linux/arch/x86/kvm/vmx.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "irq.h"
  20#include "mmu.h"
  21#include "cpuid.h"
  22#include "lapic.h"
  23
  24#include <linux/kvm_host.h>
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/mm.h>
  28#include <linux/highmem.h>
  29#include <linux/sched.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mod_devicetable.h>
  32#include <linux/trace_events.h>
  33#include <linux/slab.h>
  34#include <linux/tboot.h>
  35#include <linux/hrtimer.h>
  36#include <linux/frame.h>
  37#include "kvm_cache_regs.h"
  38#include "x86.h"
  39
  40#include <asm/cpu.h>
  41#include <asm/io.h>
  42#include <asm/desc.h>
  43#include <asm/vmx.h>
  44#include <asm/virtext.h>
  45#include <asm/mce.h>
  46#include <asm/fpu/internal.h>
  47#include <asm/perf_event.h>
  48#include <asm/debugreg.h>
  49#include <asm/kexec.h>
  50#include <asm/apic.h>
  51#include <asm/irq_remapping.h>
  52#include <asm/mmu_context.h>
  53
  54#include "trace.h"
  55#include "pmu.h"
  56
  57#define __ex(x) __kvm_handle_fault_on_reboot(x)
  58#define __ex_clear(x, reg) \
  59        ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  60
  61MODULE_AUTHOR("Qumranet");
  62MODULE_LICENSE("GPL");
  63
  64static const struct x86_cpu_id vmx_cpu_id[] = {
  65        X86_FEATURE_MATCH(X86_FEATURE_VMX),
  66        {}
  67};
  68MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  69
  70static bool __read_mostly enable_vpid = 1;
  71module_param_named(vpid, enable_vpid, bool, 0444);
  72
  73static bool __read_mostly flexpriority_enabled = 1;
  74module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  75
  76static bool __read_mostly enable_ept = 1;
  77module_param_named(ept, enable_ept, bool, S_IRUGO);
  78
  79static bool __read_mostly enable_unrestricted_guest = 1;
  80module_param_named(unrestricted_guest,
  81                        enable_unrestricted_guest, bool, S_IRUGO);
  82
  83static bool __read_mostly enable_ept_ad_bits = 1;
  84module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  85
  86static bool __read_mostly emulate_invalid_guest_state = true;
  87module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  88
  89static bool __read_mostly fasteoi = 1;
  90module_param(fasteoi, bool, S_IRUGO);
  91
  92static bool __read_mostly enable_apicv = 1;
  93module_param(enable_apicv, bool, S_IRUGO);
  94
  95static bool __read_mostly enable_shadow_vmcs = 1;
  96module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  97/*
  98 * If nested=1, nested virtualization is supported, i.e., guests may use
  99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
 100 * use VMX instructions.
 101 */
 102static bool __read_mostly nested = 0;
 103module_param(nested, bool, S_IRUGO);
 104
 105static u64 __read_mostly host_xss;
 106
 107static bool __read_mostly enable_pml = 1;
 108module_param_named(pml, enable_pml, bool, S_IRUGO);
 109
 110#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
 111
 112/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
 113static int __read_mostly cpu_preemption_timer_multi;
 114static bool __read_mostly enable_preemption_timer = 1;
 115#ifdef CONFIG_X86_64
 116module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
 117#endif
 118
 119#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
 120#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
 121#define KVM_VM_CR0_ALWAYS_ON                                            \
 122        (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
 123#define KVM_CR4_GUEST_OWNED_BITS                                      \
 124        (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
 125         | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
 126
 127#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 128#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 129
 130#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 131
 132#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
 133
 134/*
 135 * Hyper-V requires all of these, so mark them as supported even though
 136 * they are just treated the same as all-context.
 137 */
 138#define VMX_VPID_EXTENT_SUPPORTED_MASK          \
 139        (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
 140        VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
 141        VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
 142        VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
 143
 144/*
 145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 146 * ple_gap:    upper bound on the amount of time between two successive
 147 *             executions of PAUSE in a loop. Also indicate if ple enabled.
 148 *             According to test, this time is usually smaller than 128 cycles.
 149 * ple_window: upper bound on the amount of time a guest is allowed to execute
 150 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 151 *             less than 2^12 cycles
 152 * Time is measured based on a counter that runs at the same rate as the TSC,
 153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
 154 */
 155#define KVM_VMX_DEFAULT_PLE_GAP           128
 156#define KVM_VMX_DEFAULT_PLE_WINDOW        4096
 157#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
 158#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
 159#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
 160                INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
 161
 162static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
 163module_param(ple_gap, int, S_IRUGO);
 164
 165static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 166module_param(ple_window, int, S_IRUGO);
 167
 168/* Default doubles per-vcpu window every exit. */
 169static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
 170module_param(ple_window_grow, int, S_IRUGO);
 171
 172/* Default resets per-vcpu window every exit to ple_window. */
 173static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
 174module_param(ple_window_shrink, int, S_IRUGO);
 175
 176/* Default is to compute the maximum so we can never overflow. */
 177static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 178static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 179module_param(ple_window_max, int, S_IRUGO);
 180
 181extern const ulong vmx_return;
 182
 183#define NR_AUTOLOAD_MSRS 8
 184#define VMCS02_POOL_SIZE 1
 185
 186struct vmcs {
 187        u32 revision_id;
 188        u32 abort;
 189        char data[0];
 190};
 191
 192/*
 193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
 194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
 195 * loaded on this CPU (so we can clear them if the CPU goes down).
 196 */
 197struct loaded_vmcs {
 198        struct vmcs *vmcs;
 199        struct vmcs *shadow_vmcs;
 200        int cpu;
 201        bool launched;
 202        bool nmi_known_unmasked;
 203        unsigned long vmcs_host_cr3;    /* May not match real cr3 */
 204        unsigned long vmcs_host_cr4;    /* May not match real cr4 */
 205        struct list_head loaded_vmcss_on_cpu_link;
 206};
 207
 208struct shared_msr_entry {
 209        unsigned index;
 210        u64 data;
 211        u64 mask;
 212};
 213
 214/*
 215 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
 216 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
 217 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
 218 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
 219 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
 220 * More than one of these structures may exist, if L1 runs multiple L2 guests.
 221 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
 222 * underlying hardware which will be used to run L2.
 223 * This structure is packed to ensure that its layout is identical across
 224 * machines (necessary for live migration).
 225 * If there are changes in this struct, VMCS12_REVISION must be changed.
 226 */
 227typedef u64 natural_width;
 228struct __packed vmcs12 {
 229        /* According to the Intel spec, a VMCS region must start with the
 230         * following two fields. Then follow implementation-specific data.
 231         */
 232        u32 revision_id;
 233        u32 abort;
 234
 235        u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
 236        u32 padding[7]; /* room for future expansion */
 237
 238        u64 io_bitmap_a;
 239        u64 io_bitmap_b;
 240        u64 msr_bitmap;
 241        u64 vm_exit_msr_store_addr;
 242        u64 vm_exit_msr_load_addr;
 243        u64 vm_entry_msr_load_addr;
 244        u64 tsc_offset;
 245        u64 virtual_apic_page_addr;
 246        u64 apic_access_addr;
 247        u64 posted_intr_desc_addr;
 248        u64 vm_function_control;
 249        u64 ept_pointer;
 250        u64 eoi_exit_bitmap0;
 251        u64 eoi_exit_bitmap1;
 252        u64 eoi_exit_bitmap2;
 253        u64 eoi_exit_bitmap3;
 254        u64 eptp_list_address;
 255        u64 xss_exit_bitmap;
 256        u64 guest_physical_address;
 257        u64 vmcs_link_pointer;
 258        u64 pml_address;
 259        u64 guest_ia32_debugctl;
 260        u64 guest_ia32_pat;
 261        u64 guest_ia32_efer;
 262        u64 guest_ia32_perf_global_ctrl;
 263        u64 guest_pdptr0;
 264        u64 guest_pdptr1;
 265        u64 guest_pdptr2;
 266        u64 guest_pdptr3;
 267        u64 guest_bndcfgs;
 268        u64 host_ia32_pat;
 269        u64 host_ia32_efer;
 270        u64 host_ia32_perf_global_ctrl;
 271        u64 padding64[8]; /* room for future expansion */
 272        /*
 273         * To allow migration of L1 (complete with its L2 guests) between
 274         * machines of different natural widths (32 or 64 bit), we cannot have
 275         * unsigned long fields with no explict size. We use u64 (aliased
 276         * natural_width) instead. Luckily, x86 is little-endian.
 277         */
 278        natural_width cr0_guest_host_mask;
 279        natural_width cr4_guest_host_mask;
 280        natural_width cr0_read_shadow;
 281        natural_width cr4_read_shadow;
 282        natural_width cr3_target_value0;
 283        natural_width cr3_target_value1;
 284        natural_width cr3_target_value2;
 285        natural_width cr3_target_value3;
 286        natural_width exit_qualification;
 287        natural_width guest_linear_address;
 288        natural_width guest_cr0;
 289        natural_width guest_cr3;
 290        natural_width guest_cr4;
 291        natural_width guest_es_base;
 292        natural_width guest_cs_base;
 293        natural_width guest_ss_base;
 294        natural_width guest_ds_base;
 295        natural_width guest_fs_base;
 296        natural_width guest_gs_base;
 297        natural_width guest_ldtr_base;
 298        natural_width guest_tr_base;
 299        natural_width guest_gdtr_base;
 300        natural_width guest_idtr_base;
 301        natural_width guest_dr7;
 302        natural_width guest_rsp;
 303        natural_width guest_rip;
 304        natural_width guest_rflags;
 305        natural_width guest_pending_dbg_exceptions;
 306        natural_width guest_sysenter_esp;
 307        natural_width guest_sysenter_eip;
 308        natural_width host_cr0;
 309        natural_width host_cr3;
 310        natural_width host_cr4;
 311        natural_width host_fs_base;
 312        natural_width host_gs_base;
 313        natural_width host_tr_base;
 314        natural_width host_gdtr_base;
 315        natural_width host_idtr_base;
 316        natural_width host_ia32_sysenter_esp;
 317        natural_width host_ia32_sysenter_eip;
 318        natural_width host_rsp;
 319        natural_width host_rip;
 320        natural_width paddingl[8]; /* room for future expansion */
 321        u32 pin_based_vm_exec_control;
 322        u32 cpu_based_vm_exec_control;
 323        u32 exception_bitmap;
 324        u32 page_fault_error_code_mask;
 325        u32 page_fault_error_code_match;
 326        u32 cr3_target_count;
 327        u32 vm_exit_controls;
 328        u32 vm_exit_msr_store_count;
 329        u32 vm_exit_msr_load_count;
 330        u32 vm_entry_controls;
 331        u32 vm_entry_msr_load_count;
 332        u32 vm_entry_intr_info_field;
 333        u32 vm_entry_exception_error_code;
 334        u32 vm_entry_instruction_len;
 335        u32 tpr_threshold;
 336        u32 secondary_vm_exec_control;
 337        u32 vm_instruction_error;
 338        u32 vm_exit_reason;
 339        u32 vm_exit_intr_info;
 340        u32 vm_exit_intr_error_code;
 341        u32 idt_vectoring_info_field;
 342        u32 idt_vectoring_error_code;
 343        u32 vm_exit_instruction_len;
 344        u32 vmx_instruction_info;
 345        u32 guest_es_limit;
 346        u32 guest_cs_limit;
 347        u32 guest_ss_limit;
 348        u32 guest_ds_limit;
 349        u32 guest_fs_limit;
 350        u32 guest_gs_limit;
 351        u32 guest_ldtr_limit;
 352        u32 guest_tr_limit;
 353        u32 guest_gdtr_limit;
 354        u32 guest_idtr_limit;
 355        u32 guest_es_ar_bytes;
 356        u32 guest_cs_ar_bytes;
 357        u32 guest_ss_ar_bytes;
 358        u32 guest_ds_ar_bytes;
 359        u32 guest_fs_ar_bytes;
 360        u32 guest_gs_ar_bytes;
 361        u32 guest_ldtr_ar_bytes;
 362        u32 guest_tr_ar_bytes;
 363        u32 guest_interruptibility_info;
 364        u32 guest_activity_state;
 365        u32 guest_sysenter_cs;
 366        u32 host_ia32_sysenter_cs;
 367        u32 vmx_preemption_timer_value;
 368        u32 padding32[7]; /* room for future expansion */
 369        u16 virtual_processor_id;
 370        u16 posted_intr_nv;
 371        u16 guest_es_selector;
 372        u16 guest_cs_selector;
 373        u16 guest_ss_selector;
 374        u16 guest_ds_selector;
 375        u16 guest_fs_selector;
 376        u16 guest_gs_selector;
 377        u16 guest_ldtr_selector;
 378        u16 guest_tr_selector;
 379        u16 guest_intr_status;
 380        u16 guest_pml_index;
 381        u16 host_es_selector;
 382        u16 host_cs_selector;
 383        u16 host_ss_selector;
 384        u16 host_ds_selector;
 385        u16 host_fs_selector;
 386        u16 host_gs_selector;
 387        u16 host_tr_selector;
 388};
 389
 390/*
 391 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
 392 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
 393 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
 394 */
 395#define VMCS12_REVISION 0x11e57ed0
 396
 397/*
 398 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
 399 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
 400 * current implementation, 4K are reserved to avoid future complications.
 401 */
 402#define VMCS12_SIZE 0x1000
 403
 404/* Used to remember the last vmcs02 used for some recently used vmcs12s */
 405struct vmcs02_list {
 406        struct list_head list;
 407        gpa_t vmptr;
 408        struct loaded_vmcs vmcs02;
 409};
 410
 411/*
 412 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
 413 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
 414 */
 415struct nested_vmx {
 416        /* Has the level1 guest done vmxon? */
 417        bool vmxon;
 418        gpa_t vmxon_ptr;
 419        bool pml_full;
 420
 421        /* The guest-physical address of the current VMCS L1 keeps for L2 */
 422        gpa_t current_vmptr;
 423        /*
 424         * Cache of the guest's VMCS, existing outside of guest memory.
 425         * Loaded from guest memory during VMPTRLD. Flushed to guest
 426         * memory during VMCLEAR and VMPTRLD.
 427         */
 428        struct vmcs12 *cached_vmcs12;
 429        /*
 430         * Indicates if the shadow vmcs must be updated with the
 431         * data hold by vmcs12
 432         */
 433        bool sync_shadow_vmcs;
 434
 435        /* vmcs02_list cache of VMCSs recently used to run L2 guests */
 436        struct list_head vmcs02_pool;
 437        int vmcs02_num;
 438        bool change_vmcs01_virtual_x2apic_mode;
 439        /* L2 must run next, and mustn't decide to exit to L1. */
 440        bool nested_run_pending;
 441        /*
 442         * Guest pages referred to in vmcs02 with host-physical pointers, so
 443         * we must keep them pinned while L2 runs.
 444         */
 445        struct page *apic_access_page;
 446        struct page *virtual_apic_page;
 447        struct page *pi_desc_page;
 448        struct pi_desc *pi_desc;
 449        bool pi_pending;
 450        u16 posted_intr_nv;
 451
 452        unsigned long *msr_bitmap;
 453
 454        struct hrtimer preemption_timer;
 455        bool preemption_timer_expired;
 456
 457        /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
 458        u64 vmcs01_debugctl;
 459
 460        u16 vpid02;
 461        u16 last_vpid;
 462
 463        /*
 464         * We only store the "true" versions of the VMX capability MSRs. We
 465         * generate the "non-true" versions by setting the must-be-1 bits
 466         * according to the SDM.
 467         */
 468        u32 nested_vmx_procbased_ctls_low;
 469        u32 nested_vmx_procbased_ctls_high;
 470        u32 nested_vmx_secondary_ctls_low;
 471        u32 nested_vmx_secondary_ctls_high;
 472        u32 nested_vmx_pinbased_ctls_low;
 473        u32 nested_vmx_pinbased_ctls_high;
 474        u32 nested_vmx_exit_ctls_low;
 475        u32 nested_vmx_exit_ctls_high;
 476        u32 nested_vmx_entry_ctls_low;
 477        u32 nested_vmx_entry_ctls_high;
 478        u32 nested_vmx_misc_low;
 479        u32 nested_vmx_misc_high;
 480        u32 nested_vmx_ept_caps;
 481        u32 nested_vmx_vpid_caps;
 482        u64 nested_vmx_basic;
 483        u64 nested_vmx_cr0_fixed0;
 484        u64 nested_vmx_cr0_fixed1;
 485        u64 nested_vmx_cr4_fixed0;
 486        u64 nested_vmx_cr4_fixed1;
 487        u64 nested_vmx_vmcs_enum;
 488        u64 nested_vmx_vmfunc_controls;
 489};
 490
 491#define POSTED_INTR_ON  0
 492#define POSTED_INTR_SN  1
 493
 494/* Posted-Interrupt Descriptor */
 495struct pi_desc {
 496        u32 pir[8];     /* Posted interrupt requested */
 497        union {
 498                struct {
 499                                /* bit 256 - Outstanding Notification */
 500                        u16     on      : 1,
 501                                /* bit 257 - Suppress Notification */
 502                                sn      : 1,
 503                                /* bit 271:258 - Reserved */
 504                                rsvd_1  : 14;
 505                                /* bit 279:272 - Notification Vector */
 506                        u8      nv;
 507                                /* bit 287:280 - Reserved */
 508                        u8      rsvd_2;
 509                                /* bit 319:288 - Notification Destination */
 510                        u32     ndst;
 511                };
 512                u64 control;
 513        };
 514        u32 rsvd[6];
 515} __aligned(64);
 516
 517static bool pi_test_and_set_on(struct pi_desc *pi_desc)
 518{
 519        return test_and_set_bit(POSTED_INTR_ON,
 520                        (unsigned long *)&pi_desc->control);
 521}
 522
 523static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
 524{
 525        return test_and_clear_bit(POSTED_INTR_ON,
 526                        (unsigned long *)&pi_desc->control);
 527}
 528
 529static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
 530{
 531        return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
 532}
 533
 534static inline void pi_clear_sn(struct pi_desc *pi_desc)
 535{
 536        return clear_bit(POSTED_INTR_SN,
 537                        (unsigned long *)&pi_desc->control);
 538}
 539
 540static inline void pi_set_sn(struct pi_desc *pi_desc)
 541{
 542        return set_bit(POSTED_INTR_SN,
 543                        (unsigned long *)&pi_desc->control);
 544}
 545
 546static inline void pi_clear_on(struct pi_desc *pi_desc)
 547{
 548        clear_bit(POSTED_INTR_ON,
 549                  (unsigned long *)&pi_desc->control);
 550}
 551
 552static inline int pi_test_on(struct pi_desc *pi_desc)
 553{
 554        return test_bit(POSTED_INTR_ON,
 555                        (unsigned long *)&pi_desc->control);
 556}
 557
 558static inline int pi_test_sn(struct pi_desc *pi_desc)
 559{
 560        return test_bit(POSTED_INTR_SN,
 561                        (unsigned long *)&pi_desc->control);
 562}
 563
 564struct vcpu_vmx {
 565        struct kvm_vcpu       vcpu;
 566        unsigned long         host_rsp;
 567        u8                    fail;
 568        u32                   exit_intr_info;
 569        u32                   idt_vectoring_info;
 570        ulong                 rflags;
 571        struct shared_msr_entry *guest_msrs;
 572        int                   nmsrs;
 573        int                   save_nmsrs;
 574        unsigned long         host_idt_base;
 575#ifdef CONFIG_X86_64
 576        u64                   msr_host_kernel_gs_base;
 577        u64                   msr_guest_kernel_gs_base;
 578#endif
 579        u32 vm_entry_controls_shadow;
 580        u32 vm_exit_controls_shadow;
 581        u32 secondary_exec_control;
 582
 583        /*
 584         * loaded_vmcs points to the VMCS currently used in this vcpu. For a
 585         * non-nested (L1) guest, it always points to vmcs01. For a nested
 586         * guest (L2), it points to a different VMCS.
 587         */
 588        struct loaded_vmcs    vmcs01;
 589        struct loaded_vmcs   *loaded_vmcs;
 590        bool                  __launched; /* temporary, used in vmx_vcpu_run */
 591        struct msr_autoload {
 592                unsigned nr;
 593                struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
 594                struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
 595        } msr_autoload;
 596        struct {
 597                int           loaded;
 598                u16           fs_sel, gs_sel, ldt_sel;
 599#ifdef CONFIG_X86_64
 600                u16           ds_sel, es_sel;
 601#endif
 602                int           gs_ldt_reload_needed;
 603                int           fs_reload_needed;
 604                u64           msr_host_bndcfgs;
 605        } host_state;
 606        struct {
 607                int vm86_active;
 608                ulong save_rflags;
 609                struct kvm_segment segs[8];
 610        } rmode;
 611        struct {
 612                u32 bitmask; /* 4 bits per segment (1 bit per field) */
 613                struct kvm_save_segment {
 614                        u16 selector;
 615                        unsigned long base;
 616                        u32 limit;
 617                        u32 ar;
 618                } seg[8];
 619        } segment_cache;
 620        int vpid;
 621        bool emulation_required;
 622
 623        u32 exit_reason;
 624
 625        /* Posted interrupt descriptor */
 626        struct pi_desc pi_desc;
 627
 628        /* Support for a guest hypervisor (nested VMX) */
 629        struct nested_vmx nested;
 630
 631        /* Dynamic PLE window. */
 632        int ple_window;
 633        bool ple_window_dirty;
 634
 635        /* Support for PML */
 636#define PML_ENTITY_NUM          512
 637        struct page *pml_pg;
 638
 639        /* apic deadline value in host tsc */
 640        u64 hv_deadline_tsc;
 641
 642        u64 current_tsc_ratio;
 643
 644        u32 host_pkru;
 645
 646        /*
 647         * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
 648         * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
 649         * in msr_ia32_feature_control_valid_bits.
 650         */
 651        u64 msr_ia32_feature_control;
 652        u64 msr_ia32_feature_control_valid_bits;
 653};
 654
 655enum segment_cache_field {
 656        SEG_FIELD_SEL = 0,
 657        SEG_FIELD_BASE = 1,
 658        SEG_FIELD_LIMIT = 2,
 659        SEG_FIELD_AR = 3,
 660
 661        SEG_FIELD_NR = 4
 662};
 663
 664static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
 665{
 666        return container_of(vcpu, struct vcpu_vmx, vcpu);
 667}
 668
 669static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
 670{
 671        return &(to_vmx(vcpu)->pi_desc);
 672}
 673
 674#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
 675#define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
 676#define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
 677                                [number##_HIGH] = VMCS12_OFFSET(name)+4
 678
 679
 680static unsigned long shadow_read_only_fields[] = {
 681        /*
 682         * We do NOT shadow fields that are modified when L0
 683         * traps and emulates any vmx instruction (e.g. VMPTRLD,
 684         * VMXON...) executed by L1.
 685         * For example, VM_INSTRUCTION_ERROR is read
 686         * by L1 if a vmx instruction fails (part of the error path).
 687         * Note the code assumes this logic. If for some reason
 688         * we start shadowing these fields then we need to
 689         * force a shadow sync when L0 emulates vmx instructions
 690         * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
 691         * by nested_vmx_failValid)
 692         */
 693        VM_EXIT_REASON,
 694        VM_EXIT_INTR_INFO,
 695        VM_EXIT_INSTRUCTION_LEN,
 696        IDT_VECTORING_INFO_FIELD,
 697        IDT_VECTORING_ERROR_CODE,
 698        VM_EXIT_INTR_ERROR_CODE,
 699        EXIT_QUALIFICATION,
 700        GUEST_LINEAR_ADDRESS,
 701        GUEST_PHYSICAL_ADDRESS
 702};
 703static int max_shadow_read_only_fields =
 704        ARRAY_SIZE(shadow_read_only_fields);
 705
 706static unsigned long shadow_read_write_fields[] = {
 707        TPR_THRESHOLD,
 708        GUEST_RIP,
 709        GUEST_RSP,
 710        GUEST_CR0,
 711        GUEST_CR3,
 712        GUEST_CR4,
 713        GUEST_INTERRUPTIBILITY_INFO,
 714        GUEST_RFLAGS,
 715        GUEST_CS_SELECTOR,
 716        GUEST_CS_AR_BYTES,
 717        GUEST_CS_LIMIT,
 718        GUEST_CS_BASE,
 719        GUEST_ES_BASE,
 720        GUEST_BNDCFGS,
 721        CR0_GUEST_HOST_MASK,
 722        CR0_READ_SHADOW,
 723        CR4_READ_SHADOW,
 724        TSC_OFFSET,
 725        EXCEPTION_BITMAP,
 726        CPU_BASED_VM_EXEC_CONTROL,
 727        VM_ENTRY_EXCEPTION_ERROR_CODE,
 728        VM_ENTRY_INTR_INFO_FIELD,
 729        VM_ENTRY_INSTRUCTION_LEN,
 730        VM_ENTRY_EXCEPTION_ERROR_CODE,
 731        HOST_FS_BASE,
 732        HOST_GS_BASE,
 733        HOST_FS_SELECTOR,
 734        HOST_GS_SELECTOR
 735};
 736static int max_shadow_read_write_fields =
 737        ARRAY_SIZE(shadow_read_write_fields);
 738
 739static const unsigned short vmcs_field_to_offset_table[] = {
 740        FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
 741        FIELD(POSTED_INTR_NV, posted_intr_nv),
 742        FIELD(GUEST_ES_SELECTOR, guest_es_selector),
 743        FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
 744        FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
 745        FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
 746        FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
 747        FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
 748        FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
 749        FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
 750        FIELD(GUEST_INTR_STATUS, guest_intr_status),
 751        FIELD(GUEST_PML_INDEX, guest_pml_index),
 752        FIELD(HOST_ES_SELECTOR, host_es_selector),
 753        FIELD(HOST_CS_SELECTOR, host_cs_selector),
 754        FIELD(HOST_SS_SELECTOR, host_ss_selector),
 755        FIELD(HOST_DS_SELECTOR, host_ds_selector),
 756        FIELD(HOST_FS_SELECTOR, host_fs_selector),
 757        FIELD(HOST_GS_SELECTOR, host_gs_selector),
 758        FIELD(HOST_TR_SELECTOR, host_tr_selector),
 759        FIELD64(IO_BITMAP_A, io_bitmap_a),
 760        FIELD64(IO_BITMAP_B, io_bitmap_b),
 761        FIELD64(MSR_BITMAP, msr_bitmap),
 762        FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
 763        FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
 764        FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
 765        FIELD64(TSC_OFFSET, tsc_offset),
 766        FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
 767        FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
 768        FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
 769        FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
 770        FIELD64(EPT_POINTER, ept_pointer),
 771        FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
 772        FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
 773        FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
 774        FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
 775        FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
 776        FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
 777        FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
 778        FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
 779        FIELD64(PML_ADDRESS, pml_address),
 780        FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
 781        FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
 782        FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
 783        FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
 784        FIELD64(GUEST_PDPTR0, guest_pdptr0),
 785        FIELD64(GUEST_PDPTR1, guest_pdptr1),
 786        FIELD64(GUEST_PDPTR2, guest_pdptr2),
 787        FIELD64(GUEST_PDPTR3, guest_pdptr3),
 788        FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
 789        FIELD64(HOST_IA32_PAT, host_ia32_pat),
 790        FIELD64(HOST_IA32_EFER, host_ia32_efer),
 791        FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
 792        FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
 793        FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
 794        FIELD(EXCEPTION_BITMAP, exception_bitmap),
 795        FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
 796        FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
 797        FIELD(CR3_TARGET_COUNT, cr3_target_count),
 798        FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
 799        FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
 800        FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
 801        FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
 802        FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
 803        FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
 804        FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
 805        FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
 806        FIELD(TPR_THRESHOLD, tpr_threshold),
 807        FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
 808        FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
 809        FIELD(VM_EXIT_REASON, vm_exit_reason),
 810        FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
 811        FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
 812        FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
 813        FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
 814        FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
 815        FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
 816        FIELD(GUEST_ES_LIMIT, guest_es_limit),
 817        FIELD(GUEST_CS_LIMIT, guest_cs_limit),
 818        FIELD(GUEST_SS_LIMIT, guest_ss_limit),
 819        FIELD(GUEST_DS_LIMIT, guest_ds_limit),
 820        FIELD(GUEST_FS_LIMIT, guest_fs_limit),
 821        FIELD(GUEST_GS_LIMIT, guest_gs_limit),
 822        FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
 823        FIELD(GUEST_TR_LIMIT, guest_tr_limit),
 824        FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
 825        FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
 826        FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
 827        FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
 828        FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
 829        FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
 830        FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
 831        FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
 832        FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
 833        FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
 834        FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
 835        FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
 836        FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
 837        FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
 838        FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
 839        FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
 840        FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
 841        FIELD(CR0_READ_SHADOW, cr0_read_shadow),
 842        FIELD(CR4_READ_SHADOW, cr4_read_shadow),
 843        FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
 844        FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
 845        FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
 846        FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
 847        FIELD(EXIT_QUALIFICATION, exit_qualification),
 848        FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
 849        FIELD(GUEST_CR0, guest_cr0),
 850        FIELD(GUEST_CR3, guest_cr3),
 851        FIELD(GUEST_CR4, guest_cr4),
 852        FIELD(GUEST_ES_BASE, guest_es_base),
 853        FIELD(GUEST_CS_BASE, guest_cs_base),
 854        FIELD(GUEST_SS_BASE, guest_ss_base),
 855        FIELD(GUEST_DS_BASE, guest_ds_base),
 856        FIELD(GUEST_FS_BASE, guest_fs_base),
 857        FIELD(GUEST_GS_BASE, guest_gs_base),
 858        FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
 859        FIELD(GUEST_TR_BASE, guest_tr_base),
 860        FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
 861        FIELD(GUEST_IDTR_BASE, guest_idtr_base),
 862        FIELD(GUEST_DR7, guest_dr7),
 863        FIELD(GUEST_RSP, guest_rsp),
 864        FIELD(GUEST_RIP, guest_rip),
 865        FIELD(GUEST_RFLAGS, guest_rflags),
 866        FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
 867        FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
 868        FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
 869        FIELD(HOST_CR0, host_cr0),
 870        FIELD(HOST_CR3, host_cr3),
 871        FIELD(HOST_CR4, host_cr4),
 872        FIELD(HOST_FS_BASE, host_fs_base),
 873        FIELD(HOST_GS_BASE, host_gs_base),
 874        FIELD(HOST_TR_BASE, host_tr_base),
 875        FIELD(HOST_GDTR_BASE, host_gdtr_base),
 876        FIELD(HOST_IDTR_BASE, host_idtr_base),
 877        FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
 878        FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
 879        FIELD(HOST_RSP, host_rsp),
 880        FIELD(HOST_RIP, host_rip),
 881};
 882
 883static inline short vmcs_field_to_offset(unsigned long field)
 884{
 885        BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
 886
 887        if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
 888            vmcs_field_to_offset_table[field] == 0)
 889                return -ENOENT;
 890
 891        return vmcs_field_to_offset_table[field];
 892}
 893
 894static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
 895{
 896        return to_vmx(vcpu)->nested.cached_vmcs12;
 897}
 898
 899static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
 900static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
 901static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
 902static bool vmx_xsaves_supported(void);
 903static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
 904static void vmx_set_segment(struct kvm_vcpu *vcpu,
 905                            struct kvm_segment *var, int seg);
 906static void vmx_get_segment(struct kvm_vcpu *vcpu,
 907                            struct kvm_segment *var, int seg);
 908static bool guest_state_valid(struct kvm_vcpu *vcpu);
 909static u32 vmx_segment_access_rights(struct kvm_segment *var);
 910static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
 911static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
 912static int alloc_identity_pagetable(struct kvm *kvm);
 913static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
 914static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
 915static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
 916                                            u16 error_code);
 917
 918static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 919static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 920/*
 921 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 922 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 923 */
 924static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
 925
 926/*
 927 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
 928 * can find which vCPU should be waken up.
 929 */
 930static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
 931static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
 932
 933enum {
 934        VMX_IO_BITMAP_A,
 935        VMX_IO_BITMAP_B,
 936        VMX_MSR_BITMAP_LEGACY,
 937        VMX_MSR_BITMAP_LONGMODE,
 938        VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
 939        VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
 940        VMX_MSR_BITMAP_LEGACY_X2APIC,
 941        VMX_MSR_BITMAP_LONGMODE_X2APIC,
 942        VMX_VMREAD_BITMAP,
 943        VMX_VMWRITE_BITMAP,
 944        VMX_BITMAP_NR
 945};
 946
 947static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
 948
 949#define vmx_io_bitmap_a                      (vmx_bitmap[VMX_IO_BITMAP_A])
 950#define vmx_io_bitmap_b                      (vmx_bitmap[VMX_IO_BITMAP_B])
 951#define vmx_msr_bitmap_legacy                (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
 952#define vmx_msr_bitmap_longmode              (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
 953#define vmx_msr_bitmap_legacy_x2apic_apicv   (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
 954#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
 955#define vmx_msr_bitmap_legacy_x2apic         (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
 956#define vmx_msr_bitmap_longmode_x2apic       (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
 957#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
 958#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
 959
 960static bool cpu_has_load_ia32_efer;
 961static bool cpu_has_load_perf_global_ctrl;
 962
 963static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 964static DEFINE_SPINLOCK(vmx_vpid_lock);
 965
 966static struct vmcs_config {
 967        int size;
 968        int order;
 969        u32 basic_cap;
 970        u32 revision_id;
 971        u32 pin_based_exec_ctrl;
 972        u32 cpu_based_exec_ctrl;
 973        u32 cpu_based_2nd_exec_ctrl;
 974        u32 vmexit_ctrl;
 975        u32 vmentry_ctrl;
 976} vmcs_config;
 977
 978static struct vmx_capability {
 979        u32 ept;
 980        u32 vpid;
 981} vmx_capability;
 982
 983#define VMX_SEGMENT_FIELD(seg)                                  \
 984        [VCPU_SREG_##seg] = {                                   \
 985                .selector = GUEST_##seg##_SELECTOR,             \
 986                .base = GUEST_##seg##_BASE,                     \
 987                .limit = GUEST_##seg##_LIMIT,                   \
 988                .ar_bytes = GUEST_##seg##_AR_BYTES,             \
 989        }
 990
 991static const struct kvm_vmx_segment_field {
 992        unsigned selector;
 993        unsigned base;
 994        unsigned limit;
 995        unsigned ar_bytes;
 996} kvm_vmx_segment_fields[] = {
 997        VMX_SEGMENT_FIELD(CS),
 998        VMX_SEGMENT_FIELD(DS),
 999        VMX_SEGMENT_FIELD(ES),
1000        VMX_SEGMENT_FIELD(FS),
1001        VMX_SEGMENT_FIELD(GS),
1002        VMX_SEGMENT_FIELD(SS),
1003        VMX_SEGMENT_FIELD(TR),
1004        VMX_SEGMENT_FIELD(LDTR),
1005};
1006
1007static u64 host_efer;
1008
1009static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1010
1011/*
1012 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1013 * away by decrementing the array size.
1014 */
1015static const u32 vmx_msr_index[] = {
1016#ifdef CONFIG_X86_64
1017        MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1018#endif
1019        MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1020};
1021
1022static inline bool is_exception_n(u32 intr_info, u8 vector)
1023{
1024        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1025                             INTR_INFO_VALID_MASK)) ==
1026                (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1027}
1028
1029static inline bool is_debug(u32 intr_info)
1030{
1031        return is_exception_n(intr_info, DB_VECTOR);
1032}
1033
1034static inline bool is_breakpoint(u32 intr_info)
1035{
1036        return is_exception_n(intr_info, BP_VECTOR);
1037}
1038
1039static inline bool is_page_fault(u32 intr_info)
1040{
1041        return is_exception_n(intr_info, PF_VECTOR);
1042}
1043
1044static inline bool is_no_device(u32 intr_info)
1045{
1046        return is_exception_n(intr_info, NM_VECTOR);
1047}
1048
1049static inline bool is_invalid_opcode(u32 intr_info)
1050{
1051        return is_exception_n(intr_info, UD_VECTOR);
1052}
1053
1054static inline bool is_external_interrupt(u32 intr_info)
1055{
1056        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1057                == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1058}
1059
1060static inline bool is_machine_check(u32 intr_info)
1061{
1062        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1063                             INTR_INFO_VALID_MASK)) ==
1064                (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1065}
1066
1067static inline bool cpu_has_vmx_msr_bitmap(void)
1068{
1069        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1070}
1071
1072static inline bool cpu_has_vmx_tpr_shadow(void)
1073{
1074        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1075}
1076
1077static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1078{
1079        return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1080}
1081
1082static inline bool cpu_has_secondary_exec_ctrls(void)
1083{
1084        return vmcs_config.cpu_based_exec_ctrl &
1085                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1086}
1087
1088static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1089{
1090        return vmcs_config.cpu_based_2nd_exec_ctrl &
1091                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1092}
1093
1094static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1095{
1096        return vmcs_config.cpu_based_2nd_exec_ctrl &
1097                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1098}
1099
1100static inline bool cpu_has_vmx_apic_register_virt(void)
1101{
1102        return vmcs_config.cpu_based_2nd_exec_ctrl &
1103                SECONDARY_EXEC_APIC_REGISTER_VIRT;
1104}
1105
1106static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1107{
1108        return vmcs_config.cpu_based_2nd_exec_ctrl &
1109                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1110}
1111
1112/*
1113 * Comment's format: document - errata name - stepping - processor name.
1114 * Refer from
1115 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1116 */
1117static u32 vmx_preemption_cpu_tfms[] = {
1118/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
11190x000206E6,
1120/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1121/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1122/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11230x00020652,
1124/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11250x00020655,
1126/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1127/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1128/*
1129 * 320767.pdf - AAP86  - B1 -
1130 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1131 */
11320x000106E5,
1133/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11340x000106A0,
1135/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11360x000106A1,
1137/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11380x000106A4,
1139 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1140 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1141 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11420x000106A5,
1143};
1144
1145static inline bool cpu_has_broken_vmx_preemption_timer(void)
1146{
1147        u32 eax = cpuid_eax(0x00000001), i;
1148
1149        /* Clear the reserved bits */
1150        eax &= ~(0x3U << 14 | 0xfU << 28);
1151        for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1152                if (eax == vmx_preemption_cpu_tfms[i])
1153                        return true;
1154
1155        return false;
1156}
1157
1158static inline bool cpu_has_vmx_preemption_timer(void)
1159{
1160        return vmcs_config.pin_based_exec_ctrl &
1161                PIN_BASED_VMX_PREEMPTION_TIMER;
1162}
1163
1164static inline bool cpu_has_vmx_posted_intr(void)
1165{
1166        return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1167                vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1168}
1169
1170static inline bool cpu_has_vmx_apicv(void)
1171{
1172        return cpu_has_vmx_apic_register_virt() &&
1173                cpu_has_vmx_virtual_intr_delivery() &&
1174                cpu_has_vmx_posted_intr();
1175}
1176
1177static inline bool cpu_has_vmx_flexpriority(void)
1178{
1179        return cpu_has_vmx_tpr_shadow() &&
1180                cpu_has_vmx_virtualize_apic_accesses();
1181}
1182
1183static inline bool cpu_has_vmx_ept_execute_only(void)
1184{
1185        return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1186}
1187
1188static inline bool cpu_has_vmx_ept_2m_page(void)
1189{
1190        return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1191}
1192
1193static inline bool cpu_has_vmx_ept_1g_page(void)
1194{
1195        return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1196}
1197
1198static inline bool cpu_has_vmx_ept_4levels(void)
1199{
1200        return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1201}
1202
1203static inline bool cpu_has_vmx_ept_mt_wb(void)
1204{
1205        return vmx_capability.ept & VMX_EPTP_WB_BIT;
1206}
1207
1208static inline bool cpu_has_vmx_ept_5levels(void)
1209{
1210        return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1211}
1212
1213static inline bool cpu_has_vmx_ept_ad_bits(void)
1214{
1215        return vmx_capability.ept & VMX_EPT_AD_BIT;
1216}
1217
1218static inline bool cpu_has_vmx_invept_context(void)
1219{
1220        return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1221}
1222
1223static inline bool cpu_has_vmx_invept_global(void)
1224{
1225        return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1226}
1227
1228static inline bool cpu_has_vmx_invvpid_single(void)
1229{
1230        return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1231}
1232
1233static inline bool cpu_has_vmx_invvpid_global(void)
1234{
1235        return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1236}
1237
1238static inline bool cpu_has_vmx_invvpid(void)
1239{
1240        return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1241}
1242
1243static inline bool cpu_has_vmx_ept(void)
1244{
1245        return vmcs_config.cpu_based_2nd_exec_ctrl &
1246                SECONDARY_EXEC_ENABLE_EPT;
1247}
1248
1249static inline bool cpu_has_vmx_unrestricted_guest(void)
1250{
1251        return vmcs_config.cpu_based_2nd_exec_ctrl &
1252                SECONDARY_EXEC_UNRESTRICTED_GUEST;
1253}
1254
1255static inline bool cpu_has_vmx_ple(void)
1256{
1257        return vmcs_config.cpu_based_2nd_exec_ctrl &
1258                SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1259}
1260
1261static inline bool cpu_has_vmx_basic_inout(void)
1262{
1263        return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1264}
1265
1266static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1267{
1268        return flexpriority_enabled && lapic_in_kernel(vcpu);
1269}
1270
1271static inline bool cpu_has_vmx_vpid(void)
1272{
1273        return vmcs_config.cpu_based_2nd_exec_ctrl &
1274                SECONDARY_EXEC_ENABLE_VPID;
1275}
1276
1277static inline bool cpu_has_vmx_rdtscp(void)
1278{
1279        return vmcs_config.cpu_based_2nd_exec_ctrl &
1280                SECONDARY_EXEC_RDTSCP;
1281}
1282
1283static inline bool cpu_has_vmx_invpcid(void)
1284{
1285        return vmcs_config.cpu_based_2nd_exec_ctrl &
1286                SECONDARY_EXEC_ENABLE_INVPCID;
1287}
1288
1289static inline bool cpu_has_vmx_wbinvd_exit(void)
1290{
1291        return vmcs_config.cpu_based_2nd_exec_ctrl &
1292                SECONDARY_EXEC_WBINVD_EXITING;
1293}
1294
1295static inline bool cpu_has_vmx_shadow_vmcs(void)
1296{
1297        u64 vmx_msr;
1298        rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1299        /* check if the cpu supports writing r/o exit information fields */
1300        if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1301                return false;
1302
1303        return vmcs_config.cpu_based_2nd_exec_ctrl &
1304                SECONDARY_EXEC_SHADOW_VMCS;
1305}
1306
1307static inline bool cpu_has_vmx_pml(void)
1308{
1309        return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1310}
1311
1312static inline bool cpu_has_vmx_tsc_scaling(void)
1313{
1314        return vmcs_config.cpu_based_2nd_exec_ctrl &
1315                SECONDARY_EXEC_TSC_SCALING;
1316}
1317
1318static inline bool cpu_has_vmx_vmfunc(void)
1319{
1320        return vmcs_config.cpu_based_2nd_exec_ctrl &
1321                SECONDARY_EXEC_ENABLE_VMFUNC;
1322}
1323
1324static inline bool report_flexpriority(void)
1325{
1326        return flexpriority_enabled;
1327}
1328
1329static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1330{
1331        return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1332}
1333
1334static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1335{
1336        return vmcs12->cpu_based_vm_exec_control & bit;
1337}
1338
1339static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1340{
1341        return (vmcs12->cpu_based_vm_exec_control &
1342                        CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1343                (vmcs12->secondary_vm_exec_control & bit);
1344}
1345
1346static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1347{
1348        return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1349}
1350
1351static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1352{
1353        return vmcs12->pin_based_vm_exec_control &
1354                PIN_BASED_VMX_PREEMPTION_TIMER;
1355}
1356
1357static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1358{
1359        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1360}
1361
1362static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1363{
1364        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
1365}
1366
1367static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1368{
1369        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1370}
1371
1372static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1373{
1374        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1375}
1376
1377static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1378{
1379        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1380}
1381
1382static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1383{
1384        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1385}
1386
1387static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1388{
1389        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1390}
1391
1392static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1393{
1394        return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1395}
1396
1397static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1398{
1399        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1400}
1401
1402static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1403{
1404        return nested_cpu_has_vmfunc(vmcs12) &&
1405                (vmcs12->vm_function_control &
1406                 VMX_VMFUNC_EPTP_SWITCHING);
1407}
1408
1409static inline bool is_nmi(u32 intr_info)
1410{
1411        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1412                == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1413}
1414
1415static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1416                              u32 exit_intr_info,
1417                              unsigned long exit_qualification);
1418static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1419                        struct vmcs12 *vmcs12,
1420                        u32 reason, unsigned long qualification);
1421
1422static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1423{
1424        int i;
1425
1426        for (i = 0; i < vmx->nmsrs; ++i)
1427                if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1428                        return i;
1429        return -1;
1430}
1431
1432static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1433{
1434    struct {
1435        u64 vpid : 16;
1436        u64 rsvd : 48;
1437        u64 gva;
1438    } operand = { vpid, 0, gva };
1439
1440    asm volatile (__ex(ASM_VMX_INVVPID)
1441                  /* CF==1 or ZF==1 --> rc = -1 */
1442                  "; ja 1f ; ud2 ; 1:"
1443                  : : "a"(&operand), "c"(ext) : "cc", "memory");
1444}
1445
1446static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1447{
1448        struct {
1449                u64 eptp, gpa;
1450        } operand = {eptp, gpa};
1451
1452        asm volatile (__ex(ASM_VMX_INVEPT)
1453                        /* CF==1 or ZF==1 --> rc = -1 */
1454                        "; ja 1f ; ud2 ; 1:\n"
1455                        : : "a" (&operand), "c" (ext) : "cc", "memory");
1456}
1457
1458static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1459{
1460        int i;
1461
1462        i = __find_msr_index(vmx, msr);
1463        if (i >= 0)
1464                return &vmx->guest_msrs[i];
1465        return NULL;
1466}
1467
1468static void vmcs_clear(struct vmcs *vmcs)
1469{
1470        u64 phys_addr = __pa(vmcs);
1471        u8 error;
1472
1473        asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1474                      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1475                      : "cc", "memory");
1476        if (error)
1477                printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1478                       vmcs, phys_addr);
1479}
1480
1481static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1482{
1483        vmcs_clear(loaded_vmcs->vmcs);
1484        if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1485                vmcs_clear(loaded_vmcs->shadow_vmcs);
1486        loaded_vmcs->cpu = -1;
1487        loaded_vmcs->launched = 0;
1488}
1489
1490static void vmcs_load(struct vmcs *vmcs)
1491{
1492        u64 phys_addr = __pa(vmcs);
1493        u8 error;
1494
1495        asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1496                        : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1497                        : "cc", "memory");
1498        if (error)
1499                printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1500                       vmcs, phys_addr);
1501}
1502
1503#ifdef CONFIG_KEXEC_CORE
1504/*
1505 * This bitmap is used to indicate whether the vmclear
1506 * operation is enabled on all cpus. All disabled by
1507 * default.
