linux/arch/mips/kvm/mips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sched/signal.h>
  20#include <linux/fs.h>
  21#include <linux/bootmem.h>
  22
  23#include <asm/fpu.h>
  24#include <asm/page.h>
  25#include <asm/cacheflush.h>
  26#include <asm/mmu_context.h>
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29
  30#include <linux/kvm_host.h>
  31
  32#include "interrupt.h"
  33#include "commpage.h"
  34
  35#define CREATE_TRACE_POINTS
  36#include "trace.h"
  37
  38#ifndef VECTORSPACING
  39#define VECTORSPACING 0x100     /* for EI/VI mode */
  40#endif
  41
  42#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  43struct kvm_stats_debugfs_item debugfs_entries[] = {
  44        { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
  45        { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
  46        { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
  47        { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
  48        { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  49        { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
  50        { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
  51        { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
  52        { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
  53        { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
  54        { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
  55        { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
  56        { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
  57        { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
  58        { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
  59        { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
  60        { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  61        { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  62#ifdef CONFIG_KVM_MIPS_VZ
  63        { "vz_gpsi",      VCPU_STAT(vz_gpsi_exits),      KVM_STAT_VCPU },
  64        { "vz_gsfc",      VCPU_STAT(vz_gsfc_exits),      KVM_STAT_VCPU },
  65        { "vz_hc",        VCPU_STAT(vz_hc_exits),        KVM_STAT_VCPU },
  66        { "vz_grr",       VCPU_STAT(vz_grr_exits),       KVM_STAT_VCPU },
  67        { "vz_gva",       VCPU_STAT(vz_gva_exits),       KVM_STAT_VCPU },
  68        { "vz_ghfc",      VCPU_STAT(vz_ghfc_exits),      KVM_STAT_VCPU },
  69        { "vz_gpa",       VCPU_STAT(vz_gpa_exits),       KVM_STAT_VCPU },
  70        { "vz_resvd",     VCPU_STAT(vz_resvd_exits),     KVM_STAT_VCPU },
  71#endif
  72        { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  73        { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  74        { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  75        { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
  76        {NULL}
  77};
  78
  79bool kvm_trace_guest_mode_change;
  80
  81int kvm_guest_mode_change_trace_reg(void)
  82{
  83        kvm_trace_guest_mode_change = 1;
  84        return 0;
  85}
  86
  87void kvm_guest_mode_change_trace_unreg(void)
  88{
  89        kvm_trace_guest_mode_change = 0;
  90}
  91
  92/*
  93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  94 * Config7, so we are "runnable" if interrupts are pending
  95 */
  96int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  97{
  98        return !!(vcpu->arch.pending_exceptions);
  99}
 100
 101bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 102{
 103        return false;
 104}
 105
 106int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 107{
 108        return 1;
 109}
 110
 111int kvm_arch_hardware_enable(void)
 112{
 113        return kvm_mips_callbacks->hardware_enable();
 114}
 115
 116void kvm_arch_hardware_disable(void)
 117{
 118        kvm_mips_callbacks->hardware_disable();
 119}
 120
 121int kvm_arch_hardware_setup(void)
 122{
 123        return 0;
 124}
 125
 126void kvm_arch_check_processor_compat(void *rtn)
 127{
 128        *(int *)rtn = 0;
 129}
 130
 131int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 132{
 133        switch (type) {
 134#ifdef CONFIG_KVM_MIPS_VZ
 135        case KVM_VM_MIPS_VZ:
 136#else
 137        case KVM_VM_MIPS_TE:
 138#endif
 139                break;
 140        default:
 141                /* Unsupported KVM type */
 142                return -EINVAL;
 143        };
 144
 145        /* Allocate page table to map GPA -> RPA */
 146        kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
 147        if (!kvm->arch.gpa_mm.pgd)
 148                return -ENOMEM;
 149
 150        return 0;
 151}
 152
 153bool kvm_arch_has_vcpu_debugfs(void)
 154{
 155        return false;
 156}
 157
 158int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
 159{
 160        return 0;
 161}
 162
 163void kvm_mips_free_vcpus(struct kvm *kvm)
 164{
 165        unsigned int i;
 166        struct kvm_vcpu *vcpu;
 167
 168        kvm_for_each_vcpu(i, vcpu, kvm) {
 169                kvm_arch_vcpu_free(vcpu);
 170        }
 171
 172        mutex_lock(&kvm->lock);
 173
 174        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 175                kvm->vcpus[i] = NULL;
 176
 177        atomic_set(&kvm->online_vcpus, 0);
 178
 179        mutex_unlock(&kvm->lock);
 180}
 181
 182static void kvm_mips_free_gpa_pt(struct kvm *kvm)
 183{
 184        /* It should always be safe to remove after flushing the whole range */
 185        WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
 186        pgd_free(NULL, kvm->arch.gpa_mm.pgd);
 187}
 188
 189void kvm_arch_destroy_vm(struct kvm *kvm)
 190{
 191        kvm_mips_free_vcpus(kvm);
 192        kvm_mips_free_gpa_pt(kvm);
 193}
 194
 195long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 196                        unsigned long arg)
 197{
 198        return -ENOIOCTLCMD;
 199}
 200
 201int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 202                            unsigned long npages)
 203{
 204        return 0;
 205}
 206
 207void kvm_arch_flush_shadow_all(struct kvm *kvm)
 208{
 209        /* Flush whole GPA */
 210        kvm_mips_flush_gpa_pt(kvm, 0, ~0);
 211
 212        /* Let implementation do the rest */
 213        kvm_mips_callbacks->flush_shadow_all(kvm);
 214}
 215
 216void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 217                                   struct kvm_memory_slot *slot)
 218{
 219        /*
 220         * The slot has been made invalid (ready for moving or deletion), so we
 221         * need to ensure that it can no longer be accessed by any guest VCPUs.
