linux/arch/powerpc/kernel/process.c
<<
>>
Prefs
   1/*
   2 *  Derived from "arch/i386/kernel/process.c"
   3 *    Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   6 *  Paul Mackerras (paulus@cs.anu.edu.au)
   7 *
   8 *  PowerPC version
   9 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10 *
  11 *  This program is free software; you can redistribute it and/or
  12 *  modify it under the terms of the GNU General Public License
  13 *  as published by the Free Software Foundation; either version
  14 *  2 of the License, or (at your option) any later version.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/sched.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/smp.h>
  25#include <linux/stddef.h>
  26#include <linux/unistd.h>
  27#include <linux/ptrace.h>
  28#include <linux/slab.h>
  29#include <linux/user.h>
  30#include <linux/elf.h>
  31#include <linux/prctl.h>
  32#include <linux/init_task.h>
  33#include <linux/export.h>
  34#include <linux/kallsyms.h>
  35#include <linux/mqueue.h>
  36#include <linux/hardirq.h>
  37#include <linux/utsname.h>
  38#include <linux/ftrace.h>
  39#include <linux/kernel_stat.h>
  40#include <linux/personality.h>
  41#include <linux/random.h>
  42#include <linux/hw_breakpoint.h>
  43#include <linux/uaccess.h>
  44#include <linux/elf-randomize.h>
  45
  46#include <asm/pgtable.h>
  47#include <asm/io.h>
  48#include <asm/processor.h>
  49#include <asm/mmu.h>
  50#include <asm/prom.h>
  51#include <asm/machdep.h>
  52#include <asm/time.h>
  53#include <asm/runlatch.h>
  54#include <asm/syscalls.h>
  55#include <asm/switch_to.h>
  56#include <asm/tm.h>
  57#include <asm/debug.h>
  58#ifdef CONFIG_PPC64
  59#include <asm/firmware.h>
  60#endif
  61#include <asm/code-patching.h>
  62#include <asm/exec.h>
  63#include <asm/livepatch.h>
  64#include <asm/cpu_has_feature.h>
  65#include <asm/asm-prototypes.h>
  66
  67#include <linux/kprobes.h>
  68#include <linux/kdebug.h>
  69
  70/* Transactional Memory debug */
  71#ifdef TM_DEBUG_SW
  72#define TM_DEBUG(x...) printk(KERN_INFO x)
  73#else
  74#define TM_DEBUG(x...) do { } while(0)
  75#endif
  76
  77extern unsigned long _get_SP(void);
  78
  79#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  80static void check_if_tm_restore_required(struct task_struct *tsk)
  81{
  82        /*
  83         * If we are saving the current thread's registers, and the
  84         * thread is in a transactional state, set the TIF_RESTORE_TM
  85         * bit so that we know to restore the registers before
  86         * returning to userspace.
  87         */
  88        if (tsk == current && tsk->thread.regs &&
  89            MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
  90            !test_thread_flag(TIF_RESTORE_TM)) {
  91                tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
  92                set_thread_flag(TIF_RESTORE_TM);
  93        }
  94}
  95
  96static inline bool msr_tm_active(unsigned long msr)
  97{
  98        return MSR_TM_ACTIVE(msr);
  99}
 100#else
 101static inline bool msr_tm_active(unsigned long msr) { return false; }
 102static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
 103#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 104
 105bool strict_msr_control;
 106EXPORT_SYMBOL(strict_msr_control);
 107
 108static int __init enable_strict_msr_control(char *str)
 109{
 110        strict_msr_control = true;
 111        pr_info("Enabling strict facility control\n");
 112
 113        return 0;
 114}
 115early_param("ppc_strict_facility_enable", enable_strict_msr_control);
 116
 117unsigned long msr_check_and_set(unsigned long bits)
 118{
 119        unsigned long oldmsr = mfmsr();
 120        unsigned long newmsr;
 121
 122        newmsr = oldmsr | bits;
 123
 124#ifdef CONFIG_VSX
 125        if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 126                newmsr |= MSR_VSX;
 127#endif
 128
 129        if (oldmsr != newmsr)
 130                mtmsr_isync(newmsr);
 131
 132        return newmsr;
 133}
 134
 135void __msr_check_and_clear(unsigned long bits)
 136{
 137        unsigned long oldmsr = mfmsr();
 138        unsigned long newmsr;
 139
 140        newmsr = oldmsr & ~bits;
 141
 142#ifdef CONFIG_VSX
 143        if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 144                newmsr &= ~MSR_VSX;
 145#endif
 146
 147        if (oldmsr != newmsr)
 148                mtmsr_isync(newmsr);
 149}
 150EXPORT_SYMBOL(__msr_check_and_clear);
 151
 152#ifdef CONFIG_PPC_FPU
 153void __giveup_fpu(struct task_struct *tsk)
 154{
 155        unsigned long msr;
 156
 157        save_fpu(tsk);
 158        msr = tsk->thread.regs->msr;
 159        msr &= ~MSR_FP;
 160#ifdef CONFIG_VSX
 161        if (cpu_has_feature(CPU_FTR_VSX))
 162                msr &= ~MSR_VSX;
 163#endif
 164        tsk->thread.regs->msr = msr;
 165}
 166
 167void giveup_fpu(struct task_struct *tsk)
 168{
 169        check_if_tm_restore_required(tsk);
 170
 171        msr_check_and_set(MSR_FP);
 172        __giveup_fpu(tsk);
 173        msr_check_and_clear(MSR_FP);
 174}
 175EXPORT_SYMBOL(giveup_fpu);
 176
 177/*
 178 * Make sure the floating-point register state in the
 179 * the thread_struct is up to date for task tsk.
 180 */
 181void flush_fp_to_thread(struct task_struct *tsk)
 182{
 183        if (tsk->thread.regs) {
 184                /*
 185                 * We need to disable preemption here because if we didn't,
 186                 * another process could get scheduled after the regs->msr
 187                 * test but before we have finished saving the FP registers
 188                 * to the thread_struct.  That process could take over the
 189                 * FPU, and then when we get scheduled again we would store
 190                 * bogus values for the remaining FP registers.
 191                 */
 192                preempt_disable();
 193                if (tsk->thread.regs->msr & MSR_FP) {
 194                        /*
 195                         * This should only ever be called for current or
 196                         * for a stopped child process.  Since we save away
 197                         * the FP register state on context switch,
 198                         * there is something wrong if a stopped child appears
 199                         * to still have its FP state in the CPU registers.
 200                         */
 201                        BUG_ON(tsk != current);
 202                        giveup_fpu(tsk);
 203                }
 204                preempt_enable();
 205        }
 206}
 207EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 208
 209void enable_kernel_fp(void)
 210{
 211        unsigned long cpumsr;
 212
 213        WARN_ON(preemptible());
 214
 215        cpumsr = msr_check_and_set(MSR_FP);
 216
 217        if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
 218                check_if_tm_restore_required(current);
 219                /*
 220                 * If a thread has already been reclaimed then the
 221                 * checkpointed registers are on the CPU but have definitely
 222                 * been saved by the reclaim code. Don't need to and *cannot*
 223                 * giveup as this would save  to the 'live' structure not the
 224                 * checkpointed structure.
 225                 */
 226                if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
 227                        return;
 228                __giveup_fpu(current);
 229        }
 230}
 231EXPORT_SYMBOL(enable_kernel_fp);
 232
 233static int restore_fp(struct task_struct *tsk)
 234{
 235        if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
 236                load_fp_state(&current->thread.fp_state);
 237                current->thread.load_fp++;
 238                return 1;
 239        }
 240        return 0;
 241}
 242#else
 243static int restore_fp(struct task_struct *tsk) { return 0; }
 244#endif /* CONFIG_PPC_FPU */
 245
 246#ifdef CONFIG_ALTIVEC
 247#define loadvec(thr) ((thr).load_vec)
 248
 249static void __giveup_altivec(struct task_struct *tsk)
 250{
 251        unsigned long msr;
 252
 253        save_altivec(tsk);
 254        msr = tsk->thread.regs->msr;
 255        msr &= ~MSR_VEC;
 256#ifdef CONFIG_VSX
 257        if (cpu_has_feature(CPU_FTR_VSX))
 258                msr &= ~MSR_VSX;
 259#endif
 260        tsk->thread.regs->msr = msr;
 261}
 262
 263void giveup_altivec(struct task_struct *tsk)
 264{
 265        check_if_tm_restore_required(tsk);
 266
 267        msr_check_and_set(MSR_VEC);
 268        __giveup_altivec(tsk);
 269        msr_check_and_clear(MSR_VEC);
 270}
 271EXPORT_SYMBOL(giveup_altivec);
 272
 273void enable_kernel_altivec(void)
 274{
 275        unsigned long cpumsr;
 276
 277        WARN_ON(preemptible());
 278
 279        cpumsr = msr_check_and_set(MSR_VEC);
 280
 281        if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
 282                check_if_tm_restore_required(current);
 283                /*
 284                 * If a thread has already been reclaimed then the
 285                 * checkpointed registers are on the CPU but have definitely
 286                 * been saved by the reclaim code. Don't need to and *cannot*
 287                 * giveup as this would save  to the 'live' structure not the
 288                 * checkpointed structure.
