linux/arch/x86/kernel/uprobes.c
<<
>>
Prefs
   1/*
   2 * User-space Probes (UProbes) for x86
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2008-2011
  19 * Authors:
  20 *      Srikar Dronamraju
  21 *      Jim Keniston
  22 */
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/uaccess.h>
  28
  29#include <linux/kdebug.h>
  30#include <asm/processor.h>
  31#include <asm/insn.h>
  32#include <asm/mmu_context.h>
  33
  34/* Post-execution fixups. */
  35
  36/* Adjust IP back to vicinity of actual insn */
  37#define UPROBE_FIX_IP           0x01
  38
  39/* Adjust the return address of a call insn */
  40#define UPROBE_FIX_CALL         0x02
  41
  42/* Instruction will modify TF, don't change it */
  43#define UPROBE_FIX_SETF         0x04
  44
  45#define UPROBE_FIX_RIP_SI       0x08
  46#define UPROBE_FIX_RIP_DI       0x10
  47#define UPROBE_FIX_RIP_BX       0x20
  48#define UPROBE_FIX_RIP_MASK     \
  49        (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  50
  51#define UPROBE_TRAP_NR          UINT_MAX
  52
  53/* Adaptations for mhiramat x86 decoder v14. */
  54#define OPCODE1(insn)           ((insn)->opcode.bytes[0])
  55#define OPCODE2(insn)           ((insn)->opcode.bytes[1])
  56#define OPCODE3(insn)           ((insn)->opcode.bytes[2])
  57#define MODRM_REG(insn)         X86_MODRM_REG((insn)->modrm.value)
  58
  59#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  60        (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  61          (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  62          (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  63          (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  64         << (row % 32))
  65
  66/*
  67 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  68 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  69 * some versions of gcc to think only *(unsigned long*) is used.
  70 *
  71 * Opcodes we'll probably never support:
  72 * 6c-6f - ins,outs. SEGVs if used in userspace
  73 * e4-e7 - in,out imm. SEGVs if used in userspace
  74 * ec-ef - in,out acc. SEGVs if used in userspace
  75 * cc - int3. SIGTRAP if used in userspace
  76 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  77 *      (why we support bound (62) then? it's similar, and similarly unused...)
  78 * f1 - int1. SIGTRAP if used in userspace
  79 * f4 - hlt. SEGVs if used in userspace
  80 * fa - cli. SEGVs if used in userspace
  81 * fb - sti. SEGVs if used in userspace
  82 *
  83 * Opcodes which need some work to be supported:
  84 * 07,17,1f - pop es/ss/ds
  85 *      Normally not used in userspace, but would execute if used.
  86 *      Can cause GP or stack exception if tries to load wrong segment descriptor.
  87 *      We hesitate to run them under single step since kernel's handling
  88 *      of userspace single-stepping (TF flag) is fragile.
  89 *      We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  90 *      on the same grounds that they are never used.
  91 * cd - int N.
  92 *      Used by userspace for "int 80" syscall entry. (Other "int N"
  93 *      cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  94 *      Not supported since kernel's handling of userspace single-stepping
  95 *      (TF flag) is fragile.
  96 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  97 */
  98#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  99static volatile u32 good_insns_32[256 / 32] = {
 100        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 101        /*      ----------------------------------------------         */
 102        W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
 103        W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
 104        W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 105        W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 106        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 107        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 108        W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 109        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 110        W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 111        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 112        W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 113        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 114        W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 115        W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 116        W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 117        W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 118        /*      ----------------------------------------------         */
 119        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 120};
 121#else
 122#define good_insns_32   NULL
 123#endif
 124
 125/* Good-instruction tables for 64-bit apps.
