linux/arch/ia64/sn/kernel/sn2/sn2_smp.c
<<
>>
Prefs
   1/*
   2 * SN2 Platform specific SMP Support
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/spinlock.h>
  14#include <linux/threads.h>
  15#include <linux/sched.h>
  16#include <linux/mm_types.h>
  17#include <linux/smp.h>
  18#include <linux/interrupt.h>
  19#include <linux/irq.h>
  20#include <linux/mmzone.h>
  21#include <linux/module.h>
  22#include <linux/bitops.h>
  23#include <linux/nodemask.h>
  24#include <linux/proc_fs.h>
  25#include <linux/seq_file.h>
  26
  27#include <asm/processor.h>
  28#include <asm/irq.h>
  29#include <asm/sal.h>
  30#include <asm/delay.h>
  31#include <asm/io.h>
  32#include <asm/smp.h>
  33#include <asm/tlb.h>
  34#include <asm/numa.h>
  35#include <asm/hw_irq.h>
  36#include <asm/current.h>
  37#include <asm/sn/sn_cpuid.h>
  38#include <asm/sn/sn_sal.h>
  39#include <asm/sn/addrs.h>
  40#include <asm/sn/shub_mmr.h>
  41#include <asm/sn/nodepda.h>
  42#include <asm/sn/rw_mmr.h>
  43#include <asm/sn/sn_feature_sets.h>
  44
  45DEFINE_PER_CPU(struct ptc_stats, ptcstats);
  46DECLARE_PER_CPU(struct ptc_stats, ptcstats);
  47
  48static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
  49
  50/* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
  51static int sn2_flush_opt = 0;
  52
  53extern unsigned long
  54sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
  55                               volatile unsigned long *, unsigned long,
  56                               volatile unsigned long *, unsigned long);
  57void
  58sn2_ptc_deadlock_recovery(nodemask_t, short, short, int,
  59                          volatile unsigned long *, unsigned long,
  60                          volatile unsigned long *, unsigned long);
  61
  62/*
  63 * Note: some is the following is captured here to make degugging easier
  64 * (the macros make more sense if you see the debug patch - not posted)
  65 */
  66#define sn2_ptctest     0
  67#define local_node_uses_ptc_ga(sh1)     ((sh1) ? 1 : 0)
  68#define max_active_pio(sh1)             ((sh1) ? 32 : 7)
  69#define reset_max_active_on_deadlock()  1
  70#define PTC_LOCK(sh1)                   ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
  71
  72struct ptc_stats {
  73        unsigned long ptc_l;
  74        unsigned long change_rid;
  75        unsigned long shub_ptc_flushes;
  76        unsigned long nodes_flushed;
  77        unsigned long deadlocks;
  78        unsigned long deadlocks2;
  79        unsigned long lock_itc_clocks;
  80        unsigned long shub_itc_clocks;
  81        unsigned long shub_itc_clocks_max;
  82        unsigned long shub_ptc_flushes_not_my_mm;
  83        unsigned long shub_ipi_flushes;
  84        unsigned long shub_ipi_flushes_itc_clocks;
  85};
  86
  87#define sn2_ptctest     0
  88
  89static inline unsigned long wait_piowc(void)
  90{
  91        volatile unsigned long *piows;
  92        unsigned long zeroval, ws;
  93
  94        piows = pda->pio_write_status_addr;
  95        zeroval = pda->pio_write_status_val;
  96        do {
  97                cpu_relax();
  98        } while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
  99        return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
 100}
 101
 102/**
 103 * sn_migrate - SN-specific task migration actions
 104 * @task: Task being migrated to new CPU
 105 *
 106 * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
 107 * Context switching user threads which have memory-mapped MMIO may cause
 108 * PIOs to issue from separate CPUs, thus the PIO writes must be drained
 109 * from the previous CPU's Shub before execution resumes on the new CPU.