 289                 */
 290                if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
 291                        return;
 292                __giveup_altivec(current);
 293        }
 294}
 295EXPORT_SYMBOL(enable_kernel_altivec);
 296
 297/*
 298 * Make sure the VMX/Altivec register state in the
 299 * the thread_struct is up to date for task tsk.
 300 */
 301void flush_altivec_to_thread(struct task_struct *tsk)
 302{
 303        if (tsk->thread.regs) {
 304                preempt_disable();
 305                if (tsk->thread.regs->msr & MSR_VEC) {
 306                        BUG_ON(tsk != current);
 307                        giveup_altivec(tsk);
 308                }
 309                preempt_enable();
 310        }
 311}
 312EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 313
 314static int restore_altivec(struct task_struct *tsk)
 315{
 316        if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
 317                (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
 318                load_vr_state(&tsk->thread.vr_state);
 319                tsk->thread.used_vr = 1;
 320                tsk->thread.load_vec++;
 321
 322                return 1;
 323        }
 324        return 0;
 325}
 326#else
 327#define loadvec(thr) 0
 328static inline int restore_altivec(struct task_struct *tsk) { return 0; }
 329#endif /* CONFIG_ALTIVEC */
 330
 331#ifdef CONFIG_VSX
 332static void __giveup_vsx(struct task_struct *tsk)
 333{
 334        unsigned long msr = tsk->thread.regs->msr;
 335
 336        /*
 337         * We should never be ssetting MSR_VSX without also setting
 338         * MSR_FP and MSR_VEC
 339         */
 340        WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
 341
 342        /* __giveup_fpu will clear MSR_VSX */
 343        if (msr & MSR_FP)
 344                __giveup_fpu(tsk);
 345        if (msr & MSR_VEC)
 346                __giveup_altivec(tsk);
 347}
 348
 349static void giveup_vsx(struct task_struct *tsk)
 350{
 351        check_if_tm_restore_required(tsk);
 352
 353        msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 354        __giveup_vsx(tsk);
 355        msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
 356}
 357
 358void enable_kernel_vsx(void)
 359{
 360        unsigned long cpumsr;
 361
 362        WARN_ON(preemptible());
 363
 364        cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 365
 366        if (current->thread.regs &&
 367            (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
 368                check_if_tm_restore_required(current);
 369                /*
 370                 * If a thread has already been reclaimed then the
 371                 * checkpointed registers are on the CPU but have definitely
 372                 * been saved by the reclaim code. Don't need to and *cannot*
 373                 * giveup as this would save  to the 'live' structure not the
 374                 * checkpointed structure.
 375                 */
 376                if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
 377                        return;
 378                __giveup_vsx(current);
 379        }
 380}
 381EXPORT_SYMBOL(enable_kernel_vsx);
 382
 383void flush_vsx_to_thread(struct task_struct *tsk)
 384{
 385        if (tsk->thread.regs) {
 386                preempt_disable();
 387                if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
 388                        BUG_ON(tsk != current);
 389                        giveup_vsx(tsk);
 390                }
 391                preempt_enable();
 392        }
 393}
 394EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 395
 396static int restore_vsx(struct task_struct *tsk)
 397{
 398        if (cpu_has_feature(CPU_FTR_VSX)) {
 399                tsk->thread.used_vsr = 1;
 400                return 1;
 401        }
 402
 403        return 0;
 404}
 405#else
 406static inline int restore_vsx(struct task_struct *tsk) { return 0; }
 407#endif /* CONFIG_VSX */
 408
 409#ifdef CONFIG_SPE
 410void giveup_spe(struct task_struct *tsk)
 411{
 412        check_if_tm_restore_required(tsk);
 413
 414        msr_check_and_set(MSR_SPE);
 415        __giveup_spe(tsk);
 416        msr_check_and_clear(MSR_SPE);
 417}
 418EXPORT_SYMBOL(giveup_spe);
 419
 420void enable_kernel_spe(void)
 421{
 422        WARN_ON(preemptible());
 423
 424        msr_check_and_set(MSR_SPE);
 425
 426        if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
 427                check_if_tm_restore_required(current);
 428                __giveup_spe(current);
 429        }
 430}
 431EXPORT_SYMBOL(enable_kernel_spe);
 432
 433void flush_spe_to_thread(struct task_struct *tsk)
 434{
 435        if (tsk->thread.regs) {
 436                preempt_disable();
 437                if (tsk->thread.regs->msr & MSR_SPE) {
 438                        BUG_ON(tsk != current);
 439                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 440                        giveup_spe(tsk);
 441                }
 442                preempt_enable();
 443        }
 444}
 445#endif /* CONFIG_SPE */
 446
 447static unsigned long msr_all_available;
 448
 449static int __init init_msr_all_available(void)
 450{
 451#ifdef CONFIG_PPC_FPU
 452        msr_all_available |= MSR_FP;
 453#endif
 454#ifdef CONFIG_ALTIVEC
 455        if (cpu_has_feature(CPU_FTR_ALTIVEC))
 456                msr_all_available |= MSR_VEC;
 457#endif
 458#ifdef CONFIG_VSX
 459        if (cpu_has_feature(CPU_FTR_VSX))
 460                msr_all_available |= MSR_VSX;
 461#endif
 462#ifdef CONFIG_SPE
 463        if (cpu_has_feature(CPU_FTR_SPE))
 464                msr_all_available |= MSR_SPE;
 465#endif
 466
 467        return 0;
 468}
 469early_initcall(init_msr_all_available);
 470
 471void giveup_all(struct task_struct *tsk)
 472{
 473        unsigned long usermsr;
 474
 475        if (!tsk->thread.regs)
 476                return;
 477
 478        usermsr = tsk->thread.regs->msr;
 479
 480        if ((usermsr & msr_all_available) == 0)
 481                return;
 482
 483        msr_check_and_set(msr_all_available);
 484        check_if_tm_restore_required(tsk);
 485
 486        WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 487
 488#ifdef CONFIG_PPC_FPU
 489        if (usermsr & MSR_FP)
 490                __giveup_fpu(tsk);
 491#endif
 492#ifdef CONFIG_ALTIVEC
 493        if (usermsr & MSR_VEC)
 494                __giveup_altivec(tsk);
 495#endif
 496#ifdef CONFIG_SPE
 497        if (usermsr & MSR_SPE)
 498                __giveup_spe(tsk);
 499#endif
 500
 501        msr_check_and_clear(msr_all_available);
 502}
 503EXPORT_SYMBOL(giveup_all);
 504
 505void restore_math(struct pt_regs *regs)
 506{
 507        unsigned long msr;
 508
 509        if (!msr_tm_active(regs->msr) &&
 510                !current->thread.load_fp && !loadvec(current->thread))
 511                return;
 512
 513        msr = regs->msr;
 514        msr_check_and_set(msr_all_available);
 515
 516        /*
 517         * Only reload if the bit is not set in the user MSR, the bit BEING set
 518         * indicates that the registers are hot
 519         */
 520        if ((!(msr & MSR_FP)) && restore_fp(current))
 521                msr |= MSR_FP | current->thread.fpexc_mode;
 522
 523        if ((!(msr & MSR_VEC)) && restore_altivec(current))
 524                msr |= MSR_VEC;
 525
 526        if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
 527                        restore_vsx(current)) {
 528                msr |= MSR_VSX;
 529        }
 530
 531        msr_check_and_clear(msr_all_available);
 532
 533        regs->msr = msr;
 534}
 535
 536void save_all(struct task_struct *tsk)
 537{
 538        unsigned long usermsr;
 539
 540        if (!tsk->thread.regs)
 541                return;
 542
 543        usermsr = tsk->thread.regs->msr;
 544
 545        if ((usermsr & msr_all_available) == 0)
 546                return;
 547
 548        msr_check_and_set(msr_all_available);
 549
 550        WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 551
 552        if (usermsr & MSR_FP)
 553                save_fpu(tsk);
 554
