linux/arch/x86/kernel/cpu/common.c
<<
>>
Prefs
   1#include <linux/bootmem.h>
   2#include <linux/linkage.h>
   3#include <linux/bitops.h>
   4#include <linux/kernel.h>
   5#include <linux/export.h>
   6#include <linux/percpu.h>
   7#include <linux/string.h>
   8#include <linux/ctype.h>
   9#include <linux/delay.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/clock.h>
  12#include <linux/sched/task.h>
  13#include <linux/init.h>
  14#include <linux/kprobes.h>
  15#include <linux/kgdb.h>
  16#include <linux/smp.h>
  17#include <linux/io.h>
  18#include <linux/syscore_ops.h>
  19
  20#include <asm/stackprotector.h>
  21#include <asm/perf_event.h>
  22#include <asm/mmu_context.h>
  23#include <asm/archrandom.h>
  24#include <asm/hypervisor.h>
  25#include <asm/processor.h>
  26#include <asm/tlbflush.h>
  27#include <asm/debugreg.h>
  28#include <asm/sections.h>
  29#include <asm/vsyscall.h>
  30#include <linux/topology.h>
  31#include <linux/cpumask.h>
  32#include <asm/pgtable.h>
  33#include <linux/atomic.h>
  34#include <asm/proto.h>
  35#include <asm/setup.h>
  36#include <asm/apic.h>
  37#include <asm/desc.h>
  38#include <asm/fpu/internal.h>
  39#include <asm/mtrr.h>
  40#include <asm/hwcap2.h>
  41#include <linux/numa.h>
  42#include <asm/asm.h>
  43#include <asm/bugs.h>
  44#include <asm/cpu.h>
  45#include <asm/mce.h>
  46#include <asm/msr.h>
  47#include <asm/pat.h>
  48#include <asm/microcode.h>
  49#include <asm/microcode_intel.h>
  50
  51#ifdef CONFIG_X86_LOCAL_APIC
  52#include <asm/uv/uv.h>
  53#endif
  54
  55#include "cpu.h"
  56
  57u32 elf_hwcap2 __read_mostly;
  58
  59/* all of these masks are initialized in setup_cpu_local_masks() */
  60cpumask_var_t cpu_initialized_mask;
  61cpumask_var_t cpu_callout_mask;
  62cpumask_var_t cpu_callin_mask;
  63
  64/* representing cpus for which sibling maps can be computed */
  65cpumask_var_t cpu_sibling_setup_mask;
  66
  67/* correctly size the local cpu masks */
  68void __init setup_cpu_local_masks(void)
  69{
  70        alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  71        alloc_bootmem_cpumask_var(&cpu_callin_mask);
  72        alloc_bootmem_cpumask_var(&cpu_callout_mask);
  73        alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  74}
  75
  76static void default_init(struct cpuinfo_x86 *c)
  77{
  78#ifdef CONFIG_X86_64
  79        cpu_detect_cache_sizes(c);
  80#else
  81        /* Not much we can do here... */
  82        /* Check if at least it has cpuid */
  83        if (c->cpuid_level == -1) {
  84                /* No cpuid. It must be an ancient CPU */
  85                if (c->x86 == 4)
  86                        strcpy(c->x86_model_id, "486");
  87                else if (c->x86 == 3)
  88                        strcpy(c->x86_model_id, "386");
  89        }
  90#endif
  91}
  92
  93static const struct cpu_dev default_cpu = {
  94        .c_init         = default_init,
  95        .c_vendor       = "Unknown",
  96        .c_x86_vendor   = X86_VENDOR_UNKNOWN,
  97};
  98
  99static const struct cpu_dev *this_cpu = &default_cpu;
 100
 101DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
 102#ifdef CONFIG_X86_64
 103        /*
 104         * We need valid kernel segments for data and code in long mode too
 105         * IRET will check the segment types  kkeil 2000/10/28
 106         * Also sysret mandates a special GDT layout
 107         *
 108         * TLS descriptors are currently at a different place compared to i386.
 109         * Hopefully nobody expects them at a fixed place (Wine?)
 110         */
 111        [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 112        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 113        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 114        [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 115        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 116        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 117#else
 118        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 119        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 120        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 121        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 122        /*
 123         * Segments used for calling PnP BIOS have byte granularity.
 124         * They code segments and data segments have fixed 64k limits,
 125         * the transfer segment sizes are set at run time.
 126         */
 127        /* 32-bit code */
 128        [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 129        /* 16-bit code */
 130        [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 131        /* 16-bit data */
 132        [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 133        /* 16-bit data */
 134        [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 135        /* 16-bit data */
 136        [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 137        /*
 138         * The APM segments have byte granularity and their bases
 139         * are set at run time.  All have 64k limits.
 140         */
 141        /* 32-bit code */
 142        [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 143        /* 16-bit code */
 144        [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 145        /* data */
 146        [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 147
 148        [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 149        [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 150        GDT_STACK_CANARY_INIT
 151#endif
 152} };
 153EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 154
 155static int __init x86_mpx_setup(char *s)
 156{
 157        /* require an exact match without trailing characters */
 158        if (strlen(s))
 159                return 0;
 160
 161        /* do not emit a message if the feature is not present */
 162        if (!boot_cpu_has(X86_FEATURE_MPX))
 163                return 1;
 164
 165        setup_clear_cpu_cap(X86_FEATURE_MPX);
 166        pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
 167        return 1;
 168}
 169__setup("nompx", x86_mpx_setup);
 170
 171#ifdef CONFIG_X86_64
 172static int __init x86_nopcid_setup(char *s)
 173{
 174        /* nopcid doesn't accept parameters */
 175        if (s)
 176                return -EINVAL;
 177
 178        /* do not emit a message if the feature is not present */
 179        if (!boot_cpu_has(X86_FEATURE_PCID))
 180                return 0;
 181
 182        setup_clear_cpu_cap(X86_FEATURE_PCID);
 183        pr_info("nopcid: PCID feature disabled\n");
 184        return 0;
 185}
 186early_param("nopcid", x86_nopcid_setup);
 187#endif
 188
 189static int __init x86_noinvpcid_setup(char *s)
 190{
 191        /* noinvpcid doesn't accept parameters */
 192        if (s)
 193                return -EINVAL;
 194
 195        /* do not emit a message if the feature is not present */
 196        if (!boot_cpu_has(X86_FEATURE_INVPCID))
 197                return 0;
 198
 199        setup_clear_cpu_cap(X86_FEATURE_INVPCID);
 200        pr_info("noinvpcid: INVPCID feature disabled\n");
 201        return 0;
 202}
 203early_param("noinvpcid", x86_noinvpcid_setup);
 204
 205#ifdef CONFIG_X86_32
 206static int cachesize_override = -1;
 207static int disable_x86_serial_nr = 1;
 208
 209static int __init cachesize_setup(char *str)
 210{
 211        get_option(&str, &cachesize_override);
 212        return 1;
 213}
 214__setup("cachesize=", cachesize_setup);
 215
 216static int __init x86_sep_setup(char *s)
 217{
 218        setup_clear_cpu_cap(X86_FEATURE_SEP);
 219        return 1;
 220}
 221__setup("nosep", x86_sep_setup);
 222
 223/* Standard macro to see if a specific flag is changeable */
 224static inline int flag_is_changeable_p(u32 flag)
 225{
 226        u32 f1, f2;
 227
 228        /*
 229         * Cyrix and IDT cpus allow disabling of CPUID
 230         * so the code below may return different results
 231         * when it is executed before and after enabling
 232         * the CPUID. Add "volatile" to not allow gcc to
 233         * optimize the subsequent calls to this function.