1508 */
1509static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1510
1511static inline void crash_enable_local_vmclear(int cpu)
1512{
1513        cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1514}
1515
1516static inline void crash_disable_local_vmclear(int cpu)
1517{
1518        cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1519}
1520
1521static inline int crash_local_vmclear_enabled(int cpu)
1522{
1523        return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1524}
1525
1526static void crash_vmclear_local_loaded_vmcss(void)
1527{
1528        int cpu = raw_smp_processor_id();
1529        struct loaded_vmcs *v;
1530
1531        if (!crash_local_vmclear_enabled(cpu))
1532                return;
1533
1534        list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1535                            loaded_vmcss_on_cpu_link)
1536                vmcs_clear(v->vmcs);
1537}
1538#else
1539static inline void crash_enable_local_vmclear(int cpu) { }
1540static inline void crash_disable_local_vmclear(int cpu) { }
1541#endif /* CONFIG_KEXEC_CORE */
1542
1543static void __loaded_vmcs_clear(void *arg)
1544{
1545        struct loaded_vmcs *loaded_vmcs = arg;
1546        int cpu = raw_smp_processor_id();
1547
1548        if (loaded_vmcs->cpu != cpu)
1549                return; /* vcpu migration can race with cpu offline */
1550        if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1551                per_cpu(current_vmcs, cpu) = NULL;
1552        crash_disable_local_vmclear(cpu);
1553        list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1554
1555        /*
1556         * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1557         * is before setting loaded_vmcs->vcpu to -1 which is done in
1558         * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1559         * then adds the vmcs into percpu list before it is deleted.
1560         */
1561        smp_wmb();
1562
1563        loaded_vmcs_init(loaded_vmcs);
1564        crash_enable_local_vmclear(cpu);
1565}
1566
1567static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1568{
1569        int cpu = loaded_vmcs->cpu;
1570
1571        if (cpu != -1)
1572                smp_call_function_single(cpu,
1573                         __loaded_vmcs_clear, loaded_vmcs, 1);
1574}
1575
1576static inline void vpid_sync_vcpu_single(int vpid)
1577{
1578        if (vpid == 0)
1579                return;
1580
1581        if (cpu_has_vmx_invvpid_single())
1582                __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1583}
1584
1585static inline void vpid_sync_vcpu_global(void)
1586{
1587        if (cpu_has_vmx_invvpid_global())
1588                __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1589}
1590
1591static inline void vpid_sync_context(int vpid)
1592{
1593        if (cpu_has_vmx_invvpid_single())
1594                vpid_sync_vcpu_single(vpid);
1595        else
1596                vpid_sync_vcpu_global();
1597}
1598
1599static inline void ept_sync_global(void)
1600{
1601        if (cpu_has_vmx_invept_global())
1602                __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1603}
1604
1605static inline void ept_sync_context(u64 eptp)
1606{
1607        if (enable_ept) {
1608                if (cpu_has_vmx_invept_context())
1609                        __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1610                else
1611                        ept_sync_global();
1612        }
1613}
1614
1615static __always_inline void vmcs_check16(unsigned long field)
1616{
1617        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1618                         "16-bit accessor invalid for 64-bit field");
1619        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1620                         "16-bit accessor invalid for 64-bit high field");
1621        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1622                         "16-bit accessor invalid for 32-bit high field");
1623        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1624                         "16-bit accessor invalid for natural width field");
1625}
1626
1627static __always_inline void vmcs_check32(unsigned long field)
1628{
1629        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1630                         "32-bit accessor invalid for 16-bit field");
1631        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1632                         "32-bit accessor invalid for natural width field");
1633}
1634
1635static __always_inline void vmcs_check64(unsigned long field)
1636{
1637        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1638                         "64-bit accessor invalid for 16-bit field");
1639        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1640                         "64-bit accessor invalid for 64-bit high field");
1641        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1642                         "64-bit accessor invalid for 32-bit field");
1643        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1644                         "64-bit accessor invalid for natural width field");
1645}
1646
1647static __always_inline void vmcs_checkl(unsigned long field)
1648{
1649        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1650                         "Natural width accessor invalid for 16-bit field");
1651        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1652                         "Natural width accessor invalid for 64-bit field");
1653        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1654                         "Natural width accessor invalid for 64-bit high field");
1655        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1656                         "Natural width accessor invalid for 32-bit field");
1657}
1658
1659static __always_inline unsigned long __vmcs_readl(unsigned long field)
1660{
1661        unsigned long value;
1662
1663        asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1664                      : "=a"(value) : "d"(field) : "cc");
1665        return value;
1666}
1667
1668static __always_inline u16 vmcs_read16(unsigned long field)
1669{
1670        vmcs_check16(field);
1671        return __vmcs_readl(field);
1672}
1673
1674static __always_inline u32 vmcs_read32(unsigned long field)
1675{
1676        vmcs_check32(field);
1677        return __vmcs_readl(field);
1678}
1679
1680static __always_inline u64 vmcs_read64(unsigned long field)
1681{
1682        vmcs_check64(field);
1683#ifdef CONFIG_X86_64
1684        return __vmcs_readl(field);
1685#else
1686        return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1687#endif
1688}
1689
1690static __always_inline unsigned long vmcs_readl(unsigned long field)
1691{
1692        vmcs_checkl(field);
1693        return __vmcs_readl(field);
1694}
1695
1696static noinline void vmwrite_error(unsigned long field, unsigned long value)
1697{
1698        printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1699               field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1700        dump_stack();
1701}
1702
1703static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1704{
1705        u8 error;
1706
1707        asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1708                       : "=q"(error) : "a"(value), "d"(field) : "cc");
1709        if (unlikely(error))
1710                vmwrite_error(field, value);
1711}
1712
1713static __always_inline void vmcs_write16(unsigned long field, u16 value)
1714{
1715        vmcs_check16(field);
1716        __vmcs_writel(field, value);
1717}
1718
1719static __always_inline void vmcs_write32(unsigned long field, u32 value)
1720{
1721        vmcs_check32(field);
1722        __vmcs_writel(field, value);
1723}
1724
1725static __always_inline void vmcs_write64(unsigned long field, u64 value)
1726{
1727        vmcs_check64(field);
1728        __vmcs_writel(field, value);
1729#ifndef CONFIG_X86_64
1730        asm volatile ("");
1731        __vmcs_writel(field+1, value >> 32);
1732#endif
1733}
1734
1735static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1736{
1737        vmcs_checkl(field);
1738        __vmcs_writel(field, value);
1739}
1740
1741static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1742{
1743        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1744                         "vmcs_clear_bits does not support 64-bit fields");
1745        __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1746}
1747
1748static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1749{
1750        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1751                         "vmcs_set_bits does not support 64-bit fields");
1752        __vmcs_writel(field, __vmcs_readl(field) | mask);
1753}
1754
1755static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1756{
1757        vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1758}
1759
1760static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1761{
1762        vmcs_write32(VM_ENTRY_CONTROLS, val);
1763        vmx->vm_entry_controls_shadow = val;
1764}
1765
1766static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1767{
1768        if (vmx->vm_entry_controls_shadow != val)
1769                vm_entry_controls_init(vmx, val);
1770}
1771
1772static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1773{
1774        return vmx->vm_entry_controls_shadow;
1775}
1776
1777
1778static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1779{
1780        vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1781}
1782
1783static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1784{
1785        vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1786}
1787
1788static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1789{
1790        vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1791}
1792
1793static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1794{
1795        vmcs_write32(VM_EXIT_CONTROLS, val);
1796        vmx->vm_exit_controls_shadow = val;
1797}
1798
1799static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1800{
1801        if (vmx->vm_exit_controls_shadow != val)
1802                vm_exit_controls_init(vmx, val);
1803}
1804
1805static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1806{
1807        return vmx->vm_exit_controls_shadow;
1808}
1809
1810
1811static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1812{
1813        vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1814}
1815
1816static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1817{
1818        vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1819}
1820
1821static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1822{
1823        vmx->segment_cache.bitmask = 0;
1824}
1825
1826static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1827                                       unsigned field)
1828{
1829        bool ret;
1830        u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1831
1832        if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1833                vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1834                vmx->segment_cache.bitmask = 0;
1835        }
1836        ret = vmx->segment_cache.bitmask & mask;
1837        vmx->segment_cache.bitmask |= mask;
1838        return ret;
1839}
1840
1841static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1842{
1843        u16 *p = &vmx->segment_cache.seg[seg].selector;
1844
1845        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1846                *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1847        return *p;
1848}
1849
1850static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1851{
1852        ulong *p = &vmx->segment_cache.seg[seg].base;
1853
1854        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1855                *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1856        return *p;
1857}
1858
1859static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1860{
1861        u32 *p = &vmx->segment_cache.seg[seg].limit;
1862
1863        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1864                *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1865        return *p;
1866}
1867
1868static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1869{
1870        u32 *p = &vmx->segment_cache.seg[seg].ar;
1871
1872        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1873                *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1874        return *p;
1875}
1876
1877static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1878{
1879        u32 eb;
1880
1881        eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1882             (1u << DB_VECTOR) | (1u << AC_VECTOR);
1883        if ((vcpu->guest_debug &
1884             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1885            (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1886                eb |= 1u << BP_VECTOR;
1887        if (to_vmx(vcpu)->rmode.vm86_active)
1888                eb = ~0;
1889        if (enable_ept)
1890                eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1891
1892        /* When we are running a nested L2 guest and L1 specified for it a
1893         * certain exception bitmap, we must trap the same exceptions and pass
1894         * them to L1. When running L2, we will only handle the exceptions
1895         * specified above if L1 did not want them.
1896         */
1897        if (is_guest_mode(vcpu))
1898                eb |= get_vmcs12(vcpu)->exception_bitmap;
1899
1900        vmcs_write32(EXCEPTION_BITMAP, eb);
1901}
1902
1903static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1904                unsigned long entry, unsigned long exit)
1905{
1906        vm_entry_controls_clearbit(vmx, entry);
1907        vm_exit_controls_clearbit(vmx, exit);
1908}
1909
1910static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1911{
1912        unsigned i;
1913        struct msr_autoload *m = &vmx->msr_autoload;
1914
1915        switch (msr) {
1916        case MSR_EFER:
1917                if (cpu_has_load_ia32_efer) {
1918                        clear_atomic_switch_msr_special(vmx,
1919                                        VM_ENTRY_LOAD_IA32_EFER,
1920                                        VM_EXIT_LOAD_IA32_EFER);
1921                        return;
1922                }
1923                break;
1924        case MSR_CORE_PERF_GLOBAL_CTRL:
1925                if (cpu_has_load_perf_global_ctrl) {
1926                        clear_atomic_switch_msr_special(vmx,
1927                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1928                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1929                        return;
1930                }
1931                break;
1932        }
1933
1934        for (i = 0; i < m->nr; ++i)
1935                if (m->guest[i].index == msr)
1936                        break;
1937
1938        if (i == m->nr)
1939                return;
1940        --m->nr;
1941        m->guest[i] = m->guest[m->nr];
1942        m->host[i] = m->host[m->nr];
1943        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1944        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1945}
1946
1947static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1948                unsigned long entry, unsigned long exit,
1949                unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1950                u64 guest_val, u64 host_val)
1951{
1952        vmcs_write64(guest_val_vmcs, guest_val);
1953        vmcs_write64(host_val_vmcs, host_val);
1954        vm_entry_controls_setbit(vmx, entry);
1955        vm_exit_controls_setbit(vmx, exit);
1956}
1957
1958static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1959                                  u64 guest_val, u64 host_val)
1960{
1961        unsigned i;
1962        struct msr_autoload *m = &vmx->msr_autoload;
1963
1964        switch (msr) {
1965        case MSR_EFER:
1966                if (cpu_has_load_ia32_efer) {
1967                        add_atomic_switch_msr_special(vmx,
1968                                        VM_ENTRY_LOAD_IA32_EFER,
1969                                        VM_EXIT_LOAD_IA32_EFER,
1970                                        GUEST_IA32_EFER,
1971                                        HOST_IA32_EFER,
1972                                        guest_val, host_val);
1973                        return;
1974                }
1975                break;
1976        case MSR_CORE_PERF_GLOBAL_CTRL:
1977                if (cpu_has_load_perf_global_ctrl) {
1978                        add_atomic_switch_msr_special(vmx,
1979                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1980                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1981                                        GUEST_IA32_PERF_GLOBAL_CTRL,
1982                                        HOST_IA32_PERF_GLOBAL_CTRL,
1983                                        guest_val, host_val);
1984                        return;
1985                }
1986                break;
1987        case MSR_IA32_PEBS_ENABLE:
1988                /* PEBS needs a quiescent period after being disabled (to write
1989                 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1990                 * provide that period, so a CPU could write host's record into
1991                 * guest's memory.
1992                 */
1993                wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1994        }
1995
1996        for (i = 0; i < m->nr; ++i)
1997                if (m->guest[i].index == msr)
1998                        break;
1999
2000        if (i == NR_AUTOLOAD_MSRS) {
2001                printk_once(KERN_WARNING "Not enough msr switch entries. "
2002                                "Can't add msr %x\n", msr);
2003                return;
2004        } else if (i == m->nr) {
2005                ++m->nr;
2006                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2007                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2008        }
2009
2010        m->guest[i].index = msr;
2011        m->guest[i].value = guest_val;
2012        m->host[i].index = msr;
2013        m->host[i].value = host_val;
2014}
2015
2016static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2017{
2018        u64 guest_efer = vmx->vcpu.arch.efer;
2019        u64 ignore_bits = 0;
2020
2021        if (!enable_ept) {
2022                /*
2023                 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
2024                 * host CPUID is more efficient than testing guest CPUID
2025                 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
2026                 */
2027                if (boot_cpu_has(X86_FEATURE_SMEP))
2028                        guest_efer |= EFER_NX;
2029                else if (!(guest_efer & EFER_NX))
2030                        ignore_bits |= EFER_NX;
2031        }
2032
2033        /*
2034         * LMA and LME handled by hardware; SCE meaningless outside long mode.
2035         */
2036        ignore_bits |= EFER_SCE;
2037#ifdef CONFIG_X86_64
2038        ignore_bits |= EFER_LMA | EFER_LME;
2039        /* SCE is meaningful only in long mode on Intel */
2040        if (guest_efer & EFER_LMA)
2041                ignore_bits &= ~(u64)EFER_SCE;
2042#endif
2043
2044        clear_atomic_switch_msr(vmx, MSR_EFER);
2045
2046        /*
2047         * On EPT, we can't emulate NX, so we must switch EFER atomically.
2048         * On CPUs that support "load IA32_EFER", always switch EFER
2049         * atomically, since it's faster than switching it manually.
2050         */
2051        if (cpu_has_load_ia32_efer ||
2052            (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2053                if (!(guest_efer & EFER_LMA))
2054                        guest_efer &= ~EFER_LME;
2055                if (guest_efer != host_efer)
2056                        add_atomic_switch_msr(vmx, MSR_EFER,
2057                                              guest_efer, host_efer);
2058                return false;
2059        } else {
2060                guest_efer &= ~ignore_bits;
2061                guest_efer |= host_efer & ignore_bits;
2062
2063                vmx->guest_msrs[efer_offset].data = guest_efer;
2064                vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2065
2066                return true;
2067        }
2068}
2069
2070#ifdef CONFIG_X86_32
2071/*
2072 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2073 * VMCS rather than the segment table.  KVM uses this helper to figure
2074 * out the current bases to poke them into the VMCS before entry.
2075 */
2076static unsigned long segment_base(u16 selector)
2077{
2078        struct desc_struct *table;
2079        unsigned long v;
2080
2081        if (!(selector & ~SEGMENT_RPL_MASK))
2082                return 0;
2083
2084        table = get_current_gdt_ro();
2085
2086        if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2087                u16 ldt_selector = kvm_read_ldt();
2088
2089                if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2090                        return 0;
2091
2092                table = (struct desc_struct *)segment_base(ldt_selector);
2093        }
2094        v = get_desc_base(&table[selector >> 3]);
2095        return v;
2096}
2097#endif
2098
2099static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2100{
2101        struct vcpu_vmx *vmx = to_vmx(vcpu);
2102        int i;
2103
2104        if (vmx->host_state.loaded)
2105                return;
2106
2107        vmx->host_state.loaded = 1;
2108        /*
2109         * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2110         * allow segment selectors with cpl > 0 or ti == 1.
2111         */
2112        vmx->host_state.ldt_sel = kvm_read_ldt();
2113        vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2114        savesegment(fs, vmx->host_state.fs_sel);
2115        if (!(vmx->host_state.fs_sel & 7)) {
2116                vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2117                vmx->host_state.fs_reload_needed = 0;
2118        } else {
2119                vmcs_write16(HOST_FS_SELECTOR, 0);
2120                vmx->host_state.fs_reload_needed = 1;
2121        }
2122        savesegment(gs, vmx->host_state.gs_sel);
2123        if (!(vmx->host_state.gs_sel & 7))
2124                vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2125        else {
2126                vmcs_write16(HOST_GS_SELECTOR, 0);
2127                vmx->host_state.gs_ldt_reload_needed = 1;
2128        }
2129
2130#ifdef CONFIG_X86_64
2131        savesegment(ds, vmx->host_state.ds_sel);
2132        savesegment(es, vmx->host_state.es_sel);
2133#endif
2134
2135#ifdef CONFIG_X86_64
2136        vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2137        vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2138#else
2139        vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2140        vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2141#endif
2142
2143#ifdef CONFIG_X86_64
2144        rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2145        if (is_long_mode(&vmx->vcpu))
2146                wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2147#endif
2148        if (boot_cpu_has(X86_FEATURE_MPX))
2149                rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2150        for (i = 0; i < vmx->save_nmsrs; ++i)
2151                kvm_set_shared_msr(vmx->guest_msrs[i].index,
2152                                   vmx->guest_msrs[i].data,
2153                                   vmx->guest_msrs[i].mask);
2154}
2155
2156static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2157{
2158        if (!vmx->host_state.loaded)
2159                return;
2160
2161        ++vmx->vcpu.stat.host_state_reload;
2162        vmx->host_state.loaded = 0;
2163#ifdef CONFIG_X86_64
2164        if (is_long_mode(&vmx->vcpu))
2165                rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2166#endif
2167        if (vmx->host_state.gs_ldt_reload_needed) {
2168                kvm_load_ldt(vmx->host_state.ldt_sel);
2169#ifdef CONFIG_X86_64
2170                load_gs_index(vmx->host_state.gs_sel);
2171#else
2172                loadsegment(gs, vmx->host_state.gs_sel);
2173#endif
2174        }
2175        if (vmx->host_state.fs_reload_needed)
2176                loadsegment(fs, vmx->host_state.fs_sel);
2177#ifdef CONFIG_X86_64
2178        if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2179                loadsegment(ds, vmx->host_state.ds_sel);
2180                loadsegment(es, vmx->host_state.es_sel);
2181        }
2182#endif
2183        invalidate_tss_limit();
2184#ifdef CONFIG_X86_64
2185        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2186#endif
2187        if (vmx->host_state.msr_host_bndcfgs)
2188                wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2189        load_fixmap_gdt(raw_smp_processor_id());
2190}
2191
2192static void vmx_load_host_state(struct vcpu_vmx *vmx)
2193{
2194        preempt_disable();
2195        __vmx_load_host_state(vmx);
2196        preempt_enable();
2197}
2198
2199static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2200{
2201        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2202        struct pi_desc old, new;
2203        unsigned int dest;
2204
2205        /*
2206         * In case of hot-plug or hot-unplug, we may have to undo
2207         * vmx_vcpu_pi_put even if there is no assigned device.  And we
2208         * always keep PI.NDST up to date for simplicity: it makes the
2209         * code easier, and CPU migration is not a fast path.
2210         */
2211        if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
2212                return;
2213
2214        /*
2215         * First handle the simple case where no cmpxchg is necessary; just
2216         * allow posting non-urgent interrupts.
2217         *
2218         * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2219         * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2220         * expects the VCPU to be on the blocked_vcpu_list that matches
2221         * PI.NDST.
2222         */
2223        if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2224            vcpu->cpu == cpu) {
2225                pi_clear_sn(pi_desc);
2226                return;
2227        }
2228
2229        /* The full case.  */
2230        do {
2231                old.control = new.control = pi_desc->control;
2232
2233                dest = cpu_physical_id(cpu);
2234
2235                if (x2apic_enabled())
2236                        new.ndst = dest;
2237                else
2238                        new.ndst = (dest << 8) & 0xFF00;
2239
2240                new.sn = 0;
2241        } while (cmpxchg64(&pi_desc->control, old.control,
2242                           new.control) != old.control);
2243}
2244
2245static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2246{
2247        vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2248        vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2249}
2250
2251/*
2252 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2253 * vcpu mutex is already taken.
2254 */
2255static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2256{
2257        struct vcpu_vmx *vmx = to_vmx(vcpu);
2258        bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2259
2260        if (!already_loaded) {
2261                loaded_vmcs_clear(vmx->loaded_vmcs);
2262                local_irq_disable();
2263                crash_disable_local_vmclear(cpu);
2264
2265                /*
2266                 * Read loaded_vmcs->cpu should be before fetching
2267                 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2268                 * See the comments in __loaded_vmcs_clear().
2269                 */
2270                smp_rmb();
2271
2272                list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2273                         &per_cpu(loaded_vmcss_on_cpu, cpu));
2274                crash_enable_local_vmclear(cpu);
2275                local_irq_enable();
2276        }
2277
2278        if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2279                per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2280                vmcs_load(vmx->loaded_vmcs->vmcs);
2281        }
2282
2283        if (!already_loaded) {
2284                void *gdt = get_current_gdt_ro();
2285                unsigned long sysenter_esp;
2286
2287                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2288
2289                /*
2290                 * Linux uses per-cpu TSS and GDT, so set these when switching
2291                 * processors.  See 22.2.4.
2292                 */
2293                vmcs_writel(HOST_TR_BASE,
2294                            (unsigned long)this_cpu_ptr(&cpu_tss));
2295                vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
2296
2297                /*
2298                 * VM exits change the host TR limit to 0x67 after a VM
2299                 * exit.  This is okay, since 0x67 covers everything except
2300                 * the IO bitmap and have have code to handle the IO bitmap
2301                 * being lost after a VM exit.
2302                 */
2303                BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2304
2305                rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2306                vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2307
2308                vmx->loaded_vmcs->cpu = cpu;
2309        }
2310
2311        /* Setup TSC multiplier */
2312        if (kvm_has_tsc_control &&
2313            vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2314                decache_tsc_multiplier(vmx);
2315
2316        vmx_vcpu_pi_load(vcpu, cpu);
2317        vmx->host_pkru = read_pkru();
2318}
2319
2320static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2321{
2322        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2323
2324        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2325                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2326                !kvm_vcpu_apicv_active(vcpu))
2327                return;
2328
2329        /* Set SN when the vCPU is preempted */
2330        if (vcpu->preempted)
2331                pi_set_sn(pi_desc);
2332}
2333
2334static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2335{
2336        vmx_vcpu_pi_put(vcpu);
2337
2338        __vmx_load_host_state(to_vmx(vcpu));
2339}
2340
2341static bool emulation_required(struct kvm_vcpu *vcpu)
2342{
2343        return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2344}
2345
2346static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2347
2348/*
2349 * Return the cr0 value that a nested guest would read. This is a combination
2350 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2351 * its hypervisor (cr0_read_shadow).
2352 */
2353static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2354{
2355        return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2356                (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2357}
2358static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2359{
2360        return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2361                (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2362}
2363
2364static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2365{
2366        unsigned long rflags, save_rflags;
2367
2368        if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2369                __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2370                rflags = vmcs_readl(GUEST_RFLAGS);
2371                if (to_vmx(vcpu)->rmode.vm86_active) {
2372                        rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2373                        save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2374                        rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2375                }
2376                to_vmx(vcpu)->rflags = rflags;
2377        }
2378        return to_vmx(vcpu)->rflags;
2379}
2380
2381static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2382{
2383        unsigned long old_rflags = vmx_get_rflags(vcpu);
2384
2385        __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2386        to_vmx(vcpu)->rflags = rflags;
2387        if (to_vmx(vcpu)->rmode.vm86_active) {
2388                to_vmx(vcpu)->rmode.save_rflags = rflags;
2389                rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2390        }
2391        vmcs_writel(GUEST_RFLAGS, rflags);
2392
2393        if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2394                to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2395}
2396
2397static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2398{
2399        u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2400        int ret = 0;
2401
2402        if (interruptibility & GUEST_INTR_STATE_STI)
2403                ret |= KVM_X86_SHADOW_INT_STI;
2404        if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2405                ret |= KVM_X86_SHADOW_INT_MOV_SS;
2406
2407        return ret;
2408}
2409
2410static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2411{
2412        u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2413        u32 interruptibility = interruptibility_old;
2414
2415        interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2416
2417        if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2418                interruptibility |= GUEST_INTR_STATE_MOV_SS;
2419        else if (mask & KVM_X86_SHADOW_INT_STI)
2420                interruptibility |= GUEST_INTR_STATE_STI;
2421
2422        if ((interruptibility != interruptibility_old))
2423                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2424}
2425
2426static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2427{
2428        unsigned long rip;
2429
2430        rip = kvm_rip_read(vcpu);
2431        rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2432        kvm_rip_write(vcpu, rip);
2433
2434        /* skipping an emulated instruction also counts */
2435        vmx_set_interrupt_shadow(vcpu, 0);
2436}
2437
2438static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2439                                               unsigned long exit_qual)
2440{
2441        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2442        unsigned int nr = vcpu->arch.exception.nr;
2443        u32 intr_info = nr | INTR_INFO_VALID_MASK;
2444
2445        if (vcpu->arch.exception.has_error_code) {
2446                vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2447                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2448        }
2449
2450        if (kvm_exception_is_soft(nr))
2451                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2452        else
2453                intr_info |= INTR_TYPE_HARD_EXCEPTION;
2454
2455        if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2456            vmx_get_nmi_mask(vcpu))
2457                intr_info |= INTR_INFO_UNBLOCK_NMI;
2458
2459        nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2460}
2461
2462/*
2463 * KVM wants to inject page-faults which it got to the guest. This function
2464 * checks whether in a nested guest, we need to inject them to L1 or L2.
2465 */
2466static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
2467{
2468        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2469        unsigned int nr = vcpu->arch.exception.nr;
2470
2471        if (nr == PF_VECTOR) {
2472                if (vcpu->arch.exception.nested_apf) {
2473                        *exit_qual = vcpu->arch.apf.nested_apf_token;
2474                        return 1;
2475                }
2476                /*
2477                 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2478                 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2479                 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2480                 * can be written only when inject_pending_event runs.  This should be
2481                 * conditional on a new capability---if the capability is disabled,
2482                 * kvm_multiple_exception would write the ancillary information to
2483                 * CR2 or DR6, for backwards ABI-compatibility.
2484                 */
2485                if (nested_vmx_is_page_fault_vmexit(vmcs12,
2486                                                    vcpu->arch.exception.error_code)) {
2487                        *exit_qual = vcpu->arch.cr2;
2488                        return 1;
2489                }
2490        } else {
2491                if (vmcs12->exception_bitmap & (1u << nr)) {
2492                        if (nr == DB_VECTOR)
2493                                *exit_qual = vcpu->arch.dr6;
2494                        else
2495                                *exit_qual = 0;
2496                        return 1;
2497                }
2498        }
2499
2500        return 0;
2501}
2502
2503static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2504{
2505        struct vcpu_vmx *vmx = to_vmx(vcpu);
2506        unsigned nr = vcpu->arch.exception.nr;
2507        bool has_error_code = vcpu->arch.exception.has_error_code;
2508        u32 error_code = vcpu->arch.exception.error_code;
2509        u32 intr_info = nr | INTR_INFO_VALID_MASK;
2510
2511        if (has_error_code) {
2512                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2513                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2514        }
2515
2516        if (vmx->rmode.vm86_active) {
2517                int inc_eip = 0;
2518                if (kvm_exception_is_soft(nr))
2519                        inc_eip = vcpu->arch.event_exit_inst_len;
2520                if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2521                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2522                return;
2523        }
2524
2525        if (kvm_exception_is_soft(nr)) {
2526                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2527                             vmx->vcpu.arch.event_exit_inst_len);
2528                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2529        } else
2530                intr_info |= INTR_TYPE_HARD_EXCEPTION;
2531
2532        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2533}
2534
2535static bool vmx_rdtscp_supported(void)
2536{
2537        return cpu_has_vmx_rdtscp();
2538}
2539
2540static bool vmx_invpcid_supported(void)
2541{
2542        return cpu_has_vmx_invpcid() && enable_ept;
2543}
2544
2545/*
2546 * Swap MSR entry in host/guest MSR entry array.
2547 */
2548static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2549{
2550        struct shared_msr_entry tmp;
2551
2552        tmp = vmx->guest_msrs[to];
2553        vmx->guest_msrs[to] = vmx->guest_msrs[from];
2554        vmx->guest_msrs[from] = tmp;
2555}
2556
2557static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2558{
2559        unsigned long *msr_bitmap;
2560
2561        if (is_guest_mode(vcpu))
2562                msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2563        else if (cpu_has_secondary_exec_ctrls() &&
2564                 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2565                  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2566                if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2567                        if (is_long_mode(vcpu))
2568                                msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2569                        else
2570                                msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2571                } else {
2572                        if (is_long_mode(vcpu))
2573                                msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2574                        else
2575                                msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2576                }
2577        } else {
2578                if (is_long_mode(vcpu))
2579                        msr_bitmap = vmx_msr_bitmap_longmode;
2580                else
2581                        msr_bitmap = vmx_msr_bitmap_legacy;
2582        }
2583
2584        vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2585}
2586
2587/*
2588 * Set up the vmcs to automatically save and restore system
2589 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2590 * mode, as fiddling with msrs is very expensive.
2591 */
2592static void setup_msrs(struct vcpu_vmx *vmx)
2593{
2594        int save_nmsrs, index;
2595
2596        save_nmsrs = 0;
2597#ifdef CONFIG_X86_64
2598        if (is_long_mode(&vmx->vcpu)) {
2599                index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2600                if (index >= 0)
2601                        move_msr_up(vmx, index, save_nmsrs++);
2602                index = __find_msr_index(vmx, MSR_LSTAR);
2603                if (index >= 0)
2604                        move_msr_up(vmx, index, save_nmsrs++);
2605                index = __find_msr_index(vmx, MSR_CSTAR);
2606                if (index >= 0)
2607                        move_msr_up(vmx, index, save_nmsrs++);
2608                index = __find_msr_index(vmx, MSR_TSC_AUX);
2609                if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
2610                        move_msr_up(vmx, index, save_nmsrs++);
2611                /*
2612                 * MSR_STAR is only needed on long mode guests, and only
2613                 * if efer.sce is enabled.
2614                 */
2615                index = __find_msr_index(vmx, MSR_STAR);
2616                if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2617                        move_msr_up(vmx, index, save_nmsrs++);
2618        }
2619#endif
2620        index = __find_msr_index(vmx, MSR_EFER);
2621        if (index >= 0 && update_transition_efer(vmx, index))
2622                move_msr_up(vmx, index, save_nmsrs++);
2623
2624        vmx->save_nmsrs = save_nmsrs;
2625
2626        if (cpu_has_vmx_msr_bitmap())
2627                vmx_set_msr_bitmap(&vmx->vcpu);
2628}
2629
2630/*
2631 * reads and returns guest's timestamp counter "register"
2632 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2633 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2634 */
2635static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2636{
2637        u64 host_tsc, tsc_offset;
2638
2639        host_tsc = rdtsc();
2640        tsc_offset = vmcs_read64(TSC_OFFSET);
2641        return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2642}
2643
2644/*
2645 * writes 'offset' into guest's timestamp counter offset register
2646 */
2647static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2648{
2649        if (is_guest_mode(vcpu)) {
2650                /*
2651                 * We're here if L1 chose not to trap WRMSR to TSC. According
2652                 * to the spec, this should set L1's TSC; The offset that L1
2653                 * set for L2 remains unchanged, and still needs to be added
2654                 * to the newly set TSC to get L2's TSC.
2655                 */
2656                struct vmcs12 *vmcs12;
2657                /* recalculate vmcs02.TSC_OFFSET: */
2658                vmcs12 = get_vmcs12(vcpu);
2659                vmcs_write64(TSC_OFFSET, offset +
2660                        (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2661                         vmcs12->tsc_offset : 0));
2662        } else {
2663                trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2664                                           vmcs_read64(TSC_OFFSET), offset);
2665                vmcs_write64(TSC_OFFSET, offset);
2666        }
2667}
2668
2669/*
2670 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2671 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2672 * all guests if the "nested" module option is off, and can also be disabled
2673 * for a single guest by disabling its VMX cpuid bit.
2674 */
2675static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2676{
2677        return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
2678}
2679
2680/*
2681 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2682 * returned for the various VMX controls MSRs when nested VMX is enabled.
2683 * The same values should also be used to verify that vmcs12 control fields are
2684 * valid during nested entry from L1 to L2.
2685 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2686 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2687 * bit in the high half is on if the corresponding bit in the control field
2688 * may be on. See also vmx_control_verify().
2689 */
2690static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2691{
2692        /*
2693         * Note that as a general rule, the high half of the MSRs (bits in
2694         * the control fields which may be 1) should be initialized by the
2695         * intersection of the underlying hardware's MSR (i.e., features which
2696         * can be supported) and the list of features we want to expose -
2697         * because they are known to be properly supported in our code.
2698         * Also, usually, the low half of the MSRs (bits which must be 1) can
2699         * be set to 0, meaning that L1 may turn off any of these bits. The
2700         * reason is that if one of these bits is necessary, it will appear
2701         * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2702         * fields of vmcs01 and vmcs02, will turn these bits off - and
2703         * nested_vmx_exit_reflected() will not pass related exits to L1.
2704         * These rules have exceptions below.
2705         */
2706
2707        /* pin-based controls */
2708        rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2709                vmx->nested.nested_vmx_pinbased_ctls_low,
2710                vmx->nested.nested_vmx_pinbased_ctls_high);
2711        vmx->nested.nested_vmx_pinbased_ctls_low |=
2712                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2713        vmx->nested.nested_vmx_pinbased_ctls_high &=
2714                PIN_BASED_EXT_INTR_MASK |
2715                PIN_BASED_NMI_EXITING |
2716                PIN_BASED_VIRTUAL_NMIS;
2717        vmx->nested.nested_vmx_pinbased_ctls_high |=
2718                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2719                PIN_BASED_VMX_PREEMPTION_TIMER;
2720        if (kvm_vcpu_apicv_active(&vmx->vcpu))
2721                vmx->nested.nested_vmx_pinbased_ctls_high |=
2722                        PIN_BASED_POSTED_INTR;
2723
2724        /* exit controls */
2725        rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2726                vmx->nested.nested_vmx_exit_ctls_low,
2727                vmx->nested.nested_vmx_exit_ctls_high);
2728        vmx->nested.nested_vmx_exit_ctls_low =
2729                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2730
2731        vmx->nested.nested_vmx_exit_ctls_high &=
2732#ifdef CONFIG_X86_64
2733                VM_EXIT_HOST_ADDR_SPACE_SIZE |
2734#endif
2735                VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2736        vmx->nested.nested_vmx_exit_ctls_high |=
2737                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2738                VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2739                VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2740
2741        if (kvm_mpx_supported())
2742                vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2743
2744        /* We support free control of debug control saving. */
2745        vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2746
2747        /* entry controls */
2748        rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2749                vmx->nested.nested_vmx_entry_ctls_low,
2750                vmx->nested.nested_vmx_entry_ctls_high);
2751        vmx->nested.nested_vmx_entry_ctls_low =
2752                VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2753        vmx->nested.nested_vmx_entry_ctls_high &=
2754#ifdef CONFIG_X86_64
2755                VM_ENTRY_IA32E_MODE |
2756#endif
2757                VM_ENTRY_LOAD_IA32_PAT;
2758        vmx->nested.nested_vmx_entry_ctls_high |=
2759                (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2760        if (kvm_mpx_supported())
2761                vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2762
2763        /* We support free control of debug control loading. */
2764        vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2765
2766        /* cpu-based controls */
2767        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2768                vmx->nested.nested_vmx_procbased_ctls_low,
2769                vmx->nested.nested_vmx_procbased_ctls_high);
2770        vmx->nested.nested_vmx_procbased_ctls_low =
2771                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2772        vmx->nested.nested_vmx_procbased_ctls_high &=
2773                CPU_BASED_VIRTUAL_INTR_PENDING |
2774                CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2775                CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2776                CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2777                CPU_BASED_CR3_STORE_EXITING |
2778#ifdef CONFIG_X86_64
2779                CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2780#endif
2781                CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2782                CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2783                CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2784                CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2785                CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2786        /*
2787         * We can allow some features even when not supported by the
2788         * hardware. For example, L1 can specify an MSR bitmap - and we
2789         * can use it to avoid exits to L1 - even when L0 runs L2
2790         * without MSR bitmaps.
2791         */
2792        vmx->nested.nested_vmx_procbased_ctls_high |=
2793                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2794                CPU_BASED_USE_MSR_BITMAPS;
2795
2796        /* We support free control of CR3 access interception. */
2797        vmx->nested.nested_vmx_procbased_ctls_low &=
2798                ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2799
2800        /*
2801         * secondary cpu-based controls.  Do not include those that
2802         * depend on CPUID bits, they are added later by vmx_cpuid_update.
2803         */
2804        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2805                vmx->nested.nested_vmx_secondary_ctls_low,
2806                vmx->nested.nested_vmx_secondary_ctls_high);
2807        vmx->nested.nested_vmx_secondary_ctls_low = 0;
2808        vmx->nested.nested_vmx_secondary_ctls_high &=
2809                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2810                SECONDARY_EXEC_DESC |
2811                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2812                SECONDARY_EXEC_APIC_REGISTER_VIRT |
2813                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2814                SECONDARY_EXEC_WBINVD_EXITING;
2815
2816        if (enable_ept) {
2817                /* nested EPT: emulate EPT also to L1 */
2818                vmx->nested.nested_vmx_secondary_ctls_high |=
2819                        SECONDARY_EXEC_ENABLE_EPT;
2820                vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2821                         VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2822                if (cpu_has_vmx_ept_execute_only())
2823                        vmx->nested.nested_vmx_ept_caps |=
2824                                VMX_EPT_EXECUTE_ONLY_BIT;
2825                vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2826                vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2827                        VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2828                        VMX_EPT_1GB_PAGE_BIT;
2829                if (enable_ept_ad_bits) {
2830                        vmx->nested.nested_vmx_secondary_ctls_high |=
2831                                SECONDARY_EXEC_ENABLE_PML;
2832                        vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2833                }
2834        } else
2835                vmx->nested.nested_vmx_ept_caps = 0;
2836
2837        if (cpu_has_vmx_vmfunc()) {
2838                vmx->nested.nested_vmx_secondary_ctls_high |=
2839                        SECONDARY_EXEC_ENABLE_VMFUNC;
2840                /*
2841                 * Advertise EPTP switching unconditionally
2842                 * since we emulate it
2843                 */
2844                vmx->nested.nested_vmx_vmfunc_controls =
2845                        VMX_VMFUNC_EPTP_SWITCHING;
2846        }
2847
2848        /*
2849         * Old versions of KVM use the single-context version without
2850         * checking for support, so declare that it is supported even
2851         * though it is treated as global context.  The alternative is
2852         * not failing the single-context invvpid, and it is worse.
2853         */
2854        if (enable_vpid) {
2855                vmx->nested.nested_vmx_secondary_ctls_high |=
2856                        SECONDARY_EXEC_ENABLE_VPID;
2857                vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2858                        VMX_VPID_EXTENT_SUPPORTED_MASK;
2859        } else
2860                vmx->nested.nested_vmx_vpid_caps = 0;
2861
2862        if (enable_unrestricted_guest)
2863                vmx->nested.nested_vmx_secondary_ctls_high |=
2864                        SECONDARY_EXEC_UNRESTRICTED_GUEST;
2865
2866        /* miscellaneous data */
2867        rdmsr(MSR_IA32_VMX_MISC,
2868                vmx->nested.nested_vmx_misc_low,
2869                vmx->nested.nested_vmx_misc_high);
2870        vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2871        vmx->nested.nested_vmx_misc_low |=
2872                VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2873                VMX_MISC_ACTIVITY_HLT;
2874        vmx->nested.nested_vmx_misc_high = 0;
2875
2876        /*
2877         * This MSR reports some information about VMX support. We
2878         * should return information about the VMX we emulate for the
2879         * guest, and the VMCS structure we give it - not about the
2880         * VMX support of the underlying hardware.
2881         */
2882        vmx->nested.nested_vmx_basic =
2883                VMCS12_REVISION |
2884                VMX_BASIC_TRUE_CTLS |
2885                ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2886                (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2887
2888        if (cpu_has_vmx_basic_inout())
2889                vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2890
2891        /*
2892         * These MSRs specify bits which the guest must keep fixed on
2893         * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2894         * We picked the standard core2 setting.
2895         */
2896#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2897#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
2898        vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2899        vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2900
2901        /* These MSRs specify bits which the guest must keep fixed off. */
2902        rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2903        rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2904
2905        /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2906        vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2907}
2908
2909/*
2910 * if fixed0[i] == 1: val[i] must be 1
2911 * if fixed1[i] == 0: val[i] must be 0
2912 */
2913static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2914{
2915        return ((val & fixed1) | fixed0) == val;
2916}
2917
2918static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2919{
2920        return fixed_bits_valid(control, low, high);
2921}
2922
2923static inline u64 vmx_control_msr(u32 low, u32 high)
2924{
2925        return low | ((u64)high << 32);
2926}
2927
2928static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2929{
2930        superset &= mask;
2931        subset &= mask;
2932
2933        return (superset | subset) == superset;
2934}
2935
2936static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2937{
2938        const u64 feature_and_reserved =
2939                /* feature (except bit 48; see below) */
2940                BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2941                /* reserved */
2942                BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2943        u64 vmx_basic = vmx->nested.nested_vmx_basic;
2944
2945        if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2946                return -EINVAL;
2947
2948        /*
2949         * KVM does not emulate a version of VMX that constrains physical
2950         * addresses of VMX structures (e.g. VMCS) to 32-bits.