 555        if (usermsr & MSR_VEC)
 556                save_altivec(tsk);
 557
 558        if (usermsr & MSR_SPE)
 559                __giveup_spe(tsk);
 560
 561        msr_check_and_clear(msr_all_available);
 562}
 563
 564void flush_all_to_thread(struct task_struct *tsk)
 565{
 566        if (tsk->thread.regs) {
 567                preempt_disable();
 568                BUG_ON(tsk != current);
 569                save_all(tsk);
 570
 571#ifdef CONFIG_SPE
 572                if (tsk->thread.regs->msr & MSR_SPE)
 573                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 574#endif
 575
 576                preempt_enable();
 577        }
 578}
 579EXPORT_SYMBOL(flush_all_to_thread);
 580
 581#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 582void do_send_trap(struct pt_regs *regs, unsigned long address,
 583                  unsigned long error_code, int signal_code, int breakpt)
 584{
 585        siginfo_t info;
 586
 587        current->thread.trap_nr = signal_code;
 588        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 589                        11, SIGSEGV) == NOTIFY_STOP)
 590                return;
 591
 592        /* Deliver the signal to userspace */
 593        info.si_signo = SIGTRAP;
 594        info.si_errno = breakpt;        /* breakpoint or watchpoint id */
 595        info.si_code = signal_code;
 596        info.si_addr = (void __user *)address;
 597        force_sig_info(SIGTRAP, &info, current);
 598}
 599#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 600void do_break (struct pt_regs *regs, unsigned long address,
 601                    unsigned long error_code)
 602{
 603        siginfo_t info;
 604
 605        current->thread.trap_nr = TRAP_HWBKPT;
 606        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 607                        11, SIGSEGV) == NOTIFY_STOP)
 608                return;
 609
 610        if (debugger_break_match(regs))
 611                return;
 612
 613        /* Clear the breakpoint */
 614        hw_breakpoint_disable();
 615
 616        /* Deliver the signal to userspace */
 617        info.si_signo = SIGTRAP;
 618        info.si_errno = 0;
 619        info.si_code = TRAP_HWBKPT;
 620        info.si_addr = (void __user *)address;
 621        force_sig_info(SIGTRAP, &info, current);
 622}
 623#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 624
 625static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
 626
 627#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 628/*
 629 * Set the debug registers back to their default "safe" values.
 630 */
 631static void set_debug_reg_defaults(struct thread_struct *thread)
 632{
 633        thread->debug.iac1 = thread->debug.iac2 = 0;
 634#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 635        thread->debug.iac3 = thread->debug.iac4 = 0;
 636#endif
 637        thread->debug.dac1 = thread->debug.dac2 = 0;
 638#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 639        thread->debug.dvc1 = thread->debug.dvc2 = 0;
 640#endif
 641        thread->debug.dbcr0 = 0;
 642#ifdef CONFIG_BOOKE
 643        /*
 644         * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 645         */
 646        thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
 647                        DBCR1_IAC3US | DBCR1_IAC4US;
 648        /*
 649         * Force Data Address Compare User/Supervisor bits to be User-only
 650         * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 651         */
 652        thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 653#else
 654        thread->debug.dbcr1 = 0;
 655#endif
 656}
 657
 658static void prime_debug_regs(struct debug_reg *debug)
 659{
 660        /*
 661         * We could have inherited MSR_DE from userspace, since
 662         * it doesn't get cleared on exception entry.  Make sure
 663         * MSR_DE is clear before we enable any debug events.
 664         */
 665        mtmsr(mfmsr() & ~MSR_DE);
 666
 667        mtspr(SPRN_IAC1, debug->iac1);
 668        mtspr(SPRN_IAC2, debug->iac2);
 669#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 670        mtspr(SPRN_IAC3, debug->iac3);
 671        mtspr(SPRN_IAC4, debug->iac4);
 672#endif
 673        mtspr(SPRN_DAC1, debug->dac1);
 674        mtspr(SPRN_DAC2, debug->dac2);
 675#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 676        mtspr(SPRN_DVC1, debug->dvc1);
 677        mtspr(SPRN_DVC2, debug->dvc2);
 678#endif
 679        mtspr(SPRN_DBCR0, debug->dbcr0);
 680        mtspr(SPRN_DBCR1, debug->dbcr1);
 681#ifdef CONFIG_BOOKE
 682        mtspr(SPRN_DBCR2, debug->dbcr2);
 683#endif
 684}
 685/*
 686 * Unless neither the old or new thread are making use of the
 687 * debug registers, set the debug registers from the values
 688 * stored in the new thread.
 689 */
 690void switch_booke_debug_regs(struct debug_reg *new_debug)
 691{
 692        if ((current->thread.debug.dbcr0 & DBCR0_IDM)
 693                || (new_debug->dbcr0 & DBCR0_IDM))
 694                        prime_debug_regs(new_debug);
 695}
 696EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
 697#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 698#ifndef CONFIG_HAVE_HW_BREAKPOINT
 699static void set_debug_reg_defaults(struct thread_struct *thread)
 700{
 701        thread->hw_brk.address = 0;
 702        thread->hw_brk.type = 0;
 703        set_breakpoint(&thread->hw_brk);
 704}
 705#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 706#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 707
 708#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 709static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 710{
 711        mtspr(SPRN_DAC1, dabr);
 712#ifdef CONFIG_PPC_47x
 713        isync();
 714#endif
 715        return 0;
 716}
 717#elif defined(CONFIG_PPC_BOOK3S)
 718static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 719{
 720        mtspr(SPRN_DABR, dabr);
 721        if (cpu_has_feature(CPU_FTR_DABRX))
 722                mtspr(SPRN_DABRX, dabrx);
 723        return 0;
 724}
 725#elif defined(CONFIG_PPC_8xx)
 726static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 727{
 728        unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
 729        unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
 730        unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
 731
 732        if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
 733                lctrl1 |= 0xa0000;
 734        else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
 735                lctrl1 |= 0xf0000;
 736        else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
 737                lctrl2 = 0;
 738
 739        mtspr(SPRN_LCTRL2, 0);
 740        mtspr(SPRN_CMPE, addr);
 741        mtspr(SPRN_CMPF, addr + 4);
 742        mtspr(SPRN_LCTRL1, lctrl1);
 743        mtspr(SPRN_LCTRL2, lctrl2);
 744
 745        return 0;
 746}
 747#else
 748static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 749{
 750        return -EINVAL;
 751}
 752#endif
 753
 754static inline int set_dabr(struct arch_hw_breakpoint *brk)
 755{
 756        unsigned long dabr, dabrx;
 757
 758        dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 759        dabrx = ((brk->type >> 3) & 0x7);
 760
 761        if (ppc_md.set_dabr)
 762                return ppc_md.set_dabr(dabr, dabrx);
 763
 764        return __set_dabr(dabr, dabrx);
 765}
 766
 767static inline int set_dawr(struct arch_hw_breakpoint *brk)
 768{
 769        unsigned long dawr, dawrx, mrd;
 770
 771        dawr = brk->address;
 772
 773        dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
 774                                   << (63 - 58); //* read/write bits */
 775        dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
 776                                   << (63 - 59); //* translate */
 777        dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
 778                                   >> 3; //* PRIM bits */
 779        /* dawr length is stored in field MDR bits 48:53.  Matches range in
 780           doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
 781           0b111111=64DW.
 782           brk->len is in bytes.