 234         */
 235        asm volatile ("pushfl           \n\t"
 236                      "pushfl           \n\t"
 237                      "popl %0          \n\t"
 238                      "movl %0, %1      \n\t"
 239                      "xorl %2, %0      \n\t"
 240                      "pushl %0         \n\t"
 241                      "popfl            \n\t"
 242                      "pushfl           \n\t"
 243                      "popl %0          \n\t"
 244                      "popfl            \n\t"
 245
 246                      : "=&r" (f1), "=&r" (f2)
 247                      : "ir" (flag));
 248
 249        return ((f1^f2) & flag) != 0;
 250}
 251
 252/* Probe for the CPUID instruction */
 253int have_cpuid_p(void)
 254{
 255        return flag_is_changeable_p(X86_EFLAGS_ID);
 256}
 257
 258static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 259{
 260        unsigned long lo, hi;
 261
 262        if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 263                return;
 264
 265        /* Disable processor serial number: */
 266
 267        rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 268        lo |= 0x200000;
 269        wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 270
 271        pr_notice("CPU serial number disabled.\n");
 272        clear_cpu_cap(c, X86_FEATURE_PN);
 273
 274        /* Disabling the serial number may affect the cpuid level */
 275        c->cpuid_level = cpuid_eax(0);
 276}
 277
 278static int __init x86_serial_nr_setup(char *s)
 279{
 280        disable_x86_serial_nr = 0;
 281        return 1;
 282}
 283__setup("serialnumber", x86_serial_nr_setup);
 284#else
 285static inline int flag_is_changeable_p(u32 flag)
 286{
 287        return 1;
 288}
 289static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 290{
 291}
 292#endif
 293
 294static __init int setup_disable_smep(char *arg)
 295{
 296        setup_clear_cpu_cap(X86_FEATURE_SMEP);
 297        /* Check for things that depend on SMEP being enabled: */
 298        check_mpx_erratum(&boot_cpu_data);
 299        return 1;
 300}
 301__setup("nosmep", setup_disable_smep);
 302
 303static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 304{
 305        if (cpu_has(c, X86_FEATURE_SMEP))
 306                cr4_set_bits(X86_CR4_SMEP);
 307}
 308
 309static __init int setup_disable_smap(char *arg)
 310{
 311        setup_clear_cpu_cap(X86_FEATURE_SMAP);
 312        return 1;
 313}
 314__setup("nosmap", setup_disable_smap);
 315
 316static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 317{
 318        unsigned long eflags = native_save_fl();
 319
 320        /* This should have been cleared long ago */
 321        BUG_ON(eflags & X86_EFLAGS_AC);
 322
 323        if (cpu_has(c, X86_FEATURE_SMAP)) {
 324#ifdef CONFIG_X86_SMAP
 325                cr4_set_bits(X86_CR4_SMAP);
 326#else
 327                cr4_clear_bits(X86_CR4_SMAP);
 328#endif
 329        }
 330}
 331
 332/*
 333 * Protection Keys are not available in 32-bit mode.
 334 */
 335static bool pku_disabled;
 336
 337static __always_inline void setup_pku(struct cpuinfo_x86 *c)
 338{
 339        /* check the boot processor, plus compile options for PKU: */
 340        if (!cpu_feature_enabled(X86_FEATURE_PKU))
 341                return;
 342        /* checks the actual processor's cpuid bits: */
 343        if (!cpu_has(c, X86_FEATURE_PKU))
 344                return;
 345        if (pku_disabled)
 346                return;
 347
 348        cr4_set_bits(X86_CR4_PKE);
 349        /*
 350         * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
 351         * cpuid bit to be set.  We need to ensure that we
 352         * update that bit in this CPU's "cpu_info".
 353         */
 354        get_cpu_cap(c);
 355}
 356
 357#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 358static __init int setup_disable_pku(char *arg)
 359{
 360        /*
 361         * Do not clear the X86_FEATURE_PKU bit.  All of the
 362         * runtime checks are against OSPKE so clearing the
 363         * bit does nothing.
 364         *
 365         * This way, we will see "pku" in cpuinfo, but not
 366         * "ospke", which is exactly what we want.  It shows
 367         * that the CPU has PKU, but the OS has not enabled it.
 368         * This happens to be exactly how a system would look
 369         * if we disabled the config option.
 370         */
 371        pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
 372        pku_disabled = true;
 373        return 1;
 374}
 375__setup("nopku", setup_disable_pku);
 376#endif /* CONFIG_X86_64 */
 377
 378/*
 379 * Some CPU features depend on higher CPUID levels, which may not always
 380 * be available due to CPUID level capping or broken virtualization
 381 * software.  Add those features to this table to auto-disable them.
 382 */
 383struct cpuid_dependent_feature {
 384        u32 feature;
 385        u32 level;
 386};
 387
 388static const struct cpuid_dependent_feature
 389cpuid_dependent_features[] = {
 390        { X86_FEATURE_MWAIT,            0x00000005 },
 391        { X86_FEATURE_DCA,              0x00000009 },
 392        { X86_FEATURE_XSAVE,            0x0000000d },
 393        { 0, 0 }
 394};
 395
 396static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 397{
 398        const struct cpuid_dependent_feature *df;
 399
 400        for (df = cpuid_dependent_features; df->feature; df++) {
 401
 402                if (!cpu_has(c, df->feature))
 403                        continue;
 404                /*
 405                 * Note: cpuid_level is set to -1 if unavailable, but
 406                 * extended_extended_level is set to 0 if unavailable
 407                 * and the legitimate extended levels are all negative
 408                 * when signed; hence the weird messing around with
 409                 * signs here...