 126 *
 127 * Genuinely invalid opcodes:
 128 * 06,07 - formerly push/pop es
 129 * 0e - formerly push cs
 130 * 16,17 - formerly push/pop ss
 131 * 1e,1f - formerly push/pop ds
 132 * 27,2f,37,3f - formerly daa/das/aaa/aas
 133 * 60,61 - formerly pusha/popa
 134 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 135 * 82 - formerly redundant encoding of Group1
 136 * 9a - formerly call seg:ofs
 137 * ce - formerly into
 138 * d4,d5 - formerly aam/aad
 139 * d6 - formerly undocumented salc
 140 * ea - formerly jmp seg:ofs
 141 *
 142 * Opcodes we'll probably never support:
 143 * 6c-6f - ins,outs. SEGVs if used in userspace
 144 * e4-e7 - in,out imm. SEGVs if used in userspace
 145 * ec-ef - in,out acc. SEGVs if used in userspace
 146 * cc - int3. SIGTRAP if used in userspace
 147 * f1 - int1. SIGTRAP if used in userspace
 148 * f4 - hlt. SEGVs if used in userspace
 149 * fa - cli. SEGVs if used in userspace
 150 * fb - sti. SEGVs if used in userspace
 151 *
 152 * Opcodes which need some work to be supported:
 153 * cd - int N.
 154 *      Used by userspace for "int 80" syscall entry. (Other "int N"
 155 *      cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 156 *      Not supported since kernel's handling of userspace single-stepping
 157 *      (TF flag) is fragile.
 158 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 159 */
 160#if defined(CONFIG_X86_64)
 161static volatile u32 good_insns_64[256 / 32] = {
 162        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 163        /*      ----------------------------------------------         */
 164        W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 165        W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 166        W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 167        W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 168        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 169        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 170        W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 171        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 172        W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 173        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 174        W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 175        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 176        W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 177        W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 178        W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 179        W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 180        /*      ----------------------------------------------         */
 181        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 182};
 183#else
 184#define good_insns_64   NULL
 185#endif
 186
 187/* Using this for both 64-bit and 32-bit apps.
 188 * Opcodes we don't support:
 189 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 190 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 191 *      Also encodes tons of other system insns if mod=11.
 192 *      Some are in fact non-system: xend, xtest, rdtscp, maybe more
 193 * 0f 05 - syscall
 194 * 0f 06 - clts (CPL0 insn)
 195 * 0f 07 - sysret
 196 * 0f 08 - invd (CPL0 insn)
 197 * 0f 09 - wbinvd (CPL0 insn)
 198 * 0f 0b - ud2
 199 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 200 * 0f 34 - sysenter
 201 * 0f 35 - sysexit
 202 * 0f 37 - getsec
 203 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 204 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 205 *      Note: with prefixes, these two opcodes are
 206 *      extrq/insertq/AVX512 convert vector ops.
 207 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 208 *      {rd,wr}{fs,gs}base,{s,l,m}fence.
 209 *      Why? They are all user-executable.
 210 */
 211static volatile u32 good_2byte_insns[256 / 32] = {
 212        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 213        /*      ----------------------------------------------         */
 214        W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 215        W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 216        W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 217        W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 218        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 219        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 220        W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 221        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 222        W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 223        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 224        W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 225        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 226        W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 227        W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 228        W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 229        W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 230        /*      ----------------------------------------------         */
 231        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 232};
 233#undef W
 234
 235/*
 236 * opcodes we may need to refine support for:
 237 *
 238 *  0f - 2-byte instructions: For many of these instructions, the validity
 239 *  depends on the prefix and/or the reg field.  On such instructions, we
 240 *  just consider the opcode combination valid if it corresponds to any
 241 *  valid instruction.
 242 *
 243 *  8f - Group 1 - only reg = 0 is OK
 244 *  c6-c7 - Group 11 - only reg = 0 is OK
 245 *  d9-df - fpu insns with some illegal encodings
 246 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 247 *  certain floating-point instructions, such as addsd.
 248 *
 249 *  fe - Group 4 - only reg = 0 or 1 is OK
 250 *  ff - Group 5 - only reg = 0-6 is OK
 251 *
 252 * others -- Do we need to support these?
