_context_t *ctx;
5994        unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5995        unsigned long flags;
5996        u64 psr, psr_up;
5997        int need_irq_resend;
5998
5999        ctx = PFM_GET_CTX(task);
6000        if (unlikely(ctx == NULL)) return;
6001
6002        BUG_ON(GET_PMU_OWNER());
6003
6004        /*
6005         * possible on unload
6006         */
6007        if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6008
6009        /*
6010         * we always come here with interrupts ALREADY disabled by
6011         * the scheduler. So we simply need to protect against concurrent
6012         * access, not CPU concurrency.
6013         */
6014        flags = pfm_protect_ctx_ctxsw(ctx);
6015        psr   = pfm_get_psr();
6016
6017        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6018
6019        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6020        BUG_ON(psr & IA64_PSR_I);
6021
6022        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6023                struct pt_regs *regs = task_pt_regs(task);
6024
6025                BUG_ON(ctx->ctx_smpl_hdr);
6026
6027                pfm_force_cleanup(ctx, regs);
6028
6029                pfm_unprotect_ctx_ctxsw(ctx, flags);
6030
6031                /*
6032                 * this one (kmalloc'ed) is fine with interrupts disabled
6033                 */
6034                pfm_context_free(ctx);
6035
6036                return;
6037        }
6038
6039        /*
6040         * we restore ALL the debug registers to avoid picking up
6041         * stale state.
6042         */
6043        if (ctx->ctx_fl_using_dbreg) {
6044                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6045                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6046        }
6047        /*
6048         * retrieve saved psr.up
6049         */
6050        psr_up = ctx->ctx_saved_psr_up;
6051
6052        /*
6053         * if we were the last user of the PMU on that CPU,
6054         * then nothing to do except restore psr
6055         */
6056        if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6057
6058                /*
6059                 * retrieve partial reload masks (due to user modifications)
6060                 */
6061                pmc_mask = ctx->ctx_reload_pmcs[0];
6062                pmd_mask = ctx->ctx_reload_pmds[0];
6063
6064        } else {
6065                /*
6066                 * To avoid leaking information to the user level when psr.sp=0,
6067                 * we must reload ALL implemented pmds (even the ones we don't use).
6068                 * In the kernel we only allow PFM_READ_PMDS on registers which
6069                 * we initialized or requested (sampling) so there is no risk there.
6070                 */
6071                pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6072
6073                /*
6074                 * ALL accessible PMCs are systematically reloaded, unused registers
6075                 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6076                 * up stale configuration.
6077                 *
6078                 * PMC0 is never in the mask. It is always restored separately.
6079                 */
6080                pmc_mask = ctx->ctx_all_pmcs[0];
6081        }
6082        /*
6083         * when context is MASKED, we will restore PMC with plm=0
6084         * and PMD with stale information, but that's ok, nothing
6085         * will be captured.
6086         *
6087         * XXX: optimize here
6088         */
6089        if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6090        if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6091
6092        /*
6093         * check for pending overflow at the time the state
6094         * was saved.
6095         */
6096        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6097                /*
6098                 * reload pmc0 with the overflow information
6099                 * On McKinley PMU, this will trigger a PMU interrupt
6100                 */
6101                ia64_set_pmc(0, ctx->th_pmcs[0]);
6102                ia64_srlz_d();
6103                ctx->th_pmcs[0] = 0UL;
6104
6105                /*
6106                 * will replay the PMU interrupt
6107                 */
6108                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6109
6110                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6111        }
6112
6113        /*
6114         * we just did a reload, so we reset the partial reload fields
6115         */
6116        ctx->ctx_reload_pmcs[0] = 0UL;
6117        ctx->ctx_reload_pmds[0] = 0UL;
6118
6119        SET_LAST_CPU(ctx, smp_processor_id());
6120
6121        /*
6122         * dump activation value for this PMU
6123         */
6124        INC_ACTIVATION();
6125        /*
6126         * record current activation for this context
6127         */
6128        SET_ACTIVATION(ctx);
6129
6130        /*
6131         * establish new ownership. 
6132         */
6133        SET_PMU_OWNER(task, ctx);
6134
6135        /*
6136         * restore the psr.up bit. measurement
6137         * is active again.
6138         * no PMU interrupt can happen at this point
6139         * because we still have interrupts disabled.