 410                 */
 411                if (!((s32)df->level < 0 ?
 412                     (u32)df->level > (u32)c->extended_cpuid_level :
 413                     (s32)df->level > (s32)c->cpuid_level))
 414                        continue;
 415
 416                clear_cpu_cap(c, df->feature);
 417                if (!warn)
 418                        continue;
 419
 420                pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
 421                        x86_cap_flag(df->feature), df->level);
 422        }
 423}
 424
 425/*
 426 * Naming convention should be: <Name> [(<Codename>)]
 427 * This table only is used unless init_<vendor>() below doesn't set it;
 428 * in particular, if CPUID levels 0x80000002..4 are supported, this
 429 * isn't used
 430 */
 431
 432/* Look up CPU names by table lookup. */
 433static const char *table_lookup_model(struct cpuinfo_x86 *c)
 434{
 435#ifdef CONFIG_X86_32
 436        const struct legacy_cpu_model_info *info;
 437
 438        if (c->x86_model >= 16)
 439                return NULL;    /* Range check */
 440
 441        if (!this_cpu)
 442                return NULL;
 443
 444        info = this_cpu->legacy_models;
 445
 446        while (info->family) {
 447                if (info->family == c->x86)
 448                        return info->model_names[c->x86_model];
 449                info++;
 450        }
 451#endif
 452        return NULL;            /* Not found */
 453}
 454
 455__u32 cpu_caps_cleared[NCAPINTS];
 456__u32 cpu_caps_set[NCAPINTS];
 457
 458void load_percpu_segment(int cpu)
 459{
 460#ifdef CONFIG_X86_32
 461        loadsegment(fs, __KERNEL_PERCPU);
 462#else
 463        __loadsegment_simple(gs, 0);
 464        wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
 465#endif
 466        load_stack_canary_segment();
 467}
 468
 469/* Setup the fixmap mapping only once per-processor */
 470static inline void setup_fixmap_gdt(int cpu)
 471{
 472#ifdef CONFIG_X86_64
 473        /* On 64-bit systems, we use a read-only fixmap GDT. */
 474        pgprot_t prot = PAGE_KERNEL_RO;
 475#else
 476        /*
 477         * On native 32-bit systems, the GDT cannot be read-only because
 478         * our double fault handler uses a task gate, and entering through
 479         * a task gate needs to change an available TSS to busy.  If the GDT
 480         * is read-only, that will triple fault.
 481         *
 482         * On Xen PV, the GDT must be read-only because the hypervisor requires
 483         * it.
 484         */
 485        pgprot_t prot = boot_cpu_has(X86_FEATURE_XENPV) ?
 486                PAGE_KERNEL_RO : PAGE_KERNEL;
 487#endif
 488
 489        __set_fixmap(get_cpu_gdt_ro_index(cpu), get_cpu_gdt_paddr(cpu), prot);
 490}
 491
 492/* Load the original GDT from the per-cpu structure */
 493void load_direct_gdt(int cpu)
 494{
 495        struct desc_ptr gdt_descr;
 496
 497        gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
 498        gdt_descr.size = GDT_SIZE - 1;
 499        load_gdt(&gdt_descr);
 500}
 501EXPORT_SYMBOL_GPL(load_direct_gdt);
 502
 503/* Load a fixmap remapping of the per-cpu GDT */
 504void load_fixmap_gdt(int cpu)
 505{
 506        struct desc_ptr gdt_descr;
 507
 508        gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
 509        gdt_descr.size = GDT_SIZE - 1;
 510        load_gdt(&gdt_descr);
 511}
 512EXPORT_SYMBOL_GPL(load_fixmap_gdt);
 513
 514/*
 515 * Current gdt points %fs at the "master" per-cpu area: after this,
 516 * it's on the real one.
 517 */
 518void switch_to_new_gdt(int cpu)
 519{
 520        /* Load the original GDT */
 521        load_direct_gdt(cpu);
 522        /* Reload the per-cpu base */
 523        load_percpu_segment(cpu);
 524}
 525
 526static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 527
 528static void get_model_name(struct cpuinfo_x86 *c)
 529{
 530        unsigned int *v;
 531        char *p, *q, *s;
 532
 533        if (c->extended_cpuid_level < 0x80000004)
 534                return;
 535
 536        v = (unsigned int *)c->x86_model_id;
 537        cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 538        cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 539        cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 540        c->x86_model_id[48] = 0;
 541
 542        /* Trim whitespace */
 543        p = q = s = &c->x86_model_id[0];
 544
 545        while (*p == ' ')
 546                p++;
 547
 548        while (*p) {
 549                /* Note the last non-whitespace index */
 550                if (!isspace(*p))
 551                        s = q;
 552
 553                *q++ = *p++;
 554        }
 555
 556        *(s + 1) = '\0';
 557}
 558
 559void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 560{
 561        unsigned int n, dummy, ebx, ecx, edx, l2size;
 562
 563        n = c->extended_cpuid_level;
 564
 565        if (n >= 0x80000005) {
 566                cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 567                c->x86_cache_size = (ecx>>24) + (edx>>24);
 568#ifdef CONFIG_X86_64
 569                /* On K8 L1 TLB is inclusive, so don't count it */
 570                c->x86_tlbsize = 0;
 571#endif
 572        }
 573
 574        if (n < 0x80000006)     /* Some chips just has a large L1. */
 575                return;
 576
 577        cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 578        l2size = ecx >> 16;
 579
 580#ifdef CONFIG_X86_64
 581        c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 582#else
 583        /* do processor-specific cache resizing */
 584        if (this_cpu->legacy_cache_size)
 585                l2size = this_cpu->legacy_cache_size(c, l2size);
 586
 587        /* Allow user to override all this if necessary. */
 588        if (cachesize_override != -1)
 589                l2size = cachesize_override;
 590
 591        if (l2size == 0)
 592                return;         /* Again, no L2 cache is possible */
 593#endif
 594
 595        c->x86_cache_size = l2size;
 596}
 597
 598u16 __read_mostly tlb_lli_4k[NR_INFO];
 599u16 __read_mostly tlb_lli_2m[NR_INFO];
 600u16 __read_mostly tlb_lli_4m[NR_INFO];
 601u16 __read_mostly tlb_lld_4k[NR_INFO];
 602u16 __read_mostly tlb_lld_2m[NR_INFO];
 603u16 __read_mostly tlb_lld_4m[NR_INFO];
 604u16 __read_mostly tlb_lld_1g[NR_INFO];
 605
 606static void cpu_detect_tlb(struct cpuinfo_x86 *c)
 607{
 608        if (this_cpu->c_detect_tlb)
 609                this_cpu->c_detect_tlb(c);
 610
 611        pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
 612                tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
 613                tlb_lli_4m[ENTRIES]);
 614
 615        pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
 616                tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
 617                tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
 618}
 619
 620void detect_ht(struct cpuinfo_x86 *c)
 621{
 622#ifdef CONFIG_SMP
 623        u32 eax, ebx, ecx, edx;
 624        int index_msb, core_bits;
 625        static bool printed;
 626
 627        if (!cpu_has(c, X86_FEATURE_HT))
 628                return;
 629
 630        if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 631                goto out;
 632
 633        if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 634                return;
 635
 636        cpuid(1, &eax, &ebx, &ecx, &edx);