 110 */
 111void sn_migrate(struct task_struct *task)
 112{
 113        pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
 114        volatile unsigned long *adr = last_pda->pio_write_status_addr;
 115        unsigned long val = last_pda->pio_write_status_val;
 116
 117        /* Drain PIO writes from old CPU's Shub */
 118        while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
 119                        != val))
 120                cpu_relax();
 121}
 122
 123void sn_tlb_migrate_finish(struct mm_struct *mm)
 124{
 125        /* flush_tlb_mm is inefficient if more than 1 users of mm */
 126        if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
 127                flush_tlb_mm(mm);
 128}
 129
 130static void
 131sn2_ipi_flush_all_tlb(struct mm_struct *mm)
 132{
 133        unsigned long itc;
 134
 135        itc = ia64_get_itc();
 136        smp_flush_tlb_cpumask(*mm_cpumask(mm));
 137        itc = ia64_get_itc() - itc;
 138        __this_cpu_add(ptcstats.shub_ipi_flushes_itc_clocks, itc);
 139        __this_cpu_inc(ptcstats.shub_ipi_flushes);
 140}
 141
 142/**
 143 * sn2_global_tlb_purge - globally purge translation cache of virtual address range
 144 * @mm: mm_struct containing virtual address range
 145 * @start: start of virtual address range
 146 * @end: end of virtual address range
 147 * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
 148 *
 149 * Purges the translation caches of all processors of the given virtual address
 150 * range.
 151 *
 152 * Note:
 153 *      - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
 154 *      - cpu_vm_mask is converted into a nodemask of the nodes containing the
 155 *        cpus in cpu_vm_mask.
 156 *      - if only one bit is set in cpu_vm_mask & it is the current cpu & the
 157 *        process is purging its own virtual address range, then only the
 158 *        local TLB needs to be flushed. This flushing can be done using
 159 *        ptc.l. This is the common case & avoids the global spinlock.
 160 *      - if multiple cpus have loaded the context, then flushing has to be
 161 *        done with ptc.g/MMRs under protection of the global ptc_lock.
 162 */
 163
 164void
 165sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
 166                     unsigned long end, unsigned long nbits)
 167{
 168        int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
 169        int mymm = (mm == current->active_mm && mm == current->mm);
 170        int use_cpu_ptcga;
 171        volatile unsigned long *ptc0, *ptc1;
 172        unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
 173        short nix;
 174        nodemask_t nodes_flushed;
 175        int active, max_active, deadlock, flush_opt = sn2_flush_opt;
 176
 177        if (flush_opt > 2) {
 178                sn2_ipi_flush_all_tlb(mm);
 179                return;
 180        }
 181
 182        nodes_clear(nodes_flushed);
 183        i = 0;
 184
 185        for_each_cpu(cpu, mm_cpumask(mm)) {
 186                cnode = cpu_to_node(cpu);
 187                node_set(cnode, nodes_flushed);
 188                lcpu = cpu;
 189                i++;
 190        }
 191
 192        if (i == 0)
 193                return;
 194
 195        preempt_disable();
 196
 197        if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
 198                do {
 199                        ia64_ptcl(start, nbits << 2);
 200                        start += (1UL << nbits);
 201                } while (start < end);
 202                ia64_srlz_i();
 203                __this_cpu_inc(ptcstats.ptc_l);
 204                preempt_enable();
 205                return;
 206        }
 207
 208        if (atomic_read(&mm->mm_users) == 1 && mymm) {
 209                flush_tlb_mm(mm);
 210                __this_cpu_inc(ptcstats.change_rid);
 211                preempt_enable();
 212                return;
 213        }
 214
 215        if (flush_opt == 2) {
 216                sn2_ipi_flush_all_tlb(mm);
 217                preempt_enable();
 218                return;
 219        }
 220
 221        itc = ia64_get_itc();
 222        nix = nodes_weight(nodes_flushed);
 223
 224        rr_value = (mm->context << 3) | REGION_NUMBER(start);
 225
 226        shub1 = is_shub1();
 227        if (shub1) {
 228                data0 = (1UL << SH1_PTC_0_A_SHFT) |