 783           This aligns up to double word size, shifts and does the bias.
 784        */
 785        mrd = ((brk->len + 7) >> 3) - 1;
 786        dawrx |= (mrd & 0x3f) << (63 - 53);
 787
 788        if (ppc_md.set_dawr)
 789                return ppc_md.set_dawr(dawr, dawrx);
 790        mtspr(SPRN_DAWR, dawr);
 791        mtspr(SPRN_DAWRX, dawrx);
 792        return 0;
 793}
 794
 795void __set_breakpoint(struct arch_hw_breakpoint *brk)
 796{
 797        memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
 798
 799        if (cpu_has_feature(CPU_FTR_DAWR))
 800                set_dawr(brk);
 801        else
 802                set_dabr(brk);
 803}
 804
 805void set_breakpoint(struct arch_hw_breakpoint *brk)
 806{
 807        preempt_disable();
 808        __set_breakpoint(brk);
 809        preempt_enable();
 810}
 811
 812#ifdef CONFIG_PPC64
 813DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
 814#endif
 815
 816static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 817                              struct arch_hw_breakpoint *b)
 818{
 819        if (a->address != b->address)
 820                return false;
 821        if (a->type != b->type)
 822                return false;
 823        if (a->len != b->len)
 824                return false;
 825        return true;
 826}
 827
 828#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 829
 830static inline bool tm_enabled(struct task_struct *tsk)
 831{
 832        return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
 833}
 834
 835static void tm_reclaim_thread(struct thread_struct *thr,
 836                              struct thread_info *ti, uint8_t cause)
 837{
 838        /*
 839         * Use the current MSR TM suspended bit to track if we have
 840         * checkpointed state outstanding.
 841         * On signal delivery, we'd normally reclaim the checkpointed
 842         * state to obtain stack pointer (see:get_tm_stackpointer()).
 843         * This will then directly return to userspace without going
 844         * through __switch_to(). However, if the stack frame is bad,
 845         * we need to exit this thread which calls __switch_to() which
 846         * will again attempt to reclaim the already saved tm state.
 847         * Hence we need to check that we've not already reclaimed
 848         * this state.
 849         * We do this using the current MSR, rather tracking it in
 850         * some specific thread_struct bit, as it has the additional
 851         * benefit of checking for a potential TM bad thing exception.
 852         */
 853        if (!MSR_TM_SUSPENDED(mfmsr()))
 854                return;
 855
 856        /*
 857         * If we are in a transaction and FP is off then we can't have
 858         * used FP inside that transaction. Hence the checkpointed
 859         * state is the same as the live state. We need to copy the
 860         * live state to the checkpointed state so that when the
 861         * transaction is restored, the checkpointed state is correct
 862         * and the aborted transaction sees the correct state. We use
 863         * ckpt_regs.msr here as that's what tm_reclaim will use to
 864         * determine if it's going to write the checkpointed state or
 865         * not. So either this will write the checkpointed registers,
 866         * or reclaim will. Similarly for VMX.
 867         */
 868        if ((thr->ckpt_regs.msr & MSR_FP) == 0)
 869                memcpy(&thr->ckfp_state, &thr->fp_state,
 870                       sizeof(struct thread_fp_state));
 871        if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
 872                memcpy(&thr->ckvr_state, &thr->vr_state,
 873                       sizeof(struct thread_vr_state));
 874
 875        giveup_all(container_of(thr, struct task_struct, thread));
 876
 877        tm_reclaim(thr, thr->ckpt_regs.msr, cause);
 878}
 879
 880void tm_reclaim_current(uint8_t cause)
 881{
 882        tm_enable();
 883        tm_reclaim_thread(&current->thread, current_thread_info(), cause);
 884}
 885
 886static inline void tm_reclaim_task(struct task_struct *tsk)
 887{
 888        /* We have to work out if we're switching from/to a task that's in the
 889         * middle of a transaction.
 890         *
 891         * In switching we need to maintain a 2nd register state as
 892         * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 893         * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
 894         * ckvr_state
 895         *
 896         * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 897         */
 898        struct thread_struct *thr = &tsk->thread;
 899
 900        if (!thr->regs)
 901                return;
 902
 903        if (!MSR_TM_ACTIVE(thr->regs->msr))
 904                goto out_and_saveregs;
 905
 906        TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
 907                 "ccr=%lx, msr=%lx, trap=%lx)\n",
 908                 tsk->pid, thr->regs->nip,
 909                 thr->regs->ccr, thr->regs->msr,
 910                 thr->regs->trap);
 911
 912        tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
 913
 914        TM_DEBUG("--- tm_reclaim on pid %d complete\n",
 915                 tsk->pid);
 916
 917out_and_saveregs:
 918        /* Always save the regs here, even if a transaction's not active.
 919         * This context-switches a thread's TM info SPRs.  We do it here to
 920         * be consistent with the restore path (in recheckpoint) which
 921         * cannot happen later in _switch().
 922         */
 923        tm_save_sprs(thr);
 924}
 925
 926extern void __tm_recheckpoint(struct thread_struct *thread,
 927                              unsigned long orig_msr);
 928
 929void tm_recheckpoint(struct thread_struct *thread,
 930                     unsigned long orig_msr)
 931{
 932        unsigned long flags;
 933
 934        if (!(thread->regs->msr & MSR_TM))
 935                return;
 936
 937        /* We really can't be interrupted here as the TEXASR registers can't
 938         * change and later in the trecheckpoint code, we have a userspace R1.
 939         * So let's hard disable over this region.
 940         */
 941        local_irq_save(flags);
 942        hard_irq_disable();
 943
 944        /* The TM SPRs are restored here, so that TEXASR.FS can be set
 945         * before the trecheckpoint and no explosion occurs.
 946         */
 947        tm_restore_sprs(thread);
 948
 949        __tm_recheckpoint(thread, orig_msr);
 950
 951        local_irq_restore(flags);
 952}
 953
 954static inline void tm_recheckpoint_new_task(struct task_struct *new)
 955{
 956        unsigned long msr;
 957
 958        if (!cpu_has_feature(CPU_FTR_TM))
 959                return;
 960
 961        /* Recheckpoint the registers of the thread we're about to switch to.
 962         *
 963         * If the task was using FP, we non-lazily reload both the original and
 964         * the speculative FP register states.  This is because the kernel
 965         * doesn't see if/when a TM rollback occurs, so if we take an FP
 966         * unavailable later, we are unable to determine which set of FP regs
 967         * need to be restored.
 968         */
 969        if (!tm_enabled(new))
 970                return;
 971
 972        if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
 973                tm_restore_sprs(&new->thread);
 974                return;
 975        }
 976        msr = new->thread.ckpt_regs.msr;
 977        /* Recheckpoint to restore original checkpointed register state. */
 978        TM_DEBUG("*** tm_recheckpoint of pid %d "
 979                 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
 980                 new->pid, new->thread.regs->msr, msr);
 981
 982        tm_recheckpoint(&new->thread, msr);
 983
 984        /*
 985         * The checkpointed state has been restored but the live state has
 986         * not, ensure all the math functionality is turned off to trigger
 987         * restore_math() to reload.
 988         */
 989        new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
 990
 991        TM_DEBUG("*** tm_recheckpoint of pid %d complete "
 992                 "(kernel msr 0x%lx)\n",
 993                 new->pid, mfmsr());
 994}
 995
 996static inline void __switch_to_tm(struct task_struct *prev,
 997                struct task_struct *new)
 998{
 999        if (cpu_has_feature(CPU_FTR_TM)) {
1000                if (tm_enabled(prev) || tm_enabled(new))
1001                        tm_enable();
1002
1003                if (tm_enabled(prev)) {
1004                        prev->thread.load_tm++;
1005                        tm_reclaim_task(prev);
1006                        if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1007                                prev->thread.regs->msr &= ~MSR_TM;
1008                }
1009
1010                tm_recheckpoint_new_task(new);
1011        }
1012}
1013
1014/*
1015 * This is called if we are on the way out to userspace and the
1016 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1017 * FP and/or vector state and does so if necessary.
1018 * If userspace is inside a transaction (whether active or
1019 * suspended) and FP/VMX/VSX instructions have ever been enabled
1020 * inside that transaction, then we have to keep them enabled
1021 * and keep the FP/VMX/VSX state loaded while ever the transaction
1022 * continues.  The reason is that if we didn't, and subsequently
1023 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1024 * we don't know whether it's the same transaction, and thus we
1025 * don't know which of the checkpointed state and the transactional
1026 * state to use.
1027 */
1028void restore_tm_state(struct pt_regs *regs)
1029{
1030        unsigned long msr_diff;
1031
1032        /*
1033         * This is the only moment we should clear TIF_RESTORE_TM as
1034         * it is here that ckpt_regs.msr and pt_regs.msr become the same
1035         * again, anything else could lead to an incorrect ckpt_msr being
1036         * saved and therefore incorrect signal contexts.