 637
 638        smp_num_siblings = (ebx & 0xff0000) >> 16;
 639
 640        if (smp_num_siblings == 1) {
 641                pr_info_once("CPU0: Hyper-Threading is disabled\n");
 642                goto out;
 643        }
 644
 645        if (smp_num_siblings <= 1)
 646                goto out;
 647
 648        index_msb = get_count_order(smp_num_siblings);
 649        c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 650
 651        smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 652
 653        index_msb = get_count_order(smp_num_siblings);
 654
 655        core_bits = get_count_order(c->x86_max_cores);
 656
 657        c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 658                                       ((1 << core_bits) - 1);
 659
 660out:
 661        if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
 662                pr_info("CPU: Physical Processor ID: %d\n",
 663                        c->phys_proc_id);
 664                pr_info("CPU: Processor Core ID: %d\n",
 665                        c->cpu_core_id);
 666                printed = 1;
 667        }
 668#endif
 669}
 670
 671static void get_cpu_vendor(struct cpuinfo_x86 *c)
 672{
 673        char *v = c->x86_vendor_id;
 674        int i;
 675
 676        for (i = 0; i < X86_VENDOR_NUM; i++) {
 677                if (!cpu_devs[i])
 678                        break;
 679
 680                if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 681                    (cpu_devs[i]->c_ident[1] &&
 682                     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 683
 684                        this_cpu = cpu_devs[i];
 685                        c->x86_vendor = this_cpu->c_x86_vendor;
 686                        return;
 687                }
 688        }
 689
 690        pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
 691                    "CPU: Your system may be unstable.\n", v);
 692
 693        c->x86_vendor = X86_VENDOR_UNKNOWN;
 694        this_cpu = &default_cpu;
 695}
 696
 697void cpu_detect(struct cpuinfo_x86 *c)
 698{
 699        /* Get vendor name */
 700        cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 701              (unsigned int *)&c->x86_vendor_id[0],
 702              (unsigned int *)&c->x86_vendor_id[8],
 703              (unsigned int *)&c->x86_vendor_id[4]);
 704
 705        c->x86 = 4;
 706        /* Intel-defined flags: level 0x00000001 */
 707        if (c->cpuid_level >= 0x00000001) {
 708                u32 junk, tfms, cap0, misc;
 709
 710                cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 711                c->x86          = x86_family(tfms);
 712                c->x86_model    = x86_model(tfms);
 713                c->x86_mask     = x86_stepping(tfms);
 714
 715                if (cap0 & (1<<19)) {
 716                        c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 717                        c->x86_cache_alignment = c->x86_clflush_size;
 718                }
 719        }
 720}
 721
 722static void apply_forced_caps(struct cpuinfo_x86 *c)
 723{
 724        int i;
 725
 726        for (i = 0; i < NCAPINTS; i++) {
 727                c->x86_capability[i] &= ~cpu_caps_cleared[i];
 728                c->x86_capability[i] |= cpu_caps_set[i];
 729        }
 730}
 731
 732void get_cpu_cap(struct cpuinfo_x86 *c)
 733{
 734        u32 eax, ebx, ecx, edx;
 735
 736        /* Intel-defined flags: level 0x00000001 */
 737        if (c->cpuid_level >= 0x00000001) {
 738                cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 739
 740                c->x86_capability[CPUID_1_ECX] = ecx;
 741                c->x86_capability[CPUID_1_EDX] = edx;
 742        }
 743
 744        /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
 745        if (c->cpuid_level >= 0x00000006)
 746                c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
 747
 748        /* Additional Intel-defined flags: level 0x00000007 */
 749        if (c->cpuid_level >= 0x00000007) {
 750                cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 751                c->x86_capability[CPUID_7_0_EBX] = ebx;
 752                c->x86_capability[CPUID_7_ECX] = ecx;
 753        }
 754
 755        /* Extended state features: level 0x0000000d */
 756        if (c->cpuid_level >= 0x0000000d) {
 757                cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
 758
 759                c->x86_capability[CPUID_D_1_EAX] = eax;
 760        }
 761
 762        /* Additional Intel-defined flags: level 0x0000000F */
 763        if (c->cpuid_level >= 0x0000000F) {
 764
 765                /* QoS sub-leaf, EAX=0Fh, ECX=0 */
 766                cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
 767                c->x86_capability[CPUID_F_0_EDX] = edx;
 768
 769                if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
 770                        /* will be overridden if occupancy monitoring exists */
 771                        c->x86_cache_max_rmid = ebx;
 772
 773                        /* QoS sub-leaf, EAX=0Fh, ECX=1 */
 774                        cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
 775                        c->x86_capability[CPUID_F_1_EDX] = edx;
 776
 777                        if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
 778                              ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
 779                               (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
 780                                c->x86_cache_max_rmid = ecx;
 781                                c->x86_cache_occ_scale = ebx;
 782                        }
 783                } else {
 784                        c->x86_cache_max_rmid = -1;
 785                        c->x86_cache_occ_scale = -1;
 786                }
 787        }
 788
 789        /* AMD-defined flags: level 0x80000001 */
 790        eax = cpuid_eax(0x80000000);
 791        c->extended_cpuid_level = eax;
 792
 793        if ((eax & 0xffff0000) == 0x80000000) {
 794                if (eax >= 0x80000001) {
 795                        cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
 796
 797                        c->x86_capability[CPUID_8000_0001_ECX] = ecx;
 798                        c->x86_capability[CPUID_8000_0001_EDX] = edx;
 799                }
 800        }
 801
 802        if (c->extended_cpuid_level >= 0x80000007) {
 803                cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
 804
 805                c->x86_capability[CPUID_8000_0007_EBX] = ebx;
 806                c->x86_power = edx;
 807        }
 808
 809        if (c->extended_cpuid_level >= 0x80000008) {
 810                cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 811
 812                c->x86_virt_bits = (eax >> 8) & 0xff;
 813                c->x86_phys_bits = eax & 0xff;
 814                c->x86_capability[CPUID_8000_0008_EBX] = ebx;
 815        }
 816#ifdef CONFIG_X86_32
 817        else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 818                c->x86_phys_bits = 36;
 819#endif
 820
 821        if (c->extended_cpuid_level >= 0x8000000a)
 822                c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
 823
 824        init_scattered_cpuid_features(c);
 825
 826        /*
 827         * Clear/Set all flags overridden by options, after probe.
