linux/arch/powerpc/include/asm/io.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_IO_H
   2#define _ASM_POWERPC_IO_H
   3#ifdef __KERNEL__
   4
   5#define ARCH_HAS_IOREMAP_WC
   6
   7/*
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * as published by the Free Software Foundation; either version
  11 * 2 of the License, or (at your option) any later version.
  12 */
  13
  14/* Check of existence of legacy devices */
  15extern int check_legacy_ioport(unsigned long base_port);
  16#define I8042_DATA_REG  0x60
  17#define FDC_BASE        0x3f0
  18
  19#if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
  20extern struct pci_dev *isa_bridge_pcidev;
  21/*
  22 * has legacy ISA devices ?
  23 */
  24#define arch_has_dev_port()     (isa_bridge_pcidev != NULL || isa_io_special)
  25#endif
  26
  27#include <linux/device.h>
  28#include <linux/compiler.h>
  29#include <asm/page.h>
  30#include <asm/byteorder.h>
  31#include <asm/synch.h>
  32#include <asm/delay.h>
  33#include <asm/mmu.h>
  34#include <asm/ppc_asm.h>
  35
  36#include <asm-generic/iomap.h>
  37
  38#ifdef CONFIG_PPC64
  39#include <asm/paca.h>
  40#endif
  41
  42#define SIO_CONFIG_RA   0x398
  43#define SIO_CONFIG_RD   0x399
  44
  45#define SLOW_DOWN_IO
  46
  47/* 32 bits uses slightly different variables for the various IO
  48 * bases. Most of this file only uses _IO_BASE though which we
  49 * define properly based on the platform
  50 */
  51#ifndef CONFIG_PCI
  52#define _IO_BASE        0
  53#define _ISA_MEM_BASE   0
  54#define PCI_DRAM_OFFSET 0
  55#elif defined(CONFIG_PPC32)
  56#define _IO_BASE        isa_io_base
  57#define _ISA_MEM_BASE   isa_mem_base
  58#define PCI_DRAM_OFFSET pci_dram_offset
  59#else
  60#define _IO_BASE        pci_io_base
  61#define _ISA_MEM_BASE   isa_mem_base
  62#define PCI_DRAM_OFFSET 0
  63#endif
  64
  65extern unsigned long isa_io_base;
  66extern unsigned long pci_io_base;
  67extern unsigned long pci_dram_offset;
  68
  69extern resource_size_t isa_mem_base;
  70
  71/* Boolean set by platform if PIO accesses are suppored while _IO_BASE
  72 * is not set or addresses cannot be translated to MMIO. This is typically
  73 * set when the platform supports "special" PIO accesses via a non memory
  74 * mapped mechanism, and allows things like the early udbg UART code to
  75 * function.
  76 */
  77extern bool isa_io_special;
  78
  79#ifdef CONFIG_PPC32
  80#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
  81#error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
  82#endif
  83#endif
  84
  85/*
  86 *
  87 * Low level MMIO accessors
  88 *
  89 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
  90 * specific and thus shouldn't be used in generic code. The accessors
  91 * provided here are:
  92 *
  93 *      in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
  94 *      out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
  95 *      _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
  96 *
  97 * Those operate directly on a kernel virtual address. Note that the prototype
  98 * for the out_* accessors has the arguments in opposite order from the usual
  99 * linux PCI accessors. Unlike those, they take the address first and the value
 100 * next.
 101 *
 102 * Note: I might drop the _ns suffix on the stream operations soon as it is
 103 * simply normal for stream operations to not swap in the first place.