2951         */
2952        if (data & BIT_ULL(48))
2953                return -EINVAL;
2954
2955        if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2956            vmx_basic_vmcs_revision_id(data))
2957                return -EINVAL;
2958
2959        if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2960                return -EINVAL;
2961
2962        vmx->nested.nested_vmx_basic = data;
2963        return 0;
2964}
2965
2966static int
2967vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2968{
2969        u64 supported;
2970        u32 *lowp, *highp;
2971
2972        switch (msr_index) {
2973        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2974                lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2975                highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2976                break;
2977        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2978                lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2979                highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2980                break;
2981        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2982                lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2983                highp = &vmx->nested.nested_vmx_exit_ctls_high;
2984                break;
2985        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2986                lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2987                highp = &vmx->nested.nested_vmx_entry_ctls_high;
2988                break;
2989        case MSR_IA32_VMX_PROCBASED_CTLS2:
2990                lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2991                highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2992                break;
2993        default:
2994                BUG();
2995        }
2996
2997        supported = vmx_control_msr(*lowp, *highp);
2998
2999        /* Check must-be-1 bits are still 1. */
3000        if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3001                return -EINVAL;
3002
3003        /* Check must-be-0 bits are still 0. */
3004        if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3005                return -EINVAL;
3006
3007        *lowp = data;
3008        *highp = data >> 32;
3009        return 0;
3010}
3011
3012static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3013{
3014        const u64 feature_and_reserved_bits =
3015                /* feature */
3016                BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3017                BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3018                /* reserved */
3019                GENMASK_ULL(13, 9) | BIT_ULL(31);
3020        u64 vmx_misc;
3021
3022        vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3023                                   vmx->nested.nested_vmx_misc_high);
3024
3025        if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3026                return -EINVAL;
3027
3028        if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3029             PIN_BASED_VMX_PREEMPTION_TIMER) &&
3030            vmx_misc_preemption_timer_rate(data) !=
3031            vmx_misc_preemption_timer_rate(vmx_misc))
3032                return -EINVAL;
3033
3034        if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3035                return -EINVAL;
3036
3037        if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3038                return -EINVAL;
3039
3040        if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3041                return -EINVAL;
3042
3043        vmx->nested.nested_vmx_misc_low = data;
3044        vmx->nested.nested_vmx_misc_high = data >> 32;
3045        return 0;
3046}
3047
3048static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3049{
3050        u64 vmx_ept_vpid_cap;
3051
3052        vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3053                                           vmx->nested.nested_vmx_vpid_caps);
3054
3055        /* Every bit is either reserved or a feature bit. */
3056        if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3057                return -EINVAL;
3058
3059        vmx->nested.nested_vmx_ept_caps = data;
3060        vmx->nested.nested_vmx_vpid_caps = data >> 32;
3061        return 0;
3062}
3063
3064static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3065{
3066        u64 *msr;
3067
3068        switch (msr_index) {
3069        case MSR_IA32_VMX_CR0_FIXED0:
3070                msr = &vmx->nested.nested_vmx_cr0_fixed0;
3071                break;
3072        case MSR_IA32_VMX_CR4_FIXED0:
3073                msr = &vmx->nested.nested_vmx_cr4_fixed0;
3074                break;
3075        default:
3076                BUG();
3077        }
3078
3079        /*
3080         * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3081         * must be 1 in the restored value.
3082         */
3083        if (!is_bitwise_subset(data, *msr, -1ULL))
3084                return -EINVAL;
3085
3086        *msr = data;
3087        return 0;
3088}
3089
3090/*
3091 * Called when userspace is restoring VMX MSRs.
3092 *
3093 * Returns 0 on success, non-0 otherwise.
3094 */
3095static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3096{
3097        struct vcpu_vmx *vmx = to_vmx(vcpu);
3098
3099        switch (msr_index) {
3100        case MSR_IA32_VMX_BASIC:
3101                return vmx_restore_vmx_basic(vmx, data);
3102        case MSR_IA32_VMX_PINBASED_CTLS:
3103        case MSR_IA32_VMX_PROCBASED_CTLS:
3104        case MSR_IA32_VMX_EXIT_CTLS:
3105        case MSR_IA32_VMX_ENTRY_CTLS:
3106                /*
3107                 * The "non-true" VMX capability MSRs are generated from the
3108                 * "true" MSRs, so we do not support restoring them directly.
3109                 *
3110                 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3111                 * should restore the "true" MSRs with the must-be-1 bits
3112                 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3113                 * DEFAULT SETTINGS".
3114                 */
3115                return -EINVAL;
3116        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3117        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3118        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3119        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3120        case MSR_IA32_VMX_PROCBASED_CTLS2:
3121                return vmx_restore_control_msr(vmx, msr_index, data);
3122        case MSR_IA32_VMX_MISC:
3123                return vmx_restore_vmx_misc(vmx, data);
3124        case MSR_IA32_VMX_CR0_FIXED0:
3125        case MSR_IA32_VMX_CR4_FIXED0:
3126                return vmx_restore_fixed0_msr(vmx, msr_index, data);
3127        case MSR_IA32_VMX_CR0_FIXED1:
3128        case MSR_IA32_VMX_CR4_FIXED1:
3129                /*
3130                 * These MSRs are generated based on the vCPU's CPUID, so we
3131                 * do not support restoring them directly.
3132                 */
3133                return -EINVAL;
3134        case MSR_IA32_VMX_EPT_VPID_CAP:
3135                return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3136        case MSR_IA32_VMX_VMCS_ENUM:
3137                vmx->nested.nested_vmx_vmcs_enum = data;
3138                return 0;
3139        default:
3140                /*
3141                 * The rest of the VMX capability MSRs do not support restore.
3142                 */
3143                return -EINVAL;
3144        }
3145}
3146
3147/* Returns 0 on success, non-0 otherwise. */
3148static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3149{
3150        struct vcpu_vmx *vmx = to_vmx(vcpu);
3151
3152        switch (msr_index) {
3153        case MSR_IA32_VMX_BASIC:
3154                *pdata = vmx->nested.nested_vmx_basic;
3155                break;
3156        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3157        case MSR_IA32_VMX_PINBASED_CTLS:
3158                *pdata = vmx_control_msr(
3159                        vmx->nested.nested_vmx_pinbased_ctls_low,
3160                        vmx->nested.nested_vmx_pinbased_ctls_high);
3161                if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3162                        *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3163                break;
3164        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3165        case MSR_IA32_VMX_PROCBASED_CTLS:
3166                *pdata = vmx_control_msr(
3167                        vmx->nested.nested_vmx_procbased_ctls_low,
3168                        vmx->nested.nested_vmx_procbased_ctls_high);
3169                if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3170                        *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3171                break;
3172        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3173        case MSR_IA32_VMX_EXIT_CTLS:
3174                *pdata = vmx_control_msr(
3175                        vmx->nested.nested_vmx_exit_ctls_low,
3176                        vmx->nested.nested_vmx_exit_ctls_high);
3177                if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3178                        *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3179                break;
3180        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3181        case MSR_IA32_VMX_ENTRY_CTLS:
3182                *pdata = vmx_control_msr(
3183                        vmx->nested.nested_vmx_entry_ctls_low,
3184                        vmx->nested.nested_vmx_entry_ctls_high);
3185                if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3186                        *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3187                break;
3188        case MSR_IA32_VMX_MISC:
3189                *pdata = vmx_control_msr(
3190                        vmx->nested.nested_vmx_misc_low,
3191                        vmx->nested.nested_vmx_misc_high);
3192                break;
3193        case MSR_IA32_VMX_CR0_FIXED0:
3194                *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3195                break;
3196        case MSR_IA32_VMX_CR0_FIXED1:
3197                *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3198                break;
3199        case MSR_IA32_VMX_CR4_FIXED0:
3200                *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3201                break;
3202        case MSR_IA32_VMX_CR4_FIXED1:
3203                *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3204                break;
3205        case MSR_IA32_VMX_VMCS_ENUM:
3206                *pdata = vmx->nested.nested_vmx_vmcs_enum;
3207                break;
3208        case MSR_IA32_VMX_PROCBASED_CTLS2:
3209                *pdata = vmx_control_msr(
3210                        vmx->nested.nested_vmx_secondary_ctls_low,
3211                        vmx->nested.nested_vmx_secondary_ctls_high);
3212                break;
3213        case MSR_IA32_VMX_EPT_VPID_CAP:
3214                *pdata = vmx->nested.nested_vmx_ept_caps |
3215                        ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3216                break;
3217        case MSR_IA32_VMX_VMFUNC:
3218                *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3219                break;
3220        default:
3221                return 1;
3222        }
3223
3224        return 0;
3225}
3226
3227static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3228                                                 uint64_t val)
3229{
3230        uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3231
3232        return !(val & ~valid_bits);
3233}
3234
3235/*
3236 * Reads an msr value (of 'msr_index') into 'pdata'.
3237 * Returns 0 on success, non-0 otherwise.
3238 * Assumes vcpu_load() was already called.
3239 */
3240static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3241{
3242        struct shared_msr_entry *msr;
3243
3244        switch (msr_info->index) {
3245#ifdef CONFIG_X86_64
3246        case MSR_FS_BASE:
3247                msr_info->data = vmcs_readl(GUEST_FS_BASE);
3248                break;
3249        case MSR_GS_BASE:
3250                msr_info->data = vmcs_readl(GUEST_GS_BASE);
3251                break;
3252        case MSR_KERNEL_GS_BASE:
3253                vmx_load_host_state(to_vmx(vcpu));
3254                msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3255                break;
3256#endif
3257        case MSR_EFER:
3258                return kvm_get_msr_common(vcpu, msr_info);
3259        case MSR_IA32_TSC:
3260                msr_info->data = guest_read_tsc(vcpu);
3261                break;
3262        case MSR_IA32_SYSENTER_CS:
3263                msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3264                break;
3265        case MSR_IA32_SYSENTER_EIP:
3266                msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3267                break;
3268        case MSR_IA32_SYSENTER_ESP:
3269                msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3270                break;
3271        case MSR_IA32_BNDCFGS:
3272                if (!kvm_mpx_supported() ||
3273                    (!msr_info->host_initiated &&
3274                     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3275                        return 1;
3276                msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3277                break;
3278        case MSR_IA32_MCG_EXT_CTL:
3279                if (!msr_info->host_initiated &&
3280                    !(to_vmx(vcpu)->msr_ia32_feature_control &
3281                      FEATURE_CONTROL_LMCE))
3282                        return 1;
3283                msr_info->data = vcpu->arch.mcg_ext_ctl;
3284                break;
3285        case MSR_IA32_FEATURE_CONTROL:
3286                msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3287                break;
3288        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3289                if (!nested_vmx_allowed(vcpu))
3290                        return 1;
3291                return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3292        case MSR_IA32_XSS:
3293                if (!vmx_xsaves_supported())
3294                        return 1;
3295                msr_info->data = vcpu->arch.ia32_xss;
3296                break;
3297        case MSR_TSC_AUX:
3298                if (!msr_info->host_initiated &&
3299                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3300                        return 1;
3301                /* Otherwise falls through */
3302        default:
3303                msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3304                if (msr) {
3305                        msr_info->data = msr->data;
3306                        break;
3307                }
3308                return kvm_get_msr_common(vcpu, msr_info);
3309        }
3310
3311        return 0;
3312}
3313
3314static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3315
3316/*
3317 * Writes msr value into into the appropriate "register".
3318 * Returns 0 on success, non-0 otherwise.
3319 * Assumes vcpu_load() was already called.
3320 */
3321static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3322{
3323        struct vcpu_vmx *vmx = to_vmx(vcpu);
3324        struct shared_msr_entry *msr;
3325        int ret = 0;
3326        u32 msr_index = msr_info->index;
3327        u64 data = msr_info->data;
3328
3329        switch (msr_index) {
3330        case MSR_EFER:
3331                ret = kvm_set_msr_common(vcpu, msr_info);
3332                break;
3333#ifdef CONFIG_X86_64
3334        case MSR_FS_BASE:
3335                vmx_segment_cache_clear(vmx);
3336                vmcs_writel(GUEST_FS_BASE, data);
3337                break;
3338        case MSR_GS_BASE:
3339                vmx_segment_cache_clear(vmx);
3340                vmcs_writel(GUEST_GS_BASE, data);
3341                break;
3342        case MSR_KERNEL_GS_BASE:
3343                vmx_load_host_state(vmx);
3344                vmx->msr_guest_kernel_gs_base = data;
3345                break;
3346#endif
3347        case MSR_IA32_SYSENTER_CS:
3348                vmcs_write32(GUEST_SYSENTER_CS, data);
3349                break;
3350        case MSR_IA32_SYSENTER_EIP:
3351                vmcs_writel(GUEST_SYSENTER_EIP, data);
3352                break;
3353        case MSR_IA32_SYSENTER_ESP:
3354                vmcs_writel(GUEST_SYSENTER_ESP, data);
3355                break;
3356        case MSR_IA32_BNDCFGS:
3357                if (!kvm_mpx_supported() ||
3358                    (!msr_info->host_initiated &&
3359                     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3360                        return 1;
3361                if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
3362                    (data & MSR_IA32_BNDCFGS_RSVD))
3363                        return 1;
3364                vmcs_write64(GUEST_BNDCFGS, data);
3365                break;
3366        case MSR_IA32_TSC:
3367                kvm_write_tsc(vcpu, msr_info);
3368                break;
3369        case MSR_IA32_CR_PAT:
3370                if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3371                        if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3372                                return 1;
3373                        vmcs_write64(GUEST_IA32_PAT, data);
3374                        vcpu->arch.pat = data;
3375                        break;
3376                }
3377                ret = kvm_set_msr_common(vcpu, msr_info);
3378                break;
3379        case MSR_IA32_TSC_ADJUST:
3380                ret = kvm_set_msr_common(vcpu, msr_info);
3381                break;
3382        case MSR_IA32_MCG_EXT_CTL:
3383                if ((!msr_info->host_initiated &&
3384                     !(to_vmx(vcpu)->msr_ia32_feature_control &
3385                       FEATURE_CONTROL_LMCE)) ||
3386                    (data & ~MCG_EXT_CTL_LMCE_EN))
3387                        return 1;
3388                vcpu->arch.mcg_ext_ctl = data;
3389                break;
3390        case MSR_IA32_FEATURE_CONTROL:
3391                if (!vmx_feature_control_msr_valid(vcpu, data) ||
3392                    (to_vmx(vcpu)->msr_ia32_feature_control &
3393                     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3394                        return 1;
3395                vmx->msr_ia32_feature_control = data;
3396                if (msr_info->host_initiated && data == 0)
3397                        vmx_leave_nested(vcpu);
3398                break;
3399        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3400                if (!msr_info->host_initiated)
3401                        return 1; /* they are read-only */
3402                if (!nested_vmx_allowed(vcpu))
3403                        return 1;
3404                return vmx_set_vmx_msr(vcpu, msr_index, data);
3405        case MSR_IA32_XSS:
3406                if (!vmx_xsaves_supported())
3407                        return 1;
3408                /*
3409                 * The only supported bit as of Skylake is bit 8, but
3410                 * it is not supported on KVM.
3411                 */
3412                if (data != 0)
3413                        return 1;
3414                vcpu->arch.ia32_xss = data;
3415                if (vcpu->arch.ia32_xss != host_xss)
3416                        add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3417                                vcpu->arch.ia32_xss, host_xss);
3418                else
3419                        clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3420                break;
3421        case MSR_TSC_AUX:
3422                if (!msr_info->host_initiated &&
3423                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3424                        return 1;
3425                /* Check reserved bit, higher 32 bits should be zero */
3426                if ((data >> 32) != 0)
3427                        return 1;
3428                /* Otherwise falls through */
3429        default:
3430                msr = find_msr_entry(vmx, msr_index);
3431                if (msr) {
3432                        u64 old_msr_data = msr->data;
3433                        msr->data = data;
3434                        if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3435                                preempt_disable();
3436                                ret = kvm_set_shared_msr(msr->index, msr->data,
3437                                                         msr->mask);
3438                                preempt_enable();
3439                                if (ret)
3440                                        msr->data = old_msr_data;
3441                        }
3442                        break;
3443                }
3444                ret = kvm_set_msr_common(vcpu, msr_info);
3445        }
3446
3447        return ret;
3448}
3449
3450static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3451{
3452        __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3453        switch (reg) {
3454        case VCPU_REGS_RSP:
3455                vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3456                break;
3457        case VCPU_REGS_RIP:
3458                vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3459                break;
3460        case VCPU_EXREG_PDPTR:
3461                if (enable_ept)
3462                        ept_save_pdptrs(vcpu);
3463                break;
3464        default:
3465                break;
3466        }
3467}
3468
3469static __init int cpu_has_kvm_support(void)
3470{
3471        return cpu_has_vmx();
3472}
3473
3474static __init int vmx_disabled_by_bios(void)
3475{
3476        u64 msr;
3477
3478        rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3479        if (msr & FEATURE_CONTROL_LOCKED) {
3480                /* launched w/ TXT and VMX disabled */
3481                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3482                        && tboot_enabled())
3483                        return 1;
3484                /* launched w/o TXT and VMX only enabled w/ TXT */
3485                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3486                        && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3487                        && !tboot_enabled()) {
3488                        printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3489                                "activate TXT before enabling KVM\n");
3490                        return 1;
3491                }
3492                /* launched w/o TXT and VMX disabled */
3493                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3494                        && !tboot_enabled())
3495                        return 1;
3496        }
3497
3498        return 0;
3499}
3500
3501static void kvm_cpu_vmxon(u64 addr)
3502{
3503        cr4_set_bits(X86_CR4_VMXE);
3504        intel_pt_handle_vmx(1);
3505
3506        asm volatile (ASM_VMX_VMXON_RAX
3507                        : : "a"(&addr), "m"(addr)
3508                        : "memory", "cc");
3509}
3510
3511static int hardware_enable(void)
3512{
3513        int cpu = raw_smp_processor_id();
3514        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3515        u64 old, test_bits;
3516
3517        if (cr4_read_shadow() & X86_CR4_VMXE)
3518                return -EBUSY;
3519
3520        INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3521        INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3522        spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3523
3524        /*
3525         * Now we can enable the vmclear operation in kdump
3526         * since the loaded_vmcss_on_cpu list on this cpu
3527         * has been initialized.
3528         *
3529         * Though the cpu is not in VMX operation now, there
3530         * is no problem to enable the vmclear operation
3531         * for the loaded_vmcss_on_cpu list is empty!
3532         */
3533        crash_enable_local_vmclear(cpu);
3534
3535        rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3536
3537        test_bits = FEATURE_CONTROL_LOCKED;
3538        test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3539        if (tboot_enabled())
3540                test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3541
3542        if ((old & test_bits) != test_bits) {
3543                /* enable and lock */
3544                wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3545        }
3546        kvm_cpu_vmxon(phys_addr);
3547        ept_sync_global();
3548
3549        return 0;
3550}
3551
3552static void vmclear_local_loaded_vmcss(void)
3553{
3554        int cpu = raw_smp_processor_id();
3555        struct loaded_vmcs *v, *n;
3556
3557        list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3558                                 loaded_vmcss_on_cpu_link)
3559                __loaded_vmcs_clear(v);
3560}
3561
3562
3563/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3564 * tricks.
3565 */
3566static void kvm_cpu_vmxoff(void)
3567{
3568        asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3569
3570        intel_pt_handle_vmx(0);
3571        cr4_clear_bits(X86_CR4_VMXE);
3572}
3573
3574static void hardware_disable(void)
3575{
3576        vmclear_local_loaded_vmcss();
3577        kvm_cpu_vmxoff();
3578}
3579
3580static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3581                                      u32 msr, u32 *result)
3582{
3583        u32 vmx_msr_low, vmx_msr_high;
3584        u32 ctl = ctl_min | ctl_opt;
3585
3586        rdmsr(msr, vmx_msr_low, vmx_msr_high);
3587
3588        ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3589        ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3590
3591        /* Ensure minimum (required) set of control bits are supported. */
3592        if (ctl_min & ~ctl)
3593                return -EIO;
3594
3595        *result = ctl;
3596        return 0;
3597}
3598
3599static __init bool allow_1_setting(u32 msr, u32 ctl)
3600{
3601        u32 vmx_msr_low, vmx_msr_high;
3602
3603        rdmsr(msr, vmx_msr_low, vmx_msr_high);
3604        return vmx_msr_high & ctl;
3605}
3606
3607static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3608{
3609        u32 vmx_msr_low, vmx_msr_high;
3610        u32 min, opt, min2, opt2;
3611        u32 _pin_based_exec_control = 0;
3612        u32 _cpu_based_exec_control = 0;
3613        u32 _cpu_based_2nd_exec_control = 0;
3614        u32 _vmexit_control = 0;
3615        u32 _vmentry_control = 0;
3616
3617        min = CPU_BASED_HLT_EXITING |
3618#ifdef CONFIG_X86_64
3619              CPU_BASED_CR8_LOAD_EXITING |
3620              CPU_BASED_CR8_STORE_EXITING |
3621#endif
3622              CPU_BASED_CR3_LOAD_EXITING |
3623              CPU_BASED_CR3_STORE_EXITING |
3624              CPU_BASED_USE_IO_BITMAPS |
3625              CPU_BASED_MOV_DR_EXITING |
3626              CPU_BASED_USE_TSC_OFFSETING |
3627              CPU_BASED_INVLPG_EXITING |
3628              CPU_BASED_RDPMC_EXITING;
3629
3630        if (!kvm_mwait_in_guest())
3631                min |= CPU_BASED_MWAIT_EXITING |
3632                        CPU_BASED_MONITOR_EXITING;
3633
3634        opt = CPU_BASED_TPR_SHADOW |
3635              CPU_BASED_USE_MSR_BITMAPS |
3636              CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3637        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3638                                &_cpu_based_exec_control) < 0)
3639                return -EIO;
3640#ifdef CONFIG_X86_64
3641        if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3642                _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3643                                           ~CPU_BASED_CR8_STORE_EXITING;
3644#endif
3645        if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3646                min2 = 0;
3647                opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3648                        SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3649                        SECONDARY_EXEC_WBINVD_EXITING |
3650                        SECONDARY_EXEC_ENABLE_VPID |
3651                        SECONDARY_EXEC_ENABLE_EPT |
3652                        SECONDARY_EXEC_UNRESTRICTED_GUEST |
3653                        SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3654                        SECONDARY_EXEC_RDTSCP |
3655                        SECONDARY_EXEC_ENABLE_INVPCID |
3656                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
3657                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3658                        SECONDARY_EXEC_SHADOW_VMCS |
3659                        SECONDARY_EXEC_XSAVES |
3660                        SECONDARY_EXEC_RDSEED |
3661                        SECONDARY_EXEC_RDRAND |
3662                        SECONDARY_EXEC_ENABLE_PML |
3663                        SECONDARY_EXEC_TSC_SCALING |
3664                        SECONDARY_EXEC_ENABLE_VMFUNC;
3665                if (adjust_vmx_controls(min2, opt2,
3666                                        MSR_IA32_VMX_PROCBASED_CTLS2,
3667                                        &_cpu_based_2nd_exec_control) < 0)
3668                        return -EIO;
3669        }
3670#ifndef CONFIG_X86_64
3671        if (!(_cpu_based_2nd_exec_control &
3672                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3673                _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3674#endif
3675
3676        if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3677                _cpu_based_2nd_exec_control &= ~(
3678                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
3679                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3680                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3681
3682        if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3683                /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3684                   enabled */
3685                _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3686                                             CPU_BASED_CR3_STORE_EXITING |
3687                                             CPU_BASED_INVLPG_EXITING);
3688                rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3689                      vmx_capability.ept, vmx_capability.vpid);
3690        }
3691
3692        min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3693#ifdef CONFIG_X86_64
3694        min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3695#endif
3696        opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3697                VM_EXIT_CLEAR_BNDCFGS;
3698        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3699                                &_vmexit_control) < 0)
3700                return -EIO;
3701
3702        min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3703                PIN_BASED_VIRTUAL_NMIS;
3704        opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3705        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3706                                &_pin_based_exec_control) < 0)
3707                return -EIO;
3708
3709        if (cpu_has_broken_vmx_preemption_timer())
3710                _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3711        if (!(_cpu_based_2nd_exec_control &
3712                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3713                _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3714
3715        min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3716        opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3717        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3718                                &_vmentry_control) < 0)
3719                return -EIO;
3720
3721        rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3722
3723        /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3724        if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3725                return -EIO;
3726
3727#ifdef CONFIG_X86_64
3728        /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3729        if (vmx_msr_high & (1u<<16))
3730                return -EIO;
3731#endif
3732
3733        /* Require Write-Back (WB) memory type for VMCS accesses. */
3734        if (((vmx_msr_high >> 18) & 15) != 6)
3735                return -EIO;
3736
3737        vmcs_conf->size = vmx_msr_high & 0x1fff;
3738        vmcs_conf->order = get_order(vmcs_conf->size);
3739        vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3740        vmcs_conf->revision_id = vmx_msr_low;
3741
3742        vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3743        vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3744        vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3745        vmcs_conf->vmexit_ctrl         = _vmexit_control;
3746        vmcs_conf->vmentry_ctrl        = _vmentry_control;
3747
3748        cpu_has_load_ia32_efer =
3749                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3750                                VM_ENTRY_LOAD_IA32_EFER)
3751                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3752                                   VM_EXIT_LOAD_IA32_EFER);
3753
3754        cpu_has_load_perf_global_ctrl =
3755                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3756                                VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3757                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3758                                   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3759
3760        /*
3761         * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3762         * but due to errata below it can't be used. Workaround is to use
3763         * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3764         *
3765         * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3766         *
3767         * AAK155             (model 26)
3768         * AAP115             (model 30)
3769         * AAT100             (model 37)
3770         * BC86,AAY89,BD102   (model 44)
3771         * BA97               (model 46)
3772         *
3773         */
3774        if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3775                switch (boot_cpu_data.x86_model) {
3776                case 26:
3777                case 30:
3778                case 37:
3779                case 44:
3780                case 46:
3781                        cpu_has_load_perf_global_ctrl = false;
3782                        printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3783                                        "does not work properly. Using workaround\n");
3784                        break;
3785                default:
3786                        break;
3787                }
3788        }
3789
3790        if (boot_cpu_has(X86_FEATURE_XSAVES))
3791                rdmsrl(MSR_IA32_XSS, host_xss);
3792
3793        return 0;
3794}
3795
3796static struct vmcs *alloc_vmcs_cpu(int cpu)
3797{
3798        int node = cpu_to_node(cpu);
3799        struct page *pages;
3800        struct vmcs *vmcs;
3801
3802        pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3803        if (!pages)
3804                return NULL;
3805        vmcs = page_address(pages);
3806        memset(vmcs, 0, vmcs_config.size);
3807        vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3808        return vmcs;
3809}
3810
3811static struct vmcs *alloc_vmcs(void)
3812{
3813        return alloc_vmcs_cpu(raw_smp_processor_id());
3814}
3815
3816static void free_vmcs(struct vmcs *vmcs)
3817{
3818        free_pages((unsigned long)vmcs, vmcs_config.order);
3819}
3820
3821/*
3822 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3823 */
3824static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3825{
3826        if (!loaded_vmcs->vmcs)
3827                return;
3828        loaded_vmcs_clear(loaded_vmcs);
3829        free_vmcs(loaded_vmcs->vmcs);
3830        loaded_vmcs->vmcs = NULL;
3831        WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3832}
3833
3834static void free_kvm_area(void)
3835{
3836        int cpu;
3837
3838        for_each_possible_cpu(cpu) {
3839                free_vmcs(per_cpu(vmxarea, cpu));
3840                per_cpu(vmxarea, cpu) = NULL;
3841        }
3842}
3843
3844enum vmcs_field_type {
3845        VMCS_FIELD_TYPE_U16 = 0,
3846        VMCS_FIELD_TYPE_U64 = 1,
3847        VMCS_FIELD_TYPE_U32 = 2,
3848        VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3849};
3850
3851static inline int vmcs_field_type(unsigned long field)
3852{
3853        if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
3854                return VMCS_FIELD_TYPE_U32;
3855        return (field >> 13) & 0x3 ;
3856}
3857
3858static inline int vmcs_field_readonly(unsigned long field)
3859{
3860        return (((field >> 10) & 0x3) == 1);
3861}
3862
3863static void init_vmcs_shadow_fields(void)
3864{
3865        int i, j;
3866
3867        /* No checks for read only fields yet */
3868
3869        for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3870                switch (shadow_read_write_fields[i]) {
3871                case GUEST_BNDCFGS:
3872                        if (!kvm_mpx_supported())
3873                                continue;
3874                        break;
3875                default:
3876                        break;
3877                }
3878
3879                if (j < i)
3880                        shadow_read_write_fields[j] =
3881                                shadow_read_write_fields[i];
3882                j++;
3883        }
3884        max_shadow_read_write_fields = j;
3885
3886        /* shadowed fields guest access without vmexit */
3887        for (i = 0; i < max_shadow_read_write_fields; i++) {
3888                unsigned long field = shadow_read_write_fields[i];
3889
3890                clear_bit(field, vmx_vmwrite_bitmap);
3891                clear_bit(field, vmx_vmread_bitmap);
3892                if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3893                        clear_bit(field + 1, vmx_vmwrite_bitmap);
3894                        clear_bit(field + 1, vmx_vmread_bitmap);
3895                }
3896        }
3897        for (i = 0; i < max_shadow_read_only_fields; i++) {
3898                unsigned long field = shadow_read_only_fields[i];
3899
3900                clear_bit(field, vmx_vmread_bitmap);
3901                if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3902                        clear_bit(field + 1, vmx_vmread_bitmap);
3903        }
3904}
3905
3906static __init int alloc_kvm_area(void)
3907{
3908        int cpu;
3909
3910        for_each_possible_cpu(cpu) {
3911                struct vmcs *vmcs;
3912
3913                vmcs = alloc_vmcs_cpu(cpu);
3914                if (!vmcs) {
3915                        free_kvm_area();
3916                        return -ENOMEM;
3917                }
3918
3919                per_cpu(vmxarea, cpu) = vmcs;
3920        }
3921        return 0;
3922}
3923
3924static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3925                struct kvm_segment *save)
3926{
3927        if (!emulate_invalid_guest_state) {
3928                /*
3929                 * CS and SS RPL should be equal during guest entry according
3930                 * to VMX spec, but in reality it is not always so. Since vcpu
3931                 * is in the middle of the transition from real mode to
3932                 * protected mode it is safe to assume that RPL 0 is a good
3933                 * default value.
3934                 */
3935                if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3936                        save->selector &= ~SEGMENT_RPL_MASK;
3937                save->dpl = save->selector & SEGMENT_RPL_MASK;
3938                save->s = 1;
3939        }
3940        vmx_set_segment(vcpu, save, seg);
3941}
3942
3943static void enter_pmode(struct kvm_vcpu *vcpu)
3944{
3945        unsigned long flags;
3946        struct vcpu_vmx *vmx = to_vmx(vcpu);
3947
3948        /*
3949         * Update real mode segment cache. It may be not up-to-date if sement
3950         * register was written while vcpu was in a guest mode.
3951         */
3952        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3953        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3954        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3955        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3956        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3957        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3958
3959        vmx->rmode.vm86_active = 0;
3960
3961        vmx_segment_cache_clear(vmx);
3962
3963        vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3964
3965        flags = vmcs_readl(GUEST_RFLAGS);
3966        flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3967        flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3968        vmcs_writel(GUEST_RFLAGS, flags);
3969
3970        vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3971                        (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3972
3973        update_exception_bitmap(vcpu);
3974
3975        fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3976        fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3977        fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3978        fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3979        fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3980        fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3981}
3982
3983static void fix_rmode_seg(int seg, struct kvm_segment *save)
3984{
3985        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3986        struct kvm_segment var = *save;
3987
3988        var.dpl = 0x3;
3989        if (seg == VCPU_SREG_CS)
3990                var.type = 0x3;
3991
3992        if (!emulate_invalid_guest_state) {
3993                var.selector = var.base >> 4;
3994                var.base = var.base & 0xffff0;
3995                var.limit = 0xffff;
3996                var.g = 0;
3997                var.db = 0;
3998                var.present = 1;
3999                var.s = 1;
4000                var.l = 0;
4001                var.unusable = 0;
4002                var.type = 0x3;
4003                var.avl = 0;
4004                if (save->base & 0xf)
4005                        printk_once(KERN_WARNING "kvm: segment base is not "
4006                                        "paragraph aligned when entering "
4007                                        "protected mode (seg=%d)", seg);
4008        }
4009
4010        vmcs_write16(sf->selector, var.selector);
4011        vmcs_writel(sf->base, var.base);
4012        vmcs_write32(sf->limit, var.limit);
4013        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
4014}
4015
4016static void enter_rmode(struct kvm_vcpu *vcpu)
4017{
4018        unsigned long flags;
4019        struct vcpu_vmx *vmx = to_vmx(vcpu);
4020
4021        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4022        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4023        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4024        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4025        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4026        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4027        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4028
4029        vmx->rmode.vm86_active = 1;
4030
4031        /*
4032         * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4033         * vcpu. Warn the user that an update is overdue.
4034         */
4035        if (!vcpu->kvm->arch.tss_addr)
4036                printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4037                             "called before entering vcpu\n");
4038
4039        vmx_segment_cache_clear(vmx);
4040
4041        vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
4042        vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
4043        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4044
4045        flags = vmcs_readl(GUEST_RFLAGS);
4046        vmx->rmode.save_rflags = flags;
4047
4048        flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
4049
4050        vmcs_writel(GUEST_RFLAGS, flags);
4051        vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
4052        update_exception_bitmap(vcpu);
4053
4054        fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4055        fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4056        fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4057        fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4058        fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4059        fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4060
4061        kvm_mmu_reset_context(vcpu);
4062}
4063
4064static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4065{
4066        struct vcpu_vmx *vmx = to_vmx(vcpu);
4067        struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4068
4069        if (!msr)
4070                return;
4071
4072        /*
4073         * Force kernel_gs_base reloading before EFER changes, as control
4074         * of this msr depends on is_long_mode().
4075         */
4076        vmx_load_host_state(to_vmx(vcpu));
4077        vcpu->arch.efer = efer;
4078        if (efer & EFER_LMA) {
4079                vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4080                msr->data = efer;
4081        } else {
4082                vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4083
4084                msr->data = efer & ~EFER_LME;
4085        }
4086        setup_msrs(vmx);
4087}
4088
4089#ifdef CONFIG_X86_64
4090
4091static void enter_lmode(struct kvm_vcpu *vcpu)
4092{
4093        u32 guest_tr_ar;
4094
4095        vmx_segment_cache_clear(to_vmx(vcpu));
4096
4097        guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4098        if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4099                pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4100                                     __func__);
4101                vmcs_write32(GUEST_TR_AR_BYTES,
4102                             (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4103                             | VMX_AR_TYPE_BUSY_64_TSS);
4104        }
4105        vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4106}
4107
4108static void exit_lmode(struct kvm_vcpu *vcpu)
4109{
4110        vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4111        vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4112}
4113
4114#endif
4115
4116static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4117{
4118        if (enable_ept) {
4119                if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4120                        return;
4121                ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4122        } else {
4123                vpid_sync_context(vpid);
4124        }
4125}
4126
4127static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4128{
4129        __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4130}
4131
4132static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4133{
4134        if (enable_ept)
4135                vmx_flush_tlb(vcpu);
4136}
4137
4138static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4139{
4140        ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4141
4142        vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4143        vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4144}
4145
4146static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4147{
4148        if (enable_ept && is_paging(vcpu))
4149                vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4150        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4151}
4152
4153static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4154{
4155        ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4156
4157        vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4158        vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4159}
4160
4161static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4162{
4163        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4164
4165        if (!test_bit(VCPU_EXREG_PDPTR,
4166                      (unsigned long *)&vcpu->arch.regs_dirty))
4167                return;
4168
4169        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4170                vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4171                vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4172                vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4173                vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4174        }
4175}
4176
4177static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4178{
4179        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4180
4181        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4182                mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4183                mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4184                mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4185                mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4186        }
4187
4188        __set_bit(VCPU_EXREG_PDPTR,
4189                  (unsigned long *)&vcpu->arch.regs_avail);
4190        __set_bit(VCPU_EXREG_PDPTR,
4191                  (unsigned long *)&vcpu->arch.regs_dirty);
4192}
4193
4194static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4195{
4196        u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4197        u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4198        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4199
4200        if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4201                SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4202            nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4203                fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4204
4205        return fixed_bits_valid(val, fixed0, fixed1);
4206}
4207
4208static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4209{
4210        u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4211        u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4212
4213        return fixed_bits_valid(val, fixed0, fixed1);
4214}
4215
4216static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4217{
4218        u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4219        u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4220
4221        return fixed_bits_valid(val, fixed0, fixed1);
4222}
4223
4224/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4225#define nested_guest_cr4_valid  nested_cr4_valid
4226#define nested_host_cr4_valid   nested_cr4_valid
4227
4228static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4229
4230static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4231                                        unsigned long cr0,
4232                                        struct kvm_vcpu *vcpu)
4233{
4234        if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4235                vmx_decache_cr3(vcpu);
4236        if (!(cr0 & X86_CR0_PG)) {
4237                /* From paging/starting to nonpaging */
4238                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4239                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4240                             (CPU_BASED_CR3_LOAD_EXITING |
4241                              CPU_BASED_CR3_STORE_EXITING));
4242                vcpu->arch.cr0 = cr0;
4243                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4244        } else if (!is_paging(vcpu)) {
4245                /* From nonpaging to paging */
4246                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4247                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4248                             ~(CPU_BASED_CR3_LOAD_EXITING |
4249                               CPU_BASED_CR3_STORE_EXITING));
4250                vcpu->arch.cr0 = cr0;
4251                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4252        }
4253
4254        if (!(cr0 & X86_CR0_WP))
4255                *hw_cr0 &= ~X86_CR0_WP;
4256}
4257
4258static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4259{
4260        struct vcpu_vmx *vmx = to_vmx(vcpu);
4261        unsigned long hw_cr0;
4262
4263        hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4264        if (enable_unrestricted_guest)
4265                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4266        else {
4267                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4268
4269                if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4270                        enter_pmode(vcpu);
4271
4272                if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4273                        enter_rmode(vcpu);
4274        }
4275
4276#ifdef CONFIG_X86_64
4277        if (vcpu->arch.efer & EFER_LME) {
4278                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4279                        enter_lmode(vcpu);
4280                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4281                        exit_lmode(vcpu);
4282        }
4283#endif
4284
4285        if (enable_ept)
4286                ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4287
4288        vmcs_writel(CR0_READ_SHADOW, cr0);
4289        vmcs_writel(GUEST_CR0, hw_cr0);
4290        vcpu->arch.cr0 = cr0;
4291
4292        /* depends on vcpu->arch.cr0 to be set to a new value */
4293        vmx->emulation_required = emulation_required(vcpu);
4294}
4295
4296static int get_ept_level(struct kvm_vcpu *vcpu)
4297{
4298        if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4299                return 5;
4300        return 4;
4301}
4302
4303static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4304{
4305        u64 eptp = VMX_EPTP_MT_WB;
4306
4307        eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
4308
4309        if (enable_ept_ad_bits &&
4310            (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4311                eptp |= VMX_EPTP_AD_ENABLE_BIT;
4312        eptp |= (root_hpa & PAGE_MASK);
4313
4314        return eptp;
4315}
4316
4317static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4318{
4319        unsigned long guest_cr3;
4320        u64 eptp;
4321
4322        guest_cr3 = cr3;
4323        if (enable_ept) {
4324                eptp = construct_eptp(vcpu, cr3);
4325                vmcs_write64(EPT_POINTER, eptp);
4326                if (is_paging(vcpu) || is_guest_mode(vcpu))
4327                        guest_cr3 = kvm_read_cr3(vcpu);
4328                else
4329                        guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4330                ept_load_pdptrs(vcpu);
4331        }
4332
4333        vmx_flush_tlb(vcpu);
4334        vmcs_writel(GUEST_CR3, guest_cr3);
4335}
4336
4337static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4338{
4339        /*
4340         * Pass through host's Machine Check Enable value to hw_cr4, which
4341         * is in force while we are in guest mode.  Do not let guests control
4342         * this bit, even if host CR4.MCE == 0.
4343         */
4344        unsigned long hw_cr4 =
4345                (cr4_read_shadow() & X86_CR4_MCE) |
4346                (cr4 & ~X86_CR4_MCE) |
4347                (to_vmx(vcpu)->rmode.vm86_active ?
4348                 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4349
4350        if (cr4 & X86_CR4_VMXE) {
4351                /*
4352                 * To use VMXON (and later other VMX instructions), a guest
4353                 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4354                 * So basically the check on whether to allow nested VMX
4355                 * is here.
4356                 */
4357                if (!nested_vmx_allowed(vcpu))
4358                        return 1;
4359        }
4360
4361        if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4362                return 1;
4363
4364        vcpu->arch.cr4 = cr4;
4365        if (enable_ept) {
4366                if (!is_paging(vcpu)) {
4367                        hw_cr4 &= ~X86_CR4_PAE;
4368                        hw_cr4 |= X86_CR4_PSE;
4369                } else if (!(cr4 & X86_CR4_PAE)) {
4370                        hw_cr4 &= ~X86_CR4_PAE;
4371                }
4372        }
4373
4374        if (!enable_unrestricted_guest && !is_paging(vcpu))
4375                /*
4376                 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4377                 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4378                 * to be manually disabled when guest switches to non-paging
4379                 * mode.
4380                 *
4381                 * If !enable_unrestricted_guest, the CPU is always running
4382                 * with CR0.PG=1 and CR4 needs to be modified.
4383                 * If enable_unrestricted_guest, the CPU automatically
4384                 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4385                 */
4386                hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4387
4388        vmcs_writel(CR4_READ_SHADOW, cr4);
4389        vmcs_writel(GUEST_CR4, hw_cr4);
4390        return 0;
4391}
4392
4393static void vmx_get_segment(struct kvm_vcpu *vcpu,
4394                            struct kvm_segment *var, int seg)
4395{
4396        struct vcpu_vmx *vmx = to_vmx(vcpu);
4397        u32 ar;
4398
4399        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4400                *var = vmx->rmode.segs[seg];
4401                if (seg == VCPU_SREG_TR
4402                    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4403                        return;
4404                var->base = vmx_read_guest_seg_base(vmx, seg);
4405                var->selector = vmx_read_guest_seg_selector(vmx, seg);
4406                return;
4407        }
4408        var->base = vmx_read_guest_seg_base(vmx, seg);
4409        var->limit = vmx_read_guest_seg_limit(vmx, seg);
4410        var->selector = vmx_read_guest_seg_selector(vmx, seg);
4411        ar = vmx_read_guest_seg_ar(vmx, seg);
4412        var->unusable = (ar >> 16) & 1;
4413        var->type = ar & 15;
4414        var->s = (ar >> 4) & 1;
4415        var->dpl = (ar >> 5) & 3;
4416        /*
4417         * Some userspaces do not preserve unusable property. Since usable
4418         * segment has to be present according to VMX spec we can use present
4419         * property to amend userspace bug by making unusable segment always
4420         * nonpresent. vmx_segment_access_rights() already marks nonpresent
4421         * segment as unusable.