6140         */
6141        if (likely(psr_up)) pfm_set_psr_up();
6142
6143        /*
6144         * allow concurrent access to context
6145         */
6146        pfm_unprotect_ctx_ctxsw(ctx, flags);
6147}
6148#else /*  !CONFIG_SMP */
6149/*
6150 * reload PMU state for UP kernels
6151 * in 2.5 we come here with interrupts disabled
6152 */
6153void
6154pfm_load_regs (struct task_struct *task)
6155{
6156        pfm_context_t *ctx;
6157        struct task_struct *owner;
6158        unsigned long pmd_mask, pmc_mask;
6159        u64 psr, psr_up;
6160        int need_irq_resend;
6161
6162        owner = GET_PMU_OWNER();
6163        ctx   = PFM_GET_CTX(task);
6164        psr   = pfm_get_psr();
6165
6166        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6167        BUG_ON(psr & IA64_PSR_I);
6168
6169        /*
6170         * we restore ALL the debug registers to avoid picking up
6171         * stale state.
6172         *
6173         * This must be done even when the task is still the owner
6174         * as the registers may have been modified via ptrace()
6175         * (not perfmon) by the previous task.
6176         */
6177        if (ctx->ctx_fl_using_dbreg) {
6178                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6179                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6180        }
6181
6182        /*
6183         * retrieved saved psr.up
6184         */
6185        psr_up = ctx->ctx_saved_psr_up;
6186        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6187
6188        /*
6189         * short path, our state is still there, just
6190         * need to restore psr and we go
6191         *
6192         * we do not touch either PMC nor PMD. the psr is not touched
6193         * by the overflow_handler. So we are safe w.r.t. to interrupt
6194         * concurrency even without interrupt masking.
6195         */
6196        if (likely(owner == task)) {
6197                if (likely(psr_up)) pfm_set_psr_up();
6198                return;
6199        }
6200
6201        /*
6202         * someone else is still using the PMU, first push it out and
6203         * then we'll be able to install our stuff !
6204         *
6205         * Upon return, there will be no owner for the current PMU
6206         */
6207        if (owner) pfm_lazy_save_regs(owner);
6208
6209        /*
6210         * To avoid leaking information to the user level when psr.sp=0,
6211         * we must reload ALL implemented pmds (even the ones we don't use).
6212         * In the kernel we only allow PFM_READ_PMDS on registers which
6213         * we initialized or requested (sampling) so there is no risk there.
6214         */
6215        pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6216
6217        /*
6218         * ALL accessible PMCs are systematically reloaded, unused registers
6219         * get their default (from pfm_reset_pmu_state()) values to avoid picking
6220         * up stale configuration.
6221         *
6222         * PMC0 is never in the mask. It is always restored separately
6223         */
6224        pmc_mask = ctx->ctx_all_pmcs[0];
6225
6226        pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6227        pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6228
6229        /*
6230         * check for pending overflow at the time the state
6231         * was saved.
6232         */
6233        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6234                /*
6235                 * reload pmc0 with the overflow information
6236                 * On McKinley PMU, this will trigger a PMU interrupt
6237                 */
6238                ia64_set_pmc(0, ctx->th_pmcs[0]);
6239                ia64_srlz_d();
6240
6241                ctx->th_pmcs[0] = 0UL;
6242
6243                /*
6244                 * will replay the PMU interrupt
6245                 */
6246                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6247
6248                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6249        }
6250
6251        /*
6252         * establish new ownership. 
6253         */
6254        SET_PMU_OWNER(task, ctx);
6255
6256        /*
6257         * restore the psr.up bit. measurement
6258         * is active again.
6259         * no PMU interrupt can happen at this point
6260         * because we still have interrupts disabled.
6261         */
6262        if (likely(psr_up)) pfm_set_psr_up();
6263}
6264#endif /* CONFIG_SMP */
6265
6266/*
6267 * this function assumes monitoring is stopped
6268 */
6269static void
6270pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6271{
6272        u64 pmc0;
6273        unsigned long mask2, val, pmd_val, ovfl_val;
6274        int i, can_access_pmu = 0;
6275        int is_self;
6276
6277        /*
6278         * is the caller the task being monitored (or which initiated the
6279         * session for system wide measurements)
6280         */
6281        is_self = ctx->ctx_task == task ? 1 : 0;
6282
6283        /*
6284         * can access PMU is task is the owner of the PMU state on the current CPU
6285         * or if we are running on the CPU bound to the context in system-wide mode
6286         * (that is not necessarily the task the context is attached to in this mode).
6287         * In system-wide we always have can_access_pmu true because a task running on an
6288         * invalid processor is flagged earlier in the call stack (see pfm_stop).