 222         */
 223
 224        spin_lock(&kvm->mmu_lock);
 225        /* Flush slot from GPA */
 226        kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
 227                              slot->base_gfn + slot->npages - 1);
 228        /* Let implementation do the rest */
 229        kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
 230        spin_unlock(&kvm->mmu_lock);
 231}
 232
 233int kvm_arch_prepare_memory_region(struct kvm *kvm,
 234                                   struct kvm_memory_slot *memslot,
 235                                   const struct kvm_userspace_memory_region *mem,
 236                                   enum kvm_mr_change change)
 237{
 238        return 0;
 239}
 240
 241void kvm_arch_commit_memory_region(struct kvm *kvm,
 242                                   const struct kvm_userspace_memory_region *mem,
 243                                   const struct kvm_memory_slot *old,
 244                                   const struct kvm_memory_slot *new,
 245                                   enum kvm_mr_change change)
 246{
 247        int needs_flush;
 248
 249        kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
 250                  __func__, kvm, mem->slot, mem->guest_phys_addr,
 251                  mem->memory_size, mem->userspace_addr);
 252
 253        /*
 254         * If dirty page logging is enabled, write protect all pages in the slot
 255         * ready for dirty logging.
 256         *
 257         * There is no need to do this in any of the following cases:
 258         * CREATE:      No dirty mappings will already exist.
 259         * MOVE/DELETE: The old mappings will already have been cleaned up by
 260         *              kvm_arch_flush_shadow_memslot()
 261         */
 262        if (change == KVM_MR_FLAGS_ONLY &&
 263            (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
 264             new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
 265                spin_lock(&kvm->mmu_lock);
 266                /* Write protect GPA page table entries */
 267                needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
 268                                        new->base_gfn + new->npages - 1);
 269                /* Let implementation do the rest */
 270                if (needs_flush)
 271                        kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
 272                spin_unlock(&kvm->mmu_lock);
 273        }
 274}
 275
 276static inline void dump_handler(const char *symbol, void *start, void *end)
 277{
 278        u32 *p;
 279
 280        pr_debug("LEAF(%s)\n", symbol);
 281
 282        pr_debug("\t.set push\n");
 283        pr_debug("\t.set noreorder\n");
 284
 285        for (p = start; p < (u32 *)end; ++p)
 286                pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 287
 288        pr_debug("\t.set\tpop\n");
 289
 290        pr_debug("\tEND(%s)\n", symbol);
 291}
 292
 293struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 294{
 295        int err, size;
 296        void *gebase, *p, *handler, *refill_start, *refill_end;
 297        int i;
 298
 299        struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
 300
 301        if (!vcpu) {
 302                err = -ENOMEM;
 303                goto out;
 304        }
 305
 306        err = kvm_vcpu_init(vcpu, kvm, id);
 307
 308        if (err)
 309                goto out_free_cpu;
 310
 311        kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
 312
 313        /*
 314         * Allocate space for host mode exception handlers that handle
 315         * guest mode exits
 316         */
 317        if (cpu_has_veic || cpu_has_vint)
 318                size = 0x200 + VECTORSPACING * 64;
 319        else
 320                size = 0x4000;
 321
 322        gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 323
 324        if (!gebase) {
 325                err = -ENOMEM;
 326                goto out_uninit_cpu;
 327        }
 328        kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 329                  ALIGN(size, PAGE_SIZE), gebase);
 330
 331        /*
 332         * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 333         * limits us to the low 512MB of physical address space. If the memory
 334         * we allocate is out of range, just give up now.
 335         */
 336        if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 337                kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 338                        gebase);
 339                err = -ENOMEM;
 340                goto out_free_gebase;
 341        }
 342
 343        /* Save new ebase */
 344        vcpu->arch.guest_ebase = gebase;
 345
 346        /* Build guest exception vectors dynamically in unmapped memory */
 347        handler = gebase + 0x2000;
 348
 349        /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
 350        refill_start = gebase;
 351        if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
 352                refill_start += 0x080;
 353        refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
 354
 355        /* General Exception Entry point */
 356        kvm_mips_build_exception(gebase + 0x180, handler);
 357
 358        /* For vectored interrupts poke the exception code @ all offsets 0-7 */
 359        for (i = 0; i < 8; i++) {
 360                kvm_debug("L1 Vectored handler @ %p\n",
 361                          gebase + 0x200 + (i * VECTORSPACING));
 362                kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 363                                         handler);
 364        }
 365
 366        /* General exit handler */
 367        p = handler;
 368        p = kvm_mips_build_exit(p);
 369
 370        /* Guest entry routine */
 371        vcpu->arch.vcpu_run = p;
 372        p = kvm_mips_build_vcpu_run(p);
 373
 374        /* Dump the generated code */
 375        pr_debug("#include <asm/asm.h>\n");
 376        pr_debug("#include <asm/regdef.h>\n");
 377        pr_debug("\n");
 378        dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 379        dump_handler("kvm_tlb_refill", refill_start, refill_end);
 380        dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 381        dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 382
 383        /* Invalidate the icache for these ranges */
 384        flush_icache_range((unsigned long)gebase,
 385                           (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 386
 387        /*
 388         * Allocate comm page for guest kernel, a TLB will be reserved for
 389         * mapping GVA @ 0xFFFF8000 to this page
 390         */
 391        vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
 392
 393        if (!vcpu->arch.kseg0_commpage) {
 394                err = -ENOMEM;
 395                goto out_free_gebase;
 396        }
 397
 398        kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
 399        kvm_mips_commpage_init(vcpu);
 400
 401        /* Init */
 402        vcpu->arch.last_sched_cpu = -1;
 403        vcpu->arch.last_exec_cpu = -1;
 404
 405        return vcpu;
 406
 407out_free_gebase:
 408        kfree(gebase);
 409
 410out_uninit_cpu:
 411        kvm_vcpu_uninit(vcpu);
 412
 413out_free_cpu:
 414        kfree(vcpu);
 415
 416out:
 417        return ERR_PTR(err);
 418}
 419
 420void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 421{
 422        hrtimer_cancel(&vcpu->arch.comparecount_timer);
 423
 424        kvm_vcpu_uninit(vcpu);
 425
 426        kvm_mips_dump_stats(vcpu);
 427
 428        kvm_mmu_free_memory_caches(vcpu);
 429        kfree(vcpu->arch.guest_ebase);
 430        kfree(vcpu->arch.kseg0_commpage);
 431        kfree(vcpu);
 432}
 433
 434void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 435{
 436        kvm_arch_vcpu_free(vcpu);
 437}
 438
 439int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 440                                        struct kvm_guest_debug *dbg)
 441{
 442        return -ENOIOCTLCMD;
 443}
 444
 445int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 446{
 447        int r = -EINTR;
 448        sigset_t sigsaved;
 449
 450        if (vcpu->sigset_active)
 451                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 452
 453        if (vcpu->mmio_needed) {
 454                if (!vcpu->mmio_is_write)
 455                        kvm_mips_complete_mmio_load(vcpu, run);
 456                vcpu->mmio_needed = 0;
 457        }
 458
 459        if (run->immediate_exit)
 460                goto out;
 461
 462        lose_fpu(1);
 463
 464        local_irq_disable();
 465        guest_enter_irqoff();
 466        trace_kvm_enter(vcpu);
 467
 468        /*
 469         * Make sure the read of VCPU requests in vcpu_run() callback is not
 470         * reordered ahead of the write to vcpu->mode, or we could miss a TLB
 471         * flush request while the requester sees the VCPU as outside of guest
 472         * mode and not needing an IPI.