4422         */
4423        var->present = !var->unusable;
4424        var->avl = (ar >> 12) & 1;
4425        var->l = (ar >> 13) & 1;
4426        var->db = (ar >> 14) & 1;
4427        var->g = (ar >> 15) & 1;
4428}
4429
4430static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4431{
4432        struct kvm_segment s;
4433
4434        if (to_vmx(vcpu)->rmode.vm86_active) {
4435                vmx_get_segment(vcpu, &s, seg);
4436                return s.base;
4437        }
4438        return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4439}
4440
4441static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4442{
4443        struct vcpu_vmx *vmx = to_vmx(vcpu);
4444
4445        if (unlikely(vmx->rmode.vm86_active))
4446                return 0;
4447        else {
4448                int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4449                return VMX_AR_DPL(ar);
4450        }
4451}
4452
4453static u32 vmx_segment_access_rights(struct kvm_segment *var)
4454{
4455        u32 ar;
4456
4457        if (var->unusable || !var->present)
4458                ar = 1 << 16;
4459        else {
4460                ar = var->type & 15;
4461                ar |= (var->s & 1) << 4;
4462                ar |= (var->dpl & 3) << 5;
4463                ar |= (var->present & 1) << 7;
4464                ar |= (var->avl & 1) << 12;
4465                ar |= (var->l & 1) << 13;
4466                ar |= (var->db & 1) << 14;
4467                ar |= (var->g & 1) << 15;
4468        }
4469
4470        return ar;
4471}
4472
4473static void vmx_set_segment(struct kvm_vcpu *vcpu,
4474                            struct kvm_segment *var, int seg)
4475{
4476        struct vcpu_vmx *vmx = to_vmx(vcpu);
4477        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4478
4479        vmx_segment_cache_clear(vmx);
4480
4481        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4482                vmx->rmode.segs[seg] = *var;
4483                if (seg == VCPU_SREG_TR)
4484                        vmcs_write16(sf->selector, var->selector);
4485                else if (var->s)
4486                        fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4487                goto out;
4488        }
4489
4490        vmcs_writel(sf->base, var->base);
4491        vmcs_write32(sf->limit, var->limit);
4492        vmcs_write16(sf->selector, var->selector);
4493
4494        /*
4495         *   Fix the "Accessed" bit in AR field of segment registers for older
4496         * qemu binaries.
4497         *   IA32 arch specifies that at the time of processor reset the
4498         * "Accessed" bit in the AR field of segment registers is 1. And qemu
4499         * is setting it to 0 in the userland code. This causes invalid guest
4500         * state vmexit when "unrestricted guest" mode is turned on.
4501         *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4502         * tree. Newer qemu binaries with that qemu fix would not need this
4503         * kvm hack.
4504         */
4505        if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4506                var->type |= 0x1; /* Accessed */
4507
4508        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4509
4510out:
4511        vmx->emulation_required = emulation_required(vcpu);
4512}
4513
4514static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4515{
4516        u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4517
4518        *db = (ar >> 14) & 1;
4519        *l = (ar >> 13) & 1;
4520}
4521
4522static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4523{
4524        dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4525        dt->address = vmcs_readl(GUEST_IDTR_BASE);
4526}
4527
4528static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4529{
4530        vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4531        vmcs_writel(GUEST_IDTR_BASE, dt->address);
4532}
4533
4534static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4535{
4536        dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4537        dt->address = vmcs_readl(GUEST_GDTR_BASE);
4538}
4539
4540static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4541{
4542        vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4543        vmcs_writel(GUEST_GDTR_BASE, dt->address);
4544}
4545
4546static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4547{
4548        struct kvm_segment var;
4549        u32 ar;
4550
4551        vmx_get_segment(vcpu, &var, seg);
4552        var.dpl = 0x3;
4553        if (seg == VCPU_SREG_CS)
4554                var.type = 0x3;
4555        ar = vmx_segment_access_rights(&var);
4556
4557        if (var.base != (var.selector << 4))
4558                return false;
4559        if (var.limit != 0xffff)
4560                return false;
4561        if (ar != 0xf3)
4562                return false;
4563
4564        return true;
4565}
4566
4567static bool code_segment_valid(struct kvm_vcpu *vcpu)
4568{
4569        struct kvm_segment cs;
4570        unsigned int cs_rpl;
4571
4572        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4573        cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4574
4575        if (cs.unusable)
4576                return false;
4577        if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4578                return false;
4579        if (!cs.s)
4580                return false;
4581        if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4582                if (cs.dpl > cs_rpl)
4583                        return false;
4584        } else {
4585                if (cs.dpl != cs_rpl)
4586                        return false;
4587        }
4588        if (!cs.present)
4589                return false;
4590
4591        /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4592        return true;
4593}
4594
4595static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4596{
4597        struct kvm_segment ss;
4598        unsigned int ss_rpl;
4599
4600        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4601        ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4602
4603        if (ss.unusable)
4604                return true;
4605        if (ss.type != 3 && ss.type != 7)
4606                return false;
4607        if (!ss.s)
4608                return false;
4609        if (ss.dpl != ss_rpl) /* DPL != RPL */
4610                return false;
4611        if (!ss.present)
4612                return false;
4613
4614        return true;
4615}
4616
4617static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4618{
4619        struct kvm_segment var;
4620        unsigned int rpl;
4621
4622        vmx_get_segment(vcpu, &var, seg);
4623        rpl = var.selector & SEGMENT_RPL_MASK;
4624
4625        if (var.unusable)
4626                return true;
4627        if (!var.s)
4628                return false;
4629        if (!var.present)
4630                return false;
4631        if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4632                if (var.dpl < rpl) /* DPL < RPL */
4633                        return false;
4634        }
4635
4636        /* TODO: Add other members to kvm_segment_field to allow checking for other access
4637         * rights flags
4638         */
4639        return true;
4640}
4641
4642static bool tr_valid(struct kvm_vcpu *vcpu)
4643{
4644        struct kvm_segment tr;
4645
4646        vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4647
4648        if (tr.unusable)
4649                return false;
4650        if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4651                return false;
4652        if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4653                return false;
4654        if (!tr.present)
4655                return false;
4656
4657        return true;
4658}
4659
4660static bool ldtr_valid(struct kvm_vcpu *vcpu)
4661{
4662        struct kvm_segment ldtr;
4663
4664        vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4665
4666        if (ldtr.unusable)
4667                return true;
4668        if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4669                return false;
4670        if (ldtr.type != 2)
4671                return false;
4672        if (!ldtr.present)
4673                return false;
4674
4675        return true;
4676}
4677
4678static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4679{
4680        struct kvm_segment cs, ss;
4681
4682        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4683        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4684
4685        return ((cs.selector & SEGMENT_RPL_MASK) ==
4686                 (ss.selector & SEGMENT_RPL_MASK));
4687}
4688
4689/*
4690 * Check if guest state is valid. Returns true if valid, false if
4691 * not.
4692 * We assume that registers are always usable
4693 */
4694static bool guest_state_valid(struct kvm_vcpu *vcpu)
4695{
4696        if (enable_unrestricted_guest)
4697                return true;
4698
4699        /* real mode guest state checks */
4700        if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4701                if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4702                        return false;
4703                if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4704                        return false;
4705                if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4706                        return false;
4707                if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4708                        return false;
4709                if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4710                        return false;
4711                if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4712                        return false;
4713        } else {
4714        /* protected mode guest state checks */
4715                if (!cs_ss_rpl_check(vcpu))
4716                        return false;
4717                if (!code_segment_valid(vcpu))
4718                        return false;
4719                if (!stack_segment_valid(vcpu))
4720                        return false;
4721                if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4722                        return false;
4723                if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4724                        return false;
4725                if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4726                        return false;
4727                if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4728                        return false;
4729                if (!tr_valid(vcpu))
4730                        return false;
4731                if (!ldtr_valid(vcpu))
4732                        return false;
4733        }
4734        /* TODO:
4735         * - Add checks on RIP
4736         * - Add checks on RFLAGS
4737         */
4738
4739        return true;
4740}
4741
4742static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4743{
4744        return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4745}
4746
4747static int init_rmode_tss(struct kvm *kvm)
4748{
4749        gfn_t fn;
4750        u16 data = 0;
4751        int idx, r;
4752
4753        idx = srcu_read_lock(&kvm->srcu);
4754        fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4755        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4756        if (r < 0)
4757                goto out;
4758        data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4759        r = kvm_write_guest_page(kvm, fn++, &data,
4760                        TSS_IOPB_BASE_OFFSET, sizeof(u16));
4761        if (r < 0)
4762                goto out;
4763        r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4764        if (r < 0)
4765                goto out;
4766        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4767        if (r < 0)
4768                goto out;
4769        data = ~0;
4770        r = kvm_write_guest_page(kvm, fn, &data,
4771                                 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4772                                 sizeof(u8));
4773out:
4774        srcu_read_unlock(&kvm->srcu, idx);
4775        return r;
4776}
4777
4778static int init_rmode_identity_map(struct kvm *kvm)
4779{
4780        int i, idx, r = 0;
4781        kvm_pfn_t identity_map_pfn;
4782        u32 tmp;
4783
4784        if (!enable_ept)
4785                return 0;
4786
4787        /* Protect kvm->arch.ept_identity_pagetable_done. */
4788        mutex_lock(&kvm->slots_lock);
4789
4790        if (likely(kvm->arch.ept_identity_pagetable_done))
4791                goto out2;
4792
4793        identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4794
4795        r = alloc_identity_pagetable(kvm);
4796        if (r < 0)
4797                goto out2;
4798
4799        idx = srcu_read_lock(&kvm->srcu);
4800        r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4801        if (r < 0)
4802                goto out;
4803        /* Set up identity-mapping pagetable for EPT in real mode */
4804        for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4805                tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4806                        _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4807                r = kvm_write_guest_page(kvm, identity_map_pfn,
4808                                &tmp, i * sizeof(tmp), sizeof(tmp));
4809                if (r < 0)
4810                        goto out;
4811        }
4812        kvm->arch.ept_identity_pagetable_done = true;
4813
4814out:
4815        srcu_read_unlock(&kvm->srcu, idx);
4816
4817out2:
4818        mutex_unlock(&kvm->slots_lock);
4819        return r;
4820}
4821
4822static void seg_setup(int seg)
4823{
4824        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4825        unsigned int ar;
4826
4827        vmcs_write16(sf->selector, 0);
4828        vmcs_writel(sf->base, 0);
4829        vmcs_write32(sf->limit, 0xffff);
4830        ar = 0x93;
4831        if (seg == VCPU_SREG_CS)
4832                ar |= 0x08; /* code segment */
4833
4834        vmcs_write32(sf->ar_bytes, ar);
4835}
4836
4837static int alloc_apic_access_page(struct kvm *kvm)
4838{
4839        struct page *page;
4840        int r = 0;
4841
4842        mutex_lock(&kvm->slots_lock);
4843        if (kvm->arch.apic_access_page_done)
4844                goto out;
4845        r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4846                                    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4847        if (r)
4848                goto out;
4849
4850        page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4851        if (is_error_page(page)) {
4852                r = -EFAULT;
4853                goto out;
4854        }
4855
4856        /*
4857         * Do not pin the page in memory, so that memory hot-unplug
4858         * is able to migrate it.
4859         */
4860        put_page(page);
4861        kvm->arch.apic_access_page_done = true;
4862out:
4863        mutex_unlock(&kvm->slots_lock);
4864        return r;
4865}
4866
4867static int alloc_identity_pagetable(struct kvm *kvm)
4868{
4869        /* Called with kvm->slots_lock held. */
4870
4871        int r = 0;
4872
4873        BUG_ON(kvm->arch.ept_identity_pagetable_done);
4874
4875        r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4876                                    kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4877
4878        return r;
4879}
4880
4881static int allocate_vpid(void)
4882{
4883        int vpid;
4884
4885        if (!enable_vpid)
4886                return 0;
4887        spin_lock(&vmx_vpid_lock);
4888        vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4889        if (vpid < VMX_NR_VPIDS)
4890                __set_bit(vpid, vmx_vpid_bitmap);
4891        else
4892                vpid = 0;
4893        spin_unlock(&vmx_vpid_lock);
4894        return vpid;
4895}
4896
4897static void free_vpid(int vpid)
4898{
4899        if (!enable_vpid || vpid == 0)
4900                return;
4901        spin_lock(&vmx_vpid_lock);
4902        __clear_bit(vpid, vmx_vpid_bitmap);
4903        spin_unlock(&vmx_vpid_lock);
4904}
4905
4906#define MSR_TYPE_R      1
4907#define MSR_TYPE_W      2
4908static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4909                                                u32 msr, int type)
4910{
4911        int f = sizeof(unsigned long);
4912
4913        if (!cpu_has_vmx_msr_bitmap())
4914                return;
4915
4916        /*
4917         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4918         * have the write-low and read-high bitmap offsets the wrong way round.
4919         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4920         */
4921        if (msr <= 0x1fff) {
4922                if (type & MSR_TYPE_R)
4923                        /* read-low */
4924                        __clear_bit(msr, msr_bitmap + 0x000 / f);
4925
4926                if (type & MSR_TYPE_W)
4927                        /* write-low */
4928                        __clear_bit(msr, msr_bitmap + 0x800 / f);
4929
4930        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4931                msr &= 0x1fff;
4932                if (type & MSR_TYPE_R)
4933                        /* read-high */
4934                        __clear_bit(msr, msr_bitmap + 0x400 / f);
4935
4936                if (type & MSR_TYPE_W)
4937                        /* write-high */
4938                        __clear_bit(msr, msr_bitmap + 0xc00 / f);
4939
4940        }
4941}
4942
4943/*
4944 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4945 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4946 */
4947static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4948                                               unsigned long *msr_bitmap_nested,
4949                                               u32 msr, int type)
4950{
4951        int f = sizeof(unsigned long);
4952
4953        if (!cpu_has_vmx_msr_bitmap()) {
4954                WARN_ON(1);
4955                return;
4956        }
4957
4958        /*
4959         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4960         * have the write-low and read-high bitmap offsets the wrong way round.
4961         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4962         */
4963        if (msr <= 0x1fff) {
4964                if (type & MSR_TYPE_R &&
4965                   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4966                        /* read-low */
4967                        __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4968
4969                if (type & MSR_TYPE_W &&
4970                   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4971                        /* write-low */
4972                        __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4973
4974        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4975                msr &= 0x1fff;
4976                if (type & MSR_TYPE_R &&
4977                   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4978                        /* read-high */
4979                        __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4980
4981                if (type & MSR_TYPE_W &&
4982                   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4983                        /* write-high */
4984                        __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4985
4986        }
4987}
4988
4989static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4990{
4991        if (!longmode_only)
4992                __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4993                                                msr, MSR_TYPE_R | MSR_TYPE_W);
4994        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4995                                                msr, MSR_TYPE_R | MSR_TYPE_W);
4996}
4997
4998static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
4999{
5000        if (apicv_active) {
5001                __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
5002                                msr, type);
5003                __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
5004                                msr, type);
5005        } else {
5006                __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
5007                                msr, type);
5008                __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
5009                                msr, type);
5010        }
5011}
5012
5013static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
5014{
5015        return enable_apicv;
5016}
5017
5018static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5019{
5020        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5021        gfn_t gfn;
5022
5023        /*
5024         * Don't need to mark the APIC access page dirty; it is never
5025         * written to by the CPU during APIC virtualization.
5026         */
5027
5028        if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5029                gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5030                kvm_vcpu_mark_page_dirty(vcpu, gfn);
5031        }
5032
5033        if (nested_cpu_has_posted_intr(vmcs12)) {
5034                gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5035                kvm_vcpu_mark_page_dirty(vcpu, gfn);
5036        }
5037}
5038
5039
5040static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
5041{
5042        struct vcpu_vmx *vmx = to_vmx(vcpu);
5043        int max_irr;
5044        void *vapic_page;
5045        u16 status;
5046
5047        if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5048                return;
5049
5050        vmx->nested.pi_pending = false;
5051        if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5052                return;
5053
5054        max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5055        if (max_irr != 256) {
5056                vapic_page = kmap(vmx->nested.virtual_apic_page);
5057                __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5058                kunmap(vmx->nested.virtual_apic_page);
5059
5060                status = vmcs_read16(GUEST_INTR_STATUS);
5061                if ((u8)max_irr > ((u8)status & 0xff)) {
5062                        status &= ~0xff;
5063                        status |= (u8)max_irr;
5064                        vmcs_write16(GUEST_INTR_STATUS, status);
5065                }
5066        }
5067
5068        nested_mark_vmcs12_pages_dirty(vcpu);
5069}
5070
5071static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5072                                                     bool nested)
5073{
5074#ifdef CONFIG_SMP
5075        int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5076
5077        if (vcpu->mode == IN_GUEST_MODE) {
5078                /*
5079                 * The vector of interrupt to be delivered to vcpu had
5080                 * been set in PIR before this function.
5081                 *
5082                 * Following cases will be reached in this block, and
5083                 * we always send a notification event in all cases as
5084                 * explained below.
5085                 *
5086                 * Case 1: vcpu keeps in non-root mode. Sending a
5087                 * notification event posts the interrupt to vcpu.
5088                 *
5089                 * Case 2: vcpu exits to root mode and is still
5090                 * runnable. PIR will be synced to vIRR before the
5091                 * next vcpu entry. Sending a notification event in
5092                 * this case has no effect, as vcpu is not in root
5093                 * mode.
5094                 *
5095                 * Case 3: vcpu exits to root mode and is blocked.
5096                 * vcpu_block() has already synced PIR to vIRR and
5097                 * never blocks vcpu if vIRR is not cleared. Therefore,
5098                 * a blocked vcpu here does not wait for any requested
5099                 * interrupts in PIR, and sending a notification event
5100                 * which has no effect is safe here.
5101                 */
5102
5103                apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5104                return true;
5105        }
5106#endif
5107        return false;
5108}
5109
5110static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5111                                                int vector)
5112{
5113        struct vcpu_vmx *vmx = to_vmx(vcpu);
5114
5115        if (is_guest_mode(vcpu) &&
5116            vector == vmx->nested.posted_intr_nv) {
5117                /* the PIR and ON have been set by L1. */
5118                kvm_vcpu_trigger_posted_interrupt(vcpu, true);
5119                /*
5120                 * If a posted intr is not recognized by hardware,
5121                 * we will accomplish it in the next vmentry.
5122                 */
5123                vmx->nested.pi_pending = true;
5124                kvm_make_request(KVM_REQ_EVENT, vcpu);
5125                return 0;
5126        }
5127        return -1;
5128}
5129/*
5130 * Send interrupt to vcpu via posted interrupt way.
5131 * 1. If target vcpu is running(non-root mode), send posted interrupt
5132 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5133 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5134 * interrupt from PIR in next vmentry.
5135 */
5136static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5137{
5138        struct vcpu_vmx *vmx = to_vmx(vcpu);
5139        int r;
5140
5141        r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5142        if (!r)
5143                return;
5144
5145        if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5146                return;
5147
5148        /* If a previous notification has sent the IPI, nothing to do.  */
5149        if (pi_test_and_set_on(&vmx->pi_desc))
5150                return;
5151
5152        if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5153                kvm_vcpu_kick(vcpu);
5154}
5155
5156/*
5157 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5158 * will not change in the lifetime of the guest.
5159 * Note that host-state that does change is set elsewhere. E.g., host-state
5160 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5161 */
5162static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5163{
5164        u32 low32, high32;
5165        unsigned long tmpl;
5166        struct desc_ptr dt;
5167        unsigned long cr0, cr3, cr4;
5168
5169        cr0 = read_cr0();
5170        WARN_ON(cr0 & X86_CR0_TS);
5171        vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
5172
5173        /*
5174         * Save the most likely value for this task's CR3 in the VMCS.
5175         * We can't use __get_current_cr3_fast() because we're not atomic.
5176         */
5177        cr3 = __read_cr3();
5178        vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
5179        vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
5180
5181        /* Save the most likely value for this task's CR4 in the VMCS. */
5182        cr4 = cr4_read_shadow();
5183        vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
5184        vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
5185
5186        vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5187#ifdef CONFIG_X86_64
5188        /*
5189         * Load null selectors, so we can avoid reloading them in
5190         * __vmx_load_host_state(), in case userspace uses the null selectors
5191         * too (the expected case).
5192         */
5193        vmcs_write16(HOST_DS_SELECTOR, 0);
5194        vmcs_write16(HOST_ES_SELECTOR, 0);
5195#else
5196        vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5197        vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5198#endif
5199        vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5200        vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
5201
5202        store_idt(&dt);
5203        vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5204        vmx->host_idt_base = dt.address;
5205
5206        vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5207
5208        rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5209        vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5210        rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5211        vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
5212
5213        if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5214                rdmsr(MSR_IA32_CR_PAT, low32, high32);
5215                vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5216        }
5217}
5218
5219static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5220{
5221        vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5222        if (enable_ept)
5223                vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5224        if (is_guest_mode(&vmx->vcpu))
5225                vmx->vcpu.arch.cr4_guest_owned_bits &=
5226                        ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5227        vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5228}
5229
5230static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5231{
5232        u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5233
5234        if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5235                pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5236        /* Enable the preemption timer dynamically */
5237        pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5238        return pin_based_exec_ctrl;
5239}
5240
5241static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5242{
5243        struct vcpu_vmx *vmx = to_vmx(vcpu);
5244
5245        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5246        if (cpu_has_secondary_exec_ctrls()) {
5247                if (kvm_vcpu_apicv_active(vcpu))
5248                        vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5249                                      SECONDARY_EXEC_APIC_REGISTER_VIRT |
5250                                      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5251                else
5252                        vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5253                                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
5254                                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5255        }
5256
5257        if (cpu_has_vmx_msr_bitmap())
5258                vmx_set_msr_bitmap(vcpu);
5259}
5260
5261static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5262{
5263        u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5264
5265        if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5266                exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5267
5268        if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5269                exec_control &= ~CPU_BASED_TPR_SHADOW;
5270#ifdef CONFIG_X86_64
5271                exec_control |= CPU_BASED_CR8_STORE_EXITING |
5272                                CPU_BASED_CR8_LOAD_EXITING;
5273#endif
5274        }
5275        if (!enable_ept)
5276                exec_control |= CPU_BASED_CR3_STORE_EXITING |
5277                                CPU_BASED_CR3_LOAD_EXITING  |
5278                                CPU_BASED_INVLPG_EXITING;
5279        return exec_control;
5280}
5281
5282static bool vmx_rdrand_supported(void)
5283{
5284        return vmcs_config.cpu_based_2nd_exec_ctrl &
5285                SECONDARY_EXEC_RDRAND;
5286}
5287
5288static bool vmx_rdseed_supported(void)
5289{
5290        return vmcs_config.cpu_based_2nd_exec_ctrl &
5291                SECONDARY_EXEC_RDSEED;
5292}
5293
5294static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
5295{
5296        struct kvm_vcpu *vcpu = &vmx->vcpu;
5297
5298        u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5299        if (!cpu_need_virtualize_apic_accesses(vcpu))
5300                exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5301        if (vmx->vpid == 0)
5302                exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5303        if (!enable_ept) {
5304                exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5305                enable_unrestricted_guest = 0;
5306                /* Enable INVPCID for non-ept guests may cause performance regression. */
5307                exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5308        }
5309        if (!enable_unrestricted_guest)
5310                exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5311        if (!ple_gap)
5312                exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5313        if (!kvm_vcpu_apicv_active(vcpu))
5314                exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5315                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5316        exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5317        /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5318           (handle_vmptrld).
5319           We can NOT enable shadow_vmcs here because we don't have yet
5320           a current VMCS12
5321        */
5322        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5323
5324        if (!enable_pml)
5325                exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5326
5327        if (vmx_xsaves_supported()) {
5328                /* Exposing XSAVES only when XSAVE is exposed */
5329                bool xsaves_enabled =
5330                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5331                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5332
5333                if (!xsaves_enabled)
5334                        exec_control &= ~SECONDARY_EXEC_XSAVES;
5335
5336                if (nested) {
5337                        if (xsaves_enabled)
5338                                vmx->nested.nested_vmx_secondary_ctls_high |=
5339                                        SECONDARY_EXEC_XSAVES;
5340                        else
5341                                vmx->nested.nested_vmx_secondary_ctls_high &=
5342                                        ~SECONDARY_EXEC_XSAVES;
5343                }
5344        }
5345
5346        if (vmx_rdtscp_supported()) {
5347                bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5348                if (!rdtscp_enabled)
5349                        exec_control &= ~SECONDARY_EXEC_RDTSCP;
5350
5351                if (nested) {
5352                        if (rdtscp_enabled)
5353                                vmx->nested.nested_vmx_secondary_ctls_high |=
5354                                        SECONDARY_EXEC_RDTSCP;
5355                        else
5356                                vmx->nested.nested_vmx_secondary_ctls_high &=
5357                                        ~SECONDARY_EXEC_RDTSCP;
5358                }
5359        }
5360
5361        if (vmx_invpcid_supported()) {
5362                /* Exposing INVPCID only when PCID is exposed */
5363                bool invpcid_enabled =
5364                        guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5365                        guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5366
5367                if (!invpcid_enabled) {
5368                        exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5369                        guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5370                }
5371
5372                if (nested) {
5373                        if (invpcid_enabled)
5374                                vmx->nested.nested_vmx_secondary_ctls_high |=
5375                                        SECONDARY_EXEC_ENABLE_INVPCID;
5376                        else
5377                                vmx->nested.nested_vmx_secondary_ctls_high &=
5378                                        ~SECONDARY_EXEC_ENABLE_INVPCID;
5379                }
5380        }
5381
5382        if (vmx_rdrand_supported()) {
5383                bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5384                if (rdrand_enabled)
5385                        exec_control &= ~SECONDARY_EXEC_RDRAND;
5386
5387                if (nested) {
5388                        if (rdrand_enabled)
5389                                vmx->nested.nested_vmx_secondary_ctls_high |=
5390                                        SECONDARY_EXEC_RDRAND;
5391                        else
5392                                vmx->nested.nested_vmx_secondary_ctls_high &=
5393                                        ~SECONDARY_EXEC_RDRAND;
5394                }
5395        }
5396
5397        if (vmx_rdseed_supported()) {
5398                bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5399                if (rdseed_enabled)
5400                        exec_control &= ~SECONDARY_EXEC_RDSEED;
5401
5402                if (nested) {
5403                        if (rdseed_enabled)
5404                                vmx->nested.nested_vmx_secondary_ctls_high |=
5405                                        SECONDARY_EXEC_RDSEED;
5406                        else
5407                                vmx->nested.nested_vmx_secondary_ctls_high &=
5408                                        ~SECONDARY_EXEC_RDSEED;
5409                }
5410        }
5411
5412        vmx->secondary_exec_control = exec_control;
5413}
5414
5415static void ept_set_mmio_spte_mask(void)
5416{
5417        /*
5418         * EPT Misconfigurations can be generated if the value of bits 2:0
5419         * of an EPT paging-structure entry is 110b (write/execute).
5420         */
5421        kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5422                                   VMX_EPT_MISCONFIG_WX_VALUE);
5423}
5424
5425#define VMX_XSS_EXIT_BITMAP 0
5426/*
5427 * Sets up the vmcs for emulated real mode.
5428 */
5429static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5430{
5431#ifdef CONFIG_X86_64
5432        unsigned long a;
5433#endif
5434        int i;
5435
5436        /* I/O */
5437        vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5438        vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5439
5440        if (enable_shadow_vmcs) {
5441                vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5442                vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5443        }
5444        if (cpu_has_vmx_msr_bitmap())
5445                vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5446
5447        vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5448
5449        /* Control */
5450        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5451        vmx->hv_deadline_tsc = -1;
5452
5453        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5454
5455        if (cpu_has_secondary_exec_ctrls()) {
5456                vmx_compute_secondary_exec_control(vmx);
5457                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5458                             vmx->secondary_exec_control);
5459        }
5460
5461        if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5462                vmcs_write64(EOI_EXIT_BITMAP0, 0);
5463                vmcs_write64(EOI_EXIT_BITMAP1, 0);
5464                vmcs_write64(EOI_EXIT_BITMAP2, 0);
5465                vmcs_write64(EOI_EXIT_BITMAP3, 0);
5466
5467                vmcs_write16(GUEST_INTR_STATUS, 0);
5468
5469                vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5470                vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5471        }
5472
5473        if (ple_gap) {
5474                vmcs_write32(PLE_GAP, ple_gap);
5475                vmx->ple_window = ple_window;
5476                vmx->ple_window_dirty = true;
5477        }
5478
5479        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5480        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5481        vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5482
5483        vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5484        vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5485        vmx_set_constant_host_state(vmx);
5486#ifdef CONFIG_X86_64
5487        rdmsrl(MSR_FS_BASE, a);
5488        vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5489        rdmsrl(MSR_GS_BASE, a);
5490        vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5491#else
5492        vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5493        vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5494#endif
5495
5496        if (cpu_has_vmx_vmfunc())
5497                vmcs_write64(VM_FUNCTION_CONTROL, 0);
5498
5499        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5500        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5501        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5502        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5503        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5504
5505        if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5506                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5507
5508        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5509                u32 index = vmx_msr_index[i];
5510                u32 data_low, data_high;
5511                int j = vmx->nmsrs;
5512
5513                if (rdmsr_safe(index, &data_low, &data_high) < 0)
5514                        continue;
5515                if (wrmsr_safe(index, data_low, data_high) < 0)
5516                        continue;
5517                vmx->guest_msrs[j].index = i;
5518                vmx->guest_msrs[j].data = 0;
5519                vmx->guest_msrs[j].mask = -1ull;
5520                ++vmx->nmsrs;
5521        }
5522
5523
5524        vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5525
5526        /* 22.2.1, 20.8.1 */
5527        vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5528
5529        vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5530        vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5531
5532        set_cr4_guest_host_mask(vmx);
5533
5534        if (vmx_xsaves_supported())
5535                vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5536
5537        if (enable_pml) {
5538                ASSERT(vmx->pml_pg);
5539                vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5540                vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5541        }
5542
5543        return 0;
5544}
5545
5546static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5547{
5548        struct vcpu_vmx *vmx = to_vmx(vcpu);
5549        struct msr_data apic_base_msr;
5550        u64 cr0;
5551
5552        vmx->rmode.vm86_active = 0;
5553
5554        vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5555        kvm_set_cr8(vcpu, 0);
5556
5557        if (!init_event) {
5558                apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5559                                     MSR_IA32_APICBASE_ENABLE;
5560                if (kvm_vcpu_is_reset_bsp(vcpu))
5561                        apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5562                apic_base_msr.host_initiated = true;
5563                kvm_set_apic_base(vcpu, &apic_base_msr);
5564        }
5565
5566        vmx_segment_cache_clear(vmx);
5567
5568        seg_setup(VCPU_SREG_CS);
5569        vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5570        vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5571
5572        seg_setup(VCPU_SREG_DS);
5573        seg_setup(VCPU_SREG_ES);
5574        seg_setup(VCPU_SREG_FS);
5575        seg_setup(VCPU_SREG_GS);
5576        seg_setup(VCPU_SREG_SS);
5577
5578        vmcs_write16(GUEST_TR_SELECTOR, 0);
5579        vmcs_writel(GUEST_TR_BASE, 0);
5580        vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5581        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5582
5583        vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5584        vmcs_writel(GUEST_LDTR_BASE, 0);
5585        vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5586        vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5587
5588        if (!init_event) {
5589                vmcs_write32(GUEST_SYSENTER_CS, 0);
5590                vmcs_writel(GUEST_SYSENTER_ESP, 0);
5591                vmcs_writel(GUEST_SYSENTER_EIP, 0);
5592                vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5593        }
5594
5595        vmcs_writel(GUEST_RFLAGS, 0x02);
5596        kvm_rip_write(vcpu, 0xfff0);
5597
5598        vmcs_writel(GUEST_GDTR_BASE, 0);
5599        vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5600
5601        vmcs_writel(GUEST_IDTR_BASE, 0);
5602        vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5603
5604        vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5605        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5606        vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5607
5608        setup_msrs(vmx);
5609
5610        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5611
5612        if (cpu_has_vmx_tpr_shadow() && !init_event) {
5613                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5614                if (cpu_need_tpr_shadow(vcpu))
5615                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5616                                     __pa(vcpu->arch.apic->regs));
5617                vmcs_write32(TPR_THRESHOLD, 0);
5618        }
5619
5620        kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5621
5622        if (vmx->vpid != 0)
5623                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5624
5625        cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5626        vmx->vcpu.arch.cr0 = cr0;
5627        vmx_set_cr0(vcpu, cr0); /* enter rmode */
5628        vmx_set_cr4(vcpu, 0);
5629        vmx_set_efer(vcpu, 0);
5630
5631        update_exception_bitmap(vcpu);
5632
5633        vpid_sync_context(vmx->vpid);
5634}
5635
5636/*
5637 * In nested virtualization, check if L1 asked to exit on external interrupts.
5638 * For most existing hypervisors, this will always return true.
5639 */
5640static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5641{
5642        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5643                PIN_BASED_EXT_INTR_MASK;
5644}
5645
5646/*
5647 * In nested virtualization, check if L1 has set
5648 * VM_EXIT_ACK_INTR_ON_EXIT
5649 */
5650static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5651{
5652        return get_vmcs12(vcpu)->vm_exit_controls &
5653                VM_EXIT_ACK_INTR_ON_EXIT;
5654}
5655
5656static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5657{
5658        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5659                PIN_BASED_NMI_EXITING;
5660}
5661
5662static void enable_irq_window(struct kvm_vcpu *vcpu)
5663{
5664        vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5665                      CPU_BASED_VIRTUAL_INTR_PENDING);
5666}
5667
5668static void enable_nmi_window(struct kvm_vcpu *vcpu)
5669{
5670        if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5671                enable_irq_window(vcpu);
5672                return;
5673        }
5674
5675        vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5676                      CPU_BASED_VIRTUAL_NMI_PENDING);
5677}
5678
5679static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5680{
5681        struct vcpu_vmx *vmx = to_vmx(vcpu);
5682        uint32_t intr;
5683        int irq = vcpu->arch.interrupt.nr;
5684
5685        trace_kvm_inj_virq(irq);
5686
5687        ++vcpu->stat.irq_injections;
5688        if (vmx->rmode.vm86_active) {
5689                int inc_eip = 0;
5690                if (vcpu->arch.interrupt.soft)
5691                        inc_eip = vcpu->arch.event_exit_inst_len;
5692                if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5693                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5694                return;
5695        }
5696        intr = irq | INTR_INFO_VALID_MASK;
5697        if (vcpu->arch.interrupt.soft) {
5698                intr |= INTR_TYPE_SOFT_INTR;
5699                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5700                             vmx->vcpu.arch.event_exit_inst_len);
5701        } else
5702                intr |= INTR_TYPE_EXT_INTR;
5703        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5704}
5705
5706static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5707{
5708        struct vcpu_vmx *vmx = to_vmx(vcpu);
5709
5710        ++vcpu->stat.nmi_injections;
5711        vmx->loaded_vmcs->nmi_known_unmasked = false;
5712
5713        if (vmx->rmode.vm86_active) {
5714                if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5715                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5716                return;
5717        }
5718
5719        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5720                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5721}
5722
5723static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5724{
5725        struct vcpu_vmx *vmx = to_vmx(vcpu);
5726        bool masked;
5727
5728        if (vmx->loaded_vmcs->nmi_known_unmasked)
5729                return false;
5730        masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5731        vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5732        return masked;
5733}
5734
5735static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5736{
5737        struct vcpu_vmx *vmx = to_vmx(vcpu);
5738
5739        vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5740        if (masked)
5741                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5742                              GUEST_INTR_STATE_NMI);
5743        else
5744                vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5745                                GUEST_INTR_STATE_NMI);
5746}
5747
5748static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5749{
5750        if (to_vmx(vcpu)->nested.nested_run_pending)
5751                return 0;
5752
5753        return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5754                  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5755                   | GUEST_INTR_STATE_NMI));
5756}
5757
5758static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5759{
5760        return (!to_vmx(vcpu)->nested.nested_run_pending &&
5761                vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5762                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5763                        (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5764}
5765
5766static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5767{
5768        int ret;
5769
5770        ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5771                                    PAGE_SIZE * 3);
5772        if (ret)
5773                return ret;
5774        kvm->arch.tss_addr = addr;
5775        return init_rmode_tss(kvm);
5776}
5777
5778static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5779{
5780        switch (vec) {
5781        case BP_VECTOR:
5782                /*
5783                 * Update instruction length as we may reinject the exception
5784                 * from user space while in guest debugging mode.
5785                 */
5786                to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5787                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5788                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5789                        return false;
5790                /* fall through */
5791        case DB_VECTOR:
5792                if (vcpu->guest_debug &
5793                        (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5794                        return false;
5795                /* fall through */
5796        case DE_VECTOR:
5797        case OF_VECTOR:
5798        case BR_VECTOR:
5799        case UD_VECTOR:
5800        case DF_VECTOR:
5801        case SS_VECTOR:
5802        case GP_VECTOR:
5803        case MF_VECTOR:
5804                return true;
5805        break;
5806        }
5807        return false;
5808}
5809
5810static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5811                                  int vec, u32 err_code)
5812{
5813        /*
5814         * Instruction with address size override prefix opcode 0x67
5815         * Cause the #SS fault with 0 error code in VM86 mode.
5816         */
5817        if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5818                if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5819                        if (vcpu->arch.halt_request) {
5820                                vcpu->arch.halt_request = 0;
5821                                return kvm_vcpu_halt(vcpu);
5822                        }
5823                        return 1;
5824                }
5825                return 0;
5826        }
5827
5828        /*
5829         * Forward all other exceptions that are valid in real mode.
5830         * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5831         *        the required debugging infrastructure rework.
5832         */
5833        kvm_queue_exception(vcpu, vec);
5834        return 1;
5835}
5836
5837/*
5838 * Trigger machine check on the host. We assume all the MSRs are already set up
5839 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5840 * We pass a fake environment to the machine check handler because we want
5841 * the guest to be always treated like user space, no matter what context
5842 * it used internally.
5843 */
5844static void kvm_machine_check(void)
5845{
5846#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5847        struct pt_regs regs = {
5848                .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5849                .flags = X86_EFLAGS_IF,
5850        };
5851
5852        do_machine_check(&regs, 0);
5853#endif
5854}
5855
5856static int handle_machine_check(struct kvm_vcpu *vcpu)
5857{
5858        /* already handled by vcpu_run */
5859        return 1;
5860}
5861
5862static int handle_exception(struct kvm_vcpu *vcpu)
5863{
5864        struct vcpu_vmx *vmx = to_vmx(vcpu);
5865        struct kvm_run *kvm_run = vcpu->run;
5866        u32 intr_info, ex_no, error_code;
5867        unsigned long cr2, rip, dr6;
5868        u32 vect_info;
5869        enum emulation_result er;
5870
5871        vect_info = vmx->idt_vectoring_info;
5872        intr_info = vmx->exit_intr_info;
5873
5874        if (is_machine_check(intr_info))
5875                return handle_machine_check(vcpu);
5876
5877        if (is_nmi(intr_info))
5878                return 1;  /* already handled by vmx_vcpu_run() */
5879
5880        if (is_invalid_opcode(intr_info)) {
5881                if (is_guest_mode(vcpu)) {
5882                        kvm_queue_exception(vcpu, UD_VECTOR);
5883                        return 1;
5884                }
5885                er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5886                if (er != EMULATE_DONE)
5887                        kvm_queue_exception(vcpu, UD_VECTOR);
5888                return 1;
5889        }
5890
5891        error_code = 0;
5892        if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5893                error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5894
5895        /*
5896         * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5897         * MMIO, it is better to report an internal error.
5898         * See the comments in vmx_handle_exit.
5899         */
5900        if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5901            !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5902                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5903                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5904                vcpu->run->internal.ndata = 3;
5905                vcpu->run->internal.data[0] = vect_info;
5906                vcpu->run->internal.data[1] = intr_info;
5907                vcpu->run->internal.data[2] = error_code;
5908                return 0;
5909        }
5910
5911        if (is_page_fault(intr_info)) {
5912                cr2 = vmcs_readl(EXIT_QUALIFICATION);
5913                /* EPT won't cause page fault directly */
5914                WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5915                return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5916                                true);
5917        }
5918
5919        ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5920
5921        if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5922                return handle_rmode_exception(vcpu, ex_no, error_code);
5923
5924        switch (ex_no) {
5925        case AC_VECTOR:
5926                kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5927                return 1;
5928        case DB_VECTOR:
5929                dr6 = vmcs_readl(EXIT_QUALIFICATION);
5930                if (!(vcpu->guest_debug &
5931                      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5932                        vcpu->arch.dr6 &= ~15;
5933                        vcpu->arch.dr6 |= dr6 | DR6_RTM;
5934                        if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5935                                skip_emulated_instruction(vcpu);
5936
5937                        kvm_queue_exception(vcpu, DB_VECTOR);
5938                        return 1;
5939                }
5940                kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5941                kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5942                /* fall through */
5943        case BP_VECTOR:
5944                /*
5945                 * Update instruction length as we may reinject #BP from
5946                 * user space while in guest debugging mode. Reading it for
5947                 * #DB as well causes no harm, it is not used in that case.
5948                 */
5949                vmx->vcpu.arch.event_exit_inst_len =
5950                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5951                kvm_run->exit_reason = KVM_EXIT_DEBUG;
5952                rip = kvm_rip_read(vcpu);
5953                kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5954                kvm_run->debug.arch.exception = ex_no;
5955                break;
5956        default:
5957                kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5958                kvm_run->ex.exception = ex_no;
5959                kvm_run->ex.error_code = error_code;
5960                break;
5961        }
5962        return 0;
5963}
5964
5965static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5966{
5967        ++vcpu->stat.irq_exits;
5968        return 1;
5969}
5970
5971static int handle_triple_fault(struct kvm_vcpu *vcpu)
5972{
5973        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5974        vcpu->mmio_needed = 0;
5975        return 0;
5976}
5977
5978static int handle_io(struct kvm_vcpu *vcpu)
5979{
5980        unsigned long exit_qualification;
5981        int size, in, string, ret;
5982        unsigned port;
5983
5984        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5985        string = (exit_qualification & 16) != 0;
5986        in = (exit_qualification & 8) != 0;
5987
5988        ++vcpu->stat.io_exits;
5989
5990        if (string || in)
5991                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5992
5993        port = exit_qualification >> 16;
5994        size = (exit_qualification & 7) + 1;
5995
5996        ret = kvm_skip_emulated_instruction(vcpu);
5997
5998        /*
5999         * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6000         * KVM_EXIT_DEBUG here.
6001         */
6002        return kvm_fast_pio_out(vcpu, size, port) && ret;
6003}
6004
6005static void
6006vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6007{
6008        /*
6009         * Patch in the VMCALL instruction:
6010         */
6011        hypercall[0] = 0x0f;
6012        hypercall[1] = 0x01;
6013        hypercall[2] = 0xc1;
6014}
6015
6016/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
6017static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6018{
6019        if (is_guest_mode(vcpu)) {
6020                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6021                unsigned long orig_val = val;
6022
6023                /*
6024                 * We get here when L2 changed cr0 in a way that did not change
6025                 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
6026                 * but did change L0 shadowed bits. So we first calculate the
6027                 * effective cr0 value that L1 would like to write into the
6028                 * hardware. It consists of the L2-owned bits from the new
6029                 * value combined with the L1-owned bits from L1's guest_cr0.
6030                 */
6031                val = (val & ~vmcs12->cr0_guest_host_mask) |
6032                        (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6033
6034                if (!nested_guest_cr0_valid(vcpu, val))
6035                        return 1;
6036
6037                if (kvm_set_cr0(vcpu, val))
6038                        return 1;
6039                vmcs_writel(CR0_READ_SHADOW, orig_val);
6040                return 0;
6041        } else {
6042                if (to_vmx(vcpu)->nested.vmxon &&
6043                    !nested_host_cr0_valid(vcpu, val))
6044                        return 1;
6045
6046                return kvm_set_cr0(vcpu, val);
6047        }
6048}
6049
6050static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6051{
6052        if (is_guest_mode(vcpu)) {
6053                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6054                unsigned long orig_val = val;
6055
6056                /* analogously to handle_set_cr0 */
6057                val = (val & ~vmcs12->cr4_guest_host_mask) |
6058                        (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6059                if (kvm_set_cr4(vcpu, val))
6060                        return 1;
6061                vmcs_writel(CR4_READ_SHADOW, orig_val);
6062                return 0;
6063        } else
6064                return kvm_set_cr4(vcpu, val);
6065}
6066
6067static int handle_cr(struct kvm_vcpu *vcpu)
6068{
6069        unsigned long exit_qualification, val;
6070        int cr;
6071        int reg;
6072        int err;
6073        int ret;
6074
6075        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6076        cr = exit_qualification & 15;
6077        reg = (exit_qualification >> 8) & 15;
6078        switch ((exit_qualification >> 4) & 3) {
6079        case 0: /* mov to cr */
6080                val = kvm_register_readl(vcpu, reg);
6081                trace_kvm_cr_write(cr, val);
6082                switch (cr) {
6083                case 0:
6084                        err = handle_set_cr0(vcpu, val);
6085                        return kvm_complete_insn_gp(vcpu, err);
6086                case 3:
6087                        err = kvm_set_cr3(vcpu, val);
6088                        return kvm_complete_insn_gp(vcpu, err);
6089                case 4:
6090                        err = handle_set_cr4(vcpu, val);
6091                        return kvm_complete_insn_gp(vcpu, err);
6092                case 8: {
6093                                u8 cr8_prev = kvm_get_cr8(vcpu);
6094                                u8 cr8 = (u8)val;
6095                                err = kvm_set_cr8(vcpu, cr8);
6096                                ret = kvm_complete_insn_gp(vcpu, err);
6097                                if (lapic_in_kernel(vcpu))
6098                                        return ret;
6099                                if (cr8_prev <= cr8)
6100                                        return ret;
6101                                /*
6102                                 * TODO: we might be squashing a
6103                                 * KVM_GUESTDBG_SINGLESTEP-triggered
6104                                 * KVM_EXIT_DEBUG here.