6289         */
6290        can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6291        if (can_access_pmu) {
6292                /*
6293                 * Mark the PMU as not owned
6294                 * This will cause the interrupt handler to do nothing in case an overflow
6295                 * interrupt was in-flight
6296                 * This also guarantees that pmc0 will contain the final state
6297                 * It virtually gives us full control on overflow processing from that point
6298                 * on.
6299                 */
6300                SET_PMU_OWNER(NULL, NULL);
6301                DPRINT(("releasing ownership\n"));
6302
6303                /*
6304                 * read current overflow status:
6305                 *
6306                 * we are guaranteed to read the final stable state
6307                 */
6308                ia64_srlz_d();
6309                pmc0 = ia64_get_pmc(0); /* slow */
6310
6311                /*
6312                 * reset freeze bit, overflow status information destroyed
6313                 */
6314                pfm_unfreeze_pmu();
6315        } else {
6316                pmc0 = ctx->th_pmcs[0];
6317                /*
6318                 * clear whatever overflow status bits there were
6319                 */
6320                ctx->th_pmcs[0] = 0;
6321        }
6322        ovfl_val = pmu_conf->ovfl_val;
6323        /*
6324         * we save all the used pmds
6325         * we take care of overflows for counting PMDs
6326         *
6327         * XXX: sampling situation is not taken into account here
6328         */
6329        mask2 = ctx->ctx_used_pmds[0];
6330
6331        DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6332
6333        for (i = 0; mask2; i++, mask2>>=1) {
6334
6335                /* skip non used pmds */
6336                if ((mask2 & 0x1) == 0) continue;
6337
6338                /*
6339                 * can access PMU always true in system wide mode
6340                 */
6341                val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6342
6343                if (PMD_IS_COUNTING(i)) {
6344                        DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6345                                task_pid_nr(task),
6346                                i,
6347                                ctx->ctx_pmds[i].val,
6348                                val & ovfl_val));
6349
6350                        /*
6351                         * we rebuild the full 64 bit value of the counter
6352                         */
6353                        val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6354
6355                        /*
6356                         * now everything is in ctx_pmds[] and we need
6357                         * to clear the saved context from save_regs() such that
6358                         * pfm_read_pmds() gets the correct value
6359                         */
6360                        pmd_val = 0UL;
6361
6362                        /*
6363                         * take care of overflow inline
6364                         */
6365                        if (pmc0 & (1UL << i)) {
6366                                val += 1 + ovfl_val;
6367                                DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6368                        }
6369                }
6370
6371                DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6372
6373                if (is_self) ctx->th_pmds[i] = pmd_val;
6374
6375                ctx->ctx_pmds[i].val = val;
6376        }
6377}
6378
6379static struct irqaction perfmon_irqaction = {
6380        .handler = pfm_interrupt_handler,
6381        .name    = "perfmon"
6382};
6383
6384static void
6385pfm_alt_save_pmu_state(void *data)
6386{
6387        struct pt_regs *regs;
6388
6389        regs = task_pt_regs(current);
6390
6391        DPRINT(("called\n"));
6392
6393        /*
6394         * should not be necessary but
6395         * let's take not risk
6396         */
6397        pfm_clear_psr_up();
6398        pfm_clear_psr_pp();
6399        ia64_psr(regs)->pp = 0;
6400
6401        /*
6402         * This call is required
6403         * May cause a spurious interrupt on some processors
6404         */
6405        pfm_freeze_pmu();
6406
6407        ia64_srlz_d();
6408}
6409
6410void
6411pfm_alt_restore_pmu_state(void *data)
6412{
6413        struct pt_regs *regs;
6414
6415        regs = task_pt_regs(current);
6416
6417        DPRINT(("called\n"));
6418
6419        /*
6420         * put PMU back in state expected
6421         * by perfmon
6422         */
6423        pfm_clear_psr_up();
6424        pfm_clear_psr_pp();
6425        ia64_psr(regs)->pp = 0;
6426
6427        /*
6428         * perfmon runs with PMU unfrozen at all times
6429         */
6430        pfm_unfreeze_pmu();
6431
6432        ia64_srlz_d();
6433}
6434
6435int
6436pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6437{
6438        int ret, i;
6439        int reserve_cpu;
6440
6441        /* some sanity checks */
6442        if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6443
6444        /* do the easy test first */
6445        if (pfm_alt_intr_handler) return -EBUSY;
6446
6447        /* one at a time in the install or remove, just fail the others */
6448        if (!spin_trylock(&pfm_alt_install_check)) {
6449                return -EBUSY;
6450        }
6451
6452        /* reserve our session */
6453        for_each_online_cpu(reserve_cpu) {
6454                ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6455                if (ret) goto cleanup_reserve;
6456        }
6457
6458        /* save the current system wide pmu states */
6459        ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6460        if (ret) {
6461                DPRINT(("on_each_cpu() failed: %d\n", ret));
6462                goto cleanup_reserve;
6463        }
6464
6465        /* officially change to the alternate interrupt handler */
6466        pfm_alt_intr_handler = hdl;
6467
6468        spin_unlock(&pfm_alt_install_check);