 229                        (nbits << SH1_PTC_0_PS_SHFT) |
 230                        (rr_value << SH1_PTC_0_RID_SHFT) |
 231                        (1UL << SH1_PTC_0_START_SHFT);
 232                ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
 233                ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
 234        } else {
 235                data0 = (1UL << SH2_PTC_A_SHFT) |
 236                        (nbits << SH2_PTC_PS_SHFT) |
 237                        (1UL << SH2_PTC_START_SHFT);
 238                ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC + 
 239                        (rr_value << SH2_PTC_RID_SHFT));
 240                ptc1 = NULL;
 241        }
 242        
 243
 244        mynasid = get_nasid();
 245        use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
 246        max_active = max_active_pio(shub1);
 247
 248        itc = ia64_get_itc();
 249        spin_lock_irqsave(PTC_LOCK(shub1), flags);
 250        itc2 = ia64_get_itc();
 251
 252        __this_cpu_add(ptcstats.lock_itc_clocks, itc2 - itc);
 253        __this_cpu_inc(ptcstats.shub_ptc_flushes);
 254        __this_cpu_add(ptcstats.nodes_flushed, nix);
 255        if (!mymm)
 256                 __this_cpu_inc(ptcstats.shub_ptc_flushes_not_my_mm);
 257
 258        if (use_cpu_ptcga && !mymm) {
 259                old_rr = ia64_get_rr(start);
 260                ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
 261                ia64_srlz_d();
 262        }
 263
 264        wait_piowc();
 265        do {
 266                if (shub1)
 267                        data1 = start | (1UL << SH1_PTC_1_START_SHFT);
 268                else
 269                        data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
 270                deadlock = 0;
 271                active = 0;
 272                ibegin = 0;
 273                i = 0;
 274                for_each_node_mask(cnode, nodes_flushed) {
 275                        nasid = cnodeid_to_nasid(cnode);
 276                        if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
 277                                ia64_ptcga(start, nbits << 2);
 278                                ia64_srlz_i();
 279                        } else {
 280                                ptc0 = CHANGE_NASID(nasid, ptc0);
 281                                if (ptc1)
 282                                        ptc1 = CHANGE_NASID(nasid, ptc1);
 283                                pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
 284                                active++;
 285                        }
 286                        if (active >= max_active || i == (nix - 1)) {
 287                                if ((deadlock = wait_piowc())) {
 288                                        if (flush_opt == 1)
 289                                                goto done;
 290                                        sn2_ptc_deadlock_recovery(nodes_flushed, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
 291                                        if (reset_max_active_on_deadlock())
 292                                                max_active = 1;
 293                                }
 294                                active = 0;
 295                                ibegin = i + 1;
 296                        }
 297                        i++;
 298                }
 299                start += (1UL << nbits);
 300        } while (start < end);
 301
 302done:
 303        itc2 = ia64_get_itc() - itc2;
 304        __this_cpu_add(ptcstats.shub_itc_clocks, itc2);
 305        if (itc2 > __this_cpu_read(ptcstats.shub_itc_clocks_max))
 306                __this_cpu_write(ptcstats.shub_itc_clocks_max, itc2);
 307
 308        if (old_rr) {
 309                ia64_set_rr(start, old_rr);
 310                ia64_srlz_d();
 311        }
 312
 313        spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
 314
 315        if (flush_opt == 1 && deadlock) {
 316                __this_cpu_inc(ptcstats.deadlocks);
 317                sn2_ipi_flush_all_tlb(mm);
 318        }
 319
 320        preempt_enable();
 321}
 322
 323/*
 324 * sn2_ptc_deadlock_recovery
 325 *
 326 * Recover from PTC deadlocks conditions. Recovery requires stepping thru each 
 327 * TLB flush transaction.  The recovery sequence is somewhat tricky & is
 328 * coded in assembly language.