 828         * This needs to happen each time we re-probe, which may happen
 829         * several times during CPU initialization.
 830         */
 831        apply_forced_caps(c);
 832}
 833
 834static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 835{
 836#ifdef CONFIG_X86_32
 837        int i;
 838
 839        /*
 840         * First of all, decide if this is a 486 or higher
 841         * It's a 486 if we can modify the AC flag
 842         */
 843        if (flag_is_changeable_p(X86_EFLAGS_AC))
 844                c->x86 = 4;
 845        else
 846                c->x86 = 3;
 847
 848        for (i = 0; i < X86_VENDOR_NUM; i++)
 849                if (cpu_devs[i] && cpu_devs[i]->c_identify) {
 850                        c->x86_vendor_id[0] = 0;
 851                        cpu_devs[i]->c_identify(c);
 852                        if (c->x86_vendor_id[0]) {
 853                                get_cpu_vendor(c);
 854                                break;
 855                        }
 856                }
 857#endif
 858}
 859
 860/*
 861 * Do minimum CPU detection early.
 862 * Fields really needed: vendor, cpuid_level, family, model, mask,
 863 * cache alignment.
 864 * The others are not touched to avoid unwanted side effects.
 865 *
 866 * WARNING: this function is only called on the BP.  Don't add code here
 867 * that is supposed to run on all CPUs.
 868 */
 869static void __init early_identify_cpu(struct cpuinfo_x86 *c)
 870{
 871#ifdef CONFIG_X86_64
 872        c->x86_clflush_size = 64;
 873        c->x86_phys_bits = 36;
 874        c->x86_virt_bits = 48;
 875#else
 876        c->x86_clflush_size = 32;
 877        c->x86_phys_bits = 32;
 878        c->x86_virt_bits = 32;
 879#endif
 880        c->x86_cache_alignment = c->x86_clflush_size;
 881
 882        memset(&c->x86_capability, 0, sizeof c->x86_capability);
 883        c->extended_cpuid_level = 0;
 884
 885        /* cyrix could have cpuid enabled via c_identify()*/
 886        if (have_cpuid_p()) {
 887                cpu_detect(c);
 888                get_cpu_vendor(c);
 889                get_cpu_cap(c);
 890                setup_force_cpu_cap(X86_FEATURE_CPUID);
 891
 892                if (this_cpu->c_early_init)
 893                        this_cpu->c_early_init(c);
 894
 895                c->cpu_index = 0;
 896                filter_cpuid_features(c, false);
 897
 898                if (this_cpu->c_bsp_init)
 899                        this_cpu->c_bsp_init(c);
 900        } else {
 901                identify_cpu_without_cpuid(c);
 902                setup_clear_cpu_cap(X86_FEATURE_CPUID);
 903        }
 904
 905        setup_force_cpu_cap(X86_FEATURE_ALWAYS);
 906        fpu__init_system(c);
 907
 908#ifdef CONFIG_X86_32
 909        /*
 910         * Regardless of whether PCID is enumerated, the SDM says
 911         * that it can't be enabled in 32-bit mode.
 912         */
 913        setup_clear_cpu_cap(X86_FEATURE_PCID);
 914#endif
 915}
 916
 917void __init early_cpu_init(void)
 918{
 919        const struct cpu_dev *const *cdev;
 920        int count = 0;
 921
 922#ifdef CONFIG_PROCESSOR_SELECT
 923        pr_info("KERNEL supported cpus:\n");
 924#endif
 925
 926        for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
 927                const struct cpu_dev *cpudev = *cdev;
 928
 929                if (count >= X86_VENDOR_NUM)
 930                        break;
 931                cpu_devs[count] = cpudev;
 932                count++;
 933
 934#ifdef CONFIG_PROCESSOR_SELECT
 935                {
 936                        unsigned int j;
 937
 938                        for (j = 0; j < 2; j++) {
 939                                if (!cpudev->c_ident[j])
 940                                        continue;
 941                                pr_info("  %s %s\n", cpudev->c_vendor,
 942                                        cpudev->c_ident[j]);
 943                        }
 944                }
 945#endif
 946        }
 947        early_identify_cpu(&boot_cpu_data);
 948}
 949
 950/*
 951 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
 952 * unfortunately, that's not true in practice because of early VIA
 953 * chips and (more importantly) broken virtualizers that are not easy
 954 * to detect. In the latter case it doesn't even *fail* reliably, so
 955 * probing for it doesn't even work. Disable it completely on 32-bit
 956 * unless we can find a reliable way to detect all the broken cases.
 957 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
 958 */
 959static void detect_nopl(struct cpuinfo_x86 *c)
 960{
 961#ifdef CONFIG_X86_32
 962        clear_cpu_cap(c, X86_FEATURE_NOPL);
 963#else
 964        set_cpu_cap(c, X86_FEATURE_NOPL);
 965#endif
 966}
 967
 968static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
 969{
 970#ifdef CONFIG_X86_64
 971        /*
 972         * Empirically, writing zero to a segment selector on AMD does
 973         * not clear the base, whereas writing zero to a segment
 974         * selector on Intel does clear the base.  Intel's behavior
 975         * allows slightly faster context switches in the common case
 976         * where GS is unused by the prev and next threads.
 977         *
 978         * Since neither vendor documents this anywhere that I can see,
 979         * detect it directly instead of hardcoding the choice by
 980         * vendor.
 981         *
 982         * I've designated AMD's behavior as the "bug" because it's
 983         * counterintuitive and less friendly.