1037         */
1038        clear_thread_flag(TIF_RESTORE_TM);
1039        if (!MSR_TM_ACTIVE(regs->msr))
1040                return;
1041
1042        msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1043        msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1044
1045        /* Ensure that restore_math() will restore */
1046        if (msr_diff & MSR_FP)
1047                current->thread.load_fp = 1;
1048#ifdef CONFIG_ALTIVEC
1049        if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1050                current->thread.load_vec = 1;
1051#endif
1052        restore_math(regs);
1053
1054        regs->msr |= msr_diff;
1055}
1056
1057#else
1058#define tm_recheckpoint_new_task(new)
1059#define __switch_to_tm(prev, new)
1060#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1061
1062static inline void save_sprs(struct thread_struct *t)
1063{
1064#ifdef CONFIG_ALTIVEC
1065        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1066                t->vrsave = mfspr(SPRN_VRSAVE);
1067#endif
1068#ifdef CONFIG_PPC_BOOK3S_64
1069        if (cpu_has_feature(CPU_FTR_DSCR))
1070                t->dscr = mfspr(SPRN_DSCR);
1071
1072        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1073                t->bescr = mfspr(SPRN_BESCR);
1074                t->ebbhr = mfspr(SPRN_EBBHR);
1075                t->ebbrr = mfspr(SPRN_EBBRR);
1076
1077                t->fscr = mfspr(SPRN_FSCR);
1078
1079                /*
1080                 * Note that the TAR is not available for use in the kernel.
1081                 * (To provide this, the TAR should be backed up/restored on
1082                 * exception entry/exit instead, and be in pt_regs.  FIXME,
1083                 * this should be in pt_regs anyway (for debug).)
1084                 */
1085                t->tar = mfspr(SPRN_TAR);
1086        }
1087#endif
1088}
1089
1090static inline void restore_sprs(struct thread_struct *old_thread,
1091                                struct thread_struct *new_thread)
1092{
1093#ifdef CONFIG_ALTIVEC
1094        if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1095            old_thread->vrsave != new_thread->vrsave)
1096                mtspr(SPRN_VRSAVE, new_thread->vrsave);
1097#endif
1098#ifdef CONFIG_PPC_BOOK3S_64
1099        if (cpu_has_feature(CPU_FTR_DSCR)) {
1100                u64 dscr = get_paca()->dscr_default;
1101                if (new_thread->dscr_inherit)
1102                        dscr = new_thread->dscr;
1103
1104                if (old_thread->dscr != dscr)
1105                        mtspr(SPRN_DSCR, dscr);
1106        }
1107
1108        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1109                if (old_thread->bescr != new_thread->bescr)
1110                        mtspr(SPRN_BESCR, new_thread->bescr);
1111                if (old_thread->ebbhr != new_thread->ebbhr)
1112                        mtspr(SPRN_EBBHR, new_thread->ebbhr);
1113                if (old_thread->ebbrr != new_thread->ebbrr)
1114                        mtspr(SPRN_EBBRR, new_thread->ebbrr);
1115
1116                if (old_thread->fscr != new_thread->fscr)
1117                        mtspr(SPRN_FSCR, new_thread->fscr);
1118
1119                if (old_thread->tar != new_thread->tar)
1120                        mtspr(SPRN_TAR, new_thread->tar);
1121        }
1122#endif
1123}
1124
1125#ifdef CONFIG_PPC_BOOK3S_64
1126#define CP_SIZE 128
1127static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1128#endif
1129
1130struct task_struct *__switch_to(struct task_struct *prev,
1131        struct task_struct *new)
1132{
1133        struct thread_struct *new_thread, *old_thread;
1134        struct task_struct *last;
1135#ifdef CONFIG_PPC_BOOK3S_64
1136        struct ppc64_tlb_batch *batch;
1137#endif
1138
1139        new_thread = &new->thread;
1140        old_thread = &current->thread;
1141
1142        WARN_ON(!irqs_disabled());
1143
1144#ifdef CONFIG_PPC64
1145        /*
1146         * Collect processor utilization data per process
1147         */
1148        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1149                struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1150                long unsigned start_tb, current_tb;
1151                start_tb = old_thread->start_tb;
1152                cu->current_tb = current_tb = mfspr(SPRN_PURR);
1153                old_thread->accum_tb += (current_tb - start_tb);
1154                new_thread->start_tb = current_tb;
1155        }
1156#endif /* CONFIG_PPC64 */
1157
1158#ifdef CONFIG_PPC_STD_MMU_64
1159        batch = this_cpu_ptr(&ppc64_tlb_batch);
1160        if (batch->active) {
1161                current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1162                if (batch->index)
1163                        __flush_tlb_pending(batch);
1164                batch->active = 0;
1165        }
1166#endif /* CONFIG_PPC_STD_MMU_64 */
1167
1168#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1169        switch_booke_debug_regs(&new->thread.debug);
1170#else
1171/*
1172 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1173 * schedule DABR
1174 */
1175#ifndef CONFIG_HAVE_HW_BREAKPOINT
1176        if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1177                __set_breakpoint(&new->thread.hw_brk);
1178#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1179#endif
1180
1181        /*
1182         * We need to save SPRs before treclaim/trecheckpoint as these will
1183         * change a number of them.
1184         */
1185        save_sprs(&prev->thread);
1186
1187        /* Save FPU, Altivec, VSX and SPE state */
1188        giveup_all(prev);
1189
1190        __switch_to_tm(prev, new);
1191
1192        if (!radix_enabled()) {
1193                /*
1194                 * We can't take a PMU exception inside _switch() since there
1195                 * is a window where the kernel stack SLB and the kernel stack
1196                 * are out of sync. Hard disable here.
1197                 */
1198                hard_irq_disable();
1199        }
1200
1201        /*
1202         * Call restore_sprs() before calling _switch(). If we move it after
1203         * _switch() then we miss out on calling it for new tasks. The reason
1204         * for this is we manually create a stack frame for new tasks that
1205         * directly returns through ret_from_fork() or
1206         * ret_from_kernel_thread(). See copy_thread() for details.
1207         */
1208        restore_sprs(old_thread, new_thread);
1209
1210        last = _switch(old_thread, new_thread);
1211
1212#ifdef CONFIG_PPC_STD_MMU_64
1213        if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1214                current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1215                batch = this_cpu_ptr(&ppc64_tlb_batch);
1216                batch->active = 1;
1217        }
1218
1219        if (current_thread_info()->task->thread.regs) {
1220                restore_math(current_thread_info()->task->thread.regs);
1221
1222                /*
1223                 * The copy-paste buffer can only store into foreign real
1224                 * addresses, so unprivileged processes can not see the
1225                 * data or use it in any way unless they have foreign real
1226                 * mappings. We don't have a VAS driver that allocates those
1227                 * yet, so no cpabort is required.
1228                 */
1229                if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1230                        /*
1231                         * DD1 allows paste into normal system memory, so we
1232                         * do an unpaired copy here to clear the buffer and
1233                         * prevent a covert channel being set up.
1234                         *
1235                         * cpabort is not used because it is quite expensive.
1236                         */
1237                        asm volatile(PPC_COPY(%0, %1)
1238                                        : : "r"(dummy_copy_buffer), "r"(0));
1239                }
1240        }
1241#endif /* CONFIG_PPC_STD_MMU_64 */
1242
1243        return last;
1244}
1245
1246static int instructions_to_print = 16;
1247
1248static void show_instructions(struct pt_regs *regs)
1249{
1250        int i;
1251        unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1252                        sizeof(int));
1253
1254        printk("Instruction dump:");
1255
1256        for (i = 0; i < instructions_to_print; i++) {
1257                int instr;
1258
1259                if (!(i % 8))
1260                        pr_cont("\n");
1261
1262#if !defined(CONFIG_BOOKE)
1263                /* If executing with the IMMU off, adjust pc rather
1264                 * than print XXXXXXXX.