 104 *
 105 */
 106
 107#ifdef CONFIG_PPC64
 108#define IO_SET_SYNC_FLAG()      do { local_paca->io_sync = 1; } while(0)
 109#else
 110#define IO_SET_SYNC_FLAG()
 111#endif
 112
 113/* gcc 4.0 and older doesn't have 'Z' constraint */
 114#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
 115#define DEF_MMIO_IN_X(name, size, insn)                         \
 116static inline u##size name(const volatile u##size __iomem *addr)        \
 117{                                                                       \
 118        u##size ret;                                                    \
 119        __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"    \
 120                : "=r" (ret) : "r" (addr), "m" (*addr) : "memory");     \
 121        return ret;                                                     \
 122}
 123
 124#define DEF_MMIO_OUT_X(name, size, insn)                                \
 125static inline void name(volatile u##size __iomem *addr, u##size val)    \
 126{                                                                       \
 127        __asm__ __volatile__("sync;"#insn" %1,0,%2"                     \
 128                : "=m" (*addr) : "r" (val), "r" (addr) : "memory");     \
 129        IO_SET_SYNC_FLAG();                                             \
 130}
 131#else /* newer gcc */
 132#define DEF_MMIO_IN_X(name, size, insn)                         \
 133static inline u##size name(const volatile u##size __iomem *addr)        \
 134{                                                                       \
 135        u##size ret;                                                    \
 136        __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"     \
 137                : "=r" (ret) : "Z" (*addr) : "memory");                 \
 138        return ret;                                                     \
 139}
 140
 141#define DEF_MMIO_OUT_X(name, size, insn)                                \
 142static inline void name(volatile u##size __iomem *addr, u##size val)    \
 143{                                                                       \
 144        __asm__ __volatile__("sync;"#insn" %1,%y0"                      \
 145                : "=Z" (*addr) : "r" (val) : "memory");                 \
 146        IO_SET_SYNC_FLAG();                                             \
 147}
 148#endif
 149
 150#define DEF_MMIO_IN_D(name, size, insn)                         \
 151static inline u##size name(const volatile u##size __iomem *addr)        \
 152{                                                                       \
 153        u##size ret;                                                    \
 154        __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
 155                : "=r" (ret) : "m" (*addr) : "memory");                 \
 156        return ret;                                                     \
 157}
 158
 159#define DEF_MMIO_OUT_D(name, size, insn)                                \
 160static inline void name(volatile u##size __iomem *addr, u##size val)    \
 161{                                                                       \
 162        __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"                 \
 163                : "=m" (*addr) : "r" (val) : "memory");                 \
 164        IO_SET_SYNC_FLAG();                                             \
 165}
 166
 167DEF_MMIO_IN_D(in_8,     8, lbz);
 168DEF_MMIO_OUT_D(out_8,   8, stb);
 169
 170#ifdef __BIG_ENDIAN__
 171DEF_MMIO_IN_D(in_be16, 16, lhz);
 172DEF_MMIO_IN_D(in_be32, 32, lwz);
 173DEF_MMIO_IN_X(in_le16, 16, lhbrx);
 174DEF_MMIO_IN_X(in_le32, 32, lwbrx);
 175
 176DEF_MMIO_OUT_D(out_be16, 16, sth);
 177DEF_MMIO_OUT_D(out_be32, 32, stw);
 178DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
 179DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
 180#else
 181DEF_MMIO_IN_X(in_be16, 16, lhbrx);
 182DEF_MMIO_IN_X(in_be32, 32, lwbrx);
 183DEF_MMIO_IN_D(in_le16, 16, lhz);
 184DEF_MMIO_IN_D(in_le32, 32, lwz);
 185
 186DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
 187DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
 188DEF_MMIO_OUT_D(out_le16, 16, sth);
 189DEF_MMIO_OUT_D(out_le32, 32, stw);
 190
 191#endif /* __BIG_ENDIAN */
 192
 193#ifdef __powerpc64__
 194
 195#ifdef __BIG_ENDIAN__
 196DEF_MMIO_OUT_D(out_be64, 64, std);
 197DEF_MMIO_IN_D(in_be64, 64, ld);
 198
 199/* There is no asm instructions for 64 bits reverse loads and stores */
 200static inline u64 in_le64(const volatile u64 __iomem *addr)
 201{
 202        return swab64(in_be64(addr));
 203}
 204
 205static inline void out_le64(volatile u64 __iomem *addr, u64 val)
 206{
 207        out_be64(addr, swab64(val));
 208}
 209#else
 210DEF_MMIO_OUT_D(out_le64, 64, std);
 211DEF_MMIO_IN_D(in_le64, 64, ld);
 212
 213/* There is no asm instructions for 64 bits reverse loads and stores */
 214static inline u64 in_be64(const volatile u64 __iomem *addr)
 215{
 216        return swab64(in_le64(addr));
 217}
 218
 219static inline void out_be64(volatile u64 __iomem *addr, u64 val)
 220{
 221        out_le64(addr, swab64(val));
 222}
 223
 224#endif
 225#endif /* __powerpc64__ */
 226
 227/*
 228 * Low level IO stream instructions are defined out of line for now
 229 */
 230extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
 231extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
 232extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
 233extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
 234extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
 235extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
 236
 237/* The _ns naming is historical and will be removed. For now, just #define
 238 * the non _ns equivalent names
 239 */
 240#define _insw   _insw_ns
 241#define _insl   _insl_ns
 242#define _outsw  _outsw_ns
 243#define _outsl  _outsl_ns
 244
 245
 246/*
 247 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
 248 */
 249
 250extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
 251extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
 252                           unsigned long n);
 253extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
 254                         unsigned long n);
 255
 256/*
 257 *
 258 * PCI and standard ISA accessors
 259 *
 260 * Those are globally defined linux accessors for devices on PCI or ISA
 261 * busses. They follow the Linux defined semantics. The current implementation
 262 * for PowerPC is as close as possible to the x86 version of these, and thus
 263 * provides fairly heavy weight barriers for the non-raw versions
 264 *
 265 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
 266 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
 267 * own implementation of some or all of the accessors.