6105                                 */
6106                                vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
6107                                return 0;
6108                        }
6109                }
6110                break;
6111        case 2: /* clts */
6112                WARN_ONCE(1, "Guest should always own CR0.TS");
6113                vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
6114                trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6115                return kvm_skip_emulated_instruction(vcpu);
6116        case 1: /*mov from cr*/
6117                switch (cr) {
6118                case 3:
6119                        val = kvm_read_cr3(vcpu);
6120                        kvm_register_write(vcpu, reg, val);
6121                        trace_kvm_cr_read(cr, val);
6122                        return kvm_skip_emulated_instruction(vcpu);
6123                case 8:
6124                        val = kvm_get_cr8(vcpu);
6125                        kvm_register_write(vcpu, reg, val);
6126                        trace_kvm_cr_read(cr, val);
6127                        return kvm_skip_emulated_instruction(vcpu);
6128                }
6129                break;
6130        case 3: /* lmsw */
6131                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6132                trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
6133                kvm_lmsw(vcpu, val);
6134
6135                return kvm_skip_emulated_instruction(vcpu);
6136        default:
6137                break;
6138        }
6139        vcpu->run->exit_reason = 0;
6140        vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6141               (int)(exit_qualification >> 4) & 3, cr);
6142        return 0;
6143}
6144
6145static int handle_dr(struct kvm_vcpu *vcpu)
6146{
6147        unsigned long exit_qualification;
6148        int dr, dr7, reg;
6149
6150        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6151        dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6152
6153        /* First, if DR does not exist, trigger UD */
6154        if (!kvm_require_dr(vcpu, dr))
6155                return 1;
6156
6157        /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6158        if (!kvm_require_cpl(vcpu, 0))
6159                return 1;
6160        dr7 = vmcs_readl(GUEST_DR7);
6161        if (dr7 & DR7_GD) {
6162                /*
6163                 * As the vm-exit takes precedence over the debug trap, we
6164                 * need to emulate the latter, either for the host or the
6165                 * guest debugging itself.
6166                 */
6167                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6168                        vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
6169                        vcpu->run->debug.arch.dr7 = dr7;
6170                        vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6171                        vcpu->run->debug.arch.exception = DB_VECTOR;
6172                        vcpu->run->exit_reason = KVM_EXIT_DEBUG;
6173                        return 0;
6174                } else {
6175                        vcpu->arch.dr6 &= ~15;
6176                        vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
6177                        kvm_queue_exception(vcpu, DB_VECTOR);
6178                        return 1;
6179                }
6180        }
6181
6182        if (vcpu->guest_debug == 0) {
6183                vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6184                                CPU_BASED_MOV_DR_EXITING);
6185
6186                /*
6187                 * No more DR vmexits; force a reload of the debug registers
6188                 * and reenter on this instruction.  The next vmexit will
6189                 * retrieve the full state of the debug registers.
6190                 */
6191                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6192                return 1;
6193        }
6194
6195        reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6196        if (exit_qualification & TYPE_MOV_FROM_DR) {
6197                unsigned long val;
6198
6199                if (kvm_get_dr(vcpu, dr, &val))
6200                        return 1;
6201                kvm_register_write(vcpu, reg, val);
6202        } else
6203                if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6204                        return 1;
6205
6206        return kvm_skip_emulated_instruction(vcpu);
6207}
6208
6209static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6210{
6211        return vcpu->arch.dr6;
6212}
6213
6214static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6215{
6216}
6217
6218static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6219{
6220        get_debugreg(vcpu->arch.db[0], 0);
6221        get_debugreg(vcpu->arch.db[1], 1);
6222        get_debugreg(vcpu->arch.db[2], 2);
6223        get_debugreg(vcpu->arch.db[3], 3);
6224        get_debugreg(vcpu->arch.dr6, 6);
6225        vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6226
6227        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6228        vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6229}
6230
6231static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6232{
6233        vmcs_writel(GUEST_DR7, val);
6234}
6235
6236static int handle_cpuid(struct kvm_vcpu *vcpu)
6237{
6238        return kvm_emulate_cpuid(vcpu);
6239}
6240
6241static int handle_rdmsr(struct kvm_vcpu *vcpu)
6242{
6243        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6244        struct msr_data msr_info;
6245
6246        msr_info.index = ecx;
6247        msr_info.host_initiated = false;
6248        if (vmx_get_msr(vcpu, &msr_info)) {
6249                trace_kvm_msr_read_ex(ecx);
6250                kvm_inject_gp(vcpu, 0);
6251                return 1;
6252        }
6253
6254        trace_kvm_msr_read(ecx, msr_info.data);
6255
6256        /* FIXME: handling of bits 32:63 of rax, rdx */
6257        vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6258        vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6259        return kvm_skip_emulated_instruction(vcpu);
6260}
6261
6262static int handle_wrmsr(struct kvm_vcpu *vcpu)
6263{
6264        struct msr_data msr;
6265        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6266        u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6267                | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6268
6269        msr.data = data;
6270        msr.index = ecx;
6271        msr.host_initiated = false;
6272        if (kvm_set_msr(vcpu, &msr) != 0) {
6273                trace_kvm_msr_write_ex(ecx, data);
6274                kvm_inject_gp(vcpu, 0);
6275                return 1;
6276        }
6277
6278        trace_kvm_msr_write(ecx, data);
6279        return kvm_skip_emulated_instruction(vcpu);
6280}
6281
6282static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6283{
6284        kvm_apic_update_ppr(vcpu);
6285        return 1;
6286}
6287
6288static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6289{
6290        vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6291                        CPU_BASED_VIRTUAL_INTR_PENDING);
6292
6293        kvm_make_request(KVM_REQ_EVENT, vcpu);
6294
6295        ++vcpu->stat.irq_window_exits;
6296        return 1;
6297}
6298
6299static int handle_halt(struct kvm_vcpu *vcpu)
6300{
6301        return kvm_emulate_halt(vcpu);
6302}
6303
6304static int handle_vmcall(struct kvm_vcpu *vcpu)
6305{
6306        return kvm_emulate_hypercall(vcpu);
6307}
6308
6309static int handle_invd(struct kvm_vcpu *vcpu)
6310{
6311        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6312}
6313
6314static int handle_invlpg(struct kvm_vcpu *vcpu)
6315{
6316        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6317
6318        kvm_mmu_invlpg(vcpu, exit_qualification);
6319        return kvm_skip_emulated_instruction(vcpu);
6320}
6321
6322static int handle_rdpmc(struct kvm_vcpu *vcpu)
6323{
6324        int err;
6325
6326        err = kvm_rdpmc(vcpu);
6327        return kvm_complete_insn_gp(vcpu, err);
6328}
6329
6330static int handle_wbinvd(struct kvm_vcpu *vcpu)
6331{
6332        return kvm_emulate_wbinvd(vcpu);
6333}
6334
6335static int handle_xsetbv(struct kvm_vcpu *vcpu)
6336{
6337        u64 new_bv = kvm_read_edx_eax(vcpu);
6338        u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6339
6340        if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6341                return kvm_skip_emulated_instruction(vcpu);
6342        return 1;
6343}
6344
6345static int handle_xsaves(struct kvm_vcpu *vcpu)
6346{
6347        kvm_skip_emulated_instruction(vcpu);
6348        WARN(1, "this should never happen\n");
6349        return 1;
6350}
6351
6352static int handle_xrstors(struct kvm_vcpu *vcpu)
6353{
6354        kvm_skip_emulated_instruction(vcpu);
6355        WARN(1, "this should never happen\n");
6356        return 1;
6357}
6358
6359static int handle_apic_access(struct kvm_vcpu *vcpu)
6360{
6361        if (likely(fasteoi)) {
6362                unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6363                int access_type, offset;
6364
6365                access_type = exit_qualification & APIC_ACCESS_TYPE;
6366                offset = exit_qualification & APIC_ACCESS_OFFSET;
6367                /*
6368                 * Sane guest uses MOV to write EOI, with written value
6369                 * not cared. So make a short-circuit here by avoiding
6370                 * heavy instruction emulation.
6371                 */
6372                if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6373                    (offset == APIC_EOI)) {
6374                        kvm_lapic_set_eoi(vcpu);
6375                        return kvm_skip_emulated_instruction(vcpu);
6376                }
6377        }
6378        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6379}
6380
6381static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6382{
6383        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6384        int vector = exit_qualification & 0xff;
6385
6386        /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6387        kvm_apic_set_eoi_accelerated(vcpu, vector);
6388        return 1;
6389}
6390
6391static int handle_apic_write(struct kvm_vcpu *vcpu)
6392{
6393        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6394        u32 offset = exit_qualification & 0xfff;
6395
6396        /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6397        kvm_apic_write_nodecode(vcpu, offset);
6398        return 1;
6399}
6400
6401static int handle_task_switch(struct kvm_vcpu *vcpu)
6402{
6403        struct vcpu_vmx *vmx = to_vmx(vcpu);
6404        unsigned long exit_qualification;
6405        bool has_error_code = false;
6406        u32 error_code = 0;
6407        u16 tss_selector;
6408        int reason, type, idt_v, idt_index;
6409
6410        idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6411        idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6412        type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6413
6414        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6415
6416        reason = (u32)exit_qualification >> 30;
6417        if (reason == TASK_SWITCH_GATE && idt_v) {
6418                switch (type) {
6419                case INTR_TYPE_NMI_INTR:
6420                        vcpu->arch.nmi_injected = false;
6421                        vmx_set_nmi_mask(vcpu, true);
6422                        break;
6423                case INTR_TYPE_EXT_INTR:
6424                case INTR_TYPE_SOFT_INTR:
6425                        kvm_clear_interrupt_queue(vcpu);
6426                        break;
6427                case INTR_TYPE_HARD_EXCEPTION:
6428                        if (vmx->idt_vectoring_info &
6429                            VECTORING_INFO_DELIVER_CODE_MASK) {
6430                                has_error_code = true;
6431                                error_code =
6432                                        vmcs_read32(IDT_VECTORING_ERROR_CODE);
6433                        }
6434                        /* fall through */
6435                case INTR_TYPE_SOFT_EXCEPTION:
6436                        kvm_clear_exception_queue(vcpu);
6437                        break;
6438                default:
6439                        break;
6440                }
6441        }
6442        tss_selector = exit_qualification;
6443
6444        if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6445                       type != INTR_TYPE_EXT_INTR &&
6446                       type != INTR_TYPE_NMI_INTR))
6447                skip_emulated_instruction(vcpu);
6448
6449        if (kvm_task_switch(vcpu, tss_selector,
6450                            type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6451                            has_error_code, error_code) == EMULATE_FAIL) {
6452                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6453                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6454                vcpu->run->internal.ndata = 0;
6455                return 0;
6456        }
6457
6458        /*
6459         * TODO: What about debug traps on tss switch?
6460         *       Are we supposed to inject them and update dr6?
6461         */
6462
6463        return 1;
6464}
6465
6466static int handle_ept_violation(struct kvm_vcpu *vcpu)
6467{
6468        unsigned long exit_qualification;
6469        gpa_t gpa;
6470        u64 error_code;
6471
6472        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6473
6474        /*
6475         * EPT violation happened while executing iret from NMI,
6476         * "blocked by NMI" bit has to be set before next VM entry.
6477         * There are errata that may cause this bit to not be set:
6478         * AAK134, BY25.
6479         */
6480        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6481                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6482                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6483
6484        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6485        trace_kvm_page_fault(gpa, exit_qualification);
6486
6487        /* Is it a read fault? */
6488        error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6489                     ? PFERR_USER_MASK : 0;
6490        /* Is it a write fault? */
6491        error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6492                      ? PFERR_WRITE_MASK : 0;
6493        /* Is it a fetch fault? */
6494        error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6495                      ? PFERR_FETCH_MASK : 0;
6496        /* ept page table entry is present? */
6497        error_code |= (exit_qualification &
6498                       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6499                        EPT_VIOLATION_EXECUTABLE))
6500                      ? PFERR_PRESENT_MASK : 0;
6501
6502        error_code |= (exit_qualification & 0x100) != 0 ?
6503               PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
6504
6505        vcpu->arch.exit_qualification = exit_qualification;
6506        return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6507}
6508
6509static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6510{
6511        int ret;
6512        gpa_t gpa;
6513
6514        /*
6515         * A nested guest cannot optimize MMIO vmexits, because we have an
6516         * nGPA here instead of the required GPA.
6517         */
6518        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6519        if (!is_guest_mode(vcpu) &&
6520            !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6521                trace_kvm_fast_mmio(gpa);
6522                return kvm_skip_emulated_instruction(vcpu);
6523        }
6524
6525        ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6526        if (ret >= 0)
6527                return ret;
6528
6529        /* It is the real ept misconfig */
6530        WARN_ON(1);
6531
6532        vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6533        vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6534
6535        return 0;
6536}
6537
6538static int handle_nmi_window(struct kvm_vcpu *vcpu)
6539{
6540        vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6541                        CPU_BASED_VIRTUAL_NMI_PENDING);
6542        ++vcpu->stat.nmi_window_exits;
6543        kvm_make_request(KVM_REQ_EVENT, vcpu);
6544
6545        return 1;
6546}
6547
6548static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6549{
6550        struct vcpu_vmx *vmx = to_vmx(vcpu);
6551        enum emulation_result err = EMULATE_DONE;
6552        int ret = 1;
6553        u32 cpu_exec_ctrl;
6554        bool intr_window_requested;
6555        unsigned count = 130;
6556
6557        cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6558        intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6559
6560        while (vmx->emulation_required && count-- != 0) {
6561                if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6562                        return handle_interrupt_window(&vmx->vcpu);
6563
6564                if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6565                        return 1;
6566
6567                err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6568
6569                if (err == EMULATE_USER_EXIT) {
6570                        ++vcpu->stat.mmio_exits;
6571                        ret = 0;
6572                        goto out;
6573                }
6574
6575                if (err != EMULATE_DONE) {
6576                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6577                        vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6578                        vcpu->run->internal.ndata = 0;
6579                        return 0;
6580                }
6581
6582                if (vcpu->arch.halt_request) {
6583                        vcpu->arch.halt_request = 0;
6584                        ret = kvm_vcpu_halt(vcpu);
6585                        goto out;
6586                }
6587
6588                if (signal_pending(current))
6589                        goto out;
6590                if (need_resched())
6591                        schedule();
6592        }
6593
6594out:
6595        return ret;
6596}
6597
6598static int __grow_ple_window(int val)
6599{
6600        if (ple_window_grow < 1)
6601                return ple_window;
6602
6603        val = min(val, ple_window_actual_max);
6604
6605        if (ple_window_grow < ple_window)
6606                val *= ple_window_grow;
6607        else
6608                val += ple_window_grow;
6609
6610        return val;
6611}
6612
6613static int __shrink_ple_window(int val, int modifier, int minimum)
6614{
6615        if (modifier < 1)
6616                return ple_window;
6617
6618        if (modifier < ple_window)
6619                val /= modifier;
6620        else
6621                val -= modifier;
6622
6623        return max(val, minimum);
6624}
6625
6626static void grow_ple_window(struct kvm_vcpu *vcpu)
6627{
6628        struct vcpu_vmx *vmx = to_vmx(vcpu);
6629        int old = vmx->ple_window;
6630
6631        vmx->ple_window = __grow_ple_window(old);
6632
6633        if (vmx->ple_window != old)
6634                vmx->ple_window_dirty = true;
6635
6636        trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6637}
6638
6639static void shrink_ple_window(struct kvm_vcpu *vcpu)
6640{
6641        struct vcpu_vmx *vmx = to_vmx(vcpu);
6642        int old = vmx->ple_window;
6643
6644        vmx->ple_window = __shrink_ple_window(old,
6645                                              ple_window_shrink, ple_window);
6646
6647        if (vmx->ple_window != old)
6648                vmx->ple_window_dirty = true;
6649
6650        trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6651}
6652
6653/*
6654 * ple_window_actual_max is computed to be one grow_ple_window() below
6655 * ple_window_max. (See __grow_ple_window for the reason.)
6656 * This prevents overflows, because ple_window_max is int.
6657 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6658 * this process.
6659 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6660 */
6661static void update_ple_window_actual_max(void)
6662{
6663        ple_window_actual_max =
6664                        __shrink_ple_window(max(ple_window_max, ple_window),
6665                                            ple_window_grow, INT_MIN);
6666}
6667
6668/*
6669 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6670 */
6671static void wakeup_handler(void)
6672{
6673        struct kvm_vcpu *vcpu;
6674        int cpu = smp_processor_id();
6675
6676        spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6677        list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6678                        blocked_vcpu_list) {
6679                struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6680
6681                if (pi_test_on(pi_desc) == 1)
6682                        kvm_vcpu_kick(vcpu);
6683        }
6684        spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6685}
6686
6687void vmx_enable_tdp(void)
6688{
6689        kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6690                enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6691                enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6692                0ull, VMX_EPT_EXECUTABLE_MASK,
6693                cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6694                VMX_EPT_RWX_MASK, 0ull);
6695
6696        ept_set_mmio_spte_mask();
6697        kvm_enable_tdp();
6698}
6699
6700static __init int hardware_setup(void)
6701{
6702        int r = -ENOMEM, i, msr;
6703
6704        rdmsrl_safe(MSR_EFER, &host_efer);
6705
6706        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6707                kvm_define_shared_msr(i, vmx_msr_index[i]);
6708
6709        for (i = 0; i < VMX_BITMAP_NR; i++) {
6710                vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6711                if (!vmx_bitmap[i])
6712                        goto out;
6713        }
6714
6715        vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6716        memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6717        memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6718
6719        /*
6720         * Allow direct access to the PC debug port (it is often used for I/O
6721         * delays, but the vmexits simply slow things down).
6722         */
6723        memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6724        clear_bit(0x80, vmx_io_bitmap_a);
6725
6726        memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6727
6728        memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6729        memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6730
6731        if (setup_vmcs_config(&vmcs_config) < 0) {
6732                r = -EIO;
6733                goto out;
6734        }
6735
6736        if (boot_cpu_has(X86_FEATURE_NX))
6737                kvm_enable_efer_bits(EFER_NX);
6738
6739        if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6740                !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6741                enable_vpid = 0;
6742
6743        if (!cpu_has_vmx_shadow_vmcs())
6744                enable_shadow_vmcs = 0;
6745        if (enable_shadow_vmcs)
6746                init_vmcs_shadow_fields();
6747
6748        if (!cpu_has_vmx_ept() ||
6749            !cpu_has_vmx_ept_4levels() ||
6750            !cpu_has_vmx_ept_mt_wb()) {
6751                enable_ept = 0;
6752                enable_unrestricted_guest = 0;
6753                enable_ept_ad_bits = 0;
6754        }
6755
6756        if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6757                enable_ept_ad_bits = 0;
6758
6759        if (!cpu_has_vmx_unrestricted_guest())
6760                enable_unrestricted_guest = 0;
6761
6762        if (!cpu_has_vmx_flexpriority())
6763                flexpriority_enabled = 0;
6764
6765        /*
6766         * set_apic_access_page_addr() is used to reload apic access
6767         * page upon invalidation.  No need to do anything if not
6768         * using the APIC_ACCESS_ADDR VMCS field.
6769         */
6770        if (!flexpriority_enabled)
6771                kvm_x86_ops->set_apic_access_page_addr = NULL;
6772
6773        if (!cpu_has_vmx_tpr_shadow())
6774                kvm_x86_ops->update_cr8_intercept = NULL;
6775
6776        if (enable_ept && !cpu_has_vmx_ept_2m_page())
6777                kvm_disable_largepages();
6778
6779        if (!cpu_has_vmx_ple())
6780                ple_gap = 0;
6781
6782        if (!cpu_has_vmx_apicv()) {
6783                enable_apicv = 0;
6784                kvm_x86_ops->sync_pir_to_irr = NULL;
6785        }
6786
6787        if (cpu_has_vmx_tsc_scaling()) {
6788                kvm_has_tsc_control = true;
6789                kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6790                kvm_tsc_scaling_ratio_frac_bits = 48;
6791        }
6792
6793        vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6794        vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6795        vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6796        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6797        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6798        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6799
6800        memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6801                        vmx_msr_bitmap_legacy, PAGE_SIZE);
6802        memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6803                        vmx_msr_bitmap_longmode, PAGE_SIZE);
6804        memcpy(vmx_msr_bitmap_legacy_x2apic,
6805                        vmx_msr_bitmap_legacy, PAGE_SIZE);
6806        memcpy(vmx_msr_bitmap_longmode_x2apic,
6807                        vmx_msr_bitmap_longmode, PAGE_SIZE);
6808
6809        set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6810
6811        for (msr = 0x800; msr <= 0x8ff; msr++) {
6812                if (msr == 0x839 /* TMCCT */)
6813                        continue;
6814                vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6815        }
6816
6817        /*
6818         * TPR reads and writes can be virtualized even if virtual interrupt
6819         * delivery is not in use.
6820         */
6821        vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6822        vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6823
6824        /* EOI */
6825        vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6826        /* SELF-IPI */
6827        vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6828
6829        if (enable_ept)
6830                vmx_enable_tdp();
6831        else
6832                kvm_disable_tdp();
6833
6834        update_ple_window_actual_max();
6835
6836        /*
6837         * Only enable PML when hardware supports PML feature, and both EPT
6838         * and EPT A/D bit features are enabled -- PML depends on them to work.
6839         */
6840        if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6841                enable_pml = 0;
6842
6843        if (!enable_pml) {
6844                kvm_x86_ops->slot_enable_log_dirty = NULL;
6845                kvm_x86_ops->slot_disable_log_dirty = NULL;
6846                kvm_x86_ops->flush_log_dirty = NULL;
6847                kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6848        }
6849
6850        if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6851                u64 vmx_msr;
6852
6853                rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6854                cpu_preemption_timer_multi =
6855                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6856        } else {
6857                kvm_x86_ops->set_hv_timer = NULL;
6858                kvm_x86_ops->cancel_hv_timer = NULL;
6859        }
6860
6861        kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6862
6863        kvm_mce_cap_supported |= MCG_LMCE_P;
6864
6865        return alloc_kvm_area();
6866
6867out:
6868        for (i = 0; i < VMX_BITMAP_NR; i++)
6869                free_page((unsigned long)vmx_bitmap[i]);
6870
6871    return r;
6872}
6873
6874static __exit void hardware_unsetup(void)
6875{
6876        int i;
6877
6878        for (i = 0; i < VMX_BITMAP_NR; i++)
6879                free_page((unsigned long)vmx_bitmap[i]);
6880
6881        free_kvm_area();
6882}
6883
6884/*
6885 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6886 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6887 */
6888static int handle_pause(struct kvm_vcpu *vcpu)
6889{
6890        if (ple_gap)
6891                grow_ple_window(vcpu);
6892
6893        /*
6894         * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6895         * VM-execution control is ignored if CPL > 0. OTOH, KVM
6896         * never set PAUSE_EXITING and just set PLE if supported,
6897         * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6898         */
6899        kvm_vcpu_on_spin(vcpu, true);
6900        return kvm_skip_emulated_instruction(vcpu);
6901}
6902
6903static int handle_nop(struct kvm_vcpu *vcpu)
6904{
6905        return kvm_skip_emulated_instruction(vcpu);
6906}
6907
6908static int handle_mwait(struct kvm_vcpu *vcpu)
6909{
6910        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6911        return handle_nop(vcpu);
6912}
6913
6914static int handle_invalid_op(struct kvm_vcpu *vcpu)
6915{
6916        kvm_queue_exception(vcpu, UD_VECTOR);
6917        return 1;
6918}
6919
6920static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6921{
6922        return 1;
6923}
6924
6925static int handle_monitor(struct kvm_vcpu *vcpu)
6926{
6927        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6928        return handle_nop(vcpu);
6929}
6930
6931/*
6932 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6933 * We could reuse a single VMCS for all the L2 guests, but we also want the
6934 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6935 * allows keeping them loaded on the processor, and in the future will allow
6936 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6937 * every entry if they never change.
6938 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6939 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6940 *
6941 * The following functions allocate and free a vmcs02 in this pool.
6942 */
6943
6944/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6945static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6946{
6947        struct vmcs02_list *item;
6948        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6949                if (item->vmptr == vmx->nested.current_vmptr) {
6950                        list_move(&item->list, &vmx->nested.vmcs02_pool);
6951                        return &item->vmcs02;
6952                }
6953
6954        if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6955                /* Recycle the least recently used VMCS. */
6956                item = list_last_entry(&vmx->nested.vmcs02_pool,
6957                                       struct vmcs02_list, list);
6958                item->vmptr = vmx->nested.current_vmptr;
6959                list_move(&item->list, &vmx->nested.vmcs02_pool);
6960                return &item->vmcs02;
6961        }
6962
6963        /* Create a new VMCS */
6964        item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6965        if (!item)
6966                return NULL;
6967        item->vmcs02.vmcs = alloc_vmcs();
6968        item->vmcs02.shadow_vmcs = NULL;
6969        if (!item->vmcs02.vmcs) {
6970                kfree(item);
6971                return NULL;
6972        }
6973        loaded_vmcs_init(&item->vmcs02);
6974        item->vmptr = vmx->nested.current_vmptr;
6975        list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6976        vmx->nested.vmcs02_num++;
6977        return &item->vmcs02;
6978}
6979
6980/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6981static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6982{
6983        struct vmcs02_list *item;
6984        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6985                if (item->vmptr == vmptr) {
6986                        free_loaded_vmcs(&item->vmcs02);
6987                        list_del(&item->list);
6988                        kfree(item);
6989                        vmx->nested.vmcs02_num--;
6990                        return;
6991                }
6992}
6993
6994/*
6995 * Free all VMCSs saved for this vcpu, except the one pointed by
6996 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6997 * must be &vmx->vmcs01.
6998 */
6999static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
7000{
7001        struct vmcs02_list *item, *n;
7002
7003        WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
7004        list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
7005                /*
7006                 * Something will leak if the above WARN triggers.  Better than
7007                 * a use-after-free.
7008                 */
7009                if (vmx->loaded_vmcs == &item->vmcs02)
7010                        continue;
7011
7012                free_loaded_vmcs(&item->vmcs02);
7013                list_del(&item->list);
7014                kfree(item);
7015                vmx->nested.vmcs02_num--;
7016        }
7017}
7018
7019/*
7020 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7021 * set the success or error code of an emulated VMX instruction, as specified
7022 * by Vol 2B, VMX Instruction Reference, "Conventions".
7023 */
7024static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7025{
7026        vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7027                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7028                            X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7029}
7030
7031static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7032{
7033        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7034                        & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7035                            X86_EFLAGS_SF | X86_EFLAGS_OF))
7036                        | X86_EFLAGS_CF);
7037}
7038
7039static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
7040                                        u32 vm_instruction_error)
7041{
7042        if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7043                /*
7044                 * failValid writes the error number to the current VMCS, which
7045                 * can't be done there isn't a current VMCS.
7046                 */
7047                nested_vmx_failInvalid(vcpu);
7048                return;
7049        }
7050        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7051                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7052                            X86_EFLAGS_SF | X86_EFLAGS_OF))
7053                        | X86_EFLAGS_ZF);
7054        get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7055        /*
7056         * We don't need to force a shadow sync because
7057         * VM_INSTRUCTION_ERROR is not shadowed
7058         */
7059}
7060
7061static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7062{
7063        /* TODO: not to reset guest simply here. */
7064        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7065        pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
7066}
7067
7068static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7069{
7070        struct vcpu_vmx *vmx =
7071                container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7072
7073        vmx->nested.preemption_timer_expired = true;
7074        kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7075        kvm_vcpu_kick(&vmx->vcpu);
7076
7077        return HRTIMER_NORESTART;
7078}
7079
7080/*
7081 * Decode the memory-address operand of a vmx instruction, as recorded on an
7082 * exit caused by such an instruction (run by a guest hypervisor).
7083 * On success, returns 0. When the operand is invalid, returns 1 and throws
7084 * #UD or #GP.
7085 */
7086static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7087                                 unsigned long exit_qualification,
7088                                 u32 vmx_instruction_info, bool wr, gva_t *ret)
7089{
7090        gva_t off;
7091        bool exn;
7092        struct kvm_segment s;
7093
7094        /*
7095         * According to Vol. 3B, "Information for VM Exits Due to Instruction
7096         * Execution", on an exit, vmx_instruction_info holds most of the
7097         * addressing components of the operand. Only the displacement part
7098         * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7099         * For how an actual address is calculated from all these components,
7100         * refer to Vol. 1, "Operand Addressing".
7101         */
7102        int  scaling = vmx_instruction_info & 3;
7103        int  addr_size = (vmx_instruction_info >> 7) & 7;
7104        bool is_reg = vmx_instruction_info & (1u << 10);
7105        int  seg_reg = (vmx_instruction_info >> 15) & 7;
7106        int  index_reg = (vmx_instruction_info >> 18) & 0xf;
7107        bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7108        int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
7109        bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
7110
7111        if (is_reg) {
7112                kvm_queue_exception(vcpu, UD_VECTOR);
7113                return 1;
7114        }
7115
7116        /* Addr = segment_base + offset */
7117        /* offset = base + [index * scale] + displacement */
7118        off = exit_qualification; /* holds the displacement */
7119        if (base_is_valid)
7120                off += kvm_register_read(vcpu, base_reg);
7121        if (index_is_valid)
7122                off += kvm_register_read(vcpu, index_reg)<<scaling;
7123        vmx_get_segment(vcpu, &s, seg_reg);
7124        *ret = s.base + off;
7125
7126        if (addr_size == 1) /* 32 bit */
7127                *ret &= 0xffffffff;
7128
7129        /* Checks for #GP/#SS exceptions. */
7130        exn = false;
7131        if (is_long_mode(vcpu)) {
7132                /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7133                 * non-canonical form. This is the only check on the memory
7134                 * destination for long mode!
7135                 */
7136                exn = is_noncanonical_address(*ret, vcpu);
7137        } else if (is_protmode(vcpu)) {
7138                /* Protected mode: apply checks for segment validity in the
7139                 * following order:
7140                 * - segment type check (#GP(0) may be thrown)
7141                 * - usability check (#GP(0)/#SS(0))
7142                 * - limit check (#GP(0)/#SS(0))
7143                 */
7144                if (wr)
7145                        /* #GP(0) if the destination operand is located in a
7146                         * read-only data segment or any code segment.
7147                         */
7148                        exn = ((s.type & 0xa) == 0 || (s.type & 8));
7149                else
7150                        /* #GP(0) if the source operand is located in an
7151                         * execute-only code segment
7152                         */
7153                        exn = ((s.type & 0xa) == 8);
7154                if (exn) {
7155                        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7156                        return 1;
7157                }
7158                /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7159                 */
7160                exn = (s.unusable != 0);
7161                /* Protected mode: #GP(0)/#SS(0) if the memory
7162                 * operand is outside the segment limit.
7163                 */
7164                exn = exn || (off + sizeof(u64) > s.limit);
7165        }
7166        if (exn) {
7167                kvm_queue_exception_e(vcpu,
7168                                      seg_reg == VCPU_SREG_SS ?
7169                                                SS_VECTOR : GP_VECTOR,
7170                                      0);
7171                return 1;
7172        }
7173
7174        return 0;
7175}
7176
7177static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
7178{
7179        gva_t gva;
7180        struct x86_exception e;
7181
7182        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7183                        vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
7184                return 1;
7185
7186        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7187                                sizeof(*vmpointer), &e)) {
7188                kvm_inject_page_fault(vcpu, &e);
7189                return 1;
7190        }
7191
7192        return 0;
7193}
7194
7195static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7196{
7197        struct vcpu_vmx *vmx = to_vmx(vcpu);
7198        struct vmcs *shadow_vmcs;
7199
7200        if (cpu_has_vmx_msr_bitmap()) {
7201                vmx->nested.msr_bitmap =
7202                                (unsigned long *)__get_free_page(GFP_KERNEL);
7203                if (!vmx->nested.msr_bitmap)
7204                        goto out_msr_bitmap;
7205        }
7206
7207        vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7208        if (!vmx->nested.cached_vmcs12)
7209                goto out_cached_vmcs12;
7210
7211        if (enable_shadow_vmcs) {
7212                shadow_vmcs = alloc_vmcs();
7213                if (!shadow_vmcs)
7214                        goto out_shadow_vmcs;
7215                /* mark vmcs as shadow */
7216                shadow_vmcs->revision_id |= (1u << 31);
7217                /* init shadow vmcs */
7218                vmcs_clear(shadow_vmcs);
7219                vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7220        }
7221
7222        INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7223        vmx->nested.vmcs02_num = 0;
7224
7225        hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7226                     HRTIMER_MODE_REL_PINNED);
7227        vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7228
7229        vmx->nested.vmxon = true;
7230        return 0;
7231
7232out_shadow_vmcs:
7233        kfree(vmx->nested.cached_vmcs12);
7234
7235out_cached_vmcs12:
7236        free_page((unsigned long)vmx->nested.msr_bitmap);
7237
7238out_msr_bitmap:
7239        return -ENOMEM;
7240}
7241
7242/*
7243 * Emulate the VMXON instruction.
7244 * Currently, we just remember that VMX is active, and do not save or even
7245 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7246 * do not currently need to store anything in that guest-allocated memory
7247 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7248 * argument is different from the VMXON pointer (which the spec says they do).
7249 */
7250static int handle_vmon(struct kvm_vcpu *vcpu)
7251{
7252        int ret;
7253        gpa_t vmptr;
7254        struct page *page;
7255        struct vcpu_vmx *vmx = to_vmx(vcpu);
7256        const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7257                | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7258
7259        /*
7260         * The Intel VMX Instruction Reference lists a bunch of bits that are
7261         * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7262         * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7263         * Otherwise, we should fail with #UD.  But most faulting conditions
7264         * have already been checked by hardware, prior to the VM-exit for
7265         * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
7266         * that bit set to 1 in non-root mode.
7267         */
7268        if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7269                kvm_queue_exception(vcpu, UD_VECTOR);
7270                return 1;
7271        }
7272
7273        if (vmx->nested.vmxon) {
7274                nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7275                return kvm_skip_emulated_instruction(vcpu);
7276        }
7277
7278        if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7279                        != VMXON_NEEDED_FEATURES) {
7280                kvm_inject_gp(vcpu, 0);
7281                return 1;
7282        }
7283
7284        if (nested_vmx_get_vmptr(vcpu, &vmptr))
7285                return 1;
7286
7287        /*
7288         * SDM 3: 24.11.5
7289         * The first 4 bytes of VMXON region contain the supported
7290         * VMCS revision identifier
7291         *
7292         * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7293         * which replaces physical address width with 32
7294         */
7295        if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7296                nested_vmx_failInvalid(vcpu);
7297                return kvm_skip_emulated_instruction(vcpu);
7298        }
7299
7300        page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7301        if (is_error_page(page)) {
7302                nested_vmx_failInvalid(vcpu);
7303                return kvm_skip_emulated_instruction(vcpu);
7304        }
7305        if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7306                kunmap(page);
7307                kvm_release_page_clean(page);
7308                nested_vmx_failInvalid(vcpu);
7309                return kvm_skip_emulated_instruction(vcpu);
7310        }
7311        kunmap(page);
7312        kvm_release_page_clean(page);
7313
7314        vmx->nested.vmxon_ptr = vmptr;
7315        ret = enter_vmx_operation(vcpu);
7316        if (ret)
7317                return ret;
7318
7319        nested_vmx_succeed(vcpu);
7320        return kvm_skip_emulated_instruction(vcpu);
7321}
7322
7323/*
7324 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7325 * for running VMX instructions (except VMXON, whose prerequisites are
7326 * slightly different). It also specifies what exception to inject otherwise.
7327 * Note that many of these exceptions have priority over VM exits, so they
7328 * don't have to be checked again here.
7329 */
7330static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7331{
7332        if (!to_vmx(vcpu)->nested.vmxon) {
7333                kvm_queue_exception(vcpu, UD_VECTOR);
7334                return 0;
7335        }
7336        return 1;
7337}
7338
7339static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7340{
7341        vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7342        vmcs_write64(VMCS_LINK_POINTER, -1ull);
7343}
7344
7345static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7346{
7347        if (vmx->nested.current_vmptr == -1ull)
7348                return;
7349
7350        if (enable_shadow_vmcs) {
7351                /* copy to memory all shadowed fields in case
7352                   they were modified */
7353                copy_shadow_to_vmcs12(vmx);
7354                vmx->nested.sync_shadow_vmcs = false;
7355                vmx_disable_shadow_vmcs(vmx);
7356        }
7357        vmx->nested.posted_intr_nv = -1;
7358
7359        /* Flush VMCS12 to guest memory */
7360        kvm_vcpu_write_guest_page(&vmx->vcpu,
7361                                  vmx->nested.current_vmptr >> PAGE_SHIFT,
7362                                  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
7363
7364        vmx->nested.current_vmptr = -1ull;
7365}
7366
7367/*
7368 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7369 * just stops using VMX.
7370 */
7371static void free_nested(struct vcpu_vmx *vmx)
7372{
7373        if (!vmx->nested.vmxon)
7374                return;
7375
7376        vmx->nested.vmxon = false;
7377        free_vpid(vmx->nested.vpid02);
7378        vmx->nested.posted_intr_nv = -1;
7379        vmx->nested.current_vmptr = -1ull;
7380        if (vmx->nested.msr_bitmap) {
7381                free_page((unsigned long)vmx->nested.msr_bitmap);
7382                vmx->nested.msr_bitmap = NULL;
7383        }
7384        if (enable_shadow_vmcs) {
7385                vmx_disable_shadow_vmcs(vmx);
7386                vmcs_clear(vmx->vmcs01.shadow_vmcs);
7387                free_vmcs(vmx->vmcs01.shadow_vmcs);
7388                vmx->vmcs01.shadow_vmcs = NULL;
7389        }
7390        kfree(vmx->nested.cached_vmcs12);
7391        /* Unpin physical memory we referred to in current vmcs02 */
7392        if (vmx->nested.apic_access_page) {
7393                kvm_release_page_dirty(vmx->nested.apic_access_page);
7394                vmx->nested.apic_access_page = NULL;
7395        }
7396        if (vmx->nested.virtual_apic_page) {
7397                kvm_release_page_dirty(vmx->nested.virtual_apic_page);
7398                vmx->nested.virtual_apic_page = NULL;
7399        }
7400        if (vmx->nested.pi_desc_page) {
7401                kunmap(vmx->nested.pi_desc_page);
7402                kvm_release_page_dirty(vmx->nested.pi_desc_page);
7403                vmx->nested.pi_desc_page = NULL;
7404                vmx->nested.pi_desc = NULL;
7405        }
7406
7407        nested_free_all_saved_vmcss(vmx);
7408}
7409
7410/* Emulate the VMXOFF instruction */
7411static int handle_vmoff(struct kvm_vcpu *vcpu)
7412{
7413        if (!nested_vmx_check_permission(vcpu))
7414                return 1;
7415        free_nested(to_vmx(vcpu));
7416        nested_vmx_succeed(vcpu);
7417        return kvm_skip_emulated_instruction(vcpu);
7418}
7419
7420/* Emulate the VMCLEAR instruction */
7421static int handle_vmclear(struct kvm_vcpu *vcpu)
7422{
7423        struct vcpu_vmx *vmx = to_vmx(vcpu);
7424        u32 zero = 0;
7425        gpa_t vmptr;
7426
7427        if (!nested_vmx_check_permission(vcpu))
7428                return 1;
7429
7430        if (nested_vmx_get_vmptr(vcpu, &vmptr))
7431                return 1;
7432
7433        if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7434                nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7435                return kvm_skip_emulated_instruction(vcpu);
7436        }
7437
7438        if (vmptr == vmx->nested.vmxon_ptr) {
7439                nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7440                return kvm_skip_emulated_instruction(vcpu);
7441        }
7442
7443        if (vmptr == vmx->nested.current_vmptr)
7444                nested_release_vmcs12(vmx);
7445
7446        kvm_vcpu_write_guest(vcpu,
7447                        vmptr + offsetof(struct vmcs12, launch_state),
7448                        &zero, sizeof(zero));
7449
7450        nested_free_vmcs02(vmx, vmptr);
7451
7452        nested_vmx_succeed(vcpu);
7453        return kvm_skip_emulated_instruction(vcpu);
7454}
7455
7456static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7457
7458/* Emulate the VMLAUNCH instruction */
7459static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7460{
7461        return nested_vmx_run(vcpu, true);
7462}
7463
7464/* Emulate the VMRESUME instruction */
7465static int handle_vmresume(struct kvm_vcpu *vcpu)
7466{
7467
7468        return nested_vmx_run(vcpu, false);
7469}
7470
7471/*
7472 * Read a vmcs12 field. Since these can have varying lengths and we return
7473 * one type, we chose the biggest type (u64) and zero-extend the return value
7474 * to that size. Note that the caller, handle_vmread, might need to use only
7475 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7476 * 64-bit fields are to be returned).
7477 */
7478static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7479                                  unsigned long field, u64 *ret)
7480{
7481        short offset = vmcs_field_to_offset(field);
7482        char *p;
7483
7484        if (offset < 0)
7485                return offset;
7486
7487        p = ((char *)(get_vmcs12(vcpu))) + offset;
7488
7489        switch (vmcs_field_type(field)) {
7490        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7491                *ret = *((natural_width *)p);
7492                return 0;
7493        case VMCS_FIELD_TYPE_U16:
7494                *ret = *((u16 *)p);
7495                return 0;
7496        case VMCS_FIELD_TYPE_U32:
7497                *ret = *((u32 *)p);
7498                return 0;
7499        case VMCS_FIELD_TYPE_U64:
7500                *ret = *((u64 *)p);
7501                return 0;
7502        default:
7503                WARN_ON(1);
7504                return -ENOENT;
7505        }
7506}
7507
7508
7509static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7510                                   unsigned long field, u64 field_value){
7511        short offset = vmcs_field_to_offset(field);
7512        char *p = ((char *) get_vmcs12(vcpu)) + offset;
7513        if (offset < 0)
7514                return offset;
7515
7516        switch (vmcs_field_type(field)) {
7517        case VMCS_FIELD_TYPE_U16:
7518                *(u16 *)p = field_value;
7519                return 0;
7520        case VMCS_FIELD_TYPE_U32:
7521                *(u32 *)p = field_value;
7522                return 0;
7523        case VMCS_FIELD_TYPE_U64:
7524                *(u64 *)p = field_value;
7525                return 0;
7526        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7527                *(natural_width *)p = field_value;
7528                return 0;
7529        default:
7530                WARN_ON(1);
7531                return -ENOENT;
7532        }
7533
7534}
7535
7536static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7537{
7538        int i;
7539        unsigned long field;
7540        u64 field_value;
7541        struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7542        const unsigned long *fields = shadow_read_write_fields;
7543        const int num_fields = max_shadow_read_write_fields;
7544
7545        preempt_disable();
7546
7547        vmcs_load(shadow_vmcs);
7548
7549        for (i = 0; i < num_fields; i++) {
7550                field = fields[i];
7551                switch (vmcs_field_type(field)) {
7552                case VMCS_FIELD_TYPE_U16:
7553                        field_value = vmcs_read16(field);
7554                        break;
7555                case VMCS_FIELD_TYPE_U32:
7556                        field_value = vmcs_read32(field);
7557                        break;
7558                case VMCS_FIELD_TYPE_U64:
7559                        field_value = vmcs_read64(field);
7560                        break;
7561                case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7562                        field_value = vmcs_readl(field);
7563                        break;
7564                default:
7565                        WARN_ON(1);
7566                        continue;
7567                }
7568                vmcs12_write_any(&vmx->vcpu, field, field_value);
7569        }
7570
7571        vmcs_clear(shadow_vmcs);
7572        vmcs_load(vmx->loaded_vmcs->vmcs);
7573
7574        preempt_enable();
7575}
7576
7577static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7578{
7579        const unsigned long *fields[] = {
7580                shadow_read_write_fields,
7581                shadow_read_only_fields
7582        };
7583        const int max_fields[] = {
7584                max_shadow_read_write_fields,
7585                max_shadow_read_only_fields
7586        };
7587        int i, q;
7588        unsigned long field;
7589        u64 field_value = 0;
7590        struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7591
7592        vmcs_load(shadow_vmcs);
7593
7594        for (q = 0; q < ARRAY_SIZE(fields); q++) {
7595                for (i = 0; i < max_fields[q]; i++) {
7596                        field = fields[q][i];
7597                        vmcs12_read_any(&vmx->vcpu, field, &field_value);
7598
7599                        switch (vmcs_field_type(field)) {
7600                        case VMCS_FIELD_TYPE_U16:
7601                                vmcs_write16(field, (u16)field_value);
7602                                break;
7603                        case VMCS_FIELD_TYPE_U32:
7604                                vmcs_write32(field, (u32)field_value);
7605                                break;
7606                        case VMCS_FIELD_TYPE_U64:
7607                                vmcs_write64(field, (u64)field_value);
7608                                break;
7609                        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7610                                vmcs_writel(field, (long)field_value);
7611                                break;
7612                        default:
7613                                WARN_ON(1);
7614                                break;
7615                        }
7616                }
7617        }
7618
7619        vmcs_clear(shadow_vmcs);
7620        vmcs_load(vmx->loaded_vmcs->vmcs);
7621}
7622
7623/*
7624 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7625 * used before) all generate the same failure when it is missing.
