linux/arch/powerpc/crypto/sha256-spe-glue.c
<<
>>
Prefs
   1/*
   2 * Glue code for SHA-256 implementation for SPE instructions (PPC)
   3 *
   4 * Based on generic implementation. The assembler module takes care 
   5 * about the SPE registers so it can run from interrupt context.
   6 *
   7 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License as published by the Free
  11 * Software Foundation; either version 2 of the License, or (at your option)
  12 * any later version.
  13 *
  14 */
  15
  16#include <crypto/internal/hash.h>
  17#include <linux/init.h>
  18#include <linux/module.h>
  19#include <linux/mm.h>
  20#include <linux/cryptohash.h>
  21#include <linux/types.h>
  22#include <crypto/sha.h>
  23#include <asm/byteorder.h>
  24#include <asm/switch_to.h>
  25#include <linux/hardirq.h>
  26
  27/*
  28 * MAX_BYTES defines the number of bytes that are allowed to be processed
  29 * between preempt_disable() and preempt_enable(). SHA256 takes ~2,000
  30 * operations per 64 bytes. e500 cores can issue two arithmetic instructions
  31 * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
  32 * Thus 1KB of input data will need an estimated maximum of 18,000 cycles.
  33 * Headroom for cache misses included. Even with the low end model clocked
  34 * at 667 MHz this equals to a critical time window of less than 27us.
  35 *
  36 */
  37#define MAX_BYTES 1024
  38
  39extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks);
  40
  41static void spe_begin(void)
  42{
  43        /* We just start SPE operations and will save SPE registers later. */
  44        preempt_disable();
  45        enable_kernel_spe();
  46}
  47
  48static void spe_end(void)
  49{
  50        disable_kernel_spe();
  51        /* reenable preemption */
  52        preempt_enable();
  53}
  54
  55static inline void ppc_sha256_clear_context(struct sha256_state *sctx)
  56{
  57        int count = sizeof(struct sha256_state) >> 2;
  58        u32 *ptr = (u32 *)sctx;
  59
  60        /* make sure we can clear the fast way */
  61        BUILD_BUG_ON(sizeof(struct sha256_state) % 4);
  62        do { *ptr++ = 0; } while (--count);
  63}
  64
  65static int ppc_spe_sha256_init(struct shash_desc *desc)
  66{
  67        struct sha256_state *sctx = shash_desc_ctx(desc);
  68
  69        sctx->state[0] = SHA256_H0;
  70        sctx->state[1] = SHA256_H1;
  71        sctx->state[2] = SHA256_H2;
  72        sctx->state[3] = SHA256_H3;
  73        sctx->state[4] = SHA256_H4;
  74        sctx->state[5] = SHA256_H5;
  75        sctx->state[6] = SHA256_H6;
  76        sctx->state[7] = SHA256_H7;
  77        sctx->count = 0;
  78
  79        return 0;
  80}
  81
  82static int ppc_spe_sha224_init(struct shash_desc *desc)
  83{
  84        struct sha256_state *sctx = shash_desc_ctx(desc);
  85
  86        sctx->state[0] = SHA224_H0;
  87        sctx->state[1] = SHA224_H1;
  88        sctx->state[2] = SHA224_H2;
  89        sctx->state[3] = SHA224_H3;
  90        sctx->state[4] = SHA224_H4;
  91        sctx->state[5] = SHA224_H5;
  92        sctx->state[6] = SHA224_H6;
  93        sctx->state[7] = SHA224_H7;
  94        sctx->count = 0;
  95
  96        return 0;
  97}
  98
  99static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data,
 100                        unsigned int len)
 101{
 102        struct sha256_state *sctx = shash_desc_ctx(desc);
 103        const unsigned int offset = sctx->count & 0x3f;
 104        const unsigned int avail = 64 - offset;
 105        unsigned int bytes;
 106        const u8 *src = data;
 107
 108        if (avail > len) {
 109                sctx->count += len;
 110                memcpy((char *)sctx->buf + offset, src, len);
 111                return 0;
 112        }
 113
 114        sctx->count += len;
 115
 116        if (offset) {
 117                memcpy((char *)sctx->buf + offset, src, avail);
 118
 119                spe_begin();
 120                ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1);
 121                spe_end();
 122
 123                len -= avail;
 124                src += avail;
 125        }
 126
 127        while (len > 63) {
 128                /* cut input data into smaller blocks */
 129                bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
 130                bytes = bytes & ~0x3f;
 131
 132                spe_begin();
 133                ppc_spe_sha256_transform(sctx->state, src, bytes >> 6);
 134                spe_end();
 135
 136                src += bytes;
 137                len -= bytes;
 138        };
 139
 140        memcpy((char *)sctx->buf, src, len);
 141        return 0;
 142}
 143
 144static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out)
 145{
 146        struct sha256_state *sctx = shash_desc_ctx(desc);