 268 */
 269
 270/*
 271 * Include the EEH definitions when EEH is enabled only so they don't get
 272 * in the way when building for 32 bits
 273 */
 274#ifdef CONFIG_EEH
 275#include <asm/eeh.h>
 276#endif
 277
 278/* Shortcut to the MMIO argument pointer */
 279#define PCI_IO_ADDR     volatile void __iomem *
 280
 281/* Indirect IO address tokens:
 282 *
 283 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
 284 * on all MMIOs. (Note that this is all 64 bits only for now)
 285 *
 286 * To help platforms who may need to differentiate MMIO addresses in
 287 * their hooks, a bitfield is reserved for use by the platform near the
 288 * top of MMIO addresses (not PIO, those have to cope the hard way).
 289 *
 290 * This bit field is 12 bits and is at the top of the IO virtual
 291 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
 292 *
 293 * The kernel virtual space is thus:
 294 *
 295 *  0xD000000000000000          : vmalloc
 296 *  0xD000080000000000          : PCI PHB IO space
 297 *  0xD000080080000000          : ioremap
 298 *  0xD0000fffffffffff          : end of ioremap region
 299 *
 300 * Since the top 4 bits are reserved as the region ID, we use thus
 301 * the next 12 bits and keep 4 bits available for the future if the
 302 * virtual address space is ever to be extended.
 303 *
 304 * The direct IO mapping operations will then mask off those bits
 305 * before doing the actual access, though that only happen when
 306 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
 307 * mechanism
 308 *
 309 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
 310 * all PIO functions call through a hook.
 311 */
 312
 313#ifdef CONFIG_PPC_INDIRECT_MMIO
 314#define PCI_IO_IND_TOKEN_MASK   0x0fff000000000000ul
 315#define PCI_IO_IND_TOKEN_SHIFT  48
 316#define PCI_FIX_ADDR(addr)                                              \
 317        ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
 318#define PCI_GET_ADDR_TOKEN(addr)                                        \
 319        (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >>             \
 320                PCI_IO_IND_TOKEN_SHIFT)
 321#define PCI_SET_ADDR_TOKEN(addr, token)                                 \
 322do {                                                                    \
 323        unsigned long __a = (unsigned long)(addr);                      \
 324        __a &= ~PCI_IO_IND_TOKEN_MASK;                                  \
 325        __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;      \
 326        (addr) = (void __iomem *)__a;                                   \
 327} while(0)
 328#else
 329#define PCI_FIX_ADDR(addr) (addr)
 330#endif
 331
 332
 333/*
 334 * Non ordered and non-swapping "raw" accessors
 335 */
 336
 337static inline unsigned char __raw_readb(const volatile void __iomem *addr)
 338{
 339        return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
 340}
 341static inline unsigned short __raw_readw(const volatile void __iomem *addr)
 342{
 343        return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
 344}
 345static inline unsigned int __raw_readl(const volatile void __iomem *addr)
 346{
 347        return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
 348}
 349static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
 350{
 351        *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
 352}
 353static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
 354{
 355        *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
 356}
 357static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
 358{
 359        *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
 360}
 361
 362#ifdef __powerpc64__
 363static inline unsigned long __raw_readq(const volatile void __iomem *addr)
 364{
 365        return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
 366}
 367static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
 368{
 369        *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
 370}
 371
 372/*
 373 * Real mode versions of the above. Those instructions are only supposed
 374 * to be used in hypervisor real mode as per the architecture spec.