 253 *
 254 *  0f - (floating-point?) prefetch instructions
 255 *  07, 17, 1f - pop es, pop ss, pop ds
 256 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 257 *      but 64 and 65 (fs: and gs:) seem to be used, so we support them
 258 *  67 - addr16 prefix
 259 *  ce - into
 260 *  f0 - lock prefix
 261 */
 262
 263/*
 264 * TODO:
 265 * - Where necessary, examine the modrm byte and allow only valid instructions
 266 * in the different Groups and fpu instructions.
 267 */
 268
 269static bool is_prefix_bad(struct insn *insn)
 270{
 271        int i;
 272
 273        for (i = 0; i < insn->prefixes.nbytes; i++) {
 274                switch (insn->prefixes.bytes[i]) {
 275                case 0x26:      /* INAT_PFX_ES   */
 276                case 0x2E:      /* INAT_PFX_CS   */
 277                case 0x36:      /* INAT_PFX_DS   */
 278                case 0x3E:      /* INAT_PFX_SS   */
 279                case 0xF0:      /* INAT_PFX_LOCK */
 280                        return true;
 281                }
 282        }
 283        return false;
 284}
 285
 286static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 287{
 288        u32 volatile *good_insns;
 289
 290        insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
 291        /* has the side-effect of processing the entire instruction */
 292        insn_get_length(insn);
 293        if (WARN_ON_ONCE(!insn_complete(insn)))
 294                return -ENOEXEC;
 295
 296        if (is_prefix_bad(insn))
 297                return -ENOTSUPP;
 298
 299        if (x86_64)
 300                good_insns = good_insns_64;
 301        else
 302                good_insns = good_insns_32;
 303
 304        if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 305                return 0;
 306
 307        if (insn->opcode.nbytes == 2) {
 308                if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 309                        return 0;
 310        }
 311
 312        return -ENOTSUPP;
 313}
 314
 315#ifdef CONFIG_X86_64
 316/*
 317 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 318 * immediately.  Otherwise, rewrite the instruction so that it accesses
 319 * its memory operand indirectly through a scratch register.  Set
 320 * defparam->fixups accordingly. (The contents of the scratch register
 321 * will be saved before we single-step the modified instruction,
 322 * and restored afterward).
 323 *
 324 * We do this because a rip-relative instruction can access only a
 325 * relatively small area (+/- 2 GB from the instruction), and the XOL
 326 * area typically lies beyond that area.  At least for instructions
 327 * that store to memory, we can't execute the original instruction
 328 * and "fix things up" later, because the misdirected store could be
 329 * disastrous.
 330 *
 331 * Some useful facts about rip-relative instructions:
 332 *
 333 *  - There's always a modrm byte with bit layout "00 reg 101".
 334 *  - There's never a SIB byte.
 335 *  - The displacement is always 4 bytes.
 336 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 337 *    has no effect on rip-relative mode. It doesn't make modrm byte
 338 *    with r/m=101 refer to register 1101 = R13.
 339 */
 340static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 341{
 342        u8 *cursor;
 343        u8 reg;
 344        u8 reg2;
 345
 346        if (!insn_rip_relative(insn))
 347                return;
 348
 349        /*
 350         * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 351         * Clear REX.b bit (extension of MODRM.rm field):
 352         * we want to encode low numbered reg, not r8+.
 353         */
 354        if (insn->rex_prefix.nbytes) {
 355                cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 356                /* REX byte has 0100wrxb layout, clearing REX.b bit */
 357                *cursor &= 0xfe;
 358        }
 359        /*
 360         * Similar treatment for VEX3/EVEX prefix.
 361         * TODO: add XOP treatment when insn decoder supports them
 362         */
 363        if (insn->vex_prefix.nbytes >= 3) {
 364                /*
 365                 * vex2:     c5    rvvvvLpp   (has no b bit)
 366                 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 367                 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 368                 * Setting VEX3.b (setting because it has inverted meaning).
 369                 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 370                 * is the 4th bit of MODRM.rm, and needs the same treatment.