7626 */
7627static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7628{
7629        struct vcpu_vmx *vmx = to_vmx(vcpu);
7630        if (vmx->nested.current_vmptr == -1ull) {
7631                nested_vmx_failInvalid(vcpu);
7632                return 0;
7633        }
7634        return 1;
7635}
7636
7637static int handle_vmread(struct kvm_vcpu *vcpu)
7638{
7639        unsigned long field;
7640        u64 field_value;
7641        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7642        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7643        gva_t gva = 0;
7644
7645        if (!nested_vmx_check_permission(vcpu))
7646                return 1;
7647
7648        if (!nested_vmx_check_vmcs12(vcpu))
7649                return kvm_skip_emulated_instruction(vcpu);
7650
7651        /* Decode instruction info and find the field to read */
7652        field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7653        /* Read the field, zero-extended to a u64 field_value */
7654        if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7655                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7656                return kvm_skip_emulated_instruction(vcpu);
7657        }
7658        /*
7659         * Now copy part of this value to register or memory, as requested.
7660         * Note that the number of bits actually copied is 32 or 64 depending
7661         * on the guest's mode (32 or 64 bit), not on the given field's length.
7662         */
7663        if (vmx_instruction_info & (1u << 10)) {
7664                kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7665                        field_value);
7666        } else {
7667                if (get_vmx_mem_address(vcpu, exit_qualification,
7668                                vmx_instruction_info, true, &gva))
7669                        return 1;
7670                /* _system ok, as hardware has verified cpl=0 */
7671                kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7672                             &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7673        }
7674
7675        nested_vmx_succeed(vcpu);
7676        return kvm_skip_emulated_instruction(vcpu);
7677}
7678
7679
7680static int handle_vmwrite(struct kvm_vcpu *vcpu)
7681{
7682        unsigned long field;
7683        gva_t gva;
7684        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7685        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7686        /* The value to write might be 32 or 64 bits, depending on L1's long
7687         * mode, and eventually we need to write that into a field of several
7688         * possible lengths. The code below first zero-extends the value to 64
7689         * bit (field_value), and then copies only the appropriate number of
7690         * bits into the vmcs12 field.
7691         */
7692        u64 field_value = 0;
7693        struct x86_exception e;
7694
7695        if (!nested_vmx_check_permission(vcpu))
7696                return 1;
7697
7698        if (!nested_vmx_check_vmcs12(vcpu))
7699                return kvm_skip_emulated_instruction(vcpu);
7700
7701        if (vmx_instruction_info & (1u << 10))
7702                field_value = kvm_register_readl(vcpu,
7703                        (((vmx_instruction_info) >> 3) & 0xf));
7704        else {
7705                if (get_vmx_mem_address(vcpu, exit_qualification,
7706                                vmx_instruction_info, false, &gva))
7707                        return 1;
7708                if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7709                           &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7710                        kvm_inject_page_fault(vcpu, &e);
7711                        return 1;
7712                }
7713        }
7714
7715
7716        field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7717        if (vmcs_field_readonly(field)) {
7718                nested_vmx_failValid(vcpu,
7719                        VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7720                return kvm_skip_emulated_instruction(vcpu);
7721        }
7722
7723        if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7724                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7725                return kvm_skip_emulated_instruction(vcpu);
7726        }
7727
7728        nested_vmx_succeed(vcpu);
7729        return kvm_skip_emulated_instruction(vcpu);
7730}
7731
7732static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7733{
7734        vmx->nested.current_vmptr = vmptr;
7735        if (enable_shadow_vmcs) {
7736                vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7737                              SECONDARY_EXEC_SHADOW_VMCS);
7738                vmcs_write64(VMCS_LINK_POINTER,
7739                             __pa(vmx->vmcs01.shadow_vmcs));
7740                vmx->nested.sync_shadow_vmcs = true;
7741        }
7742}
7743
7744/* Emulate the VMPTRLD instruction */
7745static int handle_vmptrld(struct kvm_vcpu *vcpu)
7746{
7747        struct vcpu_vmx *vmx = to_vmx(vcpu);
7748        gpa_t vmptr;
7749
7750        if (!nested_vmx_check_permission(vcpu))
7751                return 1;
7752
7753        if (nested_vmx_get_vmptr(vcpu, &vmptr))
7754                return 1;
7755
7756        if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7757                nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7758                return kvm_skip_emulated_instruction(vcpu);
7759        }
7760
7761        if (vmptr == vmx->nested.vmxon_ptr) {
7762                nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7763                return kvm_skip_emulated_instruction(vcpu);
7764        }
7765
7766        if (vmx->nested.current_vmptr != vmptr) {
7767                struct vmcs12 *new_vmcs12;
7768                struct page *page;
7769                page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7770                if (is_error_page(page)) {
7771                        nested_vmx_failInvalid(vcpu);
7772                        return kvm_skip_emulated_instruction(vcpu);
7773                }
7774                new_vmcs12 = kmap(page);
7775                if (new_vmcs12->revision_id != VMCS12_REVISION) {
7776                        kunmap(page);
7777                        kvm_release_page_clean(page);
7778                        nested_vmx_failValid(vcpu,
7779                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7780                        return kvm_skip_emulated_instruction(vcpu);
7781                }
7782
7783                nested_release_vmcs12(vmx);
7784                /*
7785                 * Load VMCS12 from guest memory since it is not already
7786                 * cached.
7787                 */
7788                memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7789                kunmap(page);
7790                kvm_release_page_clean(page);
7791
7792                set_current_vmptr(vmx, vmptr);
7793        }
7794
7795        nested_vmx_succeed(vcpu);
7796        return kvm_skip_emulated_instruction(vcpu);
7797}
7798
7799/* Emulate the VMPTRST instruction */
7800static int handle_vmptrst(struct kvm_vcpu *vcpu)
7801{
7802        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7803        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7804        gva_t vmcs_gva;
7805        struct x86_exception e;
7806
7807        if (!nested_vmx_check_permission(vcpu))
7808                return 1;
7809
7810        if (get_vmx_mem_address(vcpu, exit_qualification,
7811                        vmx_instruction_info, true, &vmcs_gva))
7812                return 1;
7813        /* ok to use *_system, as hardware has verified cpl=0 */
7814        if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7815                                 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7816                                 sizeof(u64), &e)) {
7817                kvm_inject_page_fault(vcpu, &e);
7818                return 1;
7819        }
7820        nested_vmx_succeed(vcpu);
7821        return kvm_skip_emulated_instruction(vcpu);
7822}
7823
7824/* Emulate the INVEPT instruction */
7825static int handle_invept(struct kvm_vcpu *vcpu)
7826{
7827        struct vcpu_vmx *vmx = to_vmx(vcpu);
7828        u32 vmx_instruction_info, types;
7829        unsigned long type;
7830        gva_t gva;
7831        struct x86_exception e;
7832        struct {
7833                u64 eptp, gpa;
7834        } operand;
7835
7836        if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7837              SECONDARY_EXEC_ENABLE_EPT) ||
7838            !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7839                kvm_queue_exception(vcpu, UD_VECTOR);
7840                return 1;
7841        }
7842
7843        if (!nested_vmx_check_permission(vcpu))
7844                return 1;
7845
7846        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7847        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7848
7849        types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7850
7851        if (type >= 32 || !(types & (1 << type))) {
7852                nested_vmx_failValid(vcpu,
7853                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7854                return kvm_skip_emulated_instruction(vcpu);
7855        }
7856
7857        /* According to the Intel VMX instruction reference, the memory
7858         * operand is read even if it isn't needed (e.g., for type==global)
7859         */
7860        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7861                        vmx_instruction_info, false, &gva))
7862                return 1;
7863        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7864                                sizeof(operand), &e)) {
7865                kvm_inject_page_fault(vcpu, &e);
7866                return 1;
7867        }
7868
7869        switch (type) {
7870        case VMX_EPT_EXTENT_GLOBAL:
7871        /*
7872         * TODO: track mappings and invalidate
7873         * single context requests appropriately
7874         */
7875        case VMX_EPT_EXTENT_CONTEXT:
7876                kvm_mmu_sync_roots(vcpu);
7877                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7878                nested_vmx_succeed(vcpu);
7879                break;
7880        default:
7881                BUG_ON(1);
7882                break;
7883        }
7884
7885        return kvm_skip_emulated_instruction(vcpu);
7886}
7887
7888static int handle_invvpid(struct kvm_vcpu *vcpu)
7889{
7890        struct vcpu_vmx *vmx = to_vmx(vcpu);
7891        u32 vmx_instruction_info;
7892        unsigned long type, types;
7893        gva_t gva;
7894        struct x86_exception e;
7895        struct {
7896                u64 vpid;
7897                u64 gla;
7898        } operand;
7899
7900        if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7901              SECONDARY_EXEC_ENABLE_VPID) ||
7902                        !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7903                kvm_queue_exception(vcpu, UD_VECTOR);
7904                return 1;
7905        }
7906
7907        if (!nested_vmx_check_permission(vcpu))
7908                return 1;
7909
7910        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7911        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7912
7913        types = (vmx->nested.nested_vmx_vpid_caps &
7914                        VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7915
7916        if (type >= 32 || !(types & (1 << type))) {
7917                nested_vmx_failValid(vcpu,
7918                        VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7919                return kvm_skip_emulated_instruction(vcpu);
7920        }
7921
7922        /* according to the intel vmx instruction reference, the memory
7923         * operand is read even if it isn't needed (e.g., for type==global)
7924         */
7925        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7926                        vmx_instruction_info, false, &gva))
7927                return 1;
7928        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7929                                sizeof(operand), &e)) {
7930                kvm_inject_page_fault(vcpu, &e);
7931                return 1;
7932        }
7933        if (operand.vpid >> 16) {
7934                nested_vmx_failValid(vcpu,
7935                        VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7936                return kvm_skip_emulated_instruction(vcpu);
7937        }
7938
7939        switch (type) {
7940        case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7941                if (is_noncanonical_address(operand.gla, vcpu)) {
7942                        nested_vmx_failValid(vcpu,
7943                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7944                        return kvm_skip_emulated_instruction(vcpu);
7945                }
7946                /* fall through */
7947        case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7948        case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7949                if (!operand.vpid) {
7950                        nested_vmx_failValid(vcpu,
7951                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7952                        return kvm_skip_emulated_instruction(vcpu);
7953                }
7954                break;
7955        case VMX_VPID_EXTENT_ALL_CONTEXT:
7956                break;
7957        default:
7958                WARN_ON_ONCE(1);
7959                return kvm_skip_emulated_instruction(vcpu);
7960        }
7961
7962        __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7963        nested_vmx_succeed(vcpu);
7964
7965        return kvm_skip_emulated_instruction(vcpu);
7966}
7967
7968static int handle_pml_full(struct kvm_vcpu *vcpu)
7969{
7970        unsigned long exit_qualification;
7971
7972        trace_kvm_pml_full(vcpu->vcpu_id);
7973
7974        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7975
7976        /*
7977         * PML buffer FULL happened while executing iret from NMI,
7978         * "blocked by NMI" bit has to be set before next VM entry.
7979         */
7980        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7981                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7982                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7983                                GUEST_INTR_STATE_NMI);
7984
7985        /*
7986         * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7987         * here.., and there's no userspace involvement needed for PML.
7988         */
7989        return 1;
7990}
7991
7992static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7993{
7994        kvm_lapic_expired_hv_timer(vcpu);
7995        return 1;
7996}
7997
7998static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
7999{
8000        struct vcpu_vmx *vmx = to_vmx(vcpu);
8001        int maxphyaddr = cpuid_maxphyaddr(vcpu);
8002
8003        /* Check for memory type validity */
8004        switch (address & VMX_EPTP_MT_MASK) {
8005        case VMX_EPTP_MT_UC:
8006                if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8007                        return false;
8008                break;
8009        case VMX_EPTP_MT_WB:
8010                if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8011                        return false;
8012                break;
8013        default:
8014                return false;
8015        }
8016
8017        /* only 4 levels page-walk length are valid */
8018        if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
8019                return false;
8020
8021        /* Reserved bits should not be set */
8022        if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8023                return false;
8024
8025        /* AD, if set, should be supported */
8026        if (address & VMX_EPTP_AD_ENABLE_BIT) {
8027                if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8028                        return false;
8029        }
8030
8031        return true;
8032}
8033
8034static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8035                                     struct vmcs12 *vmcs12)
8036{
8037        u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8038        u64 address;
8039        bool accessed_dirty;
8040        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8041
8042        if (!nested_cpu_has_eptp_switching(vmcs12) ||
8043            !nested_cpu_has_ept(vmcs12))
8044                return 1;
8045
8046        if (index >= VMFUNC_EPTP_ENTRIES)
8047                return 1;
8048
8049
8050        if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8051                                     &address, index * 8, 8))
8052                return 1;
8053
8054        accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
8055
8056        /*
8057         * If the (L2) guest does a vmfunc to the currently
8058         * active ept pointer, we don't have to do anything else
8059         */
8060        if (vmcs12->ept_pointer != address) {
8061                if (!valid_ept_address(vcpu, address))
8062                        return 1;
8063
8064                kvm_mmu_unload(vcpu);
8065                mmu->ept_ad = accessed_dirty;
8066                mmu->base_role.ad_disabled = !accessed_dirty;
8067                vmcs12->ept_pointer = address;
8068                /*
8069                 * TODO: Check what's the correct approach in case
8070                 * mmu reload fails. Currently, we just let the next
8071                 * reload potentially fail
8072                 */
8073                kvm_mmu_reload(vcpu);
8074        }
8075
8076        return 0;
8077}
8078
8079static int handle_vmfunc(struct kvm_vcpu *vcpu)
8080{
8081        struct vcpu_vmx *vmx = to_vmx(vcpu);
8082        struct vmcs12 *vmcs12;
8083        u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8084
8085        /*
8086         * VMFUNC is only supported for nested guests, but we always enable the
8087         * secondary control for simplicity; for non-nested mode, fake that we
8088         * didn't by injecting #UD.
8089         */
8090        if (!is_guest_mode(vcpu)) {
8091                kvm_queue_exception(vcpu, UD_VECTOR);
8092                return 1;
8093        }
8094
8095        vmcs12 = get_vmcs12(vcpu);
8096        if ((vmcs12->vm_function_control & (1 << function)) == 0)
8097                goto fail;
8098
8099        switch (function) {
8100        case 0:
8101                if (nested_vmx_eptp_switching(vcpu, vmcs12))
8102                        goto fail;
8103                break;
8104        default:
8105                goto fail;
8106        }
8107        return kvm_skip_emulated_instruction(vcpu);
8108
8109fail:
8110        nested_vmx_vmexit(vcpu, vmx->exit_reason,
8111                          vmcs_read32(VM_EXIT_INTR_INFO),
8112                          vmcs_readl(EXIT_QUALIFICATION));
8113        return 1;
8114}
8115
8116/*
8117 * The exit handlers return 1 if the exit was handled fully and guest execution
8118 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
8119 * to be done to userspace and return 0.
8120 */
8121static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
8122        [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
8123        [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
8124        [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
8125        [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
8126        [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
8127        [EXIT_REASON_CR_ACCESS]               = handle_cr,
8128        [EXIT_REASON_DR_ACCESS]               = handle_dr,
8129        [EXIT_REASON_CPUID]                   = handle_cpuid,
8130        [EXIT_REASON_MSR_READ]                = handle_rdmsr,
8131        [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
8132        [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
8133        [EXIT_REASON_HLT]                     = handle_halt,
8134        [EXIT_REASON_INVD]                    = handle_invd,
8135        [EXIT_REASON_INVLPG]                  = handle_invlpg,
8136        [EXIT_REASON_RDPMC]                   = handle_rdpmc,
8137        [EXIT_REASON_VMCALL]                  = handle_vmcall,
8138        [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
8139        [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
8140        [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
8141        [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
8142        [EXIT_REASON_VMREAD]                  = handle_vmread,
8143        [EXIT_REASON_VMRESUME]                = handle_vmresume,
8144        [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
8145        [EXIT_REASON_VMOFF]                   = handle_vmoff,
8146        [EXIT_REASON_VMON]                    = handle_vmon,
8147        [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
8148        [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
8149        [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
8150        [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
8151        [EXIT_REASON_WBINVD]                  = handle_wbinvd,
8152        [EXIT_REASON_XSETBV]                  = handle_xsetbv,
8153        [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
8154        [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
8155        [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
8156        [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
8157        [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
8158        [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
8159        [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
8160        [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
8161        [EXIT_REASON_INVEPT]                  = handle_invept,
8162        [EXIT_REASON_INVVPID]                 = handle_invvpid,
8163        [EXIT_REASON_RDRAND]                  = handle_invalid_op,
8164        [EXIT_REASON_RDSEED]                  = handle_invalid_op,
8165        [EXIT_REASON_XSAVES]                  = handle_xsaves,
8166        [EXIT_REASON_XRSTORS]                 = handle_xrstors,
8167        [EXIT_REASON_PML_FULL]                = handle_pml_full,
8168        [EXIT_REASON_VMFUNC]                  = handle_vmfunc,
8169        [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
8170};
8171
8172static const int kvm_vmx_max_exit_handlers =
8173        ARRAY_SIZE(kvm_vmx_exit_handlers);
8174
8175static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8176                                       struct vmcs12 *vmcs12)
8177{
8178        unsigned long exit_qualification;
8179        gpa_t bitmap, last_bitmap;
8180        unsigned int port;
8181        int size;
8182        u8 b;
8183
8184        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8185                return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8186
8187        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8188
8189        port = exit_qualification >> 16;
8190        size = (exit_qualification & 7) + 1;
8191
8192        last_bitmap = (gpa_t)-1;
8193        b = -1;
8194
8195        while (size > 0) {
8196                if (port < 0x8000)
8197                        bitmap = vmcs12->io_bitmap_a;
8198                else if (port < 0x10000)
8199                        bitmap = vmcs12->io_bitmap_b;
8200                else
8201                        return true;
8202                bitmap += (port & 0x7fff) / 8;
8203
8204                if (last_bitmap != bitmap)
8205                        if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
8206                                return true;
8207                if (b & (1 << (port & 7)))
8208                        return true;
8209
8210                port++;
8211                size--;
8212                last_bitmap = bitmap;
8213        }
8214
8215        return false;
8216}
8217
8218/*
8219 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8220 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8221 * disinterest in the current event (read or write a specific MSR) by using an
8222 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8223 */
8224static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8225        struct vmcs12 *vmcs12, u32 exit_reason)
8226{
8227        u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8228        gpa_t bitmap;
8229
8230        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8231                return true;
8232
8233        /*
8234         * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8235         * for the four combinations of read/write and low/high MSR numbers.
8236         * First we need to figure out which of the four to use:
8237         */
8238        bitmap = vmcs12->msr_bitmap;
8239        if (exit_reason == EXIT_REASON_MSR_WRITE)
8240                bitmap += 2048;
8241        if (msr_index >= 0xc0000000) {
8242                msr_index -= 0xc0000000;
8243                bitmap += 1024;
8244        }
8245
8246        /* Then read the msr_index'th bit from this bitmap: */
8247        if (msr_index < 1024*8) {
8248                unsigned char b;
8249                if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
8250                        return true;
8251                return 1 & (b >> (msr_index & 7));
8252        } else
8253                return true; /* let L1 handle the wrong parameter */
8254}
8255
8256/*
8257 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8258 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8259 * intercept (via guest_host_mask etc.) the current event.
8260 */
8261static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8262        struct vmcs12 *vmcs12)
8263{
8264        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8265        int cr = exit_qualification & 15;
8266        int reg;
8267        unsigned long val;
8268
8269        switch ((exit_qualification >> 4) & 3) {
8270        case 0: /* mov to cr */
8271                reg = (exit_qualification >> 8) & 15;
8272                val = kvm_register_readl(vcpu, reg);
8273                switch (cr) {
8274                case 0:
8275                        if (vmcs12->cr0_guest_host_mask &
8276                            (val ^ vmcs12->cr0_read_shadow))
8277                                return true;
8278                        break;
8279                case 3:
8280                        if ((vmcs12->cr3_target_count >= 1 &&
8281                                        vmcs12->cr3_target_value0 == val) ||
8282                                (vmcs12->cr3_target_count >= 2 &&
8283                                        vmcs12->cr3_target_value1 == val) ||
8284                                (vmcs12->cr3_target_count >= 3 &&
8285                                        vmcs12->cr3_target_value2 == val) ||
8286                                (vmcs12->cr3_target_count >= 4 &&
8287                                        vmcs12->cr3_target_value3 == val))
8288                                return false;
8289                        if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
8290                                return true;
8291                        break;
8292                case 4:
8293                        if (vmcs12->cr4_guest_host_mask &
8294                            (vmcs12->cr4_read_shadow ^ val))
8295                                return true;
8296                        break;
8297                case 8:
8298                        if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
8299                                return true;
8300                        break;
8301                }
8302                break;
8303        case 2: /* clts */
8304                if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8305                    (vmcs12->cr0_read_shadow & X86_CR0_TS))
8306                        return true;
8307                break;
8308        case 1: /* mov from cr */
8309                switch (cr) {
8310                case 3:
8311                        if (vmcs12->cpu_based_vm_exec_control &
8312                            CPU_BASED_CR3_STORE_EXITING)
8313                                return true;
8314                        break;
8315                case 8:
8316                        if (vmcs12->cpu_based_vm_exec_control &
8317                            CPU_BASED_CR8_STORE_EXITING)
8318                                return true;
8319                        break;
8320                }
8321                break;
8322        case 3: /* lmsw */
8323                /*
8324                 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8325                 * cr0. Other attempted changes are ignored, with no exit.
8326                 */
8327                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8328                if (vmcs12->cr0_guest_host_mask & 0xe &
8329                    (val ^ vmcs12->cr0_read_shadow))
8330                        return true;
8331                if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8332                    !(vmcs12->cr0_read_shadow & 0x1) &&
8333                    (val & 0x1))
8334                        return true;
8335                break;
8336        }
8337        return false;
8338}
8339
8340/*
8341 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8342 * should handle it ourselves in L0 (and then continue L2). Only call this
8343 * when in is_guest_mode (L2).
8344 */
8345static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
8346{
8347        u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8348        struct vcpu_vmx *vmx = to_vmx(vcpu);
8349        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8350
8351        if (vmx->nested.nested_run_pending)
8352                return false;
8353
8354        if (unlikely(vmx->fail)) {
8355                pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8356                                    vmcs_read32(VM_INSTRUCTION_ERROR));
8357                return true;
8358        }
8359
8360        /*
8361         * The host physical addresses of some pages of guest memory
8362         * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8363         * may write to these pages via their host physical address while
8364         * L2 is running, bypassing any address-translation-based dirty
8365         * tracking (e.g. EPT write protection).
8366         *
8367         * Mark them dirty on every exit from L2 to prevent them from
8368         * getting out of sync with dirty tracking.
8369         */
8370        nested_mark_vmcs12_pages_dirty(vcpu);
8371
8372        trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8373                                vmcs_readl(EXIT_QUALIFICATION),
8374                                vmx->idt_vectoring_info,
8375                                intr_info,
8376                                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8377                                KVM_ISA_VMX);
8378
8379        switch (exit_reason) {
8380        case EXIT_REASON_EXCEPTION_NMI:
8381                if (is_nmi(intr_info))
8382                        return false;
8383                else if (is_page_fault(intr_info))
8384                        return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8385                else if (is_no_device(intr_info) &&
8386                         !(vmcs12->guest_cr0 & X86_CR0_TS))
8387                        return false;
8388                else if (is_debug(intr_info) &&
8389                         vcpu->guest_debug &
8390                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8391                        return false;
8392                else if (is_breakpoint(intr_info) &&
8393                         vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8394                        return false;
8395                return vmcs12->exception_bitmap &
8396                                (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8397        case EXIT_REASON_EXTERNAL_INTERRUPT:
8398                return false;
8399        case EXIT_REASON_TRIPLE_FAULT:
8400                return true;
8401        case EXIT_REASON_PENDING_INTERRUPT:
8402                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8403        case EXIT_REASON_NMI_WINDOW:
8404                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8405        case EXIT_REASON_TASK_SWITCH:
8406                return true;
8407        case EXIT_REASON_CPUID:
8408                return true;
8409        case EXIT_REASON_HLT:
8410                return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8411        case EXIT_REASON_INVD:
8412                return true;
8413        case EXIT_REASON_INVLPG:
8414                return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8415        case EXIT_REASON_RDPMC:
8416                return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8417        case EXIT_REASON_RDRAND:
8418                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8419        case EXIT_REASON_RDSEED:
8420                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8421        case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8422                return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8423        case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8424        case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8425        case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8426        case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8427        case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8428        case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8429                /*
8430                 * VMX instructions trap unconditionally. This allows L1 to
8431                 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8432                 */
8433                return true;
8434        case EXIT_REASON_CR_ACCESS:
8435                return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8436        case EXIT_REASON_DR_ACCESS:
8437                return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8438        case EXIT_REASON_IO_INSTRUCTION:
8439                return nested_vmx_exit_handled_io(vcpu, vmcs12);
8440        case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8441                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8442        case EXIT_REASON_MSR_READ:
8443        case EXIT_REASON_MSR_WRITE:
8444                return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8445        case EXIT_REASON_INVALID_STATE:
8446                return true;
8447        case EXIT_REASON_MWAIT_INSTRUCTION:
8448                return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8449        case EXIT_REASON_MONITOR_TRAP_FLAG:
8450                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8451        case EXIT_REASON_MONITOR_INSTRUCTION:
8452                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8453        case EXIT_REASON_PAUSE_INSTRUCTION:
8454                return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8455                        nested_cpu_has2(vmcs12,
8456                                SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8457        case EXIT_REASON_MCE_DURING_VMENTRY:
8458                return false;
8459        case EXIT_REASON_TPR_BELOW_THRESHOLD:
8460                return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8461        case EXIT_REASON_APIC_ACCESS:
8462                return nested_cpu_has2(vmcs12,
8463                        SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8464        case EXIT_REASON_APIC_WRITE:
8465        case EXIT_REASON_EOI_INDUCED:
8466                /* apic_write and eoi_induced should exit unconditionally. */
8467                return true;
8468        case EXIT_REASON_EPT_VIOLATION:
8469                /*
8470                 * L0 always deals with the EPT violation. If nested EPT is
8471                 * used, and the nested mmu code discovers that the address is
8472                 * missing in the guest EPT table (EPT12), the EPT violation
8473                 * will be injected with nested_ept_inject_page_fault()
8474                 */
8475                return false;
8476        case EXIT_REASON_EPT_MISCONFIG:
8477                /*
8478                 * L2 never uses directly L1's EPT, but rather L0's own EPT
8479                 * table (shadow on EPT) or a merged EPT table that L0 built
8480                 * (EPT on EPT). So any problems with the structure of the
8481                 * table is L0's fault.
8482                 */
8483                return false;
8484        case EXIT_REASON_INVPCID:
8485                return
8486                        nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8487                        nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8488        case EXIT_REASON_WBINVD:
8489                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8490        case EXIT_REASON_XSETBV:
8491                return true;
8492        case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8493                /*
8494                 * This should never happen, since it is not possible to
8495                 * set XSS to a non-zero value---neither in L1 nor in L2.
8496                 * If if it were, XSS would have to be checked against
8497                 * the XSS exit bitmap in vmcs12.
8498                 */
8499                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8500        case EXIT_REASON_PREEMPTION_TIMER:
8501                return false;
8502        case EXIT_REASON_PML_FULL:
8503                /* We emulate PML support to L1. */
8504                return false;
8505        case EXIT_REASON_VMFUNC:
8506                /* VM functions are emulated through L2->L0 vmexits. */
8507                return false;
8508        default:
8509                return true;
8510        }
8511}
8512
8513static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8514{
8515        u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8516
8517        /*
8518         * At this point, the exit interruption info in exit_intr_info
8519         * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
8520         * we need to query the in-kernel LAPIC.
8521         */
8522        WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8523        if ((exit_intr_info &
8524             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8525            (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8526                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8527                vmcs12->vm_exit_intr_error_code =
8528                        vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8529        }
8530
8531        nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8532                          vmcs_readl(EXIT_QUALIFICATION));
8533        return 1;
8534}
8535
8536static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8537{
8538        *info1 = vmcs_readl(EXIT_QUALIFICATION);
8539        *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8540}
8541
8542static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8543{
8544        if (vmx->pml_pg) {
8545                __free_page(vmx->pml_pg);
8546                vmx->pml_pg = NULL;
8547        }
8548}
8549
8550static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8551{
8552        struct vcpu_vmx *vmx = to_vmx(vcpu);
8553        u64 *pml_buf;
8554        u16 pml_idx;
8555
8556        pml_idx = vmcs_read16(GUEST_PML_INDEX);
8557
8558        /* Do nothing if PML buffer is empty */
8559        if (pml_idx == (PML_ENTITY_NUM - 1))
8560                return;
8561
8562        /* PML index always points to next available PML buffer entity */
8563        if (pml_idx >= PML_ENTITY_NUM)
8564                pml_idx = 0;
8565        else
8566                pml_idx++;
8567
8568        pml_buf = page_address(vmx->pml_pg);
8569        for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8570                u64 gpa;
8571
8572                gpa = pml_buf[pml_idx];
8573                WARN_ON(gpa & (PAGE_SIZE - 1));
8574                kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8575        }
8576
8577        /* reset PML index */
8578        vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8579}
8580
8581/*
8582 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8583 * Called before reporting dirty_bitmap to userspace.
8584 */
8585static void kvm_flush_pml_buffers(struct kvm *kvm)
8586{
8587        int i;
8588        struct kvm_vcpu *vcpu;
8589        /*
8590         * We only need to kick vcpu out of guest mode here, as PML buffer
8591         * is flushed at beginning of all VMEXITs, and it's obvious that only
8592         * vcpus running in guest are possible to have unflushed GPAs in PML
8593         * buffer.
8594         */
8595        kvm_for_each_vcpu(i, vcpu, kvm)
8596                kvm_vcpu_kick(vcpu);
8597}
8598
8599static void vmx_dump_sel(char *name, uint32_t sel)
8600{
8601        pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8602               name, vmcs_read16(sel),
8603               vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8604               vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8605               vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8606}
8607
8608static void vmx_dump_dtsel(char *name, uint32_t limit)
8609{
8610        pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8611               name, vmcs_read32(limit),
8612               vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8613}
8614
8615static void dump_vmcs(void)
8616{
8617        u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8618        u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8619        u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8620        u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8621        u32 secondary_exec_control = 0;
8622        unsigned long cr4 = vmcs_readl(GUEST_CR4);
8623        u64 efer = vmcs_read64(GUEST_IA32_EFER);
8624        int i, n;
8625
8626        if (cpu_has_secondary_exec_ctrls())
8627                secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8628
8629        pr_err("*** Guest State ***\n");
8630        pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8631               vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8632               vmcs_readl(CR0_GUEST_HOST_MASK));
8633        pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8634               cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8635        pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8636        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8637            (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8638        {
8639                pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8640                       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8641                pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8642                       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8643        }
8644        pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8645               vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8646        pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8647               vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8648        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8649               vmcs_readl(GUEST_SYSENTER_ESP),
8650               vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8651        vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8652        vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8653        vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8654        vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8655        vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8656        vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8657        vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8658        vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8659        vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8660        vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8661        if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8662            (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8663                pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8664                       efer, vmcs_read64(GUEST_IA32_PAT));
8665        pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8666               vmcs_read64(GUEST_IA32_DEBUGCTL),
8667               vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8668        if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8669                pr_err("PerfGlobCtl = 0x%016llx\n",
8670                       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8671        if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8672                pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8673        pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8674               vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8675               vmcs_read32(GUEST_ACTIVITY_STATE));
8676        if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8677                pr_err("InterruptStatus = %04x\n",
8678                       vmcs_read16(GUEST_INTR_STATUS));
8679
8680        pr_err("*** Host State ***\n");
8681        pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8682               vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8683        pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8684               vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8685               vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8686               vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8687               vmcs_read16(HOST_TR_SELECTOR));
8688        pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8689               vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8690               vmcs_readl(HOST_TR_BASE));
8691        pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8692               vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8693        pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8694               vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8695               vmcs_readl(HOST_CR4));
8696        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8697               vmcs_readl(HOST_IA32_SYSENTER_ESP),
8698               vmcs_read32(HOST_IA32_SYSENTER_CS),
8699               vmcs_readl(HOST_IA32_SYSENTER_EIP));
8700        if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8701                pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8702                       vmcs_read64(HOST_IA32_EFER),
8703                       vmcs_read64(HOST_IA32_PAT));
8704        if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8705                pr_err("PerfGlobCtl = 0x%016llx\n",
8706                       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8707
8708        pr_err("*** Control State ***\n");
8709        pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8710               pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8711        pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8712        pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8713               vmcs_read32(EXCEPTION_BITMAP),
8714               vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8715               vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8716        pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8717               vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8718               vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8719               vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8720        pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8721               vmcs_read32(VM_EXIT_INTR_INFO),
8722               vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8723               vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8724        pr_err("        reason=%08x qualification=%016lx\n",
8725               vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8726        pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8727               vmcs_read32(IDT_VECTORING_INFO_FIELD),
8728               vmcs_read32(IDT_VECTORING_ERROR_CODE));
8729        pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8730        if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8731                pr_err("TSC Multiplier = 0x%016llx\n",
8732                       vmcs_read64(TSC_MULTIPLIER));
8733        if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8734                pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8735        if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8736                pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8737        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8738                pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8739        n = vmcs_read32(CR3_TARGET_COUNT);
8740        for (i = 0; i + 1 < n; i += 4)
8741                pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8742                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8743                       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8744        if (i < n)
8745                pr_err("CR3 target%u=%016lx\n",
8746                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8747        if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8748                pr_err("PLE Gap=%08x Window=%08x\n",
8749                       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8750        if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8751                pr_err("Virtual processor ID = 0x%04x\n",
8752                       vmcs_read16(VIRTUAL_PROCESSOR_ID));
8753}
8754
8755/*
8756 * The guest has exited.  See if we can fix it or if we need userspace
8757 * assistance.
8758 */
8759static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8760{
8761        struct vcpu_vmx *vmx = to_vmx(vcpu);
8762        u32 exit_reason = vmx->exit_reason;
8763        u32 vectoring_info = vmx->idt_vectoring_info;
8764
8765        trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8766
8767        /*
8768         * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8769         * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8770         * querying dirty_bitmap, we only need to kick all vcpus out of guest
8771         * mode as if vcpus is in root mode, the PML buffer must has been
8772         * flushed already.
8773         */
8774        if (enable_pml)
8775                vmx_flush_pml_buffer(vcpu);
8776
8777        /* If guest state is invalid, start emulating */
8778        if (vmx->emulation_required)
8779                return handle_invalid_guest_state(vcpu);
8780
8781        if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8782                return nested_vmx_reflect_vmexit(vcpu, exit_reason);
8783
8784        if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8785                dump_vmcs();
8786                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8787                vcpu->run->fail_entry.hardware_entry_failure_reason
8788                        = exit_reason;
8789                return 0;
8790        }
8791
8792        if (unlikely(vmx->fail)) {
8793                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8794                vcpu->run->fail_entry.hardware_entry_failure_reason
8795                        = vmcs_read32(VM_INSTRUCTION_ERROR);
8796                return 0;
8797        }
8798
8799        /*
8800         * Note:
8801         * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8802         * delivery event since it indicates guest is accessing MMIO.
8803         * The vm-exit can be triggered again after return to guest that
8804         * will cause infinite loop.
8805         */
8806        if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8807                        (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8808                        exit_reason != EXIT_REASON_EPT_VIOLATION &&
8809                        exit_reason != EXIT_REASON_PML_FULL &&
8810                        exit_reason != EXIT_REASON_TASK_SWITCH)) {
8811                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8812                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8813                vcpu->run->internal.ndata = 3;
8814                vcpu->run->internal.data[0] = vectoring_info;
8815                vcpu->run->internal.data[1] = exit_reason;
8816                vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8817                if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8818                        vcpu->run->internal.ndata++;
8819                        vcpu->run->internal.data[3] =
8820                                vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8821                }
8822                return 0;
8823        }
8824
8825        if (exit_reason < kvm_vmx_max_exit_handlers
8826            && kvm_vmx_exit_handlers[exit_reason])
8827                return kvm_vmx_exit_handlers[exit_reason](vcpu);
8828        else {
8829                vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8830                                exit_reason);
8831                kvm_queue_exception(vcpu, UD_VECTOR);
8832                return 1;
8833        }
8834}
8835
8836static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8837{
8838        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8839
8840        if (is_guest_mode(vcpu) &&
8841                nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8842                return;
8843
8844        if (irr == -1 || tpr < irr) {
8845                vmcs_write32(TPR_THRESHOLD, 0);
8846                return;
8847        }
8848
8849        vmcs_write32(TPR_THRESHOLD, irr);
8850}
8851
8852static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8853{
8854        u32 sec_exec_control;
8855
8856        /* Postpone execution until vmcs01 is the current VMCS. */
8857        if (is_guest_mode(vcpu)) {
8858                to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8859                return;
8860        }
8861
8862        if (!cpu_has_vmx_virtualize_x2apic_mode())
8863                return;
8864
8865        if (!cpu_need_tpr_shadow(vcpu))
8866                return;
8867
8868        sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8869
8870        if (set) {
8871                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8872                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8873        } else {
8874                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8875                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8876                vmx_flush_tlb_ept_only(vcpu);
8877        }
8878        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8879
8880        vmx_set_msr_bitmap(vcpu);
8881}
8882
8883static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8884{
8885        struct vcpu_vmx *vmx = to_vmx(vcpu);
8886
8887        /*
8888         * Currently we do not handle the nested case where L2 has an
8889         * APIC access page of its own; that page is still pinned.
8890         * Hence, we skip the case where the VCPU is in guest mode _and_
8891         * L1 prepared an APIC access page for L2.
8892         *
8893         * For the case where L1 and L2 share the same APIC access page
8894         * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8895         * in the vmcs12), this function will only update either the vmcs01
8896         * or the vmcs02.  If the former, the vmcs02 will be updated by
8897         * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8898         * the next L2->L1 exit.
8899         */
8900        if (!is_guest_mode(vcpu) ||
8901            !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8902                             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8903                vmcs_write64(APIC_ACCESS_ADDR, hpa);
8904                vmx_flush_tlb_ept_only(vcpu);
8905        }
8906}
8907
8908static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8909{
8910        u16 status;
8911        u8 old;
8912
8913        if (max_isr == -1)
8914                max_isr = 0;
8915
8916        status = vmcs_read16(GUEST_INTR_STATUS);
8917        old = status >> 8;
8918        if (max_isr != old) {
8919                status &= 0xff;
8920                status |= max_isr << 8;
8921                vmcs_write16(GUEST_INTR_STATUS, status);
8922        }
8923}
8924
8925static void vmx_set_rvi(int vector)
8926{
8927        u16 status;
8928        u8 old;
8929
8930        if (vector == -1)
8931                vector = 0;
8932
8933        status = vmcs_read16(GUEST_INTR_STATUS);
8934        old = (u8)status & 0xff;
8935        if ((u8)vector != old) {
8936                status &= ~0xff;
8937                status |= (u8)vector;
8938                vmcs_write16(GUEST_INTR_STATUS, status);
8939        }
8940}
8941
8942static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8943{
8944        if (!is_guest_mode(vcpu)) {
8945                vmx_set_rvi(max_irr);
8946                return;
8947        }
8948
8949        if (max_irr == -1)
8950                return;
8951
8952        /*
8953         * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8954         * handles it.
8955         */
8956        if (nested_exit_on_intr(vcpu))
8957                return;
8958
8959        /*
8960         * Else, fall back to pre-APICv interrupt injection since L2
8961         * is run without virtual interrupt delivery.
8962         */
8963        if (!kvm_event_needs_reinjection(vcpu) &&
8964            vmx_interrupt_allowed(vcpu)) {
8965                kvm_queue_interrupt(vcpu, max_irr, false);
8966                vmx_inject_irq(vcpu);
8967        }
8968}
8969
8970static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8971{
8972        struct vcpu_vmx *vmx = to_vmx(vcpu);
8973        int max_irr;
8974
8975        WARN_ON(!vcpu->arch.apicv_active);
8976        if (pi_test_on(&vmx->pi_desc)) {
8977                pi_clear_on(&vmx->pi_desc);
8978                /*
8979                 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8980                 * But on x86 this is just a compiler barrier anyway.
8981                 */
8982                smp_mb__after_atomic();
8983                max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8984        } else {
8985                max_irr = kvm_lapic_find_highest_irr(vcpu);
8986        }
8987        vmx_hwapic_irr_update(vcpu, max_irr);
8988        return max_irr;
8989}
8990
8991static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8992{
8993        if (!kvm_vcpu_apicv_active(vcpu))
8994                return;
8995
8996        vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8997        vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8998        vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8999        vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9000}
9001
9002static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9003{
9004        struct vcpu_vmx *vmx = to_vmx(vcpu);
9005
9006        pi_clear_on(&vmx->pi_desc);
9007        memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9008}
9009
9010static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
9011{
9012        u32 exit_intr_info = 0;
9013        u16 basic_exit_reason = (u16)vmx->exit_reason;
9014
9015        if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9016              || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
9017                return;
9018
9019        if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9020                exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9021        vmx->exit_intr_info = exit_intr_info;
9022
9023        /* if exit due to PF check for async PF */
9024        if (is_page_fault(exit_intr_info))
9025                vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9026
9027        /* Handle machine checks before interrupts are enabled */
9028        if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9029            is_machine_check(exit_intr_info))
9030                kvm_machine_check();
9031
9032        /* We need to handle NMIs before interrupts are enabled */
9033        if (is_nmi(exit_intr_info)) {
9034                kvm_before_handle_nmi(&vmx->vcpu);
9035                asm("int $2");
9036                kvm_after_handle_nmi(&vmx->vcpu);
9037        }
9038}
9039
9040static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9041{
9042        u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9043
9044        if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9045                        == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9046                unsigned int vector;
9047                unsigned long entry;
9048                gate_desc *desc;
9049                struct vcpu_vmx *vmx = to_vmx(vcpu);
9050#ifdef CONFIG_X86_64
9051                unsigned long tmp;
9052#endif
9053
9054                vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
9055                desc = (gate_desc *)vmx->host_idt_base + vector;
9056                entry = gate_offset(desc);
9057                asm volatile(
9058#ifdef CONFIG_X86_64
9059                        "mov %%" _ASM_SP ", %[sp]\n\t"
9060                        "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9061                        "push $%c[ss]\n\t"
9062                        "push %[sp]\n\t"
9063#endif
9064                        "pushf\n\t"
9065                        __ASM_SIZE(push) " $%c[cs]\n\t"
9066                        "call *%[entry]\n\t"
9067                        :
9068#ifdef CONFIG_X86_64
9069                        [sp]"=&r"(tmp),
9070#endif
9071                        ASM_CALL_CONSTRAINT
9072                        :
9073                        [entry]"r"(entry),
9074                        [ss]"i"(__KERNEL_DS),
9075                        [cs]"i"(__KERNEL_CS)
9076                        );
9077        }
9078}
9079STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
9080
9081static bool vmx_has_high_real_mode_segbase(void)
9082{
9083        return enable_unrestricted_guest || emulate_invalid_guest_state;
9084}
9085
9086static bool vmx_mpx_supported(void)
9087{
9088        return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9089                (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9090}
9091
9092static bool vmx_xsaves_supported(void)
9093{
9094        return vmcs_config.cpu_based_2nd_exec_ctrl &
9095                SECONDARY_EXEC_XSAVES;
9096}
9097
9098static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9099{
9100        u32 exit_intr_info;
9101        bool unblock_nmi;
9102        u8 vector;
9103        bool idtv_info_valid;
9104
9105        idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9106
9107        if (vmx->loaded_vmcs->nmi_known_unmasked)
9108                return;
9109        /*
9110         * Can't use vmx->exit_intr_info since we're not sure what
9111         * the exit reason is.