 375 */
 376static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
 377{
 378        __asm__ __volatile__("stbcix %0,0,%1"
 379                : : "r" (val), "r" (paddr) : "memory");
 380}
 381
 382static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
 383{
 384        __asm__ __volatile__("sthcix %0,0,%1"
 385                : : "r" (val), "r" (paddr) : "memory");
 386}
 387
 388static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
 389{
 390        __asm__ __volatile__("stwcix %0,0,%1"
 391                : : "r" (val), "r" (paddr) : "memory");
 392}
 393
 394static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
 395{
 396        __asm__ __volatile__("stdcix %0,0,%1"
 397                : : "r" (val), "r" (paddr) : "memory");
 398}
 399
 400static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
 401{
 402        u8 ret;
 403        __asm__ __volatile__("lbzcix %0,0, %1"
 404                             : "=r" (ret) : "r" (paddr) : "memory");
 405        return ret;
 406}
 407
 408static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
 409{
 410        u16 ret;
 411        __asm__ __volatile__("lhzcix %0,0, %1"
 412                             : "=r" (ret) : "r" (paddr) : "memory");
 413        return ret;
 414}
 415
 416static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
 417{
 418        u32 ret;
 419        __asm__ __volatile__("lwzcix %0,0, %1"
 420                             : "=r" (ret) : "r" (paddr) : "memory");
 421        return ret;
 422}
 423
 424static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
 425{
 426        u64 ret;
 427        __asm__ __volatile__("ldcix %0,0, %1"
 428                             : "=r" (ret) : "r" (paddr) : "memory");
 429        return ret;
 430}
 431#endif /* __powerpc64__ */
 432
 433/*
 434 *
 435 * PCI PIO and MMIO accessors.
 436 *
 437 *
 438 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
 439 * machine checks (which they occasionally do when probing non existing
 440 * IO ports on some platforms, like PowerMac and 8xx).
 441 * I always found it to be of dubious reliability and I am tempted to get
 442 * rid of it one of these days. So if you think it's important to keep it,
 443 * please voice up asap. We never had it for 64 bits and I do not intend
 444 * to port it over
 445 */
 446
 447#ifdef CONFIG_PPC32
 448
 449#define __do_in_asm(name, op)                           \
 450static inline unsigned int name(unsigned int port)      \
 451{                                                       \
 452        unsigned int x;                                 \
 453        __asm__ __volatile__(                           \
 454                "sync\n"                                \
 455                "0:"    op "    %0,0,%1\n"              \
 456                "1:     twi     0,%0,0\n"               \
 457                "2:     isync\n"                        \
 458                "3:     nop\n"                          \
 459                "4:\n"                                  \
 460                ".section .fixup,\"ax\"\n"              \
 461                "5:     li      %0,-1\n"                \
 462                "       b       4b\n"                   \
 463                ".previous\n"                           \
 464                EX_TABLE(0b, 5b)                        \
 465                EX_TABLE(1b, 5b)                        \
 466                EX_TABLE(2b, 5b)                        \
 467                EX_TABLE(3b, 5b)                        \
 468                : "=&r" (x)                             \
 469                : "r" (port + _IO_BASE)                 \
 470                : "memory");                            \
 471        return x;                                       \
 472}
 473
 474#define __do_out_asm(name, op)                          \
 475static inline void name(unsigned int val, unsigned int port) \
 476{                                                       \
 477        __asm__ __volatile__(                           \
 478                "sync\n"                                \
 479                "0:" op " %0,0,%1\n"                    \
 480                "1:     sync\n"                         \
 481                "2:\n"                                  \
 482                EX_TABLE(0b, 2b)                        \
 483                EX_TABLE(1b, 2b)                        \
 484                : : "r" (val), "r" (port + _IO_BASE)    \
 485                : "memory");                            \
 486}
 487
 488__do_in_asm(_rec_inb, "lbzx")
 489__do_in_asm(_rec_inw, "lhbrx")
 490__do_in_asm(_rec_inl, "lwbrx")
 491__do_out_asm(_rec_outb, "stbx")
 492__do_out_asm(_rec_outw, "sthbrx")
 493__do_out_asm(_rec_outl, "stwbrx")
 494
 495#endif /* CONFIG_PPC32 */
 496
 497/* The "__do_*" operations below provide the actual "base" implementation
 498 * for each of the defined accessors. Some of them use the out_* functions
 499 * directly, some of them still use EEH, though we might change that in the
 500 * future. Those macros below provide the necessary argument swapping and
 501 * handling of the IO base for PIO.