 147        const unsigned int offset = sctx->count & 0x3f;
 148        char *p = (char *)sctx->buf + offset;
 149        int padlen;
 150        __be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56);
 151        __be32 *dst = (__be32 *)out;
 152
 153        padlen = 55 - offset;
 154        *p++ = 0x80;
 155
 156        spe_begin();
 157
 158        if (padlen < 0) {
 159                memset(p, 0x00, padlen + sizeof (u64));
 160                ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
 161                p = (char *)sctx->buf;
 162                padlen = 56;
 163        }
 164
 165        memset(p, 0, padlen);
 166        *pbits = cpu_to_be64(sctx->count << 3);
 167        ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
 168
 169        spe_end();
 170
 171        dst[0] = cpu_to_be32(sctx->state[0]);
 172        dst[1] = cpu_to_be32(sctx->state[1]);
 173        dst[2] = cpu_to_be32(sctx->state[2]);
 174        dst[3] = cpu_to_be32(sctx->state[3]);
 175        dst[4] = cpu_to_be32(sctx->state[4]);
 176        dst[5] = cpu_to_be32(sctx->state[5]);
 177        dst[6] = cpu_to_be32(sctx->state[6]);
 178        dst[7] = cpu_to_be32(sctx->state[7]);
 179
 180        ppc_sha256_clear_context(sctx);
 181        return 0;
 182}
 183
 184static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out)
 185{
 186        u32 D[SHA256_DIGEST_SIZE >> 2];
 187        __be32 *dst = (__be32 *)out;
 188
 189        ppc_spe_sha256_final(desc, (u8 *)D);
 190
 191        /* avoid bytewise memcpy */
 192        dst[0] = D[0];
 193        dst[1] = D[1];
 194        dst[2] = D[2];
 195        dst[3] = D[3];
 196        dst[4] = D[4];
 197        dst[5] = D[5];
 198        dst[6] = D[6];
 199
 200        /* clear sensitive data */
 201        memzero_explicit(D, SHA256_DIGEST_SIZE);
 202        return 0;
 203}
 204
 205static int ppc_spe_sha256_export(struct shash_desc *desc, void *out)
 206{
 207        struct sha256_state *sctx = shash_desc_ctx(desc);
 208
 209        memcpy(out, sctx, sizeof(*sctx));
 210        return 0;
 211}
 212
 213static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in)
 214{
 215        struct sha256_state *sctx = shash_desc_ctx(desc);
 216
 217        memcpy(sctx, in, sizeof(*sctx));
 218        return 0;
 219}
 220
 221static struct shash_alg algs[2] = { {
 222        .digestsize     =       SHA256_DIGEST_SIZE,
 223        .init           =       ppc_spe_sha256_init,
 224        .update         =       ppc_spe_sha256_update,
 225        .final          =       ppc_spe_sha256_final,
 226        .export         =       ppc_spe_sha256_export,
 227        .import         =       ppc_spe_sha256_import,
 228        .descsize       =       sizeof(struct sha256_state),
 229        .statesize      =       sizeof(struct sha256_state),
 230        .base           =       {
 231                .cra_name       =       "sha256",
 232                .cra_driver_name=       "sha256-ppc-spe",
 233                .cra_priority   =       300,
 234                .cra_flags      =       CRYPTO_ALG_TYPE_SHASH,
 235                .cra_blocksize  =       SHA256_BLOCK_SIZE,
 236                .cra_module     =       THIS_MODULE,
 237        }
 238}, {
 239        .digestsize     =       SHA224_DIGEST_SIZE,
 240        .init           =       ppc_spe_sha224_init,
 241        .update         =       ppc_spe_sha256_update,
 242        .final          =       ppc_spe_sha224_final,
 243        .export         =       ppc_spe_sha256_export,
 244        .import         =       ppc_spe_sha256_import,
 245        .descsize       =       sizeof(struct sha256_state),
 246        .statesize      =       sizeof(struct sha256_state),
 247        .base           =       {
 248                .cra_name       =       "sha224",
 249                .cra_driver_name=       "sha224-ppc-spe",
 250                .cra_priority   =       300,
 251                .cra_flags      =       CRYPTO_ALG_TYPE_SHASH,
 252                .cra_blocksize  =       SHA224_BLOCK_SIZE,
 253                .cra_module     =       THIS_MODULE,
 254        }
 255} };
 256
 257static int __init ppc_spe_sha256_mod_init(void)
 258{
 259        return crypto_register_shashes(algs, ARRAY_SIZE(algs));
 260}
 261
 262static void __exit ppc_spe_sha256_mod_fini(void)
 263{
 264        crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
 265}
 266
 267module_init(ppc_spe_sha256_mod_init);
 268module_exit(ppc_spe_sha256_mod_fini);
 269
 270MODULE_LICENSE("GPL");
 271MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized");
 272
 273MODULE_ALIAS_CRYPTO("sha224");
 274MODULE_ALIAS_CRYPTO("sha224-ppc-spe");
 275MODULE_ALIAS_CRYPTO("sha256");
 276MODULE_ALIAS_CRYPTO("sha256-ppc-spe");
 277