 371                 * For VEX3-encoded insns, VEX3.x value has no effect in
 372                 * non-SIB encoding, the change is superfluous but harmless.
 373                 */
 374                cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 375                *cursor |= 0x60;
 376        }
 377
 378        /*
 379         * Convert from rip-relative addressing to register-relative addressing
 380         * via a scratch register.
 381         *
 382         * This is tricky since there are insns with modrm byte
 383         * which also use registers not encoded in modrm byte:
 384         * [i]div/[i]mul: implicitly use dx:ax
 385         * shift ops: implicitly use cx
 386         * cmpxchg: implicitly uses ax
 387         * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 388         *   Encoding: 0f c7/1 modrm
 389         *   The code below thinks that reg=1 (cx), chooses si as scratch.
 390         * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 391         *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 392         *   Example where none of bx,cx,dx can be used as scratch reg:
 393         *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 394         * [v]pcmpistri: implicitly uses cx, xmm0
 395         * [v]pcmpistrm: implicitly uses xmm0
 396         * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 397         * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 398         *   Evil SSE4.2 string comparison ops from hell.
 399         * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 400         *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 401         *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 402         *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 403         *   and that it can have only register operands, not mem
 404         *   (its modrm byte must have mode=11).
 405         *   If these restrictions will ever be lifted,
 406         *   we'll need code to prevent selection of di as scratch reg!
 407         *
 408         * Summary: I don't know any insns with modrm byte which
 409         * use SI register implicitly. DI register is used only
 410         * by one insn (maskmovq) and BX register is used
 411         * only by one too (cmpxchg8b).
 412         * BP is stack-segment based (may be a problem?).
 413         * AX, DX, CX are off-limits (many implicit users).
 414         * SP is unusable (it's stack pointer - think about "pop mem";
 415         * also, rsp+disp32 needs sib encoding -> insn length change).
 416         */
 417
 418        reg = MODRM_REG(insn);  /* Fetch modrm.reg */
 419        reg2 = 0xff;            /* Fetch vex.vvvv */
 420        if (insn->vex_prefix.nbytes)
 421                reg2 = insn->vex_prefix.bytes[2];
 422        /*
 423         * TODO: add XOP vvvv reading.
 424         *
 425         * vex.vvvv field is in bits 6-3, bits are inverted.
 426         * But in 32-bit mode, high-order bit may be ignored.
 427         * Therefore, let's consider only 3 low-order bits.
 428         */
 429        reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 430        /*
 431         * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 432         *
 433         * Choose scratch reg. Order is important: must not select bx
 434         * if we can use si (cmpxchg8b case!)
 435         */
 436        if (reg != 6 && reg2 != 6) {
 437                reg2 = 6;
 438                auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 439        } else if (reg != 7 && reg2 != 7) {
 440                reg2 = 7;
 441                auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 442                /* TODO (paranoia): force maskmovq to not use di */
 443        } else {
 444                reg2 = 3;
 445                auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 446        }
 447        /*
 448         * Point cursor at the modrm byte.  The next 4 bytes are the
 449         * displacement.  Beyond the displacement, for some instructions,
 450         * is the immediate operand.
 451         */
 452        cursor = auprobe->insn + insn_offset_modrm(insn);
 453        /*
 454         * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 455         * 89 05 disp32  mov %eax,disp32(%rip) becomes
 456         * 89 86 disp32  mov %eax,disp32(%rsi)
 457         */
 458        *cursor = 0x80 | (reg << 3) | reg2;
 459}
 460
 461static inline unsigned long *
 462scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 463{
 464        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 465                return &regs->si;
 466        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 467                return &regs->di;
 468        return &regs->bx;
 469}
 470
 471/*
 472 * If we're emulating a rip-relative instruction, save the contents
 473 * of the scratch register and store the target address in that register.