 473         */
 474        smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 475
 476        r = kvm_mips_callbacks->vcpu_run(run, vcpu);
 477
 478        trace_kvm_out(vcpu);
 479        guest_exit_irqoff();
 480        local_irq_enable();
 481
 482out:
 483        if (vcpu->sigset_active)
 484                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 485
 486        return r;
 487}
 488
 489int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 490                             struct kvm_mips_interrupt *irq)
 491{
 492        int intr = (int)irq->irq;
 493        struct kvm_vcpu *dvcpu = NULL;
 494
 495        if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
 496                kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 497                          (int)intr);
 498
 499        if (irq->cpu == -1)
 500                dvcpu = vcpu;
 501        else
 502                dvcpu = vcpu->kvm->vcpus[irq->cpu];
 503
 504        if (intr == 2 || intr == 3 || intr == 4) {
 505                kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 506
 507        } else if (intr == -2 || intr == -3 || intr == -4) {
 508                kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 509        } else {
 510                kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 511                        irq->cpu, irq->irq);
 512                return -EINVAL;
 513        }
 514
 515        dvcpu->arch.wait = 0;
 516
 517        if (swq_has_sleeper(&dvcpu->wq))
 518                swake_up(&dvcpu->wq);
 519
 520        return 0;
 521}
 522
 523int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 524                                    struct kvm_mp_state *mp_state)
 525{
 526        return -ENOIOCTLCMD;
 527}
 528
 529int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 530                                    struct kvm_mp_state *mp_state)
 531{
 532        return -ENOIOCTLCMD;
 533}
 534
 535static u64 kvm_mips_get_one_regs[] = {
 536        KVM_REG_MIPS_R0,
 537        KVM_REG_MIPS_R1,
 538        KVM_REG_MIPS_R2,
 539        KVM_REG_MIPS_R3,
 540        KVM_REG_MIPS_R4,
 541        KVM_REG_MIPS_R5,
 542        KVM_REG_MIPS_R6,
 543        KVM_REG_MIPS_R7,
 544        KVM_REG_MIPS_R8,
 545        KVM_REG_MIPS_R9,
 546        KVM_REG_MIPS_R10,
 547        KVM_REG_MIPS_R11,
 548        KVM_REG_MIPS_R12,
 549        KVM_REG_MIPS_R13,
 550        KVM_REG_MIPS_R14,
 551        KVM_REG_MIPS_R15,
 552        KVM_REG_MIPS_R16,
 553        KVM_REG_MIPS_R17,
 554        KVM_REG_MIPS_R18,
 555        KVM_REG_MIPS_R19,
 556        KVM_REG_MIPS_R20,
 557        KVM_REG_MIPS_R21,
 558        KVM_REG_MIPS_R22,
 559        KVM_REG_MIPS_R23,
 560        KVM_REG_MIPS_R24,
 561        KVM_REG_MIPS_R25,
 562        KVM_REG_MIPS_R26,
 563        KVM_REG_MIPS_R27,
 564        KVM_REG_MIPS_R28,
 565        KVM_REG_MIPS_R29,
 566        KVM_REG_MIPS_R30,
 567        KVM_REG_MIPS_R31,
 568
 569#ifndef CONFIG_CPU_MIPSR6
 570        KVM_REG_MIPS_HI,
 571        KVM_REG_MIPS_LO,
 572#endif
 573        KVM_REG_MIPS_PC,
 574};
 575
 576static u64 kvm_mips_get_one_regs_fpu[] = {
 577        KVM_REG_MIPS_FCR_IR,
 578        KVM_REG_MIPS_FCR_CSR,
 579};
 580
 581static u64 kvm_mips_get_one_regs_msa[] = {
 582        KVM_REG_MIPS_MSA_IR,
 583        KVM_REG_MIPS_MSA_CSR,
 584};
 585
 586static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 587{
 588        unsigned long ret;
 589
 590        ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 591        if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 592                ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 593                /* odd doubles */
 594                if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 595                        ret += 16;
 596        }
 597        if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 598                ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 599        ret += kvm_mips_callbacks->num_regs(vcpu);
 600
 601        return ret;
 602}
 603
 604static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 605{
 606        u64 index;
 607        unsigned int i;
 608
 609        if (copy_to_user(indices, kvm_mips_get_one_regs,
 610                         sizeof(kvm_mips_get_one_regs)))
 611                return -EFAULT;
 612        indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 613
 614        if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 615                if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 616                                 sizeof(kvm_mips_get_one_regs_fpu)))
 617                        return -EFAULT;
 618                indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 619
 620                for (i = 0; i < 32; ++i) {
 621                        index = KVM_REG_MIPS_FPR_32(i);
 622                        if (copy_to_user(indices, &index, sizeof(index)))
 623                                return -EFAULT;
 624                        ++indices;
 625
 626                        /* skip odd doubles if no F64 */
 627                        if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 628                                continue;
 629
 630                        index = KVM_REG_MIPS_FPR_64(i);
 631                        if (copy_to_user(indices, &index, sizeof(index)))
 632                                return -EFAULT;
 633                        ++indices;
 634                }
 635        }
 636
 637        if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 638                if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 639                                 sizeof(kvm_mips_get_one_regs_msa)))
 640                        return -EFAULT;
 641                indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 642
 643                for (i = 0; i < 32; ++i) {
 644                        index = KVM_REG_MIPS_VEC_128(i);
 645                        if (copy_to_user(indices, &index, sizeof(index)))
 646                                return -EFAULT;
 647                        ++indices;
 648                }
 649        }
 650
 651        return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 652}
 653
 654static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 655                            const struct kvm_one_reg *reg)
 656{
 657        struct mips_coproc *cop0 = vcpu->arch.cop0;
 658        struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 659        int ret;
 660        s64 v;
 661        s64 vs[2];
 662        unsigned int idx;
 663
 664        switch (reg->id) {
 665        /* General purpose registers */
 666        case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 667                v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 668                break;
 669#ifndef CONFIG_CPU_MIPSR6
 670        case KVM_REG_MIPS_HI:
 671                v = (long)vcpu->arch.hi;
 672                break;
 673        case KVM_REG_MIPS_LO:
 674                v = (long)vcpu->arch.lo;
 675                break;
 676#endif
 677        case KVM_REG_MIPS_PC:
 678                v = (long)vcpu->arch.pc;
 679                break;
 680
 681        /* Floating point registers */
 682        case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 683                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 684                        return -EINVAL;
 685                idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 686                /* Odd singles in top of even double when FR=0 */
 687                if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 688                        v = get_fpr32(&fpu->fpr[idx], 0);
 689                else