 984         */
 985
 986        unsigned long old_base, tmp;
 987        rdmsrl(MSR_FS_BASE, old_base);
 988        wrmsrl(MSR_FS_BASE, 1);
 989        loadsegment(fs, 0);
 990        rdmsrl(MSR_FS_BASE, tmp);
 991        if (tmp != 0)
 992                set_cpu_bug(c, X86_BUG_NULL_SEG);
 993        wrmsrl(MSR_FS_BASE, old_base);
 994#endif
 995}
 996
 997static void generic_identify(struct cpuinfo_x86 *c)
 998{
 999        c->extended_cpuid_level = 0;
1000
1001        if (!have_cpuid_p())
1002                identify_cpu_without_cpuid(c);
1003
1004        /* cyrix could have cpuid enabled via c_identify()*/
1005        if (!have_cpuid_p())
1006                return;
1007
1008        cpu_detect(c);
1009
1010        get_cpu_vendor(c);
1011
1012        get_cpu_cap(c);
1013
1014        if (c->cpuid_level >= 0x00000001) {
1015                c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1016#ifdef CONFIG_X86_32
1017# ifdef CONFIG_SMP
1018                c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1019# else
1020                c->apicid = c->initial_apicid;
1021# endif
1022#endif
1023                c->phys_proc_id = c->initial_apicid;
1024        }
1025
1026        get_model_name(c); /* Default name */
1027
1028        detect_nopl(c);
1029
1030        detect_null_seg_behavior(c);
1031
1032        /*
1033         * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1034         * systems that run Linux at CPL > 0 may or may not have the
1035         * issue, but, even if they have the issue, there's absolutely
1036         * nothing we can do about it because we can't use the real IRET
1037         * instruction.
1038         *
1039         * NB: For the time being, only 32-bit kernels support
1040         * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1041         * whether to apply espfix using paravirt hooks.  If any
1042         * non-paravirt system ever shows up that does *not* have the
1043         * ESPFIX issue, we can change this.
1044         */
1045#ifdef CONFIG_X86_32
1046# ifdef CONFIG_PARAVIRT
1047        do {
1048                extern void native_iret(void);
1049                if (pv_cpu_ops.iret == native_iret)
1050                        set_cpu_bug(c, X86_BUG_ESPFIX);
1051        } while (0);
1052# else
1053        set_cpu_bug(c, X86_BUG_ESPFIX);
1054# endif
1055#endif
1056}
1057
1058static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1059{
1060        /*
1061         * The heavy lifting of max_rmid and cache_occ_scale are handled
1062         * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1063         * in case CQM bits really aren't there in this CPU.
1064         */
1065        if (c != &boot_cpu_data) {
1066                boot_cpu_data.x86_cache_max_rmid =
1067                        min(boot_cpu_data.x86_cache_max_rmid,
1068                            c->x86_cache_max_rmid);
1069        }
1070}
1071
1072/*
1073 * Validate that ACPI/mptables have the same information about the
1074 * effective APIC id and update the package map.
1075 */
1076static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1077{
1078#ifdef CONFIG_SMP
1079        unsigned int apicid, cpu = smp_processor_id();
1080
1081        apicid = apic->cpu_present_to_apicid(cpu);
1082
1083        if (apicid != c->apicid) {
1084                pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1085                       cpu, apicid, c->initial_apicid);
1086        }
1087        BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1088#else
1089        c->logical_proc_id = 0;
1090#endif
1091}
1092
1093/*
1094 * This does the hard work of actually picking apart the CPU stuff...
1095 */
1096static void identify_cpu(struct cpuinfo_x86 *c)
1097{
1098        int i;
1099
1100        c->loops_per_jiffy = loops_per_jiffy;
1101        c->x86_cache_size = -1;
1102        c->x86_vendor = X86_VENDOR_UNKNOWN;
1103        c->x86_model = c->x86_mask = 0; /* So far unknown... */
1104        c->x86_vendor_id[0] = '\0'; /* Unset */
1105        c->x86_model_id[0] = '\0';  /* Unset */
1106        c->x86_max_cores = 1;
1107        c->x86_coreid_bits = 0;
1108        c->cu_id = 0xff;
1109#ifdef CONFIG_X86_64
1110        c->x86_clflush_size = 64;
1111        c->x86_phys_bits = 36;
1112        c->x86_virt_bits = 48;
1113#else
1114        c->cpuid_level = -1;    /* CPUID not detected */
1115        c->x86_clflush_size = 32;
1116        c->x86_phys_bits = 32;
1117        c->x86_virt_bits = 32;
1118#endif
1119        c->x86_cache_alignment = c->x86_clflush_size;
1120        memset(&c->x86_capability, 0, sizeof c->x86_capability);
1121
1122        generic_identify(c);
1123
1124        if (this_cpu->c_identify)
1125                this_cpu->c_identify(c);
1126
1127        /* Clear/Set all flags overridden by options, after probe */
1128        apply_forced_caps(c);
1129
1130#ifdef CONFIG_X86_64
1131        c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1132#endif
1133
1134        /*
1135         * Vendor-specific initialization.  In this section we
1136         * canonicalize the feature flags, meaning if there are
1137         * features a certain CPU supports which CPUID doesn't
1138         * tell us, CPUID claiming incorrect flags, or other bugs,
1139         * we handle them here.
1140         *
1141         * At the end of this section, c->x86_capability better
1142         * indicate the features this CPU genuinely supports!
1143         */
1144        if (this_cpu->c_init)
1145                this_cpu->c_init(c);
1146
1147        /* Disable the PN if appropriate */
1148        squash_the_stupid_serial_number(c);
1149
1150        /* Set up SMEP/SMAP */
1151        setup_smep(c);
1152        setup_smap(c);
1153
1154        /*
1155         * The vendor-specific functions might have changed features.
1156         * Now we do "generic changes."
1157         */
1158
1159        /* Filter out anything that depends on CPUID levels we don't have */
1160        filter_cpuid_features(c, true);
1161
1162        /* If the model name is still unset, do table lookup. */
1163        if (!c->x86_model_id[0]) {
1164                const char *p;
1165                p = table_lookup_model(c);
1166                if (p)
1167                        strcpy(c->x86_model_id, p);
1168                else
1169                        /* Last resort... */
1170                        sprintf(c->x86_model_id, "%02x/%02x",
1171                                c->x86, c->x86_model);
1172        }
1173
1174#ifdef CONFIG_X86_64
1175        detect_ht(c);
1176#endif
1177
1178        x86_init_rdrand(c);
1179        x86_init_cache_qos(c);
1180        setup_pku(c);
1181
1182        /*
1183         * Clear/Set all flags overridden by options, need do it
1184         * before following smp all cpus cap AND.
1185         */
1186        apply_forced_caps(c);
1187
1188        /*
1189         * On SMP, boot_cpu_data holds the common feature set between
1190         * all CPUs; so make sure that we indicate which features are
1191         * common between the CPUs.  The first time this routine gets
1192         * executed, c == &boot_cpu_data.