 329 */
 330
 331void
 332sn2_ptc_deadlock_recovery(nodemask_t nodes, short ib, short ie, int mynasid,
 333                          volatile unsigned long *ptc0, unsigned long data0,
 334                          volatile unsigned long *ptc1, unsigned long data1)
 335{
 336        short nasid, i;
 337        int cnode;
 338        unsigned long *piows, zeroval, n;
 339
 340        __this_cpu_inc(ptcstats.deadlocks);
 341
 342        piows = (unsigned long *) pda->pio_write_status_addr;
 343        zeroval = pda->pio_write_status_val;
 344
 345        i = 0;
 346        for_each_node_mask(cnode, nodes) {
 347                if (i < ib)
 348                        goto next;
 349
 350                if (i > ie)
 351                        break;
 352
 353                nasid = cnodeid_to_nasid(cnode);
 354                if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
 355                        goto next;
 356
 357                ptc0 = CHANGE_NASID(nasid, ptc0);
 358                if (ptc1)
 359                        ptc1 = CHANGE_NASID(nasid, ptc1);
 360
 361                n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
 362                __this_cpu_add(ptcstats.deadlocks2, n);
 363next:
 364                i++;
 365        }
 366
 367}
 368
 369/**
 370 * sn_send_IPI_phys - send an IPI to a Nasid and slice
 371 * @nasid: nasid to receive the interrupt (may be outside partition)
 372 * @physid: physical cpuid to receive the interrupt.
 373 * @vector: command to send
 374 * @delivery_mode: delivery mechanism
 375 *
 376 * Sends an IPI (interprocessor interrupt) to the processor specified by
 377 * @physid
 378 *
 379 * @delivery_mode can be one of the following
 380 *
 381 * %IA64_IPI_DM_INT - pend an interrupt
 382 * %IA64_IPI_DM_PMI - pend a PMI
 383 * %IA64_IPI_DM_NMI - pend an NMI
 384 * %IA64_IPI_DM_INIT - pend an INIT interrupt
 385 */
 386void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
 387{
 388        long val;
 389        unsigned long flags = 0;
 390        volatile long *p;
 391
 392        p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
 393        val = (1UL << SH_IPI_INT_SEND_SHFT) |
 394            (physid << SH_IPI_INT_PID_SHFT) |
 395            ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
 396            ((long)vector << SH_IPI_INT_IDX_SHFT) |
 397            (0x000feeUL << SH_IPI_INT_BASE_SHFT);
 398
 399        mb();
 400        if (enable_shub_wars_1_1()) {
 401                spin_lock_irqsave(&sn2_global_ptc_lock, flags);
 402        }
 403        pio_phys_write_mmr(p, val);
 404        if (enable_shub_wars_1_1()) {
 405                wait_piowc();
 406                spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
 407        }
 408
 409}
 410
 411EXPORT_SYMBOL(sn_send_IPI_phys);
 412
 413/**
 414 * sn2_send_IPI - send an IPI to a processor
 415 * @cpuid: target of the IPI
 416 * @vector: command to send
 417 * @delivery_mode: delivery mechanism
 418 * @redirect: redirect the IPI?
 419 *
 420 * Sends an IPI (InterProcessor Interrupt) to the processor specified by
 421 * @cpuid.  @vector specifies the command to send, while @delivery_mode can 
 422 * be one of the following
 423 *
 424 * %IA64_IPI_DM_INT - pend an interrupt
 425 * %IA64_IPI_DM_PMI - pend a PMI
 426 * %IA64_IPI_DM_NMI - pend an NMI
 427 * %IA64_IPI_DM_INIT - pend an INIT interrupt
 428 */
 429void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
 430{
 431        long physid;
 432        int nasid;
 433
 434        physid = cpu_physical_id(cpuid);
 435        nasid = cpuid_to_nasid(cpuid);
 436
 437        /* the following is used only when starting cpus at boot time */
 438        if (unlikely(nasid == -1))
 439                ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
 440
 441        sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
 442}
 443
 444#ifdef CONFIG_HOTPLUG_CPU
 445/**
 446 * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
 447 * @cpu - CPU that is requested to be disabled.