 690                        v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 691                break;
 692        case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 693                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 694                        return -EINVAL;
 695                idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 696                /* Can't access odd doubles in FR=0 mode */
 697                if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 698                        return -EINVAL;
 699                v = get_fpr64(&fpu->fpr[idx], 0);
 700                break;
 701        case KVM_REG_MIPS_FCR_IR:
 702                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 703                        return -EINVAL;
 704                v = boot_cpu_data.fpu_id;
 705                break;
 706        case KVM_REG_MIPS_FCR_CSR:
 707                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 708                        return -EINVAL;
 709                v = fpu->fcr31;
 710                break;
 711
 712        /* MIPS SIMD Architecture (MSA) registers */
 713        case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 714                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 715                        return -EINVAL;
 716                /* Can't access MSA registers in FR=0 mode */
 717                if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 718                        return -EINVAL;
 719                idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 720#ifdef CONFIG_CPU_LITTLE_ENDIAN
 721                /* least significant byte first */
 722                vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 723                vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 724#else
 725                /* most significant byte first */
 726                vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 727                vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 728#endif
 729                break;
 730        case KVM_REG_MIPS_MSA_IR:
 731                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 732                        return -EINVAL;
 733                v = boot_cpu_data.msa_id;
 734                break;
 735        case KVM_REG_MIPS_MSA_CSR:
 736                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 737                        return -EINVAL;
 738                v = fpu->msacsr;
 739                break;
 740
 741        /* registers to be handled specially */
 742        default:
 743                ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 744                if (ret)
 745                        return ret;
 746                break;
 747        }
 748        if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 749                u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 750
 751                return put_user(v, uaddr64);
 752        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 753                u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 754                u32 v32 = (u32)v;
 755
 756                return put_user(v32, uaddr32);
 757        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 758                void __user *uaddr = (void __user *)(long)reg->addr;
 759
 760                return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 761        } else {
 762                return -EINVAL;
 763        }
 764}
 765
 766static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 767                            const struct kvm_one_reg *reg)
 768{
 769        struct mips_coproc *cop0 = vcpu->arch.cop0;
 770        struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 771        s64 v;
 772        s64 vs[2];
 773        unsigned int idx;
 774
 775        if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 776                u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 777
 778                if (get_user(v, uaddr64) != 0)
 779                        return -EFAULT;
 780        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 781                u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 782                s32 v32;
 783
 784                if (get_user(v32, uaddr32) != 0)
 785                        return -EFAULT;
 786                v = (s64)v32;
 787        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 788                void __user *uaddr = (void __user *)(long)reg->addr;
 789
 790                return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 791        } else {
 792                return -EINVAL;
 793        }
 794
 795        switch (reg->id) {
 796        /* General purpose registers */
 797        case KVM_REG_MIPS_R0:
 798                /* Silently ignore requests to set $0 */
 799                break;
 800        case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 801                vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 802                break;
 803#ifndef CONFIG_CPU_MIPSR6
 804        case KVM_REG_MIPS_HI:
 805                vcpu->arch.hi = v;
 806                break;
 807        case KVM_REG_MIPS_LO:
 808                vcpu->arch.lo = v;
 809                break;
 810#endif
 811        case KVM_REG_MIPS_PC:
 812                vcpu->arch.pc = v;
 813                break;
 814
 815        /* Floating point registers */
 816        case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 817                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 818                        return -EINVAL;
 819                idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 820                /* Odd singles in top of even double when FR=0 */
 821                if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 822                        set_fpr32(&fpu->fpr[idx], 0, v);
 823                else
 824                        set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 825                break;
 826        case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 827                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 828                        return -EINVAL;
 829                idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 830                /* Can't access odd doubles in FR=0 mode */
 831                if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 832                        return -EINVAL;
 833                set_fpr64(&fpu->fpr[idx], 0, v);
 834                break;
 835        case KVM_REG_MIPS_FCR_IR:
 836                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 837                        return -EINVAL;
 838                /* Read-only */
 839                break;
 840        case KVM_REG_MIPS_FCR_CSR:
 841                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 842                        return -EINVAL;
 843                fpu->fcr31 = v;
 844                break;
 845
 846        /* MIPS SIMD Architecture (MSA) registers */
 847        case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 848                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 849                        return -EINVAL;
 850                idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 851#ifdef CONFIG_CPU_LITTLE_ENDIAN
 852                /* least significant byte first */
 853                set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 854                set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 855#else
 856                /* most significant byte first */
 857                set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 858                set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 859#endif