9112         */
9113        exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9114        unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9115        vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9116        /*
9117         * SDM 3: 27.7.1.2 (September 2008)
9118         * Re-set bit "block by NMI" before VM entry if vmexit caused by
9119         * a guest IRET fault.
9120         * SDM 3: 23.2.2 (September 2008)
9121         * Bit 12 is undefined in any of the following cases:
9122         *  If the VM exit sets the valid bit in the IDT-vectoring
9123         *   information field.
9124         *  If the VM exit is due to a double fault.
9125         */
9126        if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9127            vector != DF_VECTOR && !idtv_info_valid)
9128                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9129                              GUEST_INTR_STATE_NMI);
9130        else
9131                vmx->loaded_vmcs->nmi_known_unmasked =
9132                        !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9133                          & GUEST_INTR_STATE_NMI);
9134}
9135
9136static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
9137                                      u32 idt_vectoring_info,
9138                                      int instr_len_field,
9139                                      int error_code_field)
9140{
9141        u8 vector;
9142        int type;
9143        bool idtv_info_valid;
9144
9145        idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9146
9147        vcpu->arch.nmi_injected = false;
9148        kvm_clear_exception_queue(vcpu);
9149        kvm_clear_interrupt_queue(vcpu);
9150
9151        if (!idtv_info_valid)
9152                return;
9153
9154        kvm_make_request(KVM_REQ_EVENT, vcpu);
9155
9156        vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9157        type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
9158
9159        switch (type) {
9160        case INTR_TYPE_NMI_INTR:
9161                vcpu->arch.nmi_injected = true;
9162                /*
9163                 * SDM 3: 27.7.1.2 (September 2008)
9164                 * Clear bit "block by NMI" before VM entry if a NMI
9165                 * delivery faulted.
9166                 */
9167                vmx_set_nmi_mask(vcpu, false);
9168                break;
9169        case INTR_TYPE_SOFT_EXCEPTION:
9170                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9171                /* fall through */
9172        case INTR_TYPE_HARD_EXCEPTION:
9173                if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
9174                        u32 err = vmcs_read32(error_code_field);
9175                        kvm_requeue_exception_e(vcpu, vector, err);
9176                } else
9177                        kvm_requeue_exception(vcpu, vector);
9178                break;
9179        case INTR_TYPE_SOFT_INTR:
9180                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9181                /* fall through */
9182        case INTR_TYPE_EXT_INTR:
9183                kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
9184                break;
9185        default:
9186                break;
9187        }
9188}
9189
9190static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9191{
9192        __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
9193                                  VM_EXIT_INSTRUCTION_LEN,
9194                                  IDT_VECTORING_ERROR_CODE);
9195}
9196
9197static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9198{
9199        __vmx_complete_interrupts(vcpu,
9200                                  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9201                                  VM_ENTRY_INSTRUCTION_LEN,
9202                                  VM_ENTRY_EXCEPTION_ERROR_CODE);
9203
9204        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9205}
9206
9207static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9208{
9209        int i, nr_msrs;
9210        struct perf_guest_switch_msr *msrs;
9211
9212        msrs = perf_guest_get_msrs(&nr_msrs);
9213
9214        if (!msrs)
9215                return;
9216
9217        for (i = 0; i < nr_msrs; i++)
9218                if (msrs[i].host == msrs[i].guest)
9219                        clear_atomic_switch_msr(vmx, msrs[i].msr);
9220                else
9221                        add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9222                                        msrs[i].host);
9223}
9224
9225static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
9226{
9227        struct vcpu_vmx *vmx = to_vmx(vcpu);
9228        u64 tscl;
9229        u32 delta_tsc;
9230
9231        if (vmx->hv_deadline_tsc == -1)
9232                return;
9233
9234        tscl = rdtsc();
9235        if (vmx->hv_deadline_tsc > tscl)
9236                /* sure to be 32 bit only because checked on set_hv_timer */
9237                delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9238                        cpu_preemption_timer_multi);
9239        else
9240                delta_tsc = 0;
9241
9242        vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9243}
9244
9245static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
9246{
9247        struct vcpu_vmx *vmx = to_vmx(vcpu);
9248        unsigned long debugctlmsr, cr3, cr4;
9249
9250        /* Don't enter VMX if guest state is invalid, let the exit handler
9251           start emulation until we arrive back to a valid state */
9252        if (vmx->emulation_required)
9253                return;
9254
9255        if (vmx->ple_window_dirty) {
9256                vmx->ple_window_dirty = false;
9257                vmcs_write32(PLE_WINDOW, vmx->ple_window);
9258        }
9259
9260        if (vmx->nested.sync_shadow_vmcs) {
9261                copy_vmcs12_to_shadow(vmx);
9262                vmx->nested.sync_shadow_vmcs = false;
9263        }
9264
9265        if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9266                vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9267        if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9268                vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9269
9270        cr3 = __get_current_cr3_fast();
9271        if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
9272                vmcs_writel(HOST_CR3, cr3);
9273                vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
9274        }
9275
9276        cr4 = cr4_read_shadow();
9277        if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
9278                vmcs_writel(HOST_CR4, cr4);
9279                vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
9280        }
9281
9282        /* When single-stepping over STI and MOV SS, we must clear the
9283         * corresponding interruptibility bits in the guest state. Otherwise
9284         * vmentry fails as it then expects bit 14 (BS) in pending debug
9285         * exceptions being set, but that's not correct for the guest debugging
9286         * case. */
9287        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9288                vmx_set_interrupt_shadow(vcpu, 0);
9289
9290        if (static_cpu_has(X86_FEATURE_PKU) &&
9291            kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9292            vcpu->arch.pkru != vmx->host_pkru)
9293                __write_pkru(vcpu->arch.pkru);
9294
9295        atomic_switch_perf_msrs(vmx);
9296        debugctlmsr = get_debugctlmsr();
9297
9298        vmx_arm_hv_timer(vcpu);
9299
9300        vmx->__launched = vmx->loaded_vmcs->launched;
9301        asm(
9302                /* Store host registers */
9303                "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9304                "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9305                "push %%" _ASM_CX " \n\t"
9306                "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9307                "je 1f \n\t"
9308                "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9309                __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
9310                "1: \n\t"
9311                /* Reload cr2 if changed */
9312                "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9313                "mov %%cr2, %%" _ASM_DX " \n\t"
9314                "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
9315                "je 2f \n\t"
9316                "mov %%" _ASM_AX", %%cr2 \n\t"
9317                "2: \n\t"
9318                /* Check if vmlaunch of vmresume is needed */
9319                "cmpl $0, %c[launched](%0) \n\t"
9320                /* Load guest registers.  Don't clobber flags. */
9321                "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9322                "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9323                "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9324                "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9325                "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9326                "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
9327#ifdef CONFIG_X86_64
9328                "mov %c[r8](%0),  %%r8  \n\t"
9329                "mov %c[r9](%0),  %%r9  \n\t"
9330                "mov %c[r10](%0), %%r10 \n\t"
9331                "mov %c[r11](%0), %%r11 \n\t"
9332                "mov %c[r12](%0), %%r12 \n\t"
9333                "mov %c[r13](%0), %%r13 \n\t"
9334                "mov %c[r14](%0), %%r14 \n\t"
9335                "mov %c[r15](%0), %%r15 \n\t"
9336#endif
9337                "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
9338
9339                /* Enter guest mode */
9340                "jne 1f \n\t"
9341                __ex(ASM_VMX_VMLAUNCH) "\n\t"
9342                "jmp 2f \n\t"
9343                "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9344                "2: "
9345                /* Save guest registers, load host registers, keep flags */
9346                "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
9347                "pop %0 \n\t"
9348                "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9349                "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9350                __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9351                "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9352                "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9353                "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9354                "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
9355#ifdef CONFIG_X86_64
9356                "mov %%r8,  %c[r8](%0) \n\t"
9357                "mov %%r9,  %c[r9](%0) \n\t"
9358                "mov %%r10, %c[r10](%0) \n\t"
9359                "mov %%r11, %c[r11](%0) \n\t"
9360                "mov %%r12, %c[r12](%0) \n\t"
9361                "mov %%r13, %c[r13](%0) \n\t"
9362                "mov %%r14, %c[r14](%0) \n\t"
9363                "mov %%r15, %c[r15](%0) \n\t"
9364#endif
9365                "mov %%cr2, %%" _ASM_AX "   \n\t"
9366                "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9367
9368                "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
9369                "setbe %c[fail](%0) \n\t"
9370                ".pushsection .rodata \n\t"
9371                ".global vmx_return \n\t"
9372                "vmx_return: " _ASM_PTR " 2b \n\t"
9373                ".popsection"
9374              : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9375                [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9376                [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9377                [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9378                [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9379                [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9380                [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9381                [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9382                [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9383                [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9384                [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9385#ifdef CONFIG_X86_64
9386                [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9387                [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9388                [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9389                [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9390                [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9391                [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9392                [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9393                [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9394#endif
9395                [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9396                [wordsize]"i"(sizeof(ulong))
9397              : "cc", "memory"
9398#ifdef CONFIG_X86_64
9399                , "rax", "rbx", "rdi", "rsi"
9400                , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9401#else
9402                , "eax", "ebx", "edi", "esi"
9403#endif
9404              );
9405
9406        /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9407        if (debugctlmsr)
9408                update_debugctlmsr(debugctlmsr);
9409
9410#ifndef CONFIG_X86_64
9411        /*
9412         * The sysexit path does not restore ds/es, so we must set them to
9413         * a reasonable value ourselves.
9414         *
9415         * We can't defer this to vmx_load_host_state() since that function
9416         * may be executed in interrupt context, which saves and restore segments
9417         * around it, nullifying its effect.
9418         */
9419        loadsegment(ds, __USER_DS);
9420        loadsegment(es, __USER_DS);
9421#endif
9422
9423        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9424                                  | (1 << VCPU_EXREG_RFLAGS)
9425                                  | (1 << VCPU_EXREG_PDPTR)
9426                                  | (1 << VCPU_EXREG_SEGMENTS)
9427                                  | (1 << VCPU_EXREG_CR3));
9428        vcpu->arch.regs_dirty = 0;
9429
9430        /*
9431         * eager fpu is enabled if PKEY is supported and CR4 is switched
9432         * back on host, so it is safe to read guest PKRU from current
9433         * XSAVE.
9434         */
9435        if (static_cpu_has(X86_FEATURE_PKU) &&
9436            kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9437                vcpu->arch.pkru = __read_pkru();
9438                if (vcpu->arch.pkru != vmx->host_pkru)
9439                        __write_pkru(vmx->host_pkru);
9440        }
9441
9442        /*
9443         * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9444         * we did not inject a still-pending event to L1 now because of
9445         * nested_run_pending, we need to re-enable this bit.
9446         */
9447        if (vmx->nested.nested_run_pending)
9448                kvm_make_request(KVM_REQ_EVENT, vcpu);
9449
9450        vmx->nested.nested_run_pending = 0;
9451        vmx->idt_vectoring_info = 0;
9452
9453        vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9454        if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9455                return;
9456
9457        vmx->loaded_vmcs->launched = 1;
9458        vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9459
9460        vmx_complete_atomic_exit(vmx);
9461        vmx_recover_nmi_blocking(vmx);
9462        vmx_complete_interrupts(vmx);
9463}
9464STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9465
9466static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9467{
9468        struct vcpu_vmx *vmx = to_vmx(vcpu);
9469        int cpu;
9470
9471        if (vmx->loaded_vmcs == vmcs)
9472                return;
9473
9474        cpu = get_cpu();
9475        vmx->loaded_vmcs = vmcs;
9476        vmx_vcpu_put(vcpu);
9477        vmx_vcpu_load(vcpu, cpu);
9478        vcpu->cpu = cpu;
9479        put_cpu();
9480}
9481
9482/*
9483 * Ensure that the current vmcs of the logical processor is the
9484 * vmcs01 of the vcpu before calling free_nested().
9485 */
9486static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9487{
9488       struct vcpu_vmx *vmx = to_vmx(vcpu);
9489       int r;
9490
9491       r = vcpu_load(vcpu);
9492       BUG_ON(r);
9493       vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9494       free_nested(vmx);
9495       vcpu_put(vcpu);
9496}
9497
9498static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9499{
9500        struct vcpu_vmx *vmx = to_vmx(vcpu);
9501
9502        if (enable_pml)
9503                vmx_destroy_pml_buffer(vmx);
9504        free_vpid(vmx->vpid);
9505        leave_guest_mode(vcpu);
9506        vmx_free_vcpu_nested(vcpu);
9507        free_loaded_vmcs(vmx->loaded_vmcs);
9508        kfree(vmx->guest_msrs);
9509        kvm_vcpu_uninit(vcpu);
9510        kmem_cache_free(kvm_vcpu_cache, vmx);
9511}
9512
9513static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9514{
9515        int err;
9516        struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9517        int cpu;
9518
9519        if (!vmx)
9520                return ERR_PTR(-ENOMEM);
9521
9522        vmx->vpid = allocate_vpid();
9523
9524        err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9525        if (err)
9526                goto free_vcpu;
9527
9528        err = -ENOMEM;
9529
9530        /*
9531         * If PML is turned on, failure on enabling PML just results in failure
9532         * of creating the vcpu, therefore we can simplify PML logic (by
9533         * avoiding dealing with cases, such as enabling PML partially on vcpus
9534         * for the guest, etc.
9535         */
9536        if (enable_pml) {
9537                vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9538                if (!vmx->pml_pg)
9539                        goto uninit_vcpu;
9540        }
9541
9542        vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9543        BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9544                     > PAGE_SIZE);
9545
9546        if (!vmx->guest_msrs)
9547                goto free_pml;
9548
9549        vmx->loaded_vmcs = &vmx->vmcs01;
9550        vmx->loaded_vmcs->vmcs = alloc_vmcs();
9551        vmx->loaded_vmcs->shadow_vmcs = NULL;
9552        if (!vmx->loaded_vmcs->vmcs)
9553                goto free_msrs;
9554        loaded_vmcs_init(vmx->loaded_vmcs);
9555
9556        cpu = get_cpu();
9557        vmx_vcpu_load(&vmx->vcpu, cpu);
9558        vmx->vcpu.cpu = cpu;
9559        err = vmx_vcpu_setup(vmx);
9560        vmx_vcpu_put(&vmx->vcpu);
9561        put_cpu();
9562        if (err)
9563                goto free_vmcs;
9564        if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9565                err = alloc_apic_access_page(kvm);
9566                if (err)
9567                        goto free_vmcs;
9568        }
9569
9570        if (enable_ept) {
9571                if (!kvm->arch.ept_identity_map_addr)
9572                        kvm->arch.ept_identity_map_addr =
9573                                VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9574                err = init_rmode_identity_map(kvm);
9575                if (err)
9576                        goto free_vmcs;
9577        }
9578
9579        if (nested) {
9580                nested_vmx_setup_ctls_msrs(vmx);
9581                vmx->nested.vpid02 = allocate_vpid();
9582        }
9583
9584        vmx->nested.posted_intr_nv = -1;
9585        vmx->nested.current_vmptr = -1ull;
9586
9587        vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9588
9589        /*
9590         * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9591         * or POSTED_INTR_WAKEUP_VECTOR.
9592         */
9593        vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9594        vmx->pi_desc.sn = 1;
9595
9596        return &vmx->vcpu;
9597
9598free_vmcs:
9599        free_vpid(vmx->nested.vpid02);
9600        free_loaded_vmcs(vmx->loaded_vmcs);
9601free_msrs:
9602        kfree(vmx->guest_msrs);
9603free_pml:
9604        vmx_destroy_pml_buffer(vmx);
9605uninit_vcpu:
9606        kvm_vcpu_uninit(&vmx->vcpu);
9607free_vcpu:
9608        free_vpid(vmx->vpid);
9609        kmem_cache_free(kvm_vcpu_cache, vmx);
9610        return ERR_PTR(err);
9611}
9612
9613static void __init vmx_check_processor_compat(void *rtn)
9614{
9615        struct vmcs_config vmcs_conf;
9616
9617        *(int *)rtn = 0;
9618        if (setup_vmcs_config(&vmcs_conf) < 0)
9619                *(int *)rtn = -EIO;
9620        if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9621                printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9622                                smp_processor_id());
9623                *(int *)rtn = -EIO;
9624        }
9625}
9626
9627static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9628{
9629        u8 cache;
9630        u64 ipat = 0;
9631
9632        /* For VT-d and EPT combination
9633         * 1. MMIO: always map as UC
9634         * 2. EPT with VT-d:
9635         *   a. VT-d without snooping control feature: can't guarantee the
9636         *      result, try to trust guest.
9637         *   b. VT-d with snooping control feature: snooping control feature of
9638         *      VT-d engine can guarantee the cache correctness. Just set it
9639         *      to WB to keep consistent with host. So the same as item 3.
9640         * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9641         *    consistent with host MTRR
9642         */
9643        if (is_mmio) {
9644                cache = MTRR_TYPE_UNCACHABLE;
9645                goto exit;
9646        }
9647
9648        if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9649                ipat = VMX_EPT_IPAT_BIT;
9650                cache = MTRR_TYPE_WRBACK;
9651                goto exit;
9652        }
9653
9654        if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9655                ipat = VMX_EPT_IPAT_BIT;
9656                if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9657                        cache = MTRR_TYPE_WRBACK;
9658                else
9659                        cache = MTRR_TYPE_UNCACHABLE;
9660                goto exit;
9661        }
9662
9663        cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9664
9665exit:
9666        return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9667}
9668
9669static int vmx_get_lpage_level(void)
9670{
9671        if (enable_ept && !cpu_has_vmx_ept_1g_page())
9672                return PT_DIRECTORY_LEVEL;
9673        else
9674                /* For shadow and EPT supported 1GB page */
9675                return PT_PDPE_LEVEL;
9676}
9677
9678static void vmcs_set_secondary_exec_control(u32 new_ctl)
9679{
9680        /*
9681         * These bits in the secondary execution controls field
9682         * are dynamic, the others are mostly based on the hypervisor
9683         * architecture and the guest's CPUID.  Do not touch the
9684         * dynamic bits.
9685         */
9686        u32 mask =
9687                SECONDARY_EXEC_SHADOW_VMCS |
9688                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9689                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9690
9691        u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9692
9693        vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9694                     (new_ctl & ~mask) | (cur_ctl & mask));
9695}
9696
9697/*
9698 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9699 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9700 */
9701static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9702{
9703        struct vcpu_vmx *vmx = to_vmx(vcpu);
9704        struct kvm_cpuid_entry2 *entry;
9705
9706        vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9707        vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9708
9709#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
9710        if (entry && (entry->_reg & (_cpuid_mask)))                     \
9711                vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask);       \
9712} while (0)
9713
9714        entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9715        cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
9716        cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
9717        cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
9718        cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
9719        cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
9720        cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
9721        cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
9722        cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
9723        cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
9724        cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9725        cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
9726        cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
9727        cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
9728        cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
9729
9730        entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9731        cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
9732        cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
9733        cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
9734        cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
9735        /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9736        cr4_fixed1_update(bit(11),            ecx, bit(2));
9737
9738#undef cr4_fixed1_update
9739}
9740
9741static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9742{
9743        struct vcpu_vmx *vmx = to_vmx(vcpu);
9744
9745        if (cpu_has_secondary_exec_ctrls()) {
9746                vmx_compute_secondary_exec_control(vmx);
9747                vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
9748        }
9749
9750        if (nested_vmx_allowed(vcpu))
9751                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9752                        FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9753        else
9754                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9755                        ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9756
9757        if (nested_vmx_allowed(vcpu))
9758                nested_vmx_cr_fixed1_bits_update(vcpu);
9759}
9760
9761static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9762{
9763        if (func == 1 && nested)
9764                entry->ecx |= bit(X86_FEATURE_VMX);
9765}
9766
9767static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9768                struct x86_exception *fault)
9769{
9770        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9771        struct vcpu_vmx *vmx = to_vmx(vcpu);
9772        u32 exit_reason;
9773        unsigned long exit_qualification = vcpu->arch.exit_qualification;
9774
9775        if (vmx->nested.pml_full) {
9776                exit_reason = EXIT_REASON_PML_FULL;
9777                vmx->nested.pml_full = false;
9778                exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9779        } else if (fault->error_code & PFERR_RSVD_MASK)
9780                exit_reason = EXIT_REASON_EPT_MISCONFIG;
9781        else
9782                exit_reason = EXIT_REASON_EPT_VIOLATION;
9783
9784        nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9785        vmcs12->guest_physical_address = fault->address;
9786}
9787
9788static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9789{
9790        return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
9791}
9792
9793/* Callbacks for nested_ept_init_mmu_context: */
9794
9795static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9796{
9797        /* return the page table to be shadowed - in our case, EPT12 */
9798        return get_vmcs12(vcpu)->ept_pointer;
9799}
9800
9801static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9802{
9803        WARN_ON(mmu_is_nested(vcpu));
9804        if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
9805                return 1;
9806
9807        kvm_mmu_unload(vcpu);
9808        kvm_init_shadow_ept_mmu(vcpu,
9809                        to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9810                        VMX_EPT_EXECUTE_ONLY_BIT,
9811                        nested_ept_ad_enabled(vcpu));
9812        vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9813        vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9814        vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9815
9816        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9817        return 0;
9818}
9819
9820static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9821{
9822        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9823}
9824
9825static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9826                                            u16 error_code)
9827{
9828        bool inequality, bit;
9829
9830        bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9831        inequality =
9832                (error_code & vmcs12->page_fault_error_code_mask) !=
9833                 vmcs12->page_fault_error_code_match;
9834        return inequality ^ bit;
9835}
9836
9837static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9838                struct x86_exception *fault)
9839{
9840        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9841
9842        WARN_ON(!is_guest_mode(vcpu));
9843
9844        if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
9845                !to_vmx(vcpu)->nested.nested_run_pending) {
9846                vmcs12->vm_exit_intr_error_code = fault->error_code;
9847                nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9848                                  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9849                                  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9850                                  fault->address);
9851        } else {
9852                kvm_inject_page_fault(vcpu, fault);
9853        }
9854}
9855
9856static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9857                                               struct vmcs12 *vmcs12);
9858
9859static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9860                                        struct vmcs12 *vmcs12)
9861{
9862        struct vcpu_vmx *vmx = to_vmx(vcpu);
9863        struct page *page;
9864        u64 hpa;
9865
9866        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9867                /*
9868                 * Translate L1 physical address to host physical
9869                 * address for vmcs02. Keep the page pinned, so this
9870                 * physical address remains valid. We keep a reference
9871                 * to it so we can release it later.
9872                 */
9873                if (vmx->nested.apic_access_page) { /* shouldn't happen */
9874                        kvm_release_page_dirty(vmx->nested.apic_access_page);
9875                        vmx->nested.apic_access_page = NULL;
9876                }
9877                page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
9878                /*
9879                 * If translation failed, no matter: This feature asks
9880                 * to exit when accessing the given address, and if it
9881                 * can never be accessed, this feature won't do
9882                 * anything anyway.
9883                 */
9884                if (!is_error_page(page)) {
9885                        vmx->nested.apic_access_page = page;
9886                        hpa = page_to_phys(vmx->nested.apic_access_page);
9887                        vmcs_write64(APIC_ACCESS_ADDR, hpa);
9888                } else {
9889                        vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9890                                        SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9891                }
9892        } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9893                   cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9894                vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9895                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9896                kvm_vcpu_reload_apic_access_page(vcpu);
9897        }
9898
9899        if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9900                if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
9901                        kvm_release_page_dirty(vmx->nested.virtual_apic_page);
9902                        vmx->nested.virtual_apic_page = NULL;
9903                }
9904                page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
9905
9906                /*
9907                 * If translation failed, VM entry will fail because
9908                 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9909                 * Failing the vm entry is _not_ what the processor
9910                 * does but it's basically the only possibility we
9911                 * have.  We could still enter the guest if CR8 load
9912                 * exits are enabled, CR8 store exits are enabled, and
9913                 * virtualize APIC access is disabled; in this case
9914                 * the processor would never use the TPR shadow and we
9915                 * could simply clear the bit from the execution
9916                 * control.  But such a configuration is useless, so
9917                 * let's keep the code simple.
9918                 */
9919                if (!is_error_page(page)) {
9920                        vmx->nested.virtual_apic_page = page;
9921                        hpa = page_to_phys(vmx->nested.virtual_apic_page);
9922                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9923                }
9924        }
9925
9926        if (nested_cpu_has_posted_intr(vmcs12)) {
9927                if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9928                        kunmap(vmx->nested.pi_desc_page);
9929                        kvm_release_page_dirty(vmx->nested.pi_desc_page);
9930                        vmx->nested.pi_desc_page = NULL;
9931                }
9932                page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
9933                if (is_error_page(page))
9934                        return;
9935                vmx->nested.pi_desc_page = page;
9936                vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
9937                vmx->nested.pi_desc =
9938                        (struct pi_desc *)((void *)vmx->nested.pi_desc +
9939                        (unsigned long)(vmcs12->posted_intr_desc_addr &
9940                        (PAGE_SIZE - 1)));
9941                vmcs_write64(POSTED_INTR_DESC_ADDR,
9942                        page_to_phys(vmx->nested.pi_desc_page) +
9943                        (unsigned long)(vmcs12->posted_intr_desc_addr &
9944                        (PAGE_SIZE - 1)));
9945        }
9946        if (cpu_has_vmx_msr_bitmap() &&
9947            nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9948            nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9949                ;
9950        else
9951                vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9952                                CPU_BASED_USE_MSR_BITMAPS);
9953}
9954
9955static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9956{
9957        u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9958        struct vcpu_vmx *vmx = to_vmx(vcpu);
9959
9960        if (vcpu->arch.virtual_tsc_khz == 0)
9961                return;
9962
9963        /* Make sure short timeouts reliably trigger an immediate vmexit.
9964         * hrtimer_start does not guarantee this. */
9965        if (preemption_timeout <= 1) {
9966                vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9967                return;
9968        }
9969
9970        preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9971        preemption_timeout *= 1000000;
9972        do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9973        hrtimer_start(&vmx->nested.preemption_timer,
9974                      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9975}
9976
9977static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9978                                               struct vmcs12 *vmcs12)
9979{
9980        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9981                return 0;
9982
9983        if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9984            !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9985                return -EINVAL;
9986
9987        return 0;
9988}
9989
9990static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9991                                                struct vmcs12 *vmcs12)
9992{
9993        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9994                return 0;
9995
9996        if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
9997                return -EINVAL;
9998
9999        return 0;
10000}
10001
10002static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10003                                                struct vmcs12 *vmcs12)
10004{
10005        if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10006                return 0;
10007
10008        if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10009                return -EINVAL;
10010
10011        return 0;
10012}
10013
10014/*
10015 * Merge L0's and L1's MSR bitmap, return false to indicate that
10016 * we do not use the hardware.
10017 */
10018static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10019                                               struct vmcs12 *vmcs12)
10020{
10021        int msr;
10022        struct page *page;
10023        unsigned long *msr_bitmap_l1;
10024        unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
10025
10026        /* This shortcut is ok because we support only x2APIC MSRs so far. */
10027        if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10028                return false;
10029
10030        page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10031        if (is_error_page(page))
10032                return false;
10033        msr_bitmap_l1 = (unsigned long *)kmap(page);
10034
10035        memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10036
10037        if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
10038                if (nested_cpu_has_apic_reg_virt(vmcs12))
10039                        for (msr = 0x800; msr <= 0x8ff; msr++)
10040                                nested_vmx_disable_intercept_for_msr(
10041                                        msr_bitmap_l1, msr_bitmap_l0,
10042                                        msr, MSR_TYPE_R);
10043
10044                nested_vmx_disable_intercept_for_msr(
10045                                msr_bitmap_l1, msr_bitmap_l0,
10046                                APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10047                                MSR_TYPE_R | MSR_TYPE_W);
10048
10049                if (nested_cpu_has_vid(vmcs12)) {
10050                        nested_vmx_disable_intercept_for_msr(
10051                                msr_bitmap_l1, msr_bitmap_l0,
10052                                APIC_BASE_MSR + (APIC_EOI >> 4),
10053                                MSR_TYPE_W);
10054                        nested_vmx_disable_intercept_for_msr(
10055                                msr_bitmap_l1, msr_bitmap_l0,
10056                                APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10057                                MSR_TYPE_W);
10058                }
10059        }
10060        kunmap(page);
10061        kvm_release_page_clean(page);
10062
10063        return true;
10064}
10065
10066static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10067                                           struct vmcs12 *vmcs12)
10068{
10069        if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10070            !nested_cpu_has_apic_reg_virt(vmcs12) &&
10071            !nested_cpu_has_vid(vmcs12) &&
10072            !nested_cpu_has_posted_intr(vmcs12))
10073                return 0;
10074
10075        /*
10076         * If virtualize x2apic mode is enabled,
10077         * virtualize apic access must be disabled.
10078         */
10079        if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10080            nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
10081                return -EINVAL;
10082
10083        /*
10084         * If virtual interrupt delivery is enabled,
10085         * we must exit on external interrupts.
10086         */
10087        if (nested_cpu_has_vid(vmcs12) &&
10088           !nested_exit_on_intr(vcpu))
10089                return -EINVAL;
10090
10091        /*
10092         * bits 15:8 should be zero in posted_intr_nv,
10093         * the descriptor address has been already checked
10094         * in nested_get_vmcs12_pages.
10095         */
10096        if (nested_cpu_has_posted_intr(vmcs12) &&
10097           (!nested_cpu_has_vid(vmcs12) ||
10098            !nested_exit_intr_ack_set(vcpu) ||
10099            vmcs12->posted_intr_nv & 0xff00))
10100                return -EINVAL;
10101
10102        /* tpr shadow is needed by all apicv features. */
10103        if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10104                return -EINVAL;
10105
10106        return 0;
10107}
10108
10109static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10110                                       unsigned long count_field,
10111                                       unsigned long addr_field)
10112{
10113        int maxphyaddr;
10114        u64 count, addr;
10115
10116        if (vmcs12_read_any(vcpu, count_field, &count) ||
10117            vmcs12_read_any(vcpu, addr_field, &addr)) {
10118                WARN_ON(1);
10119                return -EINVAL;
10120        }
10121        if (count == 0)
10122                return 0;
10123        maxphyaddr = cpuid_maxphyaddr(vcpu);
10124        if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10125            (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
10126                pr_debug_ratelimited(
10127                        "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10128                        addr_field, maxphyaddr, count, addr);
10129                return -EINVAL;
10130        }
10131        return 0;
10132}
10133
10134static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10135                                                struct vmcs12 *vmcs12)
10136{
10137        if (vmcs12->vm_exit_msr_load_count == 0 &&
10138            vmcs12->vm_exit_msr_store_count == 0 &&
10139            vmcs12->vm_entry_msr_load_count == 0)
10140                return 0; /* Fast path */
10141        if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
10142                                        VM_EXIT_MSR_LOAD_ADDR) ||
10143            nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
10144                                        VM_EXIT_MSR_STORE_ADDR) ||
10145            nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
10146                                        VM_ENTRY_MSR_LOAD_ADDR))
10147                return -EINVAL;
10148        return 0;
10149}
10150
10151static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10152                                         struct vmcs12 *vmcs12)
10153{
10154        u64 address = vmcs12->pml_address;
10155        int maxphyaddr = cpuid_maxphyaddr(vcpu);
10156
10157        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10158                if (!nested_cpu_has_ept(vmcs12) ||
10159                    !IS_ALIGNED(address, 4096)  ||
10160                    address >> maxphyaddr)
10161                        return -EINVAL;
10162        }
10163
10164        return 0;
10165}
10166
10167static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10168                                       struct vmx_msr_entry *e)
10169{
10170        /* x2APIC MSR accesses are not allowed */
10171        if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
10172                return -EINVAL;
10173        if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10174            e->index == MSR_IA32_UCODE_REV)
10175                return -EINVAL;
10176        if (e->reserved != 0)
10177                return -EINVAL;
10178        return 0;
10179}
10180
10181static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10182                                     struct vmx_msr_entry *e)
10183{
10184        if (e->index == MSR_FS_BASE ||
10185            e->index == MSR_GS_BASE ||
10186            e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10187            nested_vmx_msr_check_common(vcpu, e))
10188                return -EINVAL;
10189        return 0;
10190}
10191
10192static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10193                                      struct vmx_msr_entry *e)
10194{
10195        if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10196            nested_vmx_msr_check_common(vcpu, e))
10197                return -EINVAL;
10198        return 0;
10199}
10200
10201/*
10202 * Load guest's/host's msr at nested entry/exit.
10203 * return 0 for success, entry index for failure.
10204 */
10205static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10206{
10207        u32 i;
10208        struct vmx_msr_entry e;
10209        struct msr_data msr;
10210
10211        msr.host_initiated = false;
10212        for (i = 0; i < count; i++) {
10213                if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10214                                        &e, sizeof(e))) {
10215                        pr_debug_ratelimited(
10216                                "%s cannot read MSR entry (%u, 0x%08llx)\n",
10217                                __func__, i, gpa + i * sizeof(e));
10218                        goto fail;
10219                }
10220                if (nested_vmx_load_msr_check(vcpu, &e)) {
10221                        pr_debug_ratelimited(
10222                                "%s check failed (%u, 0x%x, 0x%x)\n",
10223                                __func__, i, e.index, e.reserved);
10224                        goto fail;
10225                }
10226                msr.index = e.index;
10227                msr.data = e.value;
10228                if (kvm_set_msr(vcpu, &msr)) {
10229                        pr_debug_ratelimited(
10230                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10231                                __func__, i, e.index, e.value);
10232                        goto fail;
10233                }
10234        }
10235        return 0;
10236fail:
10237        return i + 1;
10238}
10239
10240static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10241{
10242        u32 i;
10243        struct vmx_msr_entry e;
10244
10245        for (i = 0; i < count; i++) {
10246                struct msr_data msr_info;
10247                if (kvm_vcpu_read_guest(vcpu,
10248                                        gpa + i * sizeof(e),
10249                                        &e, 2 * sizeof(u32))) {
10250                        pr_debug_ratelimited(
10251                                "%s cannot read MSR entry (%u, 0x%08llx)\n",
10252                                __func__, i, gpa + i * sizeof(e));
10253                        return -EINVAL;
10254                }
10255                if (nested_vmx_store_msr_check(vcpu, &e)) {
10256                        pr_debug_ratelimited(
10257                                "%s check failed (%u, 0x%x, 0x%x)\n",
10258                                __func__, i, e.index, e.reserved);
10259                        return -EINVAL;
10260                }
10261                msr_info.host_initiated = false;
10262                msr_info.index = e.index;
10263                if (kvm_get_msr(vcpu, &msr_info)) {
10264                        pr_debug_ratelimited(
10265                                "%s cannot read MSR (%u, 0x%x)\n",
10266                                __func__, i, e.index);
10267                        return -EINVAL;
10268                }
10269                if (kvm_vcpu_write_guest(vcpu,
10270                                         gpa + i * sizeof(e) +
10271                                             offsetof(struct vmx_msr_entry, value),
10272                                         &msr_info.data, sizeof(msr_info.data))) {
10273                        pr_debug_ratelimited(
10274                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10275                                __func__, i, e.index, msr_info.data);
10276                        return -EINVAL;
10277                }
10278        }
10279        return 0;
10280}
10281
10282static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10283{
10284        unsigned long invalid_mask;
10285
10286        invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10287        return (val & invalid_mask) == 0;
10288}
10289
10290/*
10291 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10292 * emulating VM entry into a guest with EPT enabled.
10293 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10294 * is assigned to entry_failure_code on failure.
10295 */
10296static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
10297                               u32 *entry_failure_code)
10298{
10299        if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
10300                if (!nested_cr3_valid(vcpu, cr3)) {
10301                        *entry_failure_code = ENTRY_FAIL_DEFAULT;
10302                        return 1;
10303                }
10304
10305                /*
10306                 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10307                 * must not be dereferenced.
10308                 */
10309                if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10310                    !nested_ept) {
10311                        if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10312                                *entry_failure_code = ENTRY_FAIL_PDPTE;
10313                                return 1;
10314                        }
10315                }
10316
10317                vcpu->arch.cr3 = cr3;
10318                __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10319        }
10320
10321        kvm_mmu_reset_context(vcpu);
10322        return 0;
10323}
10324
10325/*
10326 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10327 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10328 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10329 * guest in a way that will both be appropriate to L1's requests, and our
10330 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10331 * function also has additional necessary side-effects, like setting various
10332 * vcpu->arch fields.
10333 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10334 * is assigned to entry_failure_code on failure.
10335 */
10336static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10337                          bool from_vmentry, u32 *entry_failure_code)
10338{
10339        struct vcpu_vmx *vmx = to_vmx(vcpu);
10340        u32 exec_control, vmcs12_exec_ctrl;
10341
10342        vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10343        vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10344        vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10345        vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10346        vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10347        vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10348        vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10349        vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10350        vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10351        vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10352        vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10353        vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10354        vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10355        vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10356        vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10357        vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10358        vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10359        vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10360        vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10361        vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10362        vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10363        vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10364        vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10365        vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10366        vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10367        vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10368        vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10369        vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10370        vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10371        vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10372        vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10373        vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10374        vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10375        vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10376        vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10377        vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10378
10379        if (from_vmentry &&
10380            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10381                kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10382                vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10383        } else {
10384                kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10385                vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10386        }
10387        if (from_vmentry) {
10388                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10389                             vmcs12->vm_entry_intr_info_field);
10390                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10391                             vmcs12->vm_entry_exception_error_code);
10392                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10393                             vmcs12->vm_entry_instruction_len);
10394                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10395                             vmcs12->guest_interruptibility_info);
10396                vmx->loaded_vmcs->nmi_known_unmasked =
10397                        !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
10398        } else {
10399                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10400        }
10401        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10402        vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10403        vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10404                vmcs12->guest_pending_dbg_exceptions);
10405        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10406        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10407
10408        if (nested_cpu_has_xsaves(vmcs12))
10409                vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10410        vmcs_write64(VMCS_LINK_POINTER, -1ull);
10411
10412        exec_control = vmcs12->pin_based_vm_exec_control;
10413
10414        /* Preemption timer setting is only taken from vmcs01.  */
10415        exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10416        exec_control |= vmcs_config.pin_based_exec_ctrl;
10417        if (vmx->hv_deadline_tsc == -1)
10418                exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10419
10420        /* Posted interrupts setting is only taken from vmcs12.  */
10421        if (nested_cpu_has_posted_intr(vmcs12)) {
10422                vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10423                vmx->nested.pi_pending = false;
10424                vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10425        } else {
10426                exec_control &= ~PIN_BASED_POSTED_INTR;
10427        }
10428
10429        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10430
10431        vmx->nested.preemption_timer_expired = false;
10432        if (nested_cpu_has_preemption_timer(vmcs12))
10433                vmx_start_preemption_timer(vcpu);
10434
10435        /*
10436         * Whether page-faults are trapped is determined by a combination of
10437         * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10438         * If enable_ept, L0 doesn't care about page faults and we should
10439         * set all of these to L1's desires. However, if !enable_ept, L0 does
10440         * care about (at least some) page faults, and because it is not easy
10441         * (if at all possible?) to merge L0 and L1's desires, we simply ask
10442         * to exit on each and every L2 page fault. This is done by setting
10443         * MASK=MATCH=0 and (see below) EB.PF=1.
10444         * Note that below we don't need special code to set EB.PF beyond the
10445         * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10446         * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10447         * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10448         */
10449        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10450                enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10451        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10452                enable_ept ? vmcs12->page_fault_error_code_match : 0);
10453
10454        if (cpu_has_secondary_exec_ctrls()) {
10455                exec_control = vmx->secondary_exec_control;
10456
10457                /* Take the following fields only from vmcs12 */
10458                exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10459                                  SECONDARY_EXEC_ENABLE_INVPCID |
10460                                  SECONDARY_EXEC_RDTSCP |
10461                                  SECONDARY_EXEC_XSAVES |
10462                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10463                                  SECONDARY_EXEC_APIC_REGISTER_VIRT |
10464                                  SECONDARY_EXEC_ENABLE_VMFUNC);
10465                if (nested_cpu_has(vmcs12,
10466                                   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10467                        vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10468                                ~SECONDARY_EXEC_ENABLE_PML;
10469                        exec_control |= vmcs12_exec_ctrl;
10470                }
10471
10472                /* All VMFUNCs are currently emulated through L0 vmexits.  */
10473                if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10474                        vmcs_write64(VM_FUNCTION_CONTROL, 0);
10475
10476                if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10477                        vmcs_write64(EOI_EXIT_BITMAP0,
10478                                vmcs12->eoi_exit_bitmap0);
10479                        vmcs_write64(EOI_EXIT_BITMAP1,
10480                                vmcs12->eoi_exit_bitmap1);
10481                        vmcs_write64(EOI_EXIT_BITMAP2,
10482                                vmcs12->eoi_exit_bitmap2);
10483                        vmcs_write64(EOI_EXIT_BITMAP3,
10484                                vmcs12->eoi_exit_bitmap3);
10485                        vmcs_write16(GUEST_INTR_STATUS,
10486                                vmcs12->guest_intr_status);
10487                }
10488
10489                /*
10490                 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10491                 * nested_get_vmcs12_pages will either fix it up or
10492                 * remove the VM execution control.
10493                 */
10494                if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10495                        vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10496
10497                vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10498        }
10499
10500
10501        /*
10502         * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10503         * Some constant fields are set here by vmx_set_constant_host_state().
10504         * Other fields are different per CPU, and will be set later when
10505         * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10506         */
10507        vmx_set_constant_host_state(vmx);
10508
10509        /*
10510         * Set the MSR load/store lists to match L0's settings.
10511         */
10512        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10513        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10514        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10515        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10516        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10517
10518        /*
10519         * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10520         * entry, but only if the current (host) sp changed from the value
10521         * we wrote last (vmx->host_rsp). This cache is no longer relevant
10522         * if we switch vmcs, and rather than hold a separate cache per vmcs,
10523         * here we just force the write to happen on entry.
10524         */
10525        vmx->host_rsp = 0;
10526
10527        exec_control = vmx_exec_control(vmx); /* L0's desires */
10528        exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10529        exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10530        exec_control &= ~CPU_BASED_TPR_SHADOW;
10531        exec_control |= vmcs12->cpu_based_vm_exec_control;
10532
10533        /*
10534         * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10535         * nested_get_vmcs12_pages can't fix it up, the illegal value
10536         * will result in a VM entry failure.
10537         */
10538        if (exec_control & CPU_BASED_TPR_SHADOW) {
10539                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10540                vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10541        } else {
10542#ifdef CONFIG_X86_64
10543                exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10544                                CPU_BASED_CR8_STORE_EXITING;
10545#endif
10546        }
10547
10548        /*
10549         * Merging of IO bitmap not currently supported.
10550         * Rather, exit every time.
10551         */
10552        exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10553        exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10554
10555        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10556
10557        /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10558         * bitwise-or of what L1 wants to trap for L2, and what we want to
10559         * trap. Note that CR0.TS also needs updating - we do this later.
10560         */
10561        update_exception_bitmap(vcpu);
10562        vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10563        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10564
10565        /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10566         * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10567         * bits are further modified by vmx_set_efer() below.
10568         */
10569        vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10570
10571        /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10572         * emulated by vmx_set_efer(), below.
10573         */
10574        vm_entry_controls_init(vmx, 
10575                (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10576                        ~VM_ENTRY_IA32E_MODE) |
10577                (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10578
10579        if (from_vmentry &&
10580            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10581                vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10582                vcpu->arch.pat = vmcs12->guest_ia32_pat;
10583        } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10584                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10585        }
10586
10587        set_cr4_guest_host_mask(vmx);
10588
10589        if (from_vmentry &&
10590            vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10591                vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10592
10593        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10594                vmcs_write64(TSC_OFFSET,
10595                        vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10596        else
10597                vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10598        if (kvm_has_tsc_control)
10599                decache_tsc_multiplier(vmx);
10600
10601        if (enable_vpid) {
10602                /*
10603                 * There is no direct mapping between vpid02 and vpid12, the
10604                 * vpid02 is per-vCPU for L0 and reused while the value of
10605                 * vpid12 is changed w/ one invvpid during nested vmentry.