 502 *
 503 * They are themselves used by the macros that define the actual accessors
 504 * and can be used by the hooks if any.
 505 *
 506 * Note that PIO operations are always defined in terms of their corresonding
 507 * MMIO operations. That allows platforms like iSeries who want to modify the
 508 * behaviour of both to only hook on the MMIO version and get both. It's also
 509 * possible to hook directly at the toplevel PIO operation if they have to
 510 * be handled differently
 511 */
 512#define __do_writeb(val, addr)  out_8(PCI_FIX_ADDR(addr), val)
 513#define __do_writew(val, addr)  out_le16(PCI_FIX_ADDR(addr), val)
 514#define __do_writel(val, addr)  out_le32(PCI_FIX_ADDR(addr), val)
 515#define __do_writeq(val, addr)  out_le64(PCI_FIX_ADDR(addr), val)
 516#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
 517#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
 518#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
 519
 520#ifdef CONFIG_EEH
 521#define __do_readb(addr)        eeh_readb(PCI_FIX_ADDR(addr))
 522#define __do_readw(addr)        eeh_readw(PCI_FIX_ADDR(addr))
 523#define __do_readl(addr)        eeh_readl(PCI_FIX_ADDR(addr))
 524#define __do_readq(addr)        eeh_readq(PCI_FIX_ADDR(addr))
 525#define __do_readw_be(addr)     eeh_readw_be(PCI_FIX_ADDR(addr))
 526#define __do_readl_be(addr)     eeh_readl_be(PCI_FIX_ADDR(addr))
 527#define __do_readq_be(addr)     eeh_readq_be(PCI_FIX_ADDR(addr))
 528#else /* CONFIG_EEH */
 529#define __do_readb(addr)        in_8(PCI_FIX_ADDR(addr))
 530#define __do_readw(addr)        in_le16(PCI_FIX_ADDR(addr))
 531#define __do_readl(addr)        in_le32(PCI_FIX_ADDR(addr))
 532#define __do_readq(addr)        in_le64(PCI_FIX_ADDR(addr))
 533#define __do_readw_be(addr)     in_be16(PCI_FIX_ADDR(addr))
 534#define __do_readl_be(addr)     in_be32(PCI_FIX_ADDR(addr))
 535#define __do_readq_be(addr)     in_be64(PCI_FIX_ADDR(addr))
 536#endif /* !defined(CONFIG_EEH) */
 537
 538#ifdef CONFIG_PPC32
 539#define __do_outb(val, port)    _rec_outb(val, port)
 540#define __do_outw(val, port)    _rec_outw(val, port)
 541#define __do_outl(val, port)    _rec_outl(val, port)
 542#define __do_inb(port)          _rec_inb(port)
 543#define __do_inw(port)          _rec_inw(port)
 544#define __do_inl(port)          _rec_inl(port)
 545#else /* CONFIG_PPC32 */
 546#define __do_outb(val, port)    writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
 547#define __do_outw(val, port)    writew(val,(PCI_IO_ADDR)_IO_BASE+port);
 548#define __do_outl(val, port)    writel(val,(PCI_IO_ADDR)_IO_BASE+port);
 549#define __do_inb(port)          readb((PCI_IO_ADDR)_IO_BASE + port);
 550#define __do_inw(port)          readw((PCI_IO_ADDR)_IO_BASE + port);
 551#define __do_inl(port)          readl((PCI_IO_ADDR)_IO_BASE + port);
 552#endif /* !CONFIG_PPC32 */
 553
 554#ifdef CONFIG_EEH
 555#define __do_readsb(a, b, n)    eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
 556#define __do_readsw(a, b, n)    eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
 557#define __do_readsl(a, b, n)    eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
 558#else /* CONFIG_EEH */
 559#define __do_readsb(a, b, n)    _insb(PCI_FIX_ADDR(a), (b), (n))
 560#define __do_readsw(a, b, n)    _insw(PCI_FIX_ADDR(a), (b), (n))