 860                break;
 861        case KVM_REG_MIPS_MSA_IR:
 862                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 863                        return -EINVAL;
 864                /* Read-only */
 865                break;
 866        case KVM_REG_MIPS_MSA_CSR:
 867                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 868                        return -EINVAL;
 869                fpu->msacsr = v;
 870                break;
 871
 872        /* registers to be handled specially */
 873        default:
 874                return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
 875        }
 876        return 0;
 877}
 878
 879static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 880                                     struct kvm_enable_cap *cap)
 881{
 882        int r = 0;
 883
 884        if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
 885                return -EINVAL;
 886        if (cap->flags)
 887                return -EINVAL;
 888        if (cap->args[0])
 889                return -EINVAL;
 890
 891        switch (cap->cap) {
 892        case KVM_CAP_MIPS_FPU:
 893                vcpu->arch.fpu_enabled = true;
 894                break;
 895        case KVM_CAP_MIPS_MSA:
 896                vcpu->arch.msa_enabled = true;
 897                break;
 898        default:
 899                r = -EINVAL;
 900                break;
 901        }
 902
 903        return r;
 904}
 905
 906long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
 907                         unsigned long arg)
 908{
 909        struct kvm_vcpu *vcpu = filp->private_data;
 910        void __user *argp = (void __user *)arg;
 911        long r;
 912
 913        switch (ioctl) {
 914        case KVM_SET_ONE_REG:
 915        case KVM_GET_ONE_REG: {
 916                struct kvm_one_reg reg;
 917
 918                if (copy_from_user(&reg, argp, sizeof(reg)))
 919                        return -EFAULT;
 920                if (ioctl == KVM_SET_ONE_REG)
 921                        return kvm_mips_set_reg(vcpu, &reg);
 922                else
 923                        return kvm_mips_get_reg(vcpu, &reg);
 924        }
 925        case KVM_GET_REG_LIST: {
 926                struct kvm_reg_list __user *user_list = argp;
 927                struct kvm_reg_list reg_list;
 928                unsigned n;
 929
 930                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 931                        return -EFAULT;
 932                n = reg_list.n;
 933                reg_list.n = kvm_mips_num_regs(vcpu);
 934                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 935                        return -EFAULT;
 936                if (n < reg_list.n)
 937                        return -E2BIG;
 938                return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
 939        }
 940        case KVM_INTERRUPT:
 941                {
 942                        struct kvm_mips_interrupt irq;
 943
 944                        if (copy_from_user(&irq, argp, sizeof(irq)))
 945                                return -EFAULT;
 946                        kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
 947                                  irq.irq);
 948
 949                        r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 950                        break;
 951                }
 952        case KVM_ENABLE_CAP: {
 953                struct kvm_enable_cap cap;
 954
 955                if (copy_from_user(&cap, argp, sizeof(cap)))
 956                        return -EFAULT;
 957                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 958                break;
 959        }
 960        default:
 961                r = -ENOIOCTLCMD;
 962        }
 963        return r;
 964}
 965
 966/**
 967 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 968 * @kvm: kvm instance
 969 * @log: slot id and address to which we copy the log
 970 *
 971 * Steps 1-4 below provide general overview of dirty page logging. See
 972 * kvm_get_dirty_log_protect() function description for additional details.
 973 *
 974 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 975 * always flush the TLB (step 4) even if previous step failed  and the dirty
 976 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 977 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 978 * writes will be marked dirty for next log read.
 979 *
 980 *   1. Take a snapshot of the bit and clear it if needed.
 981 *   2. Write protect the corresponding page.
 982 *   3. Copy the snapshot to the userspace.
 983 *   4. Flush TLB's if needed.
 984 */
 985int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 986{
 987        struct kvm_memslots *slots;
 988        struct kvm_memory_slot *memslot;
 989        bool is_dirty = false;
 990        int r;
 991
 992        mutex_lock(&kvm->slots_lock);
 993
 994        r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
 995
 996        if (is_dirty) {
 997                slots = kvm_memslots(kvm);
 998                memslot = id_to_memslot(slots, log->slot);
 999
1000                /* Let implementation handle TLB/GVA invalidation */
1001                kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1002        }
1003
1004        mutex_unlock(&kvm->slots_lock);
1005        return r;
1006}
1007
1008long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1009{
1010        long r;
1011
1012        switch (ioctl) {
1013        default:
1014                r = -ENOIOCTLCMD;
1015        }
1016
1017        return r;
1018}
1019
1020int kvm_arch_init(void *opaque)
1021{
1022        if (kvm_mips_callbacks) {
1023                kvm_err("kvm: module already exists\n");
1024                return -EEXIST;
1025        }
1026
1027        return kvm_mips_emulation_init(&kvm_mips_callbacks);
1028}
1029
1030void kvm_arch_exit(void)
1031{
1032        kvm_mips_callbacks = NULL;
1033}
1034
1035int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1036                                  struct kvm_sregs *sregs)
1037{
1038        return -ENOIOCTLCMD;
1039}
1040
1041int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1042                                  struct kvm_sregs *sregs)
1043{
1044        return -ENOIOCTLCMD;
1045}
1046
1047void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1048{
1049}
1050
1051int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1052{
1053        return -ENOIOCTLCMD;
1054}
1055
1056int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1057{
1058        return -ENOIOCTLCMD;
1059}
1060
1061int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1062{
1063        return VM_FAULT_SIGBUS;
1064}
1065
1066int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1067{
1068        int r;
1069
1070        switch (ext) {
1071        case KVM_CAP_ONE_REG:
1072        case KVM_CAP_ENABLE_CAP:
1073        case KVM_CAP_READONLY_MEM:
1074        case KVM_CAP_SYNC_MMU:
1075        case KVM_CAP_IMMEDIATE_EXIT:
1076                r = 1;
1077                break;
1078        case KVM_CAP_NR_VCPUS:
1079                r = num_online_cpus();
1080                break;
1081        case KVM_CAP_MAX_VCPUS:
1082                r = KVM_MAX_VCPUS;
1083                break;
1084        case KVM_CAP_MIPS_FPU:
1085                /* We don't handle systems with inconsistent cpu_has_fpu */
1086                r = !!raw_cpu_has_fpu;
1087                break;
1088        case KVM_CAP_MIPS_MSA:
1089                /*
1090                 * We don't support MSA vector partitioning yet:
1091                 * 1) It would require explicit support which can't be tested
1092                 *    yet due to lack of support in current hardware.