 474 */
 475static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 476{
 477        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 478                struct uprobe_task *utask = current->utask;
 479                unsigned long *sr = scratch_reg(auprobe, regs);
 480
 481                utask->autask.saved_scratch_register = *sr;
 482                *sr = utask->vaddr + auprobe->defparam.ilen;
 483        }
 484}
 485
 486static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 487{
 488        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 489                struct uprobe_task *utask = current->utask;
 490                unsigned long *sr = scratch_reg(auprobe, regs);
 491
 492                *sr = utask->autask.saved_scratch_register;
 493        }
 494}
 495#else /* 32-bit: */
 496/*
 497 * No RIP-relative addressing on 32-bit
 498 */
 499static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 500{
 501}
 502static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 503{
 504}
 505static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 506{
 507}
 508#endif /* CONFIG_X86_64 */
 509
 510struct uprobe_xol_ops {
 511        bool    (*emulate)(struct arch_uprobe *, struct pt_regs *);
 512        int     (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 513        int     (*post_xol)(struct arch_uprobe *, struct pt_regs *);
 514        void    (*abort)(struct arch_uprobe *, struct pt_regs *);
 515};
 516
 517static inline int sizeof_long(void)
 518{
 519        return in_ia32_syscall() ? 4 : 8;
 520}
 521
 522static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 523{
 524        riprel_pre_xol(auprobe, regs);
 525        return 0;
 526}
 527
 528static int push_ret_address(struct pt_regs *regs, unsigned long ip)
 529{
 530        unsigned long new_sp = regs->sp - sizeof_long();
 531
 532        if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
 533                return -EFAULT;
 534
 535        regs->sp = new_sp;
 536        return 0;
 537}
 538
 539/*
 540 * We have to fix things up as follows:
 541 *
 542 * Typically, the new ip is relative to the copied instruction.  We need
 543 * to make it relative to the original instruction (FIX_IP).  Exceptions
 544 * are return instructions and absolute or indirect jump or call instructions.
 545 *
 546 * If the single-stepped instruction was a call, the return address that
 547 * is atop the stack is the address following the copied instruction.  We
 548 * need to make it the address following the original instruction (FIX_CALL).
 549 *
 550 * If the original instruction was a rip-relative instruction such as
 551 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 552 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 553 * We need to restore the contents of the scratch register
 554 * (FIX_RIP_reg).
 555 */
 556static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 557{
 558        struct uprobe_task *utask = current->utask;
 559
 560        riprel_post_xol(auprobe, regs);
 561        if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 562                long correction = utask->vaddr - utask->xol_vaddr;
 563                regs->ip += correction;
 564        } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 565                regs->sp += sizeof_long(); /* Pop incorrect return address */
 566                if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen))
 567                        return -ERESTART;
 568        }
 569        /* popf; tell the caller to not touch TF */
 570        if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 571                utask->autask.saved_tf = true;
 572
 573        return 0;
 574}
 575
 576static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 577{
 578        riprel_post_xol(auprobe, regs);
 579}
 580
 581static const struct uprobe_xol_ops default_xol_ops = {
 582        .pre_xol  = default_pre_xol_op,
 583        .post_xol = default_post_xol_op,
 584        .abort    = default_abort_op,
 585};
 586
 587static bool branch_is_call(struct arch_uprobe *auprobe)
 588{
 589        return auprobe->branch.opc1 == 0xe8;
 590}
 591
 592#define CASE_COND                                       \
 593        COND(70, 71, XF(OF))                            \
 594        COND(72, 73, XF(CF))                            \
 595        COND(74, 75, XF(ZF))                            \
 596        COND(78, 79, XF(SF))                            \
 597        COND(7a, 7b, XF(PF))                            \
 598        COND(76, 77, XF(CF) || XF(ZF))                  \
 599        COND(7c, 7d, XF(SF) != XF(OF))                  \
 600        COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 601
 602#define COND(op_y, op_n, expr)                          \
 603        case 0x ## op_y: DO((expr) != 0)                \