1265                 */
1266                if (!(regs->msr & MSR_IR))
1267                        pc = (unsigned long)phys_to_virt(pc);
1268#endif
1269
1270                if (!__kernel_text_address(pc) ||
1271                     probe_kernel_address((unsigned int __user *)pc, instr)) {
1272                        pr_cont("XXXXXXXX ");
1273                } else {
1274                        if (regs->nip == pc)
1275                                pr_cont("<%08x> ", instr);
1276                        else
1277                                pr_cont("%08x ", instr);
1278                }
1279
1280                pc += sizeof(int);
1281        }
1282
1283        pr_cont("\n");
1284}
1285
1286struct regbit {
1287        unsigned long bit;
1288        const char *name;
1289};
1290
1291static struct regbit msr_bits[] = {
1292#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1293        {MSR_SF,        "SF"},
1294        {MSR_HV,        "HV"},
1295#endif
1296        {MSR_VEC,       "VEC"},
1297        {MSR_VSX,       "VSX"},
1298#ifdef CONFIG_BOOKE
1299        {MSR_CE,        "CE"},
1300#endif
1301        {MSR_EE,        "EE"},
1302        {MSR_PR,        "PR"},
1303        {MSR_FP,        "FP"},
1304        {MSR_ME,        "ME"},
1305#ifdef CONFIG_BOOKE
1306        {MSR_DE,        "DE"},
1307#else
1308        {MSR_SE,        "SE"},
1309        {MSR_BE,        "BE"},
1310#endif
1311        {MSR_IR,        "IR"},
1312        {MSR_DR,        "DR"},
1313        {MSR_PMM,       "PMM"},
1314#ifndef CONFIG_BOOKE
1315        {MSR_RI,        "RI"},
1316        {MSR_LE,        "LE"},
1317#endif
1318        {0,             NULL}
1319};
1320
1321static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1322{
1323        const char *s = "";
1324
1325        for (; bits->bit; ++bits)
1326                if (val & bits->bit) {
1327                        pr_cont("%s%s", s, bits->name);
1328                        s = sep;
1329                }
1330}
1331
1332#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1333static struct regbit msr_tm_bits[] = {
1334        {MSR_TS_T,      "T"},
1335        {MSR_TS_S,      "S"},
1336        {MSR_TM,        "E"},
1337        {0,             NULL}
1338};
1339
1340static void print_tm_bits(unsigned long val)
1341{
1342/*
1343 * This only prints something if at least one of the TM bit is set.
1344 * Inside the TM[], the output means:
1345 *   E: Enabled         (bit 32)
1346 *   S: Suspended       (bit 33)
1347 *   T: Transactional   (bit 34)
1348 */
1349        if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1350                pr_cont(",TM[");
1351                print_bits(val, msr_tm_bits, "");
1352                pr_cont("]");
1353        }
1354}
1355#else
1356static void print_tm_bits(unsigned long val) {}
1357#endif
1358
1359static void print_msr_bits(unsigned long val)
1360{
1361        pr_cont("<");
1362        print_bits(val, msr_bits, ",");
1363        print_tm_bits(val);
1364        pr_cont(">");
1365}
1366
1367#ifdef CONFIG_PPC64
1368#define REG             "%016lx"
1369#define REGS_PER_LINE   4
1370#define LAST_VOLATILE   13
1371#else
1372#define REG             "%08lx"
1373#define REGS_PER_LINE   8
1374#define LAST_VOLATILE   12
1375#endif
1376
1377void show_regs(struct pt_regs * regs)
1378{
1379        int i, trap;
1380
1381        show_regs_print_info(KERN_DEFAULT);
1382
1383        printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1384               regs->nip, regs->link, regs->ctr);
1385        printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1386               regs, regs->trap, print_tainted(), init_utsname()->release);
1387        printk("MSR:  "REG" ", regs->msr);
1388        print_msr_bits(regs->msr);
1389        pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1390        trap = TRAP(regs);
1391        if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1392                pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1393        if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1394#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1395                pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1396#else
1397                pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1398#endif
1399#ifdef CONFIG_PPC64
1400        pr_cont("SOFTE: %ld ", regs->softe);
1401#endif
1402#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1403        if (MSR_TM_ACTIVE(regs->msr))
1404                pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1405#endif
1406
1407        for (i = 0;  i < 32;  i++) {
1408                if ((i % REGS_PER_LINE) == 0)
1409                        pr_cont("\nGPR%02d: ", i);
1410                pr_cont(REG " ", regs->gpr[i]);
1411                if (i == LAST_VOLATILE && !FULL_REGS(regs))
1412                        break;
1413        }
1414        pr_cont("\n");
1415#ifdef CONFIG_KALLSYMS
1416        /*
1417         * Lookup NIP late so we have the best change of getting the
1418         * above info out without failing
1419         */
1420        printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1421        printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1422#endif
1423        show_stack(current, (unsigned long *) regs->gpr[1]);
1424        if (!user_mode(regs))
1425                show_instructions(regs);
1426}
1427
1428void flush_thread(void)
1429{
1430#ifdef CONFIG_HAVE_HW_BREAKPOINT
1431        flush_ptrace_hw_breakpoint(current);
1432#else /* CONFIG_HAVE_HW_BREAKPOINT */
1433        set_debug_reg_defaults(&current->thread);
1434#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1435}
1436
1437void
1438release_thread(struct task_struct *t)
1439{
1440}
1441
1442/*
1443 * this gets called so that we can store coprocessor state into memory and
1444 * copy the current task into the new thread.
1445 */
1446int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1447{
1448        flush_all_to_thread(src);
1449        /*
1450         * Flush TM state out so we can copy it.  __switch_to_tm() does this
1451         * flush but it removes the checkpointed state from the current CPU and
1452         * transitions the CPU out of TM mode.  Hence we need to call
1453         * tm_recheckpoint_new_task() (on the same task) to restore the
1454         * checkpointed state back and the TM mode.
1455         *
1456         * Can't pass dst because it isn't ready. Doesn't matter, passing
1457         * dst is only important for __switch_to()
1458         */
1459        __switch_to_tm(src, src);
1460
1461        *dst = *src;
1462
1463        clear_task_ebb(dst);
1464
1465        return 0;
1466}
1467
1468static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1469{
1470#ifdef CONFIG_PPC_STD_MMU_64
1471        unsigned long sp_vsid;
1472        unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1473
1474        if (radix_enabled())
1475                return;
1476
1477        if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1478                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1479                        << SLB_VSID_SHIFT_1T;
1480        else
1481                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1482                        << SLB_VSID_SHIFT;
1483        sp_vsid |= SLB_VSID_KERNEL | llp;
1484        p->thread.ksp_vsid = sp_vsid;
1485#endif
1486}
1487
1488/*
1489 * Copy a thread..
1490 */
1491
1492/*
1493 * Copy architecture-specific thread state
1494 */
1495int copy_thread(unsigned long clone_flags, unsigned long usp,
1496                unsigned long kthread_arg, struct task_struct *p)
1497{
1498        struct pt_regs *childregs, *kregs;
1499        extern void ret_from_fork(void);
1500        extern void ret_from_kernel_thread(void);
1501        void (*f)(void);
1502        unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1503        struct thread_info *ti = task_thread_info(p);
1504
1505        klp_init_thread_info(ti);
1506
1507        /* Copy registers */
1508        sp -= sizeof(struct pt_regs);
1509        childregs = (struct pt_regs *) sp;
1510        if (unlikely(p->flags & PF_KTHREAD)) {
1511                /* kernel thread */
1512                memset(childregs, 0, sizeof(struct pt_regs));
1513                childregs->gpr[1] = sp + sizeof(struct pt_regs);
1514                /* function */
1515                if (usp)
1516                        childregs->gpr[14] = ppc_function_entry((void *)usp);
1517#ifdef CONFIG_PPC64
1518                clear_tsk_thread_flag(p, TIF_32BIT);
1519                childregs->softe = 1;
1520#endif
1521                childregs->gpr[15] = kthread_arg;
1522                p->thread.regs = NULL;  /* no user register state */
1523                ti->flags |= _TIF_RESTOREALL;
1524                f = ret_from_kernel_thread;
1525        } else {
1526                /* user thread */
1527                struct pt_regs *regs = current_pt_regs();
1528                CHECK_FULL_REGS(regs);
1529                *childregs = *regs;
1530                if (usp)
1531                        childregs->gpr[1] = usp;
1532                p->thread.regs = childregs;
1533                childregs->gpr[3] = 0;  /* Result from fork() */
1534                if (clone_flags & CLONE_SETTLS) {
1535#ifdef CONFIG_PPC64
1536                        if (!is_32bit_task())
1537                                childregs->gpr[13] = childregs->gpr[6];
1538                        else
1539#endif
1540                                childregs->gpr[2] = childregs->gpr[6];
1541                }
1542
1543                f = ret_from_fork;
1544        }
1545        childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1546        sp -= STACK_FRAME_OVERHEAD;
1547
1548        /*
1549         * The way this works is that at some point in the future
1550         * some task will call _switch to switch to the new task.