1093                 * 2) It extends the state that would need to be saved/restored
1094                 *    by e.g. QEMU for migration.
1095                 *
1096                 * When vector partitioning hardware becomes available, support
1097                 * could be added by requiring a flag when enabling
1098                 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1099                 * to save/restore the appropriate extra state.
1100                 */
1101                r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1102                break;
1103        default:
1104                r = kvm_mips_callbacks->check_extension(kvm, ext);
1105                break;
1106        }
1107        return r;
1108}
1109
1110int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1111{
1112        return kvm_mips_pending_timer(vcpu) ||
1113                kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1114}
1115
1116int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1117{
1118        int i;
1119        struct mips_coproc *cop0;
1120
1121        if (!vcpu)
1122                return -1;
1123
1124        kvm_debug("VCPU Register Dump:\n");
1125        kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1126        kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1127
1128        for (i = 0; i < 32; i += 4) {
1129                kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1130                       vcpu->arch.gprs[i],
1131                       vcpu->arch.gprs[i + 1],
1132                       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1133        }
1134        kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1135        kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1136
1137        cop0 = vcpu->arch.cop0;
1138        kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1139                  kvm_read_c0_guest_status(cop0),
1140                  kvm_read_c0_guest_cause(cop0));
1141
1142        kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1143
1144        return 0;
1145}
1146
1147int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1148{
1149        int i;
1150
1151        for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1152                vcpu->arch.gprs[i] = regs->gpr[i];
1153        vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1154        vcpu->arch.hi = regs->hi;
1155        vcpu->arch.lo = regs->lo;
1156        vcpu->arch.pc = regs->pc;
1157
1158        return 0;
1159}
1160
1161int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1162{
1163        int i;
1164
1165        for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1166                regs->gpr[i] = vcpu->arch.gprs[i];
1167
1168        regs->hi = vcpu->arch.hi;
1169        regs->lo = vcpu->arch.lo;
1170        regs->pc = vcpu->arch.pc;
1171
1172        return 0;
1173}
1174
1175static void kvm_mips_comparecount_func(unsigned long data)
1176{
1177        struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1178
1179        kvm_mips_callbacks->queue_timer_int(vcpu);
1180
1181        vcpu->arch.wait = 0;
1182        if (swq_has_sleeper(&vcpu->wq))
1183                swake_up(&vcpu->wq);
1184}
1185
1186/* low level hrtimer wake routine */
1187static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1188{
1189        struct kvm_vcpu *vcpu;
1190
1191        vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1192        kvm_mips_comparecount_func((unsigned long) vcpu);
1193        return kvm_mips_count_timeout(vcpu);
1194}
1195
1196int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1197{
1198        int err;
1199
1200        err = kvm_mips_callbacks->vcpu_init(vcpu);
1201        if (err)
1202                return err;
1203
1204        hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1205                     HRTIMER_MODE_REL);
1206        vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1207        return 0;
1208}
1209
1210void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1211{
1212        kvm_mips_callbacks->vcpu_uninit(vcpu);
1213}
1214
1215int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1216                                  struct kvm_translation *tr)
1217{
1218        return 0;
1219}
1220
1221/* Initial guest state */
1222int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1223{
1224        return kvm_mips_callbacks->vcpu_setup(vcpu);
1225}
1226
1227static void kvm_mips_set_c0_status(void)
1228{
1229        u32 status = read_c0_status();
1230
1231        if (cpu_has_dsp)
1232                status |= (ST0_MX);
1233
1234        write_c0_status(status);
1235        ehb();
1236}
1237
1238/*
1239 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1240 */
1241int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1242{
1243        u32 cause = vcpu->arch.host_cp0_cause;
1244        u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1245        u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1246        unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1247        enum emulation_result er = EMULATE_DONE;
1248        u32 inst;
1249        int ret = RESUME_GUEST;
1250
1251        vcpu->mode = OUTSIDE_GUEST_MODE;
1252
1253        /* re-enable HTW before enabling interrupts */
1254        if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1255                htw_start();
1256
1257        /* Set a default exit reason */
1258        run->exit_reason = KVM_EXIT_UNKNOWN;
1259        run->ready_for_interrupt_injection = 1;
1260
1261        /*
1262         * Set the appropriate status bits based on host CPU features,
1263         * before we hit the scheduler
1264         */
1265        kvm_mips_set_c0_status();
1266
1267        local_irq_enable();
1268
1269        kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1270                        cause, opc, run, vcpu);
1271        trace_kvm_exit(vcpu, exccode);
1272
1273        if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1274                /*
1275                 * Do a privilege check, if in UM most of these exit conditions
1276                 * end up causing an exception to be delivered to the Guest
1277                 * Kernel
1278                 */
1279                er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1280                if (er == EMULATE_PRIV_FAIL) {
1281                        goto skip_emul;
1282                } else if (er == EMULATE_FAIL) {
1283                        run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1284                        ret = RESUME_HOST;
1285                        goto skip_emul;
1286                }
1287        }
1288
1289        switch (exccode) {
1290        case EXCCODE_INT:
1291                kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1292
1293                ++vcpu->stat.int_exits;
1294
1295                if (need_resched())
1296                        cond_resched();
1297
1298                ret = RESUME_GUEST;
1299                break;
1300
1301        case EXCCODE_CPU:
1302                kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1303
1304                ++vcpu->stat.cop_unusable_exits;
1305                ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1306                /* XXXKYMA: Might need to return to user space */
1307                if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1308                        ret = RESUME_HOST;
1309                break;
1310
1311        case EXCCODE_MOD:
1312                ++vcpu->stat.tlbmod_exits;
1313                ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1314                break;
1315
1316        case EXCCODE_TLBS:
1317                kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1318                          cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1319                          badvaddr);