 561#define __do_readsl(a, b, n)    _insl(PCI_FIX_ADDR(a), (b), (n))
 562#endif /* !CONFIG_EEH */
 563#define __do_writesb(a, b, n)   _outsb(PCI_FIX_ADDR(a),(b),(n))
 564#define __do_writesw(a, b, n)   _outsw(PCI_FIX_ADDR(a),(b),(n))
 565#define __do_writesl(a, b, n)   _outsl(PCI_FIX_ADDR(a),(b),(n))
 566
 567#define __do_insb(p, b, n)      readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
 568#define __do_insw(p, b, n)      readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
 569#define __do_insl(p, b, n)      readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
 570#define __do_outsb(p, b, n)     writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
 571#define __do_outsw(p, b, n)     writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
 572#define __do_outsl(p, b, n)     writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
 573
 574#define __do_memset_io(addr, c, n)      \
 575                                _memset_io(PCI_FIX_ADDR(addr), c, n)
 576#define __do_memcpy_toio(dst, src, n)   \
 577                                _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
 578
 579#ifdef CONFIG_EEH
 580#define __do_memcpy_fromio(dst, src, n) \
 581                                eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
 582#else /* CONFIG_EEH */
 583#define __do_memcpy_fromio(dst, src, n) \
 584                                _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
 585#endif /* !CONFIG_EEH */
 586
 587#ifdef CONFIG_PPC_INDIRECT_PIO
 588#define DEF_PCI_HOOK_pio(x)     x
 589#else
 590#define DEF_PCI_HOOK_pio(x)     NULL
 591#endif
 592
 593#ifdef CONFIG_PPC_INDIRECT_MMIO
 594#define DEF_PCI_HOOK_mem(x)     x
 595#else
 596#define DEF_PCI_HOOK_mem(x)     NULL
 597#endif
 598
 599/* Structure containing all the hooks */
 600extern struct ppc_pci_io {
 601
 602#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)    ret (*name) at;
 603#define DEF_PCI_AC_NORET(name, at, al, space, aa)       void (*name) at;
 604
 605#include <asm/io-defs.h>
 606
 607#undef DEF_PCI_AC_RET
 608#undef DEF_PCI_AC_NORET
 609
 610} ppc_pci_io;
 611
 612/* The inline wrappers */
 613#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)            \
 614static inline ret name at                                       \
 615{                                                               \
 616        if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)      \
 617                return ppc_pci_io.name al;                      \
 618        return __do_##name al;                                  \
 619}
 620
 621#define DEF_PCI_AC_NORET(name, at, al, space, aa)               \
 622static inline void name at                                      \
 623{                                                               \
 624        if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)              \
 625                ppc_pci_io.name al;                             \
 626        else                                                    \
 627                __do_##name al;                                 \
 628}
 629
 630#include <asm/io-defs.h>
 631
 632#undef DEF_PCI_AC_RET
 633#undef DEF_PCI_AC_NORET
 634
 635/* Some drivers check for the presence of readq & writeq with
 636 * a #ifdef, so we make them happy here.