6469
6470        return 0;
6471
6472cleanup_reserve:
6473        for_each_online_cpu(i) {
6474                /* don't unreserve more than we reserved */
6475                if (i >= reserve_cpu) break;
6476
6477                pfm_unreserve_session(NULL, 1, i);
6478        }
6479
6480        spin_unlock(&pfm_alt_install_check);
6481
6482        return ret;
6483}
6484EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6485
6486int
6487pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6488{
6489        int i;
6490        int ret;
6491
6492        if (hdl == NULL) return -EINVAL;
6493
6494        /* cannot remove someone else's handler! */
6495        if (pfm_alt_intr_handler != hdl) return -EINVAL;
6496
6497        /* one at a time in the install or remove, just fail the others */
6498        if (!spin_trylock(&pfm_alt_install_check)) {
6499                return -EBUSY;
6500        }
6501
6502        pfm_alt_intr_handler = NULL;
6503
6504        ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6505        if (ret) {
6506                DPRINT(("on_each_cpu() failed: %d\n", ret));
6507        }
6508
6509        for_each_online_cpu(i) {
6510                pfm_unreserve_session(NULL, 1, i);
6511        }
6512
6513        spin_unlock(&pfm_alt_install_check);
6514
6515        return 0;
6516}
6517EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6518
6519/*
6520 * perfmon initialization routine, called from the initcall() table
6521 */
6522static int init_pfm_fs(void);
6523
6524static int __init
6525pfm_probe_pmu(void)
6526{
6527        pmu_config_t **p;
6528        int family;
6529
6530        family = local_cpu_data->family;
6531        p      = pmu_confs;
6532
6533        while(*p) {
6534                if ((*p)->probe) {
6535                        if ((*p)->probe() == 0) goto found;
6536                } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6537                        goto found;
6538                }
6539                p++;
6540        }
6541        return -1;
6542found:
6543        pmu_conf = *p;
6544        return 0;
6545}
6546
6547static const struct file_operations pfm_proc_fops = {
6548        .open           = pfm_proc_open,
6549        .read           = seq_read,
6550        .llseek         = seq_lseek,
6551        .release        = seq_release,
6552};
6553
6554int __init
6555pfm_init(void)
6556{
6557        unsigned int n, n_counters, i;
6558
6559        printk("perfmon: version %u.%u IRQ %u\n",
6560                PFM_VERSION_MAJ,
6561                PFM_VERSION_MIN,
6562                IA64_PERFMON_VECTOR);
6563
6564        if (pfm_probe_pmu()) {
6565                printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6566                                local_cpu_data->family);
6567                return -ENODEV;
6568        }
6569
6570        /*
6571         * compute the number of implemented PMD/PMC from the
6572         * description tables
6573         */
6574        n = 0;
6575        for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6576                if (PMC_IS_IMPL(i) == 0) continue;
6577                pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6578                n++;
6579        }
6580        pmu_conf->num_pmcs = n;
6581
6582        n = 0; n_counters = 0;
6583        for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6584                if (PMD_IS_IMPL(i) == 0) continue;
6585                pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6586                n++;
6587                if (PMD_IS_COUNTING(i)) n_counters++;
6588        }
6589        pmu_conf->num_pmds      = n;
6590        pmu_conf->num_counters  = n_counters;
6591
6592        /*
6593         * sanity checks on the number of debug registers
6594         */
6595        if (pmu_conf->use_rr_dbregs) {
6596                if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6597                        printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6598                        pmu_conf = NULL;
6599                        return -1;
6600                }
6601                if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6602                        printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6603                        pmu_conf = NULL;
6604                        return -1;
6605                }
6606        }
6607
6608        printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6609               pmu_conf->pmu_name,
6610               pmu_conf->num_pmcs,
6611               pmu_conf->num_pmds,
6612               pmu_conf->num_counters,
6613               ffz(pmu_conf->ovfl_val));
6614
6615        /* sanity check */
6616        if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6617                printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6618                pmu_conf = NULL;
6619                return -1;
6620        }
6621
6622        /*
6623         * create /proc/perfmon (mostly for debugging purposes)
6624         */
6625        perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6626        if (perfmon_dir == NULL) {
6627                printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6628                pmu_conf = NULL;
6629                return -1;
6630        }
6631
6632        /*
6633         * create /proc/sys/kernel/perfmon (for debugging purposes)
6634         */
6635        pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6636
6637        /*
6638         * initialize all our spinlocks
6639         */
6640        spin_lock_init(&pfm_sessions.pfs_lock);
6641        spin_lock_init(&pfm_buffer_fmt_lock);
6642
6643        init_pfm_fs();
6644
6645        for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6646
6647        return 0;
6648}
6649
6650__initcall(pfm_init);
6651
6652/*
6653 * this function is called before pfm_init()
6654 */
6655void
6656pfm_init_percpu (void)
6657{
6658        static int first_time=1;
6659        /*
6660         * make sure no measurement is active
6661         * (may inherit programmed PMCs from EFI).