 448 *
 449 * CPU disable is only allowed on SHub2 systems running with a PROM
 450 * that supports CPU disable. It is not permitted to disable the boot processor.
 451 */
 452bool sn_cpu_disable_allowed(int cpu)
 453{
 454        if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
 455                if (cpu != 0)
 456                        return true;
 457                else
 458                        printk(KERN_WARNING
 459                              "Disabling the boot processor is not allowed.\n");
 460
 461        } else
 462                printk(KERN_WARNING
 463                       "CPU disable is not supported on this system.\n");
 464
 465        return false;
 466}
 467#endif /* CONFIG_HOTPLUG_CPU */
 468
 469#ifdef CONFIG_PROC_FS
 470
 471#define PTC_BASENAME    "sgi_sn/ptc_statistics"
 472
 473static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
 474{
 475        if (*offset < nr_cpu_ids)
 476                return offset;
 477        return NULL;
 478}
 479
 480static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
 481{
 482        (*offset)++;
 483        if (*offset < nr_cpu_ids)
 484                return offset;
 485        return NULL;
 486}
 487
 488static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
 489{
 490}
 491
 492static int sn2_ptc_seq_show(struct seq_file *file, void *data)
 493{
 494        struct ptc_stats *stat;
 495        int cpu;
 496
 497        cpu = *(loff_t *) data;
 498
 499        if (!cpu) {
 500                seq_printf(file,
 501                           "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
 502                seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
 503        }
 504
 505        if (cpu < nr_cpu_ids && cpu_online(cpu)) {
 506                stat = &per_cpu(ptcstats, cpu);
 507                seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
 508                                stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
 509                                stat->deadlocks,
 510                                1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
 511                                1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
 512                                1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
 513                                stat->shub_ptc_flushes_not_my_mm,
 514                                stat->deadlocks2,
 515                                stat->shub_ipi_flushes,
 516                                1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec);
 517        }
 518        return 0;
 519}
 520
 521static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
 522{
 523        int cpu;
 524        char optstr[64];
 525
 526        if (count == 0 || count > sizeof(optstr))
 527                return -EINVAL;
 528        if (copy_from_user(optstr, user, count))
 529                return -EFAULT;
 530        optstr[count - 1] = '\0';
 531        sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
 532
 533        for_each_online_cpu(cpu)
 534                memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
 535
 536        return count;
 537}
 538
 539static const struct seq_operations sn2_ptc_seq_ops = {
 540        .start = sn2_ptc_seq_start,
 541        .next = sn2_ptc_seq_next,
 542        .stop = sn2_ptc_seq_stop,
 543        .show = sn2_ptc_seq_show
 544};
 545
 546static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
 547{
 548        return seq_open(file, &sn2_ptc_seq_ops);
 549}
 550
 551static const struct file_operations proc_sn2_ptc_operations = {
 552        .open = sn2_ptc_proc_open,
 553        .read = seq_read,
 554        .write = sn2_ptc_proc_write,
 555        .llseek = seq_lseek,
 556        .release = seq_release,
 557};
 558
 559static struct proc_dir_entry *proc_sn2_ptc;
 560
 561static int __init sn2_ptc_init(void)
 562{
 563        if (!ia64_platform_is("sn2"))
 564                return 0;
 565
 566        proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
 567                                   NULL, &proc_sn2_ptc_operations);
 568        if (!proc_sn2_ptc) {
 569                printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
 570                return -EINVAL;
 571        }
 572        spin_lock_init(&sn2_global_ptc_lock);
 573        return 0;
 574}
 575
 576static void __exit sn2_ptc_exit(void)
 577{
 578        remove_proc_entry(PTC_BASENAME, NULL);
 579}
 580
 581module_init(sn2_ptc_init);
 582module_exit(sn2_ptc_exit);
 583#endif /* CONFIG_PROC_FS */
 584
 585