1320
1321                ++vcpu->stat.tlbmiss_st_exits;
1322                ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1323                break;
1324
1325        case EXCCODE_TLBL:
1326                kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1327                          cause, opc, badvaddr);
1328
1329                ++vcpu->stat.tlbmiss_ld_exits;
1330                ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1331                break;
1332
1333        case EXCCODE_ADES:
1334                ++vcpu->stat.addrerr_st_exits;
1335                ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1336                break;
1337
1338        case EXCCODE_ADEL:
1339                ++vcpu->stat.addrerr_ld_exits;
1340                ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1341                break;
1342
1343        case EXCCODE_SYS:
1344                ++vcpu->stat.syscall_exits;
1345                ret = kvm_mips_callbacks->handle_syscall(vcpu);
1346                break;
1347
1348        case EXCCODE_RI:
1349                ++vcpu->stat.resvd_inst_exits;
1350                ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1351                break;
1352
1353        case EXCCODE_BP:
1354                ++vcpu->stat.break_inst_exits;
1355                ret = kvm_mips_callbacks->handle_break(vcpu);
1356                break;
1357
1358        case EXCCODE_TR:
1359                ++vcpu->stat.trap_inst_exits;
1360                ret = kvm_mips_callbacks->handle_trap(vcpu);
1361                break;
1362
1363        case EXCCODE_MSAFPE:
1364                ++vcpu->stat.msa_fpe_exits;
1365                ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1366                break;
1367
1368        case EXCCODE_FPE:
1369                ++vcpu->stat.fpe_exits;
1370                ret = kvm_mips_callbacks->handle_fpe(vcpu);
1371                break;
1372
1373        case EXCCODE_MSADIS:
1374                ++vcpu->stat.msa_disabled_exits;
1375                ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1376                break;
1377
1378        case EXCCODE_GE:
1379                /* defer exit accounting to handler */
1380                ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1381                break;
1382
1383        default:
1384                if (cause & CAUSEF_BD)
1385                        opc += 1;
1386                inst = 0;
1387                kvm_get_badinstr(opc, vcpu, &inst);
1388                kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1389                        exccode, opc, inst, badvaddr,
1390                        kvm_read_c0_guest_status(vcpu->arch.cop0));
1391                kvm_arch_vcpu_dump_regs(vcpu);
1392                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1393                ret = RESUME_HOST;
1394                break;
1395
1396        }
1397
1398skip_emul:
1399        local_irq_disable();
1400
1401        if (ret == RESUME_GUEST)
1402                kvm_vz_acquire_htimer(vcpu);
1403
1404        if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1405                kvm_mips_deliver_interrupts(vcpu, cause);
1406
1407        if (!(ret & RESUME_HOST)) {
1408                /* Only check for signals if not already exiting to userspace */
1409                if (signal_pending(current)) {
1410                        run->exit_reason = KVM_EXIT_INTR;
1411                        ret = (-EINTR << 2) | RESUME_HOST;
1412                        ++vcpu->stat.signal_exits;
1413                        trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1414                }
1415        }
1416
1417        if (ret == RESUME_GUEST) {
1418                trace_kvm_reenter(vcpu);
1419
1420                /*
1421                 * Make sure the read of VCPU requests in vcpu_reenter()
1422                 * callback is not reordered ahead of the write to vcpu->mode,
1423                 * or we could miss a TLB flush request while the requester sees
1424                 * the VCPU as outside of guest mode and not needing an IPI.
1425                 */
1426                smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1427
1428                kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1429
1430                /*
1431                 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1432                 * is live), restore FCR31 / MSACSR.
1433                 *
1434                 * This should be before returning to the guest exception
1435                 * vector, as it may well cause an [MSA] FP exception if there
1436                 * are pending exception bits unmasked. (see
1437                 * kvm_mips_csr_die_notifier() for how that is handled).
1438                 */
1439                if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1440                    read_c0_status() & ST0_CU1)
1441                        __kvm_restore_fcsr(&vcpu->arch);
1442
1443                if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1444                    read_c0_config5() & MIPS_CONF5_MSAEN)
1445                        __kvm_restore_msacsr(&vcpu->arch);
1446        }
1447
1448        /* Disable HTW before returning to guest or host */
1449        if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1450                htw_stop();
1451
1452        return ret;
1453}
1454
1455/* Enable FPU for guest and restore context */
1456void kvm_own_fpu(struct kvm_vcpu *vcpu)
1457{
1458        struct mips_coproc *cop0 = vcpu->arch.cop0;
1459        unsigned int sr, cfg5;
1460
1461        preempt_disable();
1462
1463        sr = kvm_read_c0_guest_status(cop0);
1464
1465        /*
1466         * If MSA state is already live, it is undefined how it interacts with
1467         * FR=0 FPU state, and we don't want to hit reserved instruction
1468         * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1469         * play it safe and save it first.
1470         *
1471         * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1472         * get called when guest CU1 is set, however we can't trust the guest
1473         * not to clobber the status register directly via the commpage.
1474         */
1475        if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1476            vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1477                kvm_lose_fpu(vcpu);
1478
1479        /*
1480         * Enable FPU for guest
1481         * We set FR and FRE according to guest context
1482         */
1483        change_c0_status(ST0_CU1 | ST0_FR, sr);
1484        if (cpu_has_fre) {
1485                cfg5 = kvm_read_c0_guest_config5(cop0);
1486                change_c0_config5(MIPS_CONF5_FRE, cfg5);
1487        }
1488        enable_fpu_hazard();
1489
1490        /* If guest FPU state not active, restore it now */
1491        if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1492                __kvm_restore_fpu(&vcpu->arch);
1493                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1494                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1495        } else {
1496                trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1497        }
1498
1499        preempt_enable();
1500}
1501
1502#ifdef CONFIG_CPU_HAS_MSA
1503/* Enable MSA for guest and restore context */
1504void kvm_own_msa(struct kvm_vcpu *vcpu)
1505{
1506        struct mips_coproc *cop0 = vcpu->arch.cop0;
1507        unsigned int sr, cfg5;
1508
1509        preempt_disable();
1510
1511        /*
1512         * Enable FPU if enabled in guest, since we're restoring FPU context
1513         * anyway. We set FR and FRE according to guest context.