6662         */
6663        pfm_clear_psr_pp();
6664        pfm_clear_psr_up();
6665
6666        /*
6667         * we run with the PMU not frozen at all times
6668         */
6669        pfm_unfreeze_pmu();
6670
6671        if (first_time) {
6672                register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6673                first_time=0;
6674        }
6675
6676        ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6677        ia64_srlz_d();
6678}
6679
6680/*
6681 * used for debug purposes only
6682 */
6683void
6684dump_pmu_state(const char *from)
6685{
6686        struct task_struct *task;
6687        struct pt_regs *regs;
6688        pfm_context_t *ctx;
6689        unsigned long psr, dcr, info, flags;
6690        int i, this_cpu;
6691
6692        local_irq_save(flags);
6693
6694        this_cpu = smp_processor_id();
6695        regs     = task_pt_regs(current);
6696        info     = PFM_CPUINFO_GET();
6697        dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6698
6699        if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6700                local_irq_restore(flags);
6701                return;
6702        }
6703
6704        printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6705                this_cpu, 
6706                from, 
6707                task_pid_nr(current),
6708                regs->cr_iip,
6709                current->comm);
6710
6711        task = GET_PMU_OWNER();
6712        ctx  = GET_PMU_CTX();
6713
6714        printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6715
6716        psr = pfm_get_psr();
6717
6718        printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6719                this_cpu,
6720                ia64_get_pmc(0),
6721                psr & IA64_PSR_PP ? 1 : 0,
6722                psr & IA64_PSR_UP ? 1 : 0,
6723                dcr & IA64_DCR_PP ? 1 : 0,
6724                info,
6725                ia64_psr(regs)->up,
6726                ia64_psr(regs)->pp);
6727
6728        ia64_psr(regs)->up = 0;
6729        ia64_psr(regs)->pp = 0;
6730
6731        for (i=1; PMC_IS_LAST(i) == 0; i++) {
6732                if (PMC_IS_IMPL(i) == 0) continue;
6733                printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6734        }
6735
6736        for (i=1; PMD_IS_LAST(i) == 0; i++) {
6737                if (PMD_IS_IMPL(i) == 0) continue;
6738                printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6739        }
6740
6741        if (ctx) {
6742                printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6743                                this_cpu,
6744                                ctx->ctx_state,
6745                                ctx->ctx_smpl_vaddr,
6746                                ctx->ctx_smpl_hdr,
6747                                ctx->ctx_msgq_head,
6748                                ctx->ctx_msgq_tail,
6749                                ctx->ctx_saved_psr_up);
6750        }
6751        local_irq_restore(flags);
6752}
6753
6754/*
6755 * called from process.c:copy_thread(). task is new child.
6756 */
6757void
6758pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6759{
6760        struct thread_struct *thread;
6761
6762        DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6763
6764        thread = &task->thread;
6765
6766        /*
6767         * cut links inherited from parent (current)
6768         */
6769        thread->pfm_context = NULL;
6770
6771        PFM_SET_WORK_PENDING(task, 0);
6772
6773        /*
6774         * the psr bits are already set properly in copy_threads()
6775         */
6776}
6777#else  /* !CONFIG_PERFMON */
6778asmlinkage long
6779sys_perfmonctl (int fd, int cmd, void *arg, int count)
6780{
6781        return -ENOSYS;
6782}
6783#endif /* CONFIG_PERFMON */
6784