1551         * That will pop off the stack frame created below and start
1552         * the new task running at ret_from_fork.  The new task will
1553         * do some house keeping and then return from the fork or clone
1554         * system call, using the stack frame created above.
1555         */
1556        ((unsigned long *)sp)[0] = 0;
1557        sp -= sizeof(struct pt_regs);
1558        kregs = (struct pt_regs *) sp;
1559        sp -= STACK_FRAME_OVERHEAD;
1560        p->thread.ksp = sp;
1561#ifdef CONFIG_PPC32
1562        p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1563                                _ALIGN_UP(sizeof(struct thread_info), 16);
1564#endif
1565#ifdef CONFIG_HAVE_HW_BREAKPOINT
1566        p->thread.ptrace_bps[0] = NULL;
1567#endif
1568
1569        p->thread.fp_save_area = NULL;
1570#ifdef CONFIG_ALTIVEC
1571        p->thread.vr_save_area = NULL;
1572#endif
1573
1574        setup_ksp_vsid(p, sp);
1575
1576#ifdef CONFIG_PPC64 
1577        if (cpu_has_feature(CPU_FTR_DSCR)) {
1578                p->thread.dscr_inherit = current->thread.dscr_inherit;
1579                p->thread.dscr = mfspr(SPRN_DSCR);
1580        }
1581        if (cpu_has_feature(CPU_FTR_HAS_PPR))
1582                p->thread.ppr = INIT_PPR;
1583#endif
1584        kregs->nip = ppc_function_entry(f);
1585        return 0;
1586}
1587
1588/*
1589 * Set up a thread for executing a new program
1590 */
1591void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1592{
1593#ifdef CONFIG_PPC64
1594        unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1595#endif
1596
1597        /*
1598         * If we exec out of a kernel thread then thread.regs will not be
1599         * set.  Do it now.
1600         */
1601        if (!current->thread.regs) {
1602                struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1603                current->thread.regs = regs - 1;
1604        }
1605
1606#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1607        /*
1608         * Clear any transactional state, we're exec()ing. The cause is
1609         * not important as there will never be a recheckpoint so it's not
1610         * user visible.
1611         */
1612        if (MSR_TM_SUSPENDED(mfmsr()))
1613                tm_reclaim_current(0);
1614#endif
1615
1616        memset(regs->gpr, 0, sizeof(regs->gpr));
1617        regs->ctr = 0;
1618        regs->link = 0;
1619        regs->xer = 0;
1620        regs->ccr = 0;
1621        regs->gpr[1] = sp;
1622
1623        /*
1624         * We have just cleared all the nonvolatile GPRs, so make
1625         * FULL_REGS(regs) return true.  This is necessary to allow
1626         * ptrace to examine the thread immediately after exec.
1627         */
1628        regs->trap &= ~1UL;
1629
1630#ifdef CONFIG_PPC32
1631        regs->mq = 0;
1632        regs->nip = start;
1633        regs->msr = MSR_USER;
1634#else
1635        if (!is_32bit_task()) {
1636                unsigned long entry;
1637
1638                if (is_elf2_task()) {
1639                        /* Look ma, no function descriptors! */
1640                        entry = start;
1641
1642                        /*
1643                         * Ulrich says:
1644                         *   The latest iteration of the ABI requires that when
1645                         *   calling a function (at its global entry point),
1646                         *   the caller must ensure r12 holds the entry point
1647                         *   address (so that the function can quickly
1648                         *   establish addressability).
1649                         */
1650                        regs->gpr[12] = start;
1651                        /* Make sure that's restored on entry to userspace. */
1652                        set_thread_flag(TIF_RESTOREALL);
1653                } else {
1654                        unsigned long toc;
1655
1656                        /* start is a relocated pointer to the function
1657                         * descriptor for the elf _start routine.  The first
1658                         * entry in the function descriptor is the entry
1659                         * address of _start and the second entry is the TOC
1660                         * value we need to use.
1661                         */
1662                        __get_user(entry, (unsigned long __user *)start);
1663                        __get_user(toc, (unsigned long __user *)start+1);
1664
1665                        /* Check whether the e_entry function descriptor entries
1666                         * need to be relocated before we can use them.
1667                         */
1668                        if (load_addr != 0) {
1669                                entry += load_addr;
1670                                toc   += load_addr;
1671                        }
1672                        regs->gpr[2] = toc;
1673                }
1674                regs->nip = entry;
1675                regs->msr = MSR_USER64;
1676        } else {
1677                regs->nip = start;
1678                regs->gpr[2] = 0;
1679                regs->msr = MSR_USER32;
1680        }
1681#endif
1682#ifdef CONFIG_VSX
1683        current->thread.used_vsr = 0;
1684#endif
1685        current->thread.load_fp = 0;
1686        memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1687        current->thread.fp_save_area = NULL;
1688#ifdef CONFIG_ALTIVEC
1689        memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1690        current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1691        current->thread.vr_save_area = NULL;
1692        current->thread.vrsave = 0;
1693        current->thread.used_vr = 0;
1694        current->thread.load_vec = 0;
1695#endif /* CONFIG_ALTIVEC */
1696#ifdef CONFIG_SPE
1697        memset(current->thread.evr, 0, sizeof(current->thread.evr));
1698        current->thread.acc = 0;
1699        current->thread.spefscr = 0;
1700        current->thread.used_spe = 0;
1701#endif /* CONFIG_SPE */
1702#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1703        current->thread.tm_tfhar = 0;
1704        current->thread.tm_texasr = 0;
1705        current->thread.tm_tfiar = 0;
1706        current->thread.load_tm = 0;
1707#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1708}
1709EXPORT_SYMBOL(start_thread);
1710
1711#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1712                | PR_FP_EXC_RES | PR_FP_EXC_INV)
1713
1714int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1715{
1716        struct pt_regs *regs = tsk->thread.regs;
1717
1718        /* This is a bit hairy.  If we are an SPE enabled  processor
1719         * (have embedded fp) we store the IEEE exception enable flags in
1720         * fpexc_mode.  fpexc_mode is also used for setting FP exception
1721         * mode (asyn, precise, disabled) for 'Classic' FP. */
1722        if (val & PR_FP_EXC_SW_ENABLE) {
1723#ifdef CONFIG_SPE
1724                if (cpu_has_feature(CPU_FTR_SPE)) {
1725                        /*
1726                         * When the sticky exception bits are set
1727                         * directly by userspace, it must call prctl
1728                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1729                         * in the existing prctl settings) or
1730                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1731                         * the bits being set).  <fenv.h> functions
1732                         * saving and restoring the whole
1733                         * floating-point environment need to do so
1734                         * anyway to restore the prctl settings from
1735                         * the saved environment.
1736                         */
1737                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1738                        tsk->thread.fpexc_mode = val &
1739                                (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1740                        return 0;
1741                } else {
1742                        return -EINVAL;
1743                }
1744#else
1745                return -EINVAL;
1746#endif
1747        }
1748
1749        /* on a CONFIG_SPE this does not hurt us.  The bits that
1750         * __pack_fe01 use do not overlap with bits used for
1751         * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1752         * on CONFIG_SPE implementations are reserved so writing to
1753         * them does not change anything */
1754        if (val > PR_FP_EXC_PRECISE)
1755                return -EINVAL;
1756        tsk->thread.fpexc_mode = __pack_fe01(val);
1757        if (regs != NULL && (regs->msr & MSR_FP) != 0)
1758                regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1759                        | tsk->thread.fpexc_mode;
1760        return 0;
1761}
1762
1763int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1764{
1765        unsigned int val;
1766
1767        if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1768#ifdef CONFIG_SPE
1769                if (cpu_has_feature(CPU_FTR_SPE)) {
1770                        /*
1771                         * When the sticky exception bits are set
1772                         * directly by userspace, it must call prctl
1773                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1774                         * in the existing prctl settings) or
1775                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1776                         * the bits being set).  <fenv.h> functions
1777                         * saving and restoring the whole
1778                         * floating-point environment need to do so
1779                         * anyway to restore the prctl settings from
1780                         * the saved environment.