 637 */
 638#ifdef __powerpc64__
 639#define readq   readq
 640#define writeq  writeq
 641#endif
 642
 643/*
 644 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
 645 * access
 646 */
 647#define xlate_dev_mem_ptr(p)    __va(p)
 648
 649/*
 650 * Convert a virtual cached pointer to an uncached pointer
 651 */
 652#define xlate_dev_kmem_ptr(p)   p
 653
 654/*
 655 * We don't do relaxed operations yet, at least not with this semantic
 656 */
 657#define readb_relaxed(addr)     readb(addr)
 658#define readw_relaxed(addr)     readw(addr)
 659#define readl_relaxed(addr)     readl(addr)
 660#define readq_relaxed(addr)     readq(addr)
 661#define writeb_relaxed(v, addr) writeb(v, addr)
 662#define writew_relaxed(v, addr) writew(v, addr)
 663#define writel_relaxed(v, addr) writel(v, addr)
 664#define writeq_relaxed(v, addr) writeq(v, addr)
 665
 666#ifdef CONFIG_PPC32
 667#define mmiowb()
 668#else
 669/*
 670 * Enforce synchronisation of stores vs. spin_unlock
 671 * (this does it explicitly, though our implementation of spin_unlock
 672 * does it implicitely too)
 673 */
 674static inline void mmiowb(void)
 675{
 676        unsigned long tmp;
 677
 678        __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
 679        : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
 680        : "memory");
 681}
 682#endif /* !CONFIG_PPC32 */
 683
 684static inline void iosync(void)
 685{
 686        __asm__ __volatile__ ("sync" : : : "memory");
 687}
 688
 689/* Enforce in-order execution of data I/O.
 690 * No distinction between read/write on PPC; use eieio for all three.
 691 * Those are fairly week though. They don't provide a barrier between
 692 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
 693 * they only provide barriers between 2 __raw MMIO operations and
 694 * possibly break write combining.
 695 */
 696#define iobarrier_rw() eieio()
 697#define iobarrier_r()  eieio()
 698#define iobarrier_w()  eieio()
 699
 700
 701/*
 702 * output pause versions need a delay at least for the
 703 * w83c105 ide controller in a p610.
 704 */
 705#define inb_p(port)             inb(port)
 706#define outb_p(val, port)       (udelay(1), outb((val), (port)))
 707#define inw_p(port)             inw(port)
 708#define outw_p(val, port)       (udelay(1), outw((val), (port)))
 709#define inl_p(port)             inl(port)
 710#define outl_p(val, port)       (udelay(1), outl((val), (port)))
 711
 712
 713#define IO_SPACE_LIMIT ~(0UL)
 714
 715
 716/**
 717 * ioremap     -   map bus memory into CPU space
 718 * @address:   bus address of the memory
 719 * @size:      size of the resource to map
 720 *
 721 * ioremap performs a platform specific sequence of operations to
 722 * make bus memory CPU accessible via the readb/readw/readl/writeb/
 723 * writew/writel functions and the other mmio helpers. The returned
 724 * address is not guaranteed to be usable directly as a virtual
 725 * address.
 726 *
 727 * We provide a few variations of it:
 728 *
 729 * * ioremap is the standard one and provides non-cacheable guarded mappings
 730 *   and can be hooked by the platform via ppc_md
 731 *
 732 * * ioremap_prot allows to specify the page flags as an argument and can
 733 *   also be hooked by the platform via ppc_md.
 734 *
 735 * * ioremap_nocache is identical to ioremap
 736 *
 737 * * ioremap_wc enables write combining
 738 *
 739 * * iounmap undoes such a mapping and can be hooked
 740 *
 741 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
 742 *   create hand-made mappings for use only by the PCI code and cannot
 743 *   currently be hooked. Must be page aligned.
 744 *
 745 * * __ioremap is the low level implementation used by ioremap and
 746 *   ioremap_prot and cannot be hooked (but can be used by a hook on one
 747 *   of the previous ones)
 748 *
 749 * * __ioremap_caller is the same as above but takes an explicit caller
 750 *   reference rather than using __builtin_return_address(0)
 751 *
 752 * * __iounmap, is the low level implementation used by iounmap and cannot
 753 *   be hooked (but can be used by a hook on iounmap)
 754 *
 755 */
 756extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
 757extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
 758                                  unsigned long flags);
 759extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
 760#define ioremap_nocache(addr, size)     ioremap((addr), (size))
 761#define ioremap_uc(addr, size)          ioremap((addr), (size))
 762#define ioremap_cache(addr, size) \
 763        ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
 764
 765extern void iounmap(volatile void __iomem *addr);
 766
 767extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
 768                               unsigned long flags);
 769extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
 770                                      unsigned long flags, void *caller);
 771
 772extern void __iounmap(volatile void __iomem *addr);
 773
 774extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