 604        case 0x ## op_n: DO((expr) == 0)
 605
 606#define XF(xf)  (!!(flags & X86_EFLAGS_ ## xf))
 607
 608static bool is_cond_jmp_opcode(u8 opcode)
 609{
 610        switch (opcode) {
 611        #define DO(expr)        \
 612                return true;
 613        CASE_COND
 614        #undef  DO
 615
 616        default:
 617                return false;
 618        }
 619}
 620
 621static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 622{
 623        unsigned long flags = regs->flags;
 624
 625        switch (auprobe->branch.opc1) {
 626        #define DO(expr)        \
 627                return expr;
 628        CASE_COND
 629        #undef  DO
 630
 631        default:        /* not a conditional jmp */
 632                return true;
 633        }
 634}
 635
 636#undef  XF
 637#undef  COND
 638#undef  CASE_COND
 639
 640static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 641{
 642        unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 643        unsigned long offs = (long)auprobe->branch.offs;
 644
 645        if (branch_is_call(auprobe)) {
 646                /*
 647                 * If it fails we execute this (mangled, see the comment in
 648                 * branch_clear_offset) insn out-of-line. In the likely case
 649                 * this should trigger the trap, and the probed application
 650                 * should die or restart the same insn after it handles the
 651                 * signal, arch_uprobe_post_xol() won't be even called.
 652                 *
 653                 * But there is corner case, see the comment in ->post_xol().
 654                 */
 655                if (push_ret_address(regs, new_ip))
 656                        return false;
 657        } else if (!check_jmp_cond(auprobe, regs)) {
 658                offs = 0;
 659        }
 660
 661        regs->ip = new_ip + offs;
 662        return true;
 663}
 664
 665static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 666{
 667        BUG_ON(!branch_is_call(auprobe));
 668        /*
 669         * We can only get here if branch_emulate_op() failed to push the ret
 670         * address _and_ another thread expanded our stack before the (mangled)
 671         * "call" insn was executed out-of-line. Just restore ->sp and restart.
 672         * We could also restore ->ip and try to call branch_emulate_op() again.
 673         */
 674        regs->sp += sizeof_long();
 675        return -ERESTART;
 676}
 677
 678static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 679{
 680        /*
 681         * Turn this insn into "call 1f; 1:", this is what we will execute
 682         * out-of-line if ->emulate() fails. We only need this to generate
 683         * a trap, so that the probed task receives the correct signal with
 684         * the properly filled siginfo.
 685         *
 686         * But see the comment in ->post_xol(), in the unlikely case it can
 687         * succeed. So we need to ensure that the new ->ip can not fall into
 688         * the non-canonical area and trigger #GP.
 689         *
 690         * We could turn it into (say) "pushf", but then we would need to
 691         * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 692         * of ->insn[] for set_orig_insn().
 693         */
 694        memset(auprobe->insn + insn_offset_immediate(insn),
 695                0, insn->immediate.nbytes);
 696}
 697
 698static const struct uprobe_xol_ops branch_xol_ops = {
 699        .emulate  = branch_emulate_op,
 700        .post_xol = branch_post_xol_op,
 701};
 702
 703/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 704static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 705{
 706        u8 opc1 = OPCODE1(insn);
 707        int i;
 708
 709        switch (opc1) {
 710        case 0xeb:      /* jmp 8 */
 711        case 0xe9:      /* jmp 32 */
 712        case 0x90:      /* prefix* + nop; same as jmp with .offs = 0 */
 713                break;
 714
 715        case 0xe8:      /* call relative */
 716                branch_clear_offset(auprobe, insn);
 717                break;
 718
 719        case 0x0f:
 720                if (insn->opcode.nbytes != 2)
 721                        return -ENOSYS;
 722                /*
 723                 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 724                 * OPCODE1() of the "short" jmp which checks the same condition.
 725                 */
 726                opc1 = OPCODE2(insn) - 0x10;
 727        default:
 728                if (!is_cond_jmp_opcode(opc1))
 729                        return -ENOSYS;
 730        }
 731
 732        /*
 733         * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 734         * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 735         * No one uses these insns, reject any branch insns with such prefix.