1193         */
1194        if (c != &boot_cpu_data) {
1195                /* AND the already accumulated flags with these */
1196                for (i = 0; i < NCAPINTS; i++)
1197                        boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1198
1199                /* OR, i.e. replicate the bug flags */
1200                for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1201                        c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1202        }
1203
1204        /* Init Machine Check Exception if available. */
1205        mcheck_cpu_init(c);
1206
1207        select_idle_routine(c);
1208
1209#ifdef CONFIG_NUMA
1210        numa_add_cpu(smp_processor_id());
1211#endif
1212}
1213
1214/*
1215 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1216 * on 32-bit kernels:
1217 */
1218#ifdef CONFIG_X86_32
1219void enable_sep_cpu(void)
1220{
1221        struct tss_struct *tss;
1222        int cpu;
1223
1224        if (!boot_cpu_has(X86_FEATURE_SEP))
1225                return;
1226
1227        cpu = get_cpu();
1228        tss = &per_cpu(cpu_tss, cpu);
1229
1230        /*
1231         * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1232         * see the big comment in struct x86_hw_tss's definition.
1233         */
1234
1235        tss->x86_tss.ss1 = __KERNEL_CS;
1236        wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1237
1238        wrmsr(MSR_IA32_SYSENTER_ESP,
1239              (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1240              0);
1241
1242        wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1243
1244        put_cpu();
1245}
1246#endif
1247
1248void __init identify_boot_cpu(void)
1249{
1250        identify_cpu(&boot_cpu_data);
1251#ifdef CONFIG_X86_32
1252        sysenter_setup();
1253        enable_sep_cpu();
1254#endif
1255        cpu_detect_tlb(&boot_cpu_data);
1256}
1257
1258void identify_secondary_cpu(struct cpuinfo_x86 *c)
1259{
1260        BUG_ON(c == &boot_cpu_data);
1261        identify_cpu(c);
1262#ifdef CONFIG_X86_32
1263        enable_sep_cpu();
1264#endif
1265        mtrr_ap_init();
1266        validate_apic_and_package_id(c);
1267}
1268
1269static __init int setup_noclflush(char *arg)
1270{
1271        setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1272        setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1273        return 1;
1274}
1275__setup("noclflush", setup_noclflush);
1276
1277void print_cpu_info(struct cpuinfo_x86 *c)
1278{
1279        const char *vendor = NULL;
1280
1281        if (c->x86_vendor < X86_VENDOR_NUM) {
1282                vendor = this_cpu->c_vendor;
1283        } else {
1284                if (c->cpuid_level >= 0)
1285                        vendor = c->x86_vendor_id;
1286        }
1287
1288        if (vendor && !strstr(c->x86_model_id, vendor))
1289                pr_cont("%s ", vendor);
1290
1291        if (c->x86_model_id[0])
1292                pr_cont("%s", c->x86_model_id);
1293        else
1294                pr_cont("%d86", c->x86);
1295
1296        pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1297
1298        if (c->x86_mask || c->cpuid_level >= 0)
1299                pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1300        else
1301                pr_cont(")\n");
1302}
1303
1304static __init int setup_disablecpuid(char *arg)
1305{
1306        int bit;
1307
1308        if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
1309                setup_clear_cpu_cap(bit);
1310        else
1311                return 0;
1312
1313        return 1;
1314}
1315__setup("clearcpuid=", setup_disablecpuid);
1316
1317#ifdef CONFIG_X86_64
1318DEFINE_PER_CPU_FIRST(union irq_stack_union,
1319                     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1320
1321/*
1322 * The following percpu variables are hot.  Align current_task to
1323 * cacheline size such that they fall in the same cacheline.
1324 */
1325DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1326        &init_task;
1327EXPORT_PER_CPU_SYMBOL(current_task);
1328
1329DEFINE_PER_CPU(char *, irq_stack_ptr) =
1330        init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1331
1332DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1333
1334DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1335EXPORT_PER_CPU_SYMBOL(__preempt_count);
1336
1337/*
1338 * Special IST stacks which the CPU switches to when it calls
1339 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1340 * limit), all of them are 4K, except the debug stack which
1341 * is 8K.
1342 */
1343static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1344          [0 ... N_EXCEPTION_STACKS - 1]        = EXCEPTION_STKSZ,
1345          [DEBUG_STACK - 1]                     = DEBUG_STKSZ
1346};
1347
1348static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1349        [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1350
1351/* May not be marked __init: used by software suspend */
1352void syscall_init(void)
1353{
1354        wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1355        wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1356
1357#ifdef CONFIG_IA32_EMULATION
1358        wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1359        /*
1360         * This only works on Intel CPUs.
1361         * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1362         * This does not cause SYSENTER to jump to the wrong location, because
1363         * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1364         */
1365        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1366        wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1367        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1368#else
1369        wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1370        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1371        wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1372        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1373#endif
1374
1375        /* Flags to clear on syscall */
1376        wrmsrl(MSR_SYSCALL_MASK,
1377               X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1378               X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1379}
1380
1381/*
1382 * Copies of the original ist values from the tss are only accessed during
1383 * debugging, no special alignment required.
1384 */
1385DEFINE_PER_CPU(struct orig_ist, orig_ist);
1386
1387static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1388DEFINE_PER_CPU(int, debug_stack_usage);
1389
1390int is_debug_stack(unsigned long addr)
1391{
1392        return __this_cpu_read(debug_stack_usage) ||
1393                (addr <= __this_cpu_read(debug_stack_addr) &&
1394                 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1395}
1396NOKPROBE_SYMBOL(is_debug_stack);
1397
1398DEFINE_PER_CPU(u32, debug_idt_ctr);
1399
1400void debug_stack_set_zero(void)
1401{
1402        this_cpu_inc(debug_idt_ctr);
1403        load_current_idt();
1404}
1405NOKPROBE_SYMBOL(debug_stack_set_zero);
1406
1407void debug_stack_reset(void)
1408{
1409        if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1410                return;
1411        if (this_cpu_dec_return(debug_idt_ctr) == 0)
1412                load_current_idt();
1413}
1414NOKPROBE_SYMBOL(debug_stack_reset);
1415
1416#else   /* CONFIG_X86_64 */
1417
1418DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1419EXPORT_PER_CPU_SYMBOL(current_task);
1420DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1421EXPORT_PER_CPU_SYMBOL(__preempt_count);
1422
1423/*
1424 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1425 * the top of the kernel stack.  Use an extra percpu variable to track the
1426 * top of the kernel stack directly.
1427 */
1428DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1429        (unsigned long)&init_thread_union + THREAD_SIZE;
1430EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1431
1432#ifdef CONFIG_CC_STACKPROTECTOR
1433DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1434#endif
1435
1436#endif  /* CONFIG_X86_64 */
1437
1438/*
1439 * Clear all 6 debug registers:
1440 */
1441static void clear_all_debug_regs(void)
1442{
1443        int i;
1444
1445        for (i = 0; i < 8; i++) {
1446                /* Ignore db4, db5 */
1447                if ((i == 4) || (i == 5))
1448                        continue;
1449
1450                set_debugreg(0, i);
1451        }
1452}
1453
1454#ifdef CONFIG_KGDB
1455/*
1456 * Restore debug regs if using kgdbwait and you have a kernel debugger
1457 * connection established.