 775                                   unsigned long size, unsigned long flags);
 776extern void __iounmap_at(void *ea, unsigned long size);
 777
 778/*
 779 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
 780 * which needs some additional definitions here. They basically allow PIO
 781 * space overall to be 1GB. This will work as long as we never try to use
 782 * iomap to map MMIO below 1GB which should be fine on ppc64
 783 */
 784#define HAVE_ARCH_PIO_SIZE              1
 785#define PIO_OFFSET                      0x00000000UL
 786#define PIO_MASK                        (FULL_IO_SIZE - 1)
 787#define PIO_RESERVED                    (FULL_IO_SIZE)
 788
 789#define mmio_read16be(addr)             readw_be(addr)
 790#define mmio_read32be(addr)             readl_be(addr)
 791#define mmio_write16be(val, addr)       writew_be(val, addr)
 792#define mmio_write32be(val, addr)       writel_be(val, addr)
 793#define mmio_insb(addr, dst, count)     readsb(addr, dst, count)
 794#define mmio_insw(addr, dst, count)     readsw(addr, dst, count)
 795#define mmio_insl(addr, dst, count)     readsl(addr, dst, count)
 796#define mmio_outsb(addr, src, count)    writesb(addr, src, count)
 797#define mmio_outsw(addr, src, count)    writesw(addr, src, count)
 798#define mmio_outsl(addr, src, count)    writesl(addr, src, count)
 799
 800/**
 801 *      virt_to_phys    -       map virtual addresses to physical
 802 *      @address: address to remap
 803 *
 804 *      The returned physical address is the physical (CPU) mapping for
 805 *      the memory address given. It is only valid to use this function on
 806 *      addresses directly mapped or allocated via kmalloc.
 807 *
 808 *      This function does not give bus mappings for DMA transfers. In
 809 *      almost all conceivable cases a device driver should not be using
 810 *      this function
 811 */
 812static inline unsigned long virt_to_phys(volatile void * address)
 813{
 814        return __pa((unsigned long)address);
 815}
 816
 817/**
 818 *      phys_to_virt    -       map physical address to virtual
 819 *      @address: address to remap
 820 *
 821 *      The returned virtual address is a current CPU mapping for
 822 *      the memory address given. It is only valid to use this function on
 823 *      addresses that have a kernel mapping
 824 *
 825 *      This function does not handle bus mappings for DMA transfers. In
 826 *      almost all conceivable cases a device driver should not be using
 827 *      this function
 828 */
 829static inline void * phys_to_virt(unsigned long address)
 830{
 831        return (void *)__va(address);
 832}
 833
 834/*
 835 * Change "struct page" to physical address.
 836 */
 837#define page_to_phys(page)      ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
 838
 839/*
 840 * 32 bits still uses virt_to_bus() for it's implementation of DMA
 841 * mappings se we have to keep it defined here. We also have some old
 842 * drivers (shame shame shame) that use bus_to_virt() and haven't been
 843 * fixed yet so I need to define it here.
 844 */
 845#ifdef CONFIG_PPC32
 846
 847static inline unsigned long virt_to_bus(volatile void * address)
 848{
 849        if (address == NULL)
 850                return 0;
 851        return __pa(address) + PCI_DRAM_OFFSET;
 852}
 853
 854static inline void * bus_to_virt(unsigned long address)
 855{
 856        if (address == 0)
 857                return NULL;
 858        return __va(address - PCI_DRAM_OFFSET);
 859}
 860
 861#define page_to_bus(page)       (page_to_phys(page) + PCI_DRAM_OFFSET)
 862
 863#endif /* CONFIG_PPC32 */
 864
 865/* access ports */
 866#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
 867#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
 868
 869#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
 870#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
 871
 872#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
 873#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
 874
 875/* Clear and set bits in one shot.  These macros can be used to clear and
 876 * set multiple bits in a register using a single read-modify-write.  These
 877 * macros can also be used to set a multiple-bit bit pattern using a mask,
 878 * by specifying the mask in the 'clear' parameter and the new bit pattern
 879 * in the 'set' parameter.
 880 */
 881
 882#define clrsetbits(type, addr, clear, set) \
 883        out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
 884
 885#ifdef __powerpc64__
 886#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
 887#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
 888#endif
 889
 890#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
 891#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
 892
 893#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
 894#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
 895
 896#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
 897
 898#endif /* __KERNEL__ */
 899
 900#endif /* _ASM_POWERPC_IO_H */
 901