 736         */
 737        for (i = 0; i < insn->prefixes.nbytes; i++) {
 738                if (insn->prefixes.bytes[i] == 0x66)
 739                        return -ENOTSUPP;
 740        }
 741
 742        auprobe->branch.opc1 = opc1;
 743        auprobe->branch.ilen = insn->length;
 744        auprobe->branch.offs = insn->immediate.value;
 745
 746        auprobe->ops = &branch_xol_ops;
 747        return 0;
 748}
 749
 750/**
 751 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 752 * @mm: the probed address space.
 753 * @arch_uprobe: the probepoint information.
 754 * @addr: virtual address at which to install the probepoint
 755 * Return 0 on success or a -ve number on error.
 756 */
 757int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 758{
 759        struct insn insn;
 760        u8 fix_ip_or_call = UPROBE_FIX_IP;
 761        int ret;
 762
 763        ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 764        if (ret)
 765                return ret;
 766
 767        ret = branch_setup_xol_ops(auprobe, &insn);
 768        if (ret != -ENOSYS)
 769                return ret;
 770
 771        /*
 772         * Figure out which fixups default_post_xol_op() will need to perform,
 773         * and annotate defparam->fixups accordingly.
 774         */
 775        switch (OPCODE1(&insn)) {
 776        case 0x9d:              /* popf */
 777                auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 778                break;
 779        case 0xc3:              /* ret or lret -- ip is correct */
 780        case 0xcb:
 781        case 0xc2:
 782        case 0xca:
 783        case 0xea:              /* jmp absolute -- ip is correct */
 784                fix_ip_or_call = 0;
 785                break;
 786        case 0x9a:              /* call absolute - Fix return addr, not ip */
 787                fix_ip_or_call = UPROBE_FIX_CALL;
 788                break;
 789        case 0xff:
 790                switch (MODRM_REG(&insn)) {
 791                case 2: case 3:                 /* call or lcall, indirect */
 792                        fix_ip_or_call = UPROBE_FIX_CALL;
 793                        break;
 794                case 4: case 5:                 /* jmp or ljmp, indirect */
 795                        fix_ip_or_call = 0;
 796                        break;
 797                }
 798                /* fall through */
 799        default:
 800                riprel_analyze(auprobe, &insn);
 801        }
 802
 803        auprobe->defparam.ilen = insn.length;
 804        auprobe->defparam.fixups |= fix_ip_or_call;
 805
 806        auprobe->ops = &default_xol_ops;
 807        return 0;
 808}
 809
 810/*
 811 * arch_uprobe_pre_xol - prepare to execute out of line.
 812 * @auprobe: the probepoint information.
 813 * @regs: reflects the saved user state of current task.
 814 */
 815int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 816{
 817        struct uprobe_task *utask = current->utask;
 818
 819        if (auprobe->ops->pre_xol) {
 820                int err = auprobe->ops->pre_xol(auprobe, regs);
 821                if (err)
 822                        return err;
 823        }
 824
 825        regs->ip = utask->xol_vaddr;
 826        utask->autask.saved_trap_nr = current->thread.trap_nr;
 827        current->thread.trap_nr = UPROBE_TRAP_NR;
 828
 829        utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 830        regs->flags |= X86_EFLAGS_TF;
 831        if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 832                set_task_blockstep(current, false);
 833
 834        return 0;
 835}
 836
 837/*
 838 * If xol insn itself traps and generates a signal(Say,
 839 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 840 * instruction jumps back to its own address. It is assumed that anything
 841 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 842 *
 843 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 844 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 845 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 846 */
 847bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 848{
 849        if (t->thread.trap_nr != UPROBE_TRAP_NR)
 850                return true;
 851
 852        return false;
 853}
 854
 855/*
 856 * Called after single-stepping. To avoid the SMP problems that can
 857 * occur when we temporarily put back the original opcode to
 858 * single-step, we single-stepped a copy of the instruction.