10606                 * The vpid12 is allocated by L1 for L2, so it will not
10607                 * influence global bitmap(for vpid01 and vpid02 allocation)
10608                 * even if spawn a lot of nested vCPUs.
10609                 */
10610                if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10611                        vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10612                        if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10613                                vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10614                                __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10615                        }
10616                } else {
10617                        vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10618                        vmx_flush_tlb(vcpu);
10619                }
10620
10621        }
10622
10623        if (enable_pml) {
10624                /*
10625                 * Conceptually we want to copy the PML address and index from
10626                 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10627                 * since we always flush the log on each vmexit, this happens
10628                 * to be equivalent to simply resetting the fields in vmcs02.
10629                 */
10630                ASSERT(vmx->pml_pg);
10631                vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10632                vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10633        }
10634
10635        if (nested_cpu_has_ept(vmcs12)) {
10636                if (nested_ept_init_mmu_context(vcpu)) {
10637                        *entry_failure_code = ENTRY_FAIL_DEFAULT;
10638                        return 1;
10639                }
10640        } else if (nested_cpu_has2(vmcs12,
10641                                   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10642                vmx_flush_tlb_ept_only(vcpu);
10643        }
10644
10645        /*
10646         * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10647         * bits which we consider mandatory enabled.
10648         * The CR0_READ_SHADOW is what L2 should have expected to read given
10649         * the specifications by L1; It's not enough to take
10650         * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10651         * have more bits than L1 expected.
10652         */
10653        vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10654        vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10655
10656        vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10657        vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10658
10659        if (from_vmentry &&
10660            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10661                vcpu->arch.efer = vmcs12->guest_ia32_efer;
10662        else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10663                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10664        else
10665                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10666        /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10667        vmx_set_efer(vcpu, vcpu->arch.efer);
10668
10669        /* Shadow page tables on either EPT or shadow page tables. */
10670        if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10671                                entry_failure_code))
10672                return 1;
10673
10674        if (!enable_ept)
10675                vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10676
10677        /*
10678         * L1 may access the L2's PDPTR, so save them to construct vmcs12
10679         */
10680        if (enable_ept) {
10681                vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10682                vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10683                vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10684                vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10685        }
10686
10687        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10688        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10689        return 0;
10690}
10691
10692static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10693{
10694        struct vcpu_vmx *vmx = to_vmx(vcpu);
10695
10696        if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10697            vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10698                return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10699
10700        if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10701                return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10702
10703        if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10704                return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10705
10706        if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10707                return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10708
10709        if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10710                return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10711
10712        if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10713                return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10714
10715        if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10716                return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10717
10718        if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10719                                vmx->nested.nested_vmx_procbased_ctls_low,
10720                                vmx->nested.nested_vmx_procbased_ctls_high) ||
10721            (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10722             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10723                                 vmx->nested.nested_vmx_secondary_ctls_low,
10724                                 vmx->nested.nested_vmx_secondary_ctls_high)) ||
10725            !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10726                                vmx->nested.nested_vmx_pinbased_ctls_low,
10727                                vmx->nested.nested_vmx_pinbased_ctls_high) ||
10728            !vmx_control_verify(vmcs12->vm_exit_controls,
10729                                vmx->nested.nested_vmx_exit_ctls_low,
10730                                vmx->nested.nested_vmx_exit_ctls_high) ||
10731            !vmx_control_verify(vmcs12->vm_entry_controls,
10732                                vmx->nested.nested_vmx_entry_ctls_low,
10733                                vmx->nested.nested_vmx_entry_ctls_high))
10734                return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10735
10736        if (nested_cpu_has_vmfunc(vmcs12)) {
10737                if (vmcs12->vm_function_control &
10738                    ~vmx->nested.nested_vmx_vmfunc_controls)
10739                        return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10740
10741                if (nested_cpu_has_eptp_switching(vmcs12)) {
10742                        if (!nested_cpu_has_ept(vmcs12) ||
10743                            !page_address_valid(vcpu, vmcs12->eptp_list_address))
10744                                return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10745                }
10746        }
10747
10748        if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10749                return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10750
10751        if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10752            !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10753            !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10754                return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10755
10756        return 0;
10757}
10758
10759static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10760                                  u32 *exit_qual)
10761{
10762        bool ia32e;
10763
10764        *exit_qual = ENTRY_FAIL_DEFAULT;
10765
10766        if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10767            !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10768                return 1;
10769
10770        if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10771            vmcs12->vmcs_link_pointer != -1ull) {
10772                *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10773                return 1;
10774        }
10775
10776        /*
10777         * If the load IA32_EFER VM-entry control is 1, the following checks
10778         * are performed on the field for the IA32_EFER MSR:
10779         * - Bits reserved in the IA32_EFER MSR must be 0.
10780         * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10781         *   the IA-32e mode guest VM-exit control. It must also be identical
10782         *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10783         *   CR0.PG) is 1.
10784         */
10785        if (to_vmx(vcpu)->nested.nested_run_pending &&
10786            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10787                ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10788                if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10789                    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10790                    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10791                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10792                        return 1;
10793        }
10794
10795        /*
10796         * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10797         * IA32_EFER MSR must be 0 in the field for that register. In addition,
10798         * the values of the LMA and LME bits in the field must each be that of
10799         * the host address-space size VM-exit control.
10800         */
10801        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10802                ia32e = (vmcs12->vm_exit_controls &
10803                         VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10804                if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10805                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10806                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10807                        return 1;
10808        }
10809
10810        return 0;
10811}
10812
10813static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10814{
10815        struct vcpu_vmx *vmx = to_vmx(vcpu);
10816        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10817        struct loaded_vmcs *vmcs02;
10818        u32 msr_entry_idx;
10819        u32 exit_qual;
10820
10821        vmcs02 = nested_get_current_vmcs02(vmx);
10822        if (!vmcs02)
10823                return -ENOMEM;
10824
10825        enter_guest_mode(vcpu);
10826
10827        if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10828                vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10829
10830        vmx_switch_vmcs(vcpu, vmcs02);
10831        vmx_segment_cache_clear(vmx);
10832
10833        if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10834                leave_guest_mode(vcpu);
10835                vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10836                nested_vmx_entry_failure(vcpu, vmcs12,
10837                                         EXIT_REASON_INVALID_STATE, exit_qual);
10838                return 1;
10839        }
10840
10841        nested_get_vmcs12_pages(vcpu, vmcs12);
10842
10843        msr_entry_idx = nested_vmx_load_msr(vcpu,
10844                                            vmcs12->vm_entry_msr_load_addr,
10845                                            vmcs12->vm_entry_msr_load_count);
10846        if (msr_entry_idx) {
10847                leave_guest_mode(vcpu);
10848                vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10849                nested_vmx_entry_failure(vcpu, vmcs12,
10850                                EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10851                return 1;
10852        }
10853
10854        /*
10855         * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10856         * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10857         * returned as far as L1 is concerned. It will only return (and set
10858         * the success flag) when L2 exits (see nested_vmx_vmexit()).
10859         */
10860        return 0;
10861}
10862
10863/*
10864 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10865 * for running an L2 nested guest.
10866 */
10867static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10868{
10869        struct vmcs12 *vmcs12;
10870        struct vcpu_vmx *vmx = to_vmx(vcpu);
10871        u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
10872        u32 exit_qual;
10873        int ret;
10874
10875        if (!nested_vmx_check_permission(vcpu))
10876                return 1;
10877
10878        if (!nested_vmx_check_vmcs12(vcpu))
10879                goto out;
10880
10881        vmcs12 = get_vmcs12(vcpu);
10882
10883        if (enable_shadow_vmcs)
10884                copy_shadow_to_vmcs12(vmx);
10885
10886        /*
10887         * The nested entry process starts with enforcing various prerequisites
10888         * on vmcs12 as required by the Intel SDM, and act appropriately when
10889         * they fail: As the SDM explains, some conditions should cause the
10890         * instruction to fail, while others will cause the instruction to seem
10891         * to succeed, but return an EXIT_REASON_INVALID_STATE.
10892         * To speed up the normal (success) code path, we should avoid checking
10893         * for misconfigurations which will anyway be caught by the processor
10894         * when using the merged vmcs02.
10895         */
10896        if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10897                nested_vmx_failValid(vcpu,
10898                                     VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10899                goto out;
10900        }
10901
10902        if (vmcs12->launch_state == launch) {
10903                nested_vmx_failValid(vcpu,
10904                        launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10905                               : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10906                goto out;
10907        }
10908
10909        ret = check_vmentry_prereqs(vcpu, vmcs12);
10910        if (ret) {
10911                nested_vmx_failValid(vcpu, ret);
10912                goto out;
10913        }
10914
10915        /*
10916         * After this point, the trap flag no longer triggers a singlestep trap
10917         * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10918         * This is not 100% correct; for performance reasons, we delegate most
10919         * of the checks on host state to the processor.  If those fail,
10920         * the singlestep trap is missed.
10921         */
10922        skip_emulated_instruction(vcpu);
10923
10924        ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10925        if (ret) {
10926                nested_vmx_entry_failure(vcpu, vmcs12,
10927                                         EXIT_REASON_INVALID_STATE, exit_qual);
10928                return 1;
10929        }
10930
10931        /*
10932         * We're finally done with prerequisite checking, and can start with
10933         * the nested entry.
10934         */
10935
10936        ret = enter_vmx_non_root_mode(vcpu, true);
10937        if (ret)
10938                return ret;
10939
10940        if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10941                return kvm_vcpu_halt(vcpu);
10942
10943        vmx->nested.nested_run_pending = 1;
10944
10945        return 1;
10946
10947out:
10948        return kvm_skip_emulated_instruction(vcpu);
10949}
10950
10951/*
10952 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10953 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10954 * This function returns the new value we should put in vmcs12.guest_cr0.
10955 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10956 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10957 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10958 *     didn't trap the bit, because if L1 did, so would L0).
10959 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10960 *     been modified by L2, and L1 knows it. So just leave the old value of
10961 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10962 *     isn't relevant, because if L0 traps this bit it can set it to anything.
10963 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10964 *     changed these bits, and therefore they need to be updated, but L0
10965 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10966 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10967 */
10968static inline unsigned long
10969vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10970{
10971        return
10972        /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10973        /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10974        /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10975                        vcpu->arch.cr0_guest_owned_bits));
10976}
10977
10978static inline unsigned long
10979vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10980{
10981        return
10982        /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10983        /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10984        /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10985                        vcpu->arch.cr4_guest_owned_bits));
10986}
10987
10988static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10989                                       struct vmcs12 *vmcs12)
10990{
10991        u32 idt_vectoring;
10992        unsigned int nr;
10993
10994        if (vcpu->arch.exception.injected) {
10995                nr = vcpu->arch.exception.nr;
10996                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10997
10998                if (kvm_exception_is_soft(nr)) {
10999                        vmcs12->vm_exit_instruction_len =
11000                                vcpu->arch.event_exit_inst_len;
11001                        idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11002                } else
11003                        idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11004
11005                if (vcpu->arch.exception.has_error_code) {
11006                        idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11007                        vmcs12->idt_vectoring_error_code =
11008                                vcpu->arch.exception.error_code;
11009                }
11010
11011                vmcs12->idt_vectoring_info_field = idt_vectoring;
11012        } else if (vcpu->arch.nmi_injected) {
11013                vmcs12->idt_vectoring_info_field =
11014                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11015        } else if (vcpu->arch.interrupt.pending) {
11016                nr = vcpu->arch.interrupt.nr;
11017                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11018
11019                if (vcpu->arch.interrupt.soft) {
11020                        idt_vectoring |= INTR_TYPE_SOFT_INTR;
11021                        vmcs12->vm_entry_instruction_len =
11022                                vcpu->arch.event_exit_inst_len;
11023                } else
11024                        idt_vectoring |= INTR_TYPE_EXT_INTR;
11025
11026                vmcs12->idt_vectoring_info_field = idt_vectoring;
11027        }
11028}
11029
11030static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11031{
11032        struct vcpu_vmx *vmx = to_vmx(vcpu);
11033        unsigned long exit_qual;
11034
11035        if (kvm_event_needs_reinjection(vcpu))
11036                return -EBUSY;
11037
11038        if (vcpu->arch.exception.pending &&
11039                nested_vmx_check_exception(vcpu, &exit_qual)) {
11040                if (vmx->nested.nested_run_pending)
11041                        return -EBUSY;
11042                nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11043                vcpu->arch.exception.pending = false;
11044                return 0;
11045        }
11046
11047        if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11048            vmx->nested.preemption_timer_expired) {
11049                if (vmx->nested.nested_run_pending)
11050                        return -EBUSY;
11051                nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11052                return 0;
11053        }
11054
11055        if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
11056                if (vmx->nested.nested_run_pending)
11057                        return -EBUSY;
11058                nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11059                                  NMI_VECTOR | INTR_TYPE_NMI_INTR |
11060                                  INTR_INFO_VALID_MASK, 0);
11061                /*
11062                 * The NMI-triggered VM exit counts as injection:
11063                 * clear this one and block further NMIs.
11064                 */
11065                vcpu->arch.nmi_pending = 0;
11066                vmx_set_nmi_mask(vcpu, true);
11067                return 0;
11068        }
11069
11070        if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11071            nested_exit_on_intr(vcpu)) {
11072                if (vmx->nested.nested_run_pending)
11073                        return -EBUSY;
11074                nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
11075                return 0;
11076        }
11077
11078        vmx_complete_nested_posted_interrupt(vcpu);
11079        return 0;
11080}
11081
11082static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11083{
11084        ktime_t remaining =
11085                hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11086        u64 value;
11087
11088        if (ktime_to_ns(remaining) <= 0)
11089                return 0;
11090
11091        value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11092        do_div(value, 1000000);
11093        return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11094}
11095
11096/*
11097 * Update the guest state fields of vmcs12 to reflect changes that
11098 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11099 * VM-entry controls is also updated, since this is really a guest
11100 * state bit.)
11101 */
11102static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11103{
11104        vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11105        vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11106
11107        vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11108        vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11109        vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11110
11111        vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11112        vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11113        vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11114        vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11115        vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11116        vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11117        vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11118        vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11119        vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11120        vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11121        vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11122        vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11123        vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11124        vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11125        vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11126        vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11127        vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11128        vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11129        vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11130        vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11131        vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11132        vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11133        vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11134        vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11135        vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11136        vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11137        vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11138        vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11139        vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11140        vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11141        vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11142        vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11143        vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11144        vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11145        vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11146        vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11147
11148        vmcs12->guest_interruptibility_info =
11149                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11150        vmcs12->guest_pending_dbg_exceptions =
11151                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
11152        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11153                vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11154        else
11155                vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
11156
11157        if (nested_cpu_has_preemption_timer(vmcs12)) {
11158                if (vmcs12->vm_exit_controls &
11159                    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11160                        vmcs12->vmx_preemption_timer_value =
11161                                vmx_get_preemption_timer_value(vcpu);
11162                hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11163        }
11164
11165        /*
11166         * In some cases (usually, nested EPT), L2 is allowed to change its
11167         * own CR3 without exiting. If it has changed it, we must keep it.
11168         * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11169         * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11170         *
11171         * Additionally, restore L2's PDPTR to vmcs12.
11172         */
11173        if (enable_ept) {
11174                vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
11175                vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11176                vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11177                vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11178                vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11179        }
11180
11181        vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
11182
11183        if (nested_cpu_has_vid(vmcs12))
11184                vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11185
11186        vmcs12->vm_entry_controls =
11187                (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
11188                (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
11189
11190        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11191                kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11192                vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11193        }
11194
11195        /* TODO: These cannot have changed unless we have MSR bitmaps and
11196         * the relevant bit asks not to trap the change */
11197        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
11198                vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
11199        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11200                vmcs12->guest_ia32_efer = vcpu->arch.efer;
11201        vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11202        vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11203        vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
11204        if (kvm_mpx_supported())
11205                vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
11206}
11207
11208/*
11209 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11210 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11211 * and this function updates it to reflect the changes to the guest state while
11212 * L2 was running (and perhaps made some exits which were handled directly by L0
11213 * without going back to L1), and to reflect the exit reason.
11214 * Note that we do not have to copy here all VMCS fields, just those that
11215 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11216 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11217 * which already writes to vmcs12 directly.
11218 */
11219static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11220                           u32 exit_reason, u32 exit_intr_info,
11221                           unsigned long exit_qualification)
11222{
11223        /* update guest state fields: */
11224        sync_vmcs12(vcpu, vmcs12);
11225
11226        /* update exit information fields: */
11227
11228        vmcs12->vm_exit_reason = exit_reason;
11229        vmcs12->exit_qualification = exit_qualification;
11230        vmcs12->vm_exit_intr_info = exit_intr_info;
11231
11232        vmcs12->idt_vectoring_info_field = 0;
11233        vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11234        vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11235
11236        if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
11237                vmcs12->launch_state = 1;
11238
11239                /* vm_entry_intr_info_field is cleared on exit. Emulate this
11240                 * instead of reading the real value. */
11241                vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
11242
11243                /*
11244                 * Transfer the event that L0 or L1 may wanted to inject into
11245                 * L2 to IDT_VECTORING_INFO_FIELD.
11246                 */
11247                vmcs12_save_pending_event(vcpu, vmcs12);
11248        }
11249
11250        /*
11251         * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11252         * preserved above and would only end up incorrectly in L1.
11253         */
11254        vcpu->arch.nmi_injected = false;
11255        kvm_clear_exception_queue(vcpu);
11256        kvm_clear_interrupt_queue(vcpu);
11257}
11258
11259/*
11260 * A part of what we need to when the nested L2 guest exits and we want to
11261 * run its L1 parent, is to reset L1's guest state to the host state specified
11262 * in vmcs12.
11263 * This function is to be called not only on normal nested exit, but also on
11264 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11265 * Failures During or After Loading Guest State").
11266 * This function should be called when the active VMCS is L1's (vmcs01).
11267 */
11268static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11269                                   struct vmcs12 *vmcs12)
11270{
11271        struct kvm_segment seg;
11272        u32 entry_failure_code;
11273
11274        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11275                vcpu->arch.efer = vmcs12->host_ia32_efer;
11276        else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11277                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11278        else
11279                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11280        vmx_set_efer(vcpu, vcpu->arch.efer);
11281
11282        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11283        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
11284        vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
11285        /*
11286         * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
11287         * actually changed, because vmx_set_cr0 refers to efer set above.
11288         *
11289         * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11290         * (KVM doesn't change it);
11291         */
11292        vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
11293        vmx_set_cr0(vcpu, vmcs12->host_cr0);
11294
11295        /* Same as above - no reason to call set_cr4_guest_host_mask().  */
11296        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
11297        vmx_set_cr4(vcpu, vmcs12->host_cr4);
11298
11299        nested_ept_uninit_mmu_context(vcpu);
11300
11301        /*
11302         * Only PDPTE load can fail as the value of cr3 was checked on entry and
11303         * couldn't have changed.
11304         */
11305        if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11306                nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11307
11308        if (!enable_ept)
11309                vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11310
11311        if (enable_vpid) {
11312                /*
11313                 * Trivially support vpid by letting L2s share their parent
11314                 * L1's vpid. TODO: move to a more elaborate solution, giving
11315                 * each L2 its own vpid and exposing the vpid feature to L1.
11316                 */
11317                vmx_flush_tlb(vcpu);
11318        }
11319        /* Restore posted intr vector. */
11320        if (nested_cpu_has_posted_intr(vmcs12))
11321                vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
11322
11323        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11324        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11325        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11326        vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11327        vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
11328
11329        /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
11330        if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11331                vmcs_write64(GUEST_BNDCFGS, 0);
11332
11333        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
11334                vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
11335                vcpu->arch.pat = vmcs12->host_ia32_pat;
11336        }
11337        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11338                vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11339                        vmcs12->host_ia32_perf_global_ctrl);
11340
11341        /* Set L1 segment info according to Intel SDM
11342            27.5.2 Loading Host Segment and Descriptor-Table Registers */
11343        seg = (struct kvm_segment) {
11344                .base = 0,
11345                .limit = 0xFFFFFFFF,
11346                .selector = vmcs12->host_cs_selector,
11347                .type = 11,
11348                .present = 1,
11349                .s = 1,
11350                .g = 1
11351        };
11352        if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11353                seg.l = 1;
11354        else
11355                seg.db = 1;
11356        vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11357        seg = (struct kvm_segment) {
11358                .base = 0,
11359                .limit = 0xFFFFFFFF,
11360                .type = 3,
11361                .present = 1,
11362                .s = 1,
11363                .db = 1,
11364                .g = 1
11365        };
11366        seg.selector = vmcs12->host_ds_selector;
11367        vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11368        seg.selector = vmcs12->host_es_selector;
11369        vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11370        seg.selector = vmcs12->host_ss_selector;
11371        vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11372        seg.selector = vmcs12->host_fs_selector;
11373        seg.base = vmcs12->host_fs_base;
11374        vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11375        seg.selector = vmcs12->host_gs_selector;
11376        seg.base = vmcs12->host_gs_base;
11377        vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11378        seg = (struct kvm_segment) {
11379                .base = vmcs12->host_tr_base,
11380                .limit = 0x67,
11381                .selector = vmcs12->host_tr_selector,
11382                .type = 11,
11383                .present = 1
11384        };
11385        vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11386
11387        kvm_set_dr(vcpu, 7, 0x400);
11388        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11389
11390        if (cpu_has_vmx_msr_bitmap())
11391                vmx_set_msr_bitmap(vcpu);
11392
11393        if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11394                                vmcs12->vm_exit_msr_load_count))
11395                nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11396}
11397
11398/*
11399 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11400 * and modify vmcs12 to make it see what it would expect to see there if
11401 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11402 */
11403static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11404                              u32 exit_intr_info,
11405                              unsigned long exit_qualification)
11406{
11407        struct vcpu_vmx *vmx = to_vmx(vcpu);
11408        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11409
11410        /* trying to cancel vmlaunch/vmresume is a bug */
11411        WARN_ON_ONCE(vmx->nested.nested_run_pending);
11412
11413        /*
11414         * The only expected VM-instruction error is "VM entry with
11415         * invalid control field(s)." Anything else indicates a
11416         * problem with L0.
11417         */
11418        WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11419                                   VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11420
11421        leave_guest_mode(vcpu);
11422
11423        if (likely(!vmx->fail)) {
11424                prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11425                               exit_qualification);
11426
11427                if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11428                                         vmcs12->vm_exit_msr_store_count))
11429                        nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11430        }
11431
11432        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11433        vm_entry_controls_reset_shadow(vmx);
11434        vm_exit_controls_reset_shadow(vmx);
11435        vmx_segment_cache_clear(vmx);
11436
11437        /* if no vmcs02 cache requested, remove the one we used */
11438        if (VMCS02_POOL_SIZE == 0)
11439                nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11440
11441        /* Update any VMCS fields that might have changed while L2 ran */
11442        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11443        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11444        vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11445        if (vmx->hv_deadline_tsc == -1)
11446                vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11447                                PIN_BASED_VMX_PREEMPTION_TIMER);
11448        else
11449                vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11450                              PIN_BASED_VMX_PREEMPTION_TIMER);
11451        if (kvm_has_tsc_control)
11452                decache_tsc_multiplier(vmx);
11453
11454        if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11455                vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11456                vmx_set_virtual_x2apic_mode(vcpu,
11457                                vcpu->arch.apic_base & X2APIC_ENABLE);
11458        } else if (!nested_cpu_has_ept(vmcs12) &&
11459                   nested_cpu_has2(vmcs12,
11460                                   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11461                vmx_flush_tlb_ept_only(vcpu);
11462        }
11463
11464        /* This is needed for same reason as it was needed in prepare_vmcs02 */
11465        vmx->host_rsp = 0;
11466
11467        /* Unpin physical memory we referred to in vmcs02 */
11468        if (vmx->nested.apic_access_page) {
11469                kvm_release_page_dirty(vmx->nested.apic_access_page);
11470                vmx->nested.apic_access_page = NULL;
11471        }
11472        if (vmx->nested.virtual_apic_page) {
11473                kvm_release_page_dirty(vmx->nested.virtual_apic_page);
11474                vmx->nested.virtual_apic_page = NULL;
11475        }
11476        if (vmx->nested.pi_desc_page) {
11477                kunmap(vmx->nested.pi_desc_page);
11478                kvm_release_page_dirty(vmx->nested.pi_desc_page);
11479                vmx->nested.pi_desc_page = NULL;
11480                vmx->nested.pi_desc = NULL;
11481        }
11482
11483        /*
11484         * We are now running in L2, mmu_notifier will force to reload the
11485         * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11486         */
11487        kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11488
11489        if (enable_shadow_vmcs)
11490                vmx->nested.sync_shadow_vmcs = true;
11491
11492        /* in case we halted in L2 */
11493        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11494
11495        if (likely(!vmx->fail)) {
11496                /*
11497                 * TODO: SDM says that with acknowledge interrupt on
11498                 * exit, bit 31 of the VM-exit interrupt information
11499                 * (valid interrupt) is always set to 1 on
11500                 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11501                 * need kvm_cpu_has_interrupt().  See the commit
11502                 * message for details.
11503                 */
11504                if (nested_exit_intr_ack_set(vcpu) &&
11505                    exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11506                    kvm_cpu_has_interrupt(vcpu)) {
11507                        int irq = kvm_cpu_get_interrupt(vcpu);
11508                        WARN_ON(irq < 0);
11509                        vmcs12->vm_exit_intr_info = irq |
11510                                INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11511                }
11512
11513                trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11514                                               vmcs12->exit_qualification,
11515                                               vmcs12->idt_vectoring_info_field,
11516                                               vmcs12->vm_exit_intr_info,
11517                                               vmcs12->vm_exit_intr_error_code,
11518                                               KVM_ISA_VMX);
11519
11520                load_vmcs12_host_state(vcpu, vmcs12);
11521
11522                return;
11523        }
11524        
11525        /*
11526         * After an early L2 VM-entry failure, we're now back
11527         * in L1 which thinks it just finished a VMLAUNCH or
11528         * VMRESUME instruction, so we need to set the failure
11529         * flag and the VM-instruction error field of the VMCS
11530         * accordingly.
11531         */
11532        nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
11533        /*
11534         * The emulated instruction was already skipped in
11535         * nested_vmx_run, but the updated RIP was never
11536         * written back to the vmcs01.
11537         */
11538        skip_emulated_instruction(vcpu);
11539        vmx->fail = 0;
11540}
11541
11542/*
11543 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11544 */
11545static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11546{
11547        if (is_guest_mode(vcpu)) {
11548                to_vmx(vcpu)->nested.nested_run_pending = 0;
11549                nested_vmx_vmexit(vcpu, -1, 0, 0);
11550        }
11551        free_nested(to_vmx(vcpu));
11552}
11553
11554/*
11555 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11556 * 23.7 "VM-entry failures during or after loading guest state" (this also
11557 * lists the acceptable exit-reason and exit-qualification parameters).
11558 * It should only be called before L2 actually succeeded to run, and when
11559 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11560 */
11561static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11562                        struct vmcs12 *vmcs12,
11563                        u32 reason, unsigned long qualification)
11564{
11565        load_vmcs12_host_state(vcpu, vmcs12);
11566        vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11567        vmcs12->exit_qualification = qualification;
11568        nested_vmx_succeed(vcpu);
11569        if (enable_shadow_vmcs)
11570                to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11571}
11572
11573static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11574                               struct x86_instruction_info *info,
11575                               enum x86_intercept_stage stage)
11576{
11577        return X86EMUL_CONTINUE;
11578}
11579
11580#ifdef CONFIG_X86_64
11581/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11582static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11583                                  u64 divisor, u64 *result)
11584{
11585        u64 low = a << shift, high = a >> (64 - shift);
11586
11587        /* To avoid the overflow on divq */
11588        if (high >= divisor)
11589                return 1;
11590
11591        /* Low hold the result, high hold rem which is discarded */
11592        asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11593            "rm" (divisor), "0" (low), "1" (high));
11594        *result = low;
11595
11596        return 0;
11597}
11598
11599static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11600{
11601        struct vcpu_vmx *vmx = to_vmx(vcpu);
11602        u64 tscl = rdtsc();
11603        u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11604        u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11605
11606        /* Convert to host delta tsc if tsc scaling is enabled */
11607        if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11608                        u64_shl_div_u64(delta_tsc,
11609                                kvm_tsc_scaling_ratio_frac_bits,
11610                                vcpu->arch.tsc_scaling_ratio,
11611                                &delta_tsc))
11612                return -ERANGE;
11613
11614        /*
11615         * If the delta tsc can't fit in the 32 bit after the multi shift,
11616         * we can't use the preemption timer.
11617         * It's possible that it fits on later vmentries, but checking
11618         * on every vmentry is costly so we just use an hrtimer.
11619         */
11620        if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11621                return -ERANGE;
11622
11623        vmx->hv_deadline_tsc = tscl + delta_tsc;
11624        vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11625                        PIN_BASED_VMX_PREEMPTION_TIMER);
11626
11627        return delta_tsc == 0;
11628}
11629
11630static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11631{
11632        struct vcpu_vmx *vmx = to_vmx(vcpu);
11633        vmx->hv_deadline_tsc = -1;
11634        vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11635                        PIN_BASED_VMX_PREEMPTION_TIMER);
11636}
11637#endif
11638
11639static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11640{
11641        if (ple_gap)
11642                shrink_ple_window(vcpu);
11643}
11644
11645static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11646                                     struct kvm_memory_slot *slot)
11647{
11648        kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11649        kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11650}
11651
11652static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11653                                       struct kvm_memory_slot *slot)
11654{
11655        kvm_mmu_slot_set_dirty(kvm, slot);
11656}
11657
11658static void vmx_flush_log_dirty(struct kvm *kvm)
11659{
11660        kvm_flush_pml_buffers(kvm);
11661}
11662
11663static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11664{
11665        struct vmcs12 *vmcs12;
11666        struct vcpu_vmx *vmx = to_vmx(vcpu);
11667        gpa_t gpa;
11668        struct page *page = NULL;
11669        u64 *pml_address;
11670
11671        if (is_guest_mode(vcpu)) {
11672                WARN_ON_ONCE(vmx->nested.pml_full);
11673
11674                /*
11675                 * Check if PML is enabled for the nested guest.
11676                 * Whether eptp bit 6 is set is already checked
11677                 * as part of A/D emulation.
11678                 */
11679                vmcs12 = get_vmcs12(vcpu);
11680                if (!nested_cpu_has_pml(vmcs12))
11681                        return 0;
11682
11683                if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11684                        vmx->nested.pml_full = true;
11685                        return 1;
11686                }
11687
11688                gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11689
11690                page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11691                if (is_error_page(page))
11692                        return 0;
11693
11694                pml_address = kmap(page);
11695                pml_address[vmcs12->guest_pml_index--] = gpa;
11696                kunmap(page);
11697                kvm_release_page_clean(page);
11698        }
11699
11700        return 0;
11701}
11702
11703static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11704                                           struct kvm_memory_slot *memslot,
11705                                           gfn_t offset, unsigned long mask)
11706{
11707        kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11708}
11709
11710static void __pi_post_block(struct kvm_vcpu *vcpu)
11711{
11712        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11713        struct pi_desc old, new;
11714        unsigned int dest;
11715
11716        do {
11717                old.control = new.control = pi_desc->control;
11718                WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
11719                     "Wakeup handler not enabled while the VCPU is blocked\n");
11720
11721                dest = cpu_physical_id(vcpu->cpu);
11722
11723                if (x2apic_enabled())
11724                        new.ndst = dest;
11725                else
11726                        new.ndst = (dest << 8) & 0xFF00;
11727
11728                /* set 'NV' to 'notification vector' */
11729                new.nv = POSTED_INTR_VECTOR;
11730        } while (cmpxchg64(&pi_desc->control, old.control,
11731                           new.control) != old.control);
11732
11733        if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
11734                spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11735                list_del(&vcpu->blocked_vcpu_list);
11736                spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11737                vcpu->pre_pcpu = -1;
11738        }
11739}
11740
11741/*
11742 * This routine does the following things for vCPU which is going
11743 * to be blocked if VT-d PI is enabled.
11744 * - Store the vCPU to the wakeup list, so when interrupts happen
11745 *   we can find the right vCPU to wake up.
11746 * - Change the Posted-interrupt descriptor as below:
11747 *      'NDST' <-- vcpu->pre_pcpu
11748 *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11749 * - If 'ON' is set during this process, which means at least one
11750 *   interrupt is posted for this vCPU, we cannot block it, in
11751 *   this case, return 1, otherwise, return 0.
11752 *
11753 */
11754static int pi_pre_block(struct kvm_vcpu *vcpu)
11755{
11756        unsigned int dest;
11757        struct pi_desc old, new;
11758        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11759
11760        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11761                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11762                !kvm_vcpu_apicv_active(vcpu))
11763                return 0;
11764
11765        WARN_ON(irqs_disabled());
11766        local_irq_disable();
11767        if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
11768                vcpu->pre_pcpu = vcpu->cpu;
11769                spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11770                list_add_tail(&vcpu->blocked_vcpu_list,
11771                              &per_cpu(blocked_vcpu_on_cpu,
11772                                       vcpu->pre_pcpu));
11773                spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11774        }
11775
11776        do {
11777                old.control = new.control = pi_desc->control;
11778
11779                WARN((pi_desc->sn == 1),
11780                     "Warning: SN field of posted-interrupts "
11781                     "is set before blocking\n");
11782
11783                /*
11784                 * Since vCPU can be preempted during this process,
11785                 * vcpu->cpu could be different with pre_pcpu, we
11786                 * need to set pre_pcpu as the destination of wakeup
11787                 * notification event, then we can find the right vCPU
11788                 * to wakeup in wakeup handler if interrupts happen
11789                 * when the vCPU is in blocked state.
11790                 */
11791                dest = cpu_physical_id(vcpu->pre_pcpu);
11792
11793                if (x2apic_enabled())
11794                        new.ndst = dest;
11795                else
11796                        new.ndst = (dest << 8) & 0xFF00;
11797
11798                /* set 'NV' to 'wakeup vector' */
11799                new.nv = POSTED_INTR_WAKEUP_VECTOR;
11800        } while (cmpxchg64(&pi_desc->control, old.control,
11801                           new.control) != old.control);
11802
11803        /* We should not block the vCPU if an interrupt is posted for it.  */
11804        if (pi_test_on(pi_desc) == 1)
11805                __pi_post_block(vcpu);
11806
11807        local_irq_enable();
11808        return (vcpu->pre_pcpu == -1);
11809}
11810
11811static int vmx_pre_block(struct kvm_vcpu *vcpu)
11812{
11813        if (pi_pre_block(vcpu))
11814                return 1;
11815
11816        if (kvm_lapic_hv_timer_in_use(vcpu))
11817                kvm_lapic_switch_to_sw_timer(vcpu);
11818
11819        return 0;
11820}
11821
11822static void pi_post_block(struct kvm_vcpu *vcpu)
11823{
11824        if (vcpu->pre_pcpu == -1)
11825                return;
11826
11827        WARN_ON(irqs_disabled());
11828        local_irq_disable();
11829        __pi_post_block(vcpu);
11830        local_irq_enable();
11831}
11832
11833static void vmx_post_block(struct kvm_vcpu *vcpu)
11834{
11835        if (kvm_x86_ops->set_hv_timer)
11836                kvm_lapic_switch_to_hv_timer(vcpu);
11837
11838        pi_post_block(vcpu);
11839}
11840
11841/*
11842 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11843 *
11844 * @kvm: kvm
11845 * @host_irq: host irq of the interrupt
11846 * @guest_irq: gsi of the interrupt
11847 * @set: set or unset PI
11848 * returns 0 on success, < 0 on failure
11849 */
11850static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11851                              uint32_t guest_irq, bool set)
11852{
11853        struct kvm_kernel_irq_routing_entry *e;
11854        struct kvm_irq_routing_table *irq_rt;
11855        struct kvm_lapic_irq irq;
11856        struct kvm_vcpu *vcpu;
11857        struct vcpu_data vcpu_info;
11858        int idx, ret = 0;
11859
11860        if (!kvm_arch_has_assigned_device(kvm) ||
11861                !irq_remapping_cap(IRQ_POSTING_CAP) ||
11862                !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11863                return 0;
11864
11865        idx = srcu_read_lock(&kvm->irq_srcu);
11866        irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11867        if (guest_irq >= irq_rt->nr_rt_entries ||
11868            hlist_empty(&irq_rt->map[guest_irq])) {
11869                pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11870                             guest_irq, irq_rt->nr_rt_entries);
11871                goto out;
11872        }
11873
11874        hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11875                if (e->type != KVM_IRQ_ROUTING_MSI)
11876                        continue;
11877                /*
11878                 * VT-d PI cannot support posting multicast/broadcast
11879                 * interrupts to a vCPU, we still use interrupt remapping
11880                 * for these kind of interrupts.
11881                 *
11882                 * For lowest-priority interrupts, we only support
11883                 * those with single CPU as the destination, e.g. user
11884                 * configures the interrupts via /proc/irq or uses
11885                 * irqbalance to make the interrupts single-CPU.
11886                 *
11887                 * We will support full lowest-priority interrupt later.
11888                 */
11889
11890                kvm_set_msi_irq(kvm, e, &irq);
11891                if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11892                        /*
11893                         * Make sure the IRTE is in remapped mode if
11894                         * we don't handle it in posted mode.
11895                         */
11896                        ret = irq_set_vcpu_affinity(host_irq, NULL);
11897                        if (ret < 0) {
11898                                printk(KERN_INFO
11899                                   "failed to back to remapped mode, irq: %u\n",
11900                                   host_irq);
11901                                goto out;
11902                        }
11903
11904                        continue;
11905                }
11906
11907                vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11908                vcpu_info.vector = irq.vector;
11909
11910                trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11911                                vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11912
11913                if (set)
11914                        ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11915                else
11916                        ret = irq_set_vcpu_affinity(host_irq, NULL);
11917
11918                if (ret < 0) {
11919                        printk(KERN_INFO "%s: failed to update PI IRTE\n",
11920                                        __func__);
11921                        goto out;
11922                }
11923        }
11924
11925        ret = 0;
11926out:
11927        srcu_read_unlock(&kvm->irq_srcu, idx);
11928        return ret;
11929}
11930
11931static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11932{
11933        if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11934                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11935                        FEATURE_CONTROL_LMCE;
11936        else
11937                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11938                        ~FEATURE_CONTROL_LMCE;
11939}
11940
11941static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11942        .cpu_has_kvm_support = cpu_has_kvm_support,
11943        .disabled_by_bios = vmx_disabled_by_bios,
11944        .hardware_setup = hardware_setup,
11945        .hardware_unsetup = hardware_unsetup,
11946        .check_processor_compatibility = vmx_check_processor_compat,
11947        .hardware_enable = hardware_enable,
11948        .hardware_disable = hardware_disable,
11949        .cpu_has_accelerated_tpr = report_flexpriority,
11950        .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11951
11952        .vcpu_create = vmx_create_vcpu,
11953        .vcpu_free = vmx_free_vcpu,
11954        .vcpu_reset = vmx_vcpu_reset,
11955
11956        .prepare_guest_switch = vmx_save_host_state,
11957        .vcpu_load = vmx_vcpu_load,
11958        .vcpu_put = vmx_vcpu_put,
11959
11960        .update_bp_intercept = update_exception_bitmap,
11961        .get_msr = vmx_get_msr,
11962        .set_msr = vmx_set_msr,
11963        .get_segment_base = vmx_get_segment_base,
11964        .get_segment = vmx_get_segment,
11965        .set_segment = vmx_set_segment,
11966        .get_cpl = vmx_get_cpl,
11967        .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11968        .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11969        .decache_cr3 = vmx_decache_cr3,
11970        .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11971        .set_cr0 = vmx_set_cr0,
11972        .set_cr3 = vmx_set_cr3,
11973        .set_cr4 = vmx_set_cr4,
11974        .set_efer = vmx_set_efer,
11975        .get_idt = vmx_get_idt,
11976        .set_idt = vmx_set_idt,
11977        .get_gdt = vmx_get_gdt,
11978        .set_gdt = vmx_set_gdt,
11979        .get_dr6 = vmx_get_dr6,
11980        .set_dr6 = vmx_set_dr6,
11981        .set_dr7 = vmx_set_dr7,
11982        .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11983        .cache_reg = vmx_cache_reg,
11984        .get_rflags = vmx_get_rflags,
11985        .set_rflags = vmx_set_rflags,
11986
11987        .tlb_flush = vmx_flush_tlb,
11988
11989        .run = vmx_vcpu_run,
11990        .handle_exit = vmx_handle_exit,
11991        .skip_emulated_instruction = skip_emulated_instruction,
11992        .set_interrupt_shadow = vmx_set_interrupt_shadow,
11993        .get_interrupt_shadow = vmx_get_interrupt_shadow,
11994        .patch_hypercall = vmx_patch_hypercall,
11995        .set_irq = vmx_inject_irq,
11996        .set_nmi = vmx_inject_nmi,
11997        .queue_exception = vmx_queue_exception,
11998        .cancel_injection = vmx_cancel_injection,
11999        .interrupt_allowed = vmx_interrupt_allowed,
12000        .nmi_allowed = vmx_nmi_allowed,
12001        .get_nmi_mask = vmx_get_nmi_mask,
12002        .set_nmi_mask = vmx_set_nmi_mask,
12003        .enable_nmi_window = enable_nmi_window,
12004        .enable_irq_window = enable_irq_window,
12005        .update_cr8_intercept = update_cr8_intercept,
12006        .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
12007        .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
12008        .get_enable_apicv = vmx_get_enable_apicv,
12009        .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
12010        .load_eoi_exitmap = vmx_load_eoi_exitmap,
12011        .apicv_post_state_restore = vmx_apicv_post_state_restore,
12012        .hwapic_irr_update = vmx_hwapic_irr_update,
12013        .hwapic_isr_update = vmx_hwapic_isr_update,
12014        .sync_pir_to_irr = vmx_sync_pir_to_irr,
12015        .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
12016
12017        .set_tss_addr = vmx_set_tss_addr,
12018        .get_tdp_level = get_ept_level,
12019        .get_mt_mask = vmx_get_mt_mask,
12020
12021        .get_exit_info = vmx_get_exit_info,
12022
12023        .get_lpage_level = vmx_get_lpage_level,
12024
12025        .cpuid_update = vmx_cpuid_update,
12026
12027        .rdtscp_supported = vmx_rdtscp_supported,
12028        .invpcid_supported = vmx_invpcid_supported,
12029
12030        .set_supported_cpuid = vmx_set_supported_cpuid,
12031
12032        .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
12033
12034        .write_tsc_offset = vmx_write_tsc_offset,
12035
12036        .set_tdp_cr3 = vmx_set_cr3,
12037
12038        .check_intercept = vmx_check_intercept,
12039        .handle_external_intr = vmx_handle_external_intr,
12040        .mpx_supported = vmx_mpx_supported,
12041        .xsaves_supported = vmx_xsaves_supported,
12042
12043        .check_nested_events = vmx_check_nested_events,
12044
12045        .sched_in = vmx_sched_in,
12046
12047        .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12048        .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12049        .flush_log_dirty = vmx_flush_log_dirty,
12050        .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
12051        .write_log_dirty = vmx_write_pml_buffer,
12052
12053        .pre_block = vmx_pre_block,
12054        .post_block = vmx_post_block,
12055
12056        .pmu_ops = &intel_pmu_ops,
12057
12058        .update_pi_irte = vmx_update_pi_irte,
12059
12060#ifdef CONFIG_X86_64
12061        .set_hv_timer = vmx_set_hv_timer,
12062        .cancel_hv_timer = vmx_cancel_hv_timer,
12063#endif
12064
12065        .setup_mce = vmx_setup_mce,
12066};
12067
12068static int __init vmx_init(void)
12069{
12070        int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12071                     __alignof__(struct vcpu_vmx), THIS_MODULE);
12072        if (r)
12073                return r;
12074
12075#ifdef CONFIG_KEXEC_CORE
12076        rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12077                           crash_vmclear_local_loaded_vmcss);
12078#endif
12079
12080        return 0;
12081}
12082
12083static void __exit vmx_exit(void)
12084{
12085#ifdef CONFIG_KEXEC_CORE
12086        RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
12087        synchronize_rcu();
12088#endif
12089
12090        kvm_exit();
12091}
12092
12093module_init(vmx_init)
12094module_exit(vmx_exit)
12095