1514         */
1515        if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1516                sr = kvm_read_c0_guest_status(cop0);
1517
1518                /*
1519                 * If FR=0 FPU state is already live, it is undefined how it
1520                 * interacts with MSA state, so play it safe and save it first.
1521                 */
1522                if (!(sr & ST0_FR) &&
1523                    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1524                                KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1525                        kvm_lose_fpu(vcpu);
1526
1527                change_c0_status(ST0_CU1 | ST0_FR, sr);
1528                if (sr & ST0_CU1 && cpu_has_fre) {
1529                        cfg5 = kvm_read_c0_guest_config5(cop0);
1530                        change_c0_config5(MIPS_CONF5_FRE, cfg5);
1531                }
1532        }
1533
1534        /* Enable MSA for guest */
1535        set_c0_config5(MIPS_CONF5_MSAEN);
1536        enable_fpu_hazard();
1537
1538        switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1539        case KVM_MIPS_AUX_FPU:
1540                /*
1541                 * Guest FPU state already loaded, only restore upper MSA state
1542                 */
1543                __kvm_restore_msa_upper(&vcpu->arch);
1544                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1545                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1546                break;
1547        case 0:
1548                /* Neither FPU or MSA already active, restore full MSA state */
1549                __kvm_restore_msa(&vcpu->arch);
1550                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1551                if (kvm_mips_guest_has_fpu(&vcpu->arch))
1552                        vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1553                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1554                              KVM_TRACE_AUX_FPU_MSA);
1555                break;
1556        default:
1557                trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1558                break;
1559        }
1560
1561        preempt_enable();
1562}
1563#endif
1564
1565/* Drop FPU & MSA without saving it */
1566void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1567{
1568        preempt_disable();
1569        if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1570                disable_msa();
1571                trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1572                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1573        }
1574        if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1575                clear_c0_status(ST0_CU1 | ST0_FR);
1576                trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1577                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1578        }
1579        preempt_enable();
1580}
1581
1582/* Save and disable FPU & MSA */
1583void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1584{
1585        /*
1586         * With T&E, FPU & MSA get disabled in root context (hardware) when it
1587         * is disabled in guest context (software), but the register state in
1588         * the hardware may still be in use.
1589         * This is why we explicitly re-enable the hardware before saving.
1590         */
1591
1592        preempt_disable();
1593        if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1594                if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1595                        set_c0_config5(MIPS_CONF5_MSAEN);
1596                        enable_fpu_hazard();
1597                }
1598
1599                __kvm_save_msa(&vcpu->arch);
1600                trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1601
1602                /* Disable MSA & FPU */
1603                disable_msa();
1604                if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1605                        clear_c0_status(ST0_CU1 | ST0_FR);
1606                        disable_fpu_hazard();
1607                }
1608                vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1609        } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1610                if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1611                        set_c0_status(ST0_CU1);
1612                        enable_fpu_hazard();
1613                }
1614
1615                __kvm_save_fpu(&vcpu->arch);
1616                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1617                trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1618
1619                /* Disable FPU */
1620                clear_c0_status(ST0_CU1 | ST0_FR);
1621                disable_fpu_hazard();
1622        }
1623        preempt_enable();
1624}
1625
1626/*
1627 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1628 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1629 * exception if cause bits are set in the value being written.
1630 */
1631static int kvm_mips_csr_die_notify(struct notifier_block *self,
1632                                   unsigned long cmd, void *ptr)
1633{
1634        struct die_args *args = (struct die_args *)ptr;
1635        struct pt_regs *regs = args->regs;
1636        unsigned long pc;
1637
1638        /* Only interested in FPE and MSAFPE */
1639        if (cmd != DIE_FP && cmd != DIE_MSAFP)
1640                return NOTIFY_DONE;
1641
1642        /* Return immediately if guest context isn't active */
1643        if (!(current->flags & PF_VCPU))
1644                return NOTIFY_DONE;
1645
1646        /* Should never get here from user mode */
1647        BUG_ON(user_mode(regs));
1648
1649        pc = instruction_pointer(regs);
1650        switch (cmd) {
1651        case DIE_FP:
1652                /* match 2nd instruction in __kvm_restore_fcsr */
1653                if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1654                        return NOTIFY_DONE;
1655                break;
1656        case DIE_MSAFP:
1657                /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1658                if (!cpu_has_msa ||
1659                    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1660                    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1661                        return NOTIFY_DONE;
1662                break;
1663        }
1664
1665        /* Move PC forward a little and continue executing */
1666        instruction_pointer(regs) += 4;
1667
1668        return NOTIFY_STOP;
1669}
1670
1671static struct notifier_block kvm_mips_csr_die_notifier = {
1672        .notifier_call = kvm_mips_csr_die_notify,
1673};
1674
1675static int __init kvm_mips_init(void)
1676{
1677        int ret;
1678
1679        ret = kvm_mips_entry_setup();
1680        if (ret)
1681                return ret;
1682
1683        ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1684
1685        if (ret)
1686                return ret;
1687
1688        register_die_notifier(&kvm_mips_csr_die_notifier);
1689
1690        return 0;
1691}
1692
1693static void __exit kvm_mips_exit(void)
1694{
1695        kvm_exit();
1696
1697        unregister_die_notifier(&kvm_mips_csr_die_notifier);
1698}
1699
1700module_init(kvm_mips_init);
1701module_exit(kvm_mips_exit);
1702
1703EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1704