1458 */
1459static void dbg_restore_debug_regs(void)
1460{
1461        if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1462                arch_kgdb_ops.correct_hw_break();
1463}
1464#else /* ! CONFIG_KGDB */
1465#define dbg_restore_debug_regs()
1466#endif /* ! CONFIG_KGDB */
1467
1468static void wait_for_master_cpu(int cpu)
1469{
1470#ifdef CONFIG_SMP
1471        /*
1472         * wait for ACK from master CPU before continuing
1473         * with AP initialization
1474         */
1475        WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1476        while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1477                cpu_relax();
1478#endif
1479}
1480
1481/*
1482 * cpu_init() initializes state that is per-CPU. Some data is already
1483 * initialized (naturally) in the bootstrap process, such as the GDT
1484 * and IDT. We reload them nevertheless, this function acts as a
1485 * 'CPU state barrier', nothing should get across.
1486 * A lot of state is already set up in PDA init for 64 bit
1487 */
1488#ifdef CONFIG_X86_64
1489
1490void cpu_init(void)
1491{
1492        struct orig_ist *oist;
1493        struct task_struct *me;
1494        struct tss_struct *t;
1495        unsigned long v;
1496        int cpu = raw_smp_processor_id();
1497        int i;
1498
1499        wait_for_master_cpu(cpu);
1500
1501        /*
1502         * Initialize the CR4 shadow before doing anything that could
1503         * try to read it.
1504         */
1505        cr4_init_shadow();
1506
1507        if (cpu)
1508                load_ucode_ap();
1509
1510        t = &per_cpu(cpu_tss, cpu);
1511        oist = &per_cpu(orig_ist, cpu);
1512
1513#ifdef CONFIG_NUMA
1514        if (this_cpu_read(numa_node) == 0 &&
1515            early_cpu_to_node(cpu) != NUMA_NO_NODE)
1516                set_numa_node(early_cpu_to_node(cpu));
1517#endif
1518
1519        me = current;
1520
1521        pr_debug("Initializing CPU#%d\n", cpu);
1522
1523        cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1524
1525        /*
1526         * Initialize the per-CPU GDT with the boot GDT,
1527         * and set up the GDT descriptor:
1528         */
1529
1530        switch_to_new_gdt(cpu);
1531        loadsegment(fs, 0);
1532
1533        load_current_idt();
1534
1535        memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1536        syscall_init();
1537
1538        wrmsrl(MSR_FS_BASE, 0);
1539        wrmsrl(MSR_KERNEL_GS_BASE, 0);
1540        barrier();
1541
1542        x86_configure_nx();
1543        x2apic_setup();
1544
1545        /*
1546         * set up and load the per-CPU TSS
1547         */
1548        if (!oist->ist[0]) {
1549                char *estacks = per_cpu(exception_stacks, cpu);
1550
1551                for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1552                        estacks += exception_stack_sizes[v];
1553                        oist->ist[v] = t->x86_tss.ist[v] =
1554                                        (unsigned long)estacks;
1555                        if (v == DEBUG_STACK-1)
1556                                per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1557                }
1558        }
1559
1560        t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1561
1562        /*
1563         * <= is required because the CPU will access up to
1564         * 8 bits beyond the end of the IO permission bitmap.
1565         */
1566        for (i = 0; i <= IO_BITMAP_LONGS; i++)
1567                t->io_bitmap[i] = ~0UL;
1568
1569        mmgrab(&init_mm);
1570        me->active_mm = &init_mm;
1571        BUG_ON(me->mm);
1572        initialize_tlbstate_and_flush();
1573        enter_lazy_tlb(&init_mm, me);
1574
1575        load_sp0(t, &current->thread);
1576        set_tss_desc(cpu, t);
1577        load_TR_desc();
1578        load_mm_ldt(&init_mm);
1579
1580        clear_all_debug_regs();
1581        dbg_restore_debug_regs();
1582
1583        fpu__init_cpu();
1584
1585        if (is_uv_system())
1586                uv_cpu_init();
1587
1588        setup_fixmap_gdt(cpu);
1589        load_fixmap_gdt(cpu);
1590}
1591
1592#else
1593
1594void cpu_init(void)
1595{
1596        int cpu = smp_processor_id();
1597        struct task_struct *curr = current;
1598        struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1599        struct thread_struct *thread = &curr->thread;
1600
1601        wait_for_master_cpu(cpu);
1602
1603        /*
1604         * Initialize the CR4 shadow before doing anything that could
1605         * try to read it.
1606         */
1607        cr4_init_shadow();
1608
1609        show_ucode_info_early();
1610
1611        pr_info("Initializing CPU#%d\n", cpu);
1612
1613        if (cpu_feature_enabled(X86_FEATURE_VME) ||
1614            boot_cpu_has(X86_FEATURE_TSC) ||
1615            boot_cpu_has(X86_FEATURE_DE))
1616                cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1617
1618        load_current_idt();
1619        switch_to_new_gdt(cpu);
1620
1621        /*
1622         * Set up and load the per-CPU TSS and LDT
1623         */
1624        mmgrab(&init_mm);
1625        curr->active_mm = &init_mm;
1626        BUG_ON(curr->mm);
1627        initialize_tlbstate_and_flush();
1628        enter_lazy_tlb(&init_mm, curr);
1629
1630        load_sp0(t, thread);
1631        set_tss_desc(cpu, t);
1632        load_TR_desc();
1633        load_mm_ldt(&init_mm);
1634
1635        t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1636
1637#ifdef CONFIG_DOUBLEFAULT
1638        /* Set up doublefault TSS pointer in the GDT */
1639        __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1640#endif
1641
1642        clear_all_debug_regs();
1643        dbg_restore_debug_regs();
1644
1645        fpu__init_cpu();
1646
1647        setup_fixmap_gdt(cpu);
1648        load_fixmap_gdt(cpu);
1649}
1650#endif
1651
1652static void bsp_resume(void)
1653{
1654        if (this_cpu->c_bsp_resume)
1655                this_cpu->c_bsp_resume(&boot_cpu_data);
1656}
1657
1658static struct syscore_ops cpu_syscore_ops = {
1659        .resume         = bsp_resume,
1660};
1661
1662static int __init init_cpu_syscore(void)
1663{
1664        register_syscore_ops(&cpu_syscore_ops);
1665        return 0;
1666}
1667core_initcall(init_cpu_syscore);
1668