 859 *
 860 * This function prepares to resume execution after the single-step.
 861 */
 862int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 863{
 864        struct uprobe_task *utask = current->utask;
 865        bool send_sigtrap = utask->autask.saved_tf;
 866        int err = 0;
 867
 868        WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 869        current->thread.trap_nr = utask->autask.saved_trap_nr;
 870
 871        if (auprobe->ops->post_xol) {
 872                err = auprobe->ops->post_xol(auprobe, regs);
 873                if (err) {
 874                        /*
 875                         * Restore ->ip for restart or post mortem analysis.
 876                         * ->post_xol() must not return -ERESTART unless this
 877                         * is really possible.
 878                         */
 879                        regs->ip = utask->vaddr;
 880                        if (err == -ERESTART)
 881                                err = 0;
 882                        send_sigtrap = false;
 883                }
 884        }
 885        /*
 886         * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 887         * so we can get an extra SIGTRAP if we do not clear TF. We need
 888         * to examine the opcode to make it right.
 889         */
 890        if (send_sigtrap)
 891                send_sig(SIGTRAP, current, 0);
 892
 893        if (!utask->autask.saved_tf)
 894                regs->flags &= ~X86_EFLAGS_TF;
 895
 896        return err;
 897}
 898
 899/* callback routine for handling exceptions. */
 900int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
 901{
 902        struct die_args *args = data;
 903        struct pt_regs *regs = args->regs;
 904        int ret = NOTIFY_DONE;
 905
 906        /* We are only interested in userspace traps */
 907        if (regs && !user_mode(regs))
 908                return NOTIFY_DONE;
 909
 910        switch (val) {
 911        case DIE_INT3:
 912                if (uprobe_pre_sstep_notifier(regs))
 913                        ret = NOTIFY_STOP;
 914
 915                break;
 916
 917        case DIE_DEBUG:
 918                if (uprobe_post_sstep_notifier(regs))
 919                        ret = NOTIFY_STOP;
 920
 921        default:
 922                break;
 923        }
 924
 925        return ret;
 926}
 927
 928/*
 929 * This function gets called when XOL instruction either gets trapped or
 930 * the thread has a fatal signal. Reset the instruction pointer to its
 931 * probed address for the potential restart or for post mortem analysis.
 932 */
 933void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 934{
 935        struct uprobe_task *utask = current->utask;
 936
 937        if (auprobe->ops->abort)
 938                auprobe->ops->abort(auprobe, regs);
 939
 940        current->thread.trap_nr = utask->autask.saved_trap_nr;
 941        regs->ip = utask->vaddr;
 942        /* clear TF if it was set by us in arch_uprobe_pre_xol() */
 943        if (!utask->autask.saved_tf)
 944                regs->flags &= ~X86_EFLAGS_TF;
 945}
 946
 947static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
 948{
 949        if (auprobe->ops->emulate)
 950                return auprobe->ops->emulate(auprobe, regs);
 951        return false;
 952}
 953
 954bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
 955{
 956        bool ret = __skip_sstep(auprobe, regs);
 957        if (ret && (regs->flags & X86_EFLAGS_TF))
 958                send_sig(SIGTRAP, current, 0);
 959        return ret;
 960}
 961
 962unsigned long
 963arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
 964{
 965        int rasize = sizeof_long(), nleft;
 966        unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
 967
 968        if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
 969                return -1;
 970
 971        /* check whether address has been already hijacked */
 972        if (orig_ret_vaddr == trampoline_vaddr)
 973                return orig_ret_vaddr;
 974
 975        nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
 976        if (likely(!nleft))
 977                return orig_ret_vaddr;
 978
 979        if (nleft != rasize) {
 980                pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
 981                        "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
 982
 983                force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
 984        }
 985
 986        return -1;
 987}
 988
 989bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
 990                                struct pt_regs *regs)
 991{
 992        if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
 993                return regs->sp < ret->stack;
 994        else
 995                return regs->sp <= ret->stack;
 996}
 997