1781                         */
1782                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1783                        val = tsk->thread.fpexc_mode;
1784                } else
1785                        return -EINVAL;
1786#else
1787                return -EINVAL;
1788#endif
1789        else
1790                val = __unpack_fe01(tsk->thread.fpexc_mode);
1791        return put_user(val, (unsigned int __user *) adr);
1792}
1793
1794int set_endian(struct task_struct *tsk, unsigned int val)
1795{
1796        struct pt_regs *regs = tsk->thread.regs;
1797
1798        if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1799            (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1800                return -EINVAL;
1801
1802        if (regs == NULL)
1803                return -EINVAL;
1804
1805        if (val == PR_ENDIAN_BIG)
1806                regs->msr &= ~MSR_LE;
1807        else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1808                regs->msr |= MSR_LE;
1809        else
1810                return -EINVAL;
1811
1812        return 0;
1813}
1814
1815int get_endian(struct task_struct *tsk, unsigned long adr)
1816{
1817        struct pt_regs *regs = tsk->thread.regs;
1818        unsigned int val;
1819
1820        if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1821            !cpu_has_feature(CPU_FTR_REAL_LE))
1822                return -EINVAL;
1823
1824        if (regs == NULL)
1825                return -EINVAL;
1826
1827        if (regs->msr & MSR_LE) {
1828                if (cpu_has_feature(CPU_FTR_REAL_LE))
1829                        val = PR_ENDIAN_LITTLE;
1830                else
1831                        val = PR_ENDIAN_PPC_LITTLE;
1832        } else
1833                val = PR_ENDIAN_BIG;
1834
1835        return put_user(val, (unsigned int __user *)adr);
1836}
1837
1838int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1839{
1840        tsk->thread.align_ctl = val;
1841        return 0;
1842}
1843
1844int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1845{
1846        return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1847}
1848
1849static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1850                                  unsigned long nbytes)
1851{
1852        unsigned long stack_page;
1853        unsigned long cpu = task_cpu(p);
1854
1855        /*
1856         * Avoid crashing if the stack has overflowed and corrupted
1857         * task_cpu(p), which is in the thread_info struct.
1858         */
1859        if (cpu < NR_CPUS && cpu_possible(cpu)) {
1860                stack_page = (unsigned long) hardirq_ctx[cpu];
1861                if (sp >= stack_page + sizeof(struct thread_struct)
1862                    && sp <= stack_page + THREAD_SIZE - nbytes)
1863                        return 1;
1864
1865                stack_page = (unsigned long) softirq_ctx[cpu];
1866                if (sp >= stack_page + sizeof(struct thread_struct)
1867                    && sp <= stack_page + THREAD_SIZE - nbytes)
1868                        return 1;
1869        }
1870        return 0;
1871}
1872
1873int validate_sp(unsigned long sp, struct task_struct *p,
1874                       unsigned long nbytes)
1875{
1876        unsigned long stack_page = (unsigned long)task_stack_page(p);
1877
1878        if (sp >= stack_page + sizeof(struct thread_struct)
1879            && sp <= stack_page + THREAD_SIZE - nbytes)
1880                return 1;
1881
1882        return valid_irq_stack(sp, p, nbytes);
1883}
1884
1885EXPORT_SYMBOL(validate_sp);
1886
1887unsigned long get_wchan(struct task_struct *p)
1888{
1889        unsigned long ip, sp;
1890        int count = 0;
1891
1892        if (!p || p == current || p->state == TASK_RUNNING)
1893                return 0;
1894
1895        sp = p->thread.ksp;
1896        if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1897                return 0;
1898
1899        do {
1900                sp = *(unsigned long *)sp;
1901                if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1902                        return 0;
1903                if (count > 0) {
1904                        ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1905                        if (!in_sched_functions(ip))
1906                                return ip;
1907                }
1908        } while (count++ < 16);
1909        return 0;
1910}
1911
1912static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1913
1914void show_stack(struct task_struct *tsk, unsigned long *stack)
1915{
1916        unsigned long sp, ip, lr, newsp;
1917        int count = 0;
1918        int firstframe = 1;
1919#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1920        int curr_frame = current->curr_ret_stack;
1921        extern void return_to_handler(void);
1922        unsigned long rth = (unsigned long)return_to_handler;
1923#endif
1924
1925        sp = (unsigned long) stack;
1926        if (tsk == NULL)
1927                tsk = current;
1928        if (sp == 0) {
1929                if (tsk == current)
1930                        sp = current_stack_pointer();
1931                else
1932                        sp = tsk->thread.ksp;
1933        }
1934
1935        lr = 0;
1936        printk("Call Trace:\n");
1937        do {
1938                if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1939                        return;
1940
1941                stack = (unsigned long *) sp;
1942                newsp = stack[0];
1943                ip = stack[STACK_FRAME_LR_SAVE];
1944                if (!firstframe || ip != lr) {
1945                        printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1946#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1947                        if ((ip == rth) && curr_frame >= 0) {
1948                                pr_cont(" (%pS)",
1949                                       (void *)current->ret_stack[curr_frame].ret);
1950                                curr_frame--;
1951                        }
1952#endif
1953                        if (firstframe)
1954                                pr_cont(" (unreliable)");
1955                        pr_cont("\n");
1956                }
1957                firstframe = 0;
1958
1959                /*
1960                 * See if this is an exception frame.
1961                 * We look for the "regshere" marker in the current frame.
1962                 */
1963                if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1964                    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1965                        struct pt_regs *regs = (struct pt_regs *)
1966                                (sp + STACK_FRAME_OVERHEAD);
1967                        lr = regs->link;
1968                        printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1969                               regs->trap, (void *)regs->nip, (void *)lr);
1970                        firstframe = 1;
1971                }
1972
1973                sp = newsp;
1974        } while (count++ < kstack_depth_to_print);
1975}
1976
1977#ifdef CONFIG_PPC64
1978/* Called with hard IRQs off */
1979void notrace __ppc64_runlatch_on(void)
1980{
1981        struct thread_info *ti = current_thread_info();
1982
1983        if (cpu_has_feature(CPU_FTR_ARCH_206)) {
1984                /*
1985                 * Least significant bit (RUN) is the only writable bit of
1986                 * the CTRL register, so we can avoid mfspr. 2.06 is not the
1987                 * earliest ISA where this is the case, but it's convenient.
1988                 */
1989                mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
1990        } else {
1991                unsigned long ctrl;
1992
1993                /*
1994                 * Some architectures (e.g., Cell) have writable fields other
1995                 * than RUN, so do the read-modify-write.
1996                 */
1997                ctrl = mfspr(SPRN_CTRLF);
1998                ctrl |= CTRL_RUNLATCH;
1999                mtspr(SPRN_CTRLT, ctrl);
2000        }
2001
2002        ti->local_flags |= _TLF_RUNLATCH;
2003}
2004
2005/* Called with hard IRQs off */
2006void notrace __ppc64_runlatch_off(void)
2007{
2008        struct thread_info *ti = current_thread_info();
2009
2010        ti->local_flags &= ~_TLF_RUNLATCH;
2011
2012        if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2013                mtspr(SPRN_CTRLT, 0);
2014        } else {
2015                unsigned long ctrl;
2016
2017                ctrl = mfspr(SPRN_CTRLF);
2018                ctrl &= ~CTRL_RUNLATCH;
2019                mtspr(SPRN_CTRLT, ctrl);
2020        }
2021}
2022#endif /* CONFIG_PPC64 */
2023
2024unsigned long arch_align_stack(unsigned long sp)
2025{
2026        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2027                sp -= get_random_int() & ~PAGE_MASK;
2028        return sp & ~0xf;
2029}
2030
2031static inline unsigned long brk_rnd(void)
2032{
2033        unsigned long rnd = 0;
2034
2035        /* 8MB for 32bit, 1GB for 64bit */
2036        if (is_32bit_task())
2037                rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2038        else
2039                rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2040
2041        return rnd << PAGE_SHIFT;
2042}
2043
2044unsigned long arch_randomize_brk(struct mm_struct *mm)
2045{
2046        unsigned long base = mm->brk;
2047        unsigned long ret;
2048
2049#ifdef CONFIG_PPC_STD_MMU_64
2050        /*
2051         * If we are using 1TB segments and we are allowed to randomise
2052         * the heap, we can put it above 1TB so it is backed by a 1TB
2053         * segment. Otherwise the heap will be in the bottom 1TB
2054         * which always uses 256MB segments and this may result in a
2055         * performance penalty. We don't need to worry about radix. For
2056         * radix, mmu_highuser_ssize remains unchanged from 256MB.
2057         */
2058        if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2059                base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2060#endif
2061
2062        ret = PAGE_ALIGN(base + brk_rnd());
2063
2064        if (ret < mm->brk)
2065                return mm->brk;
2066
2067        return ret;
2068}
2069
2070