linux/arch/x86/mm/fault.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
   7#include <linux/sched.h>                /* test_thread_flag(), ...      */
   8#include <linux/sched/task_stack.h>     /* task_stack_*(), ...          */
   9#include <linux/kdebug.h>               /* oops_begin/end, ...          */
  10#include <linux/extable.h>              /* search_exception_tables      */
  11#include <linux/bootmem.h>              /* max_low_pfn                  */
  12#include <linux/kprobes.h>              /* NOKPROBE_SYMBOL, ...         */
  13#include <linux/mmiotrace.h>            /* kmmio_handler, ...           */
  14#include <linux/perf_event.h>           /* perf_sw_event                */
  15#include <linux/hugetlb.h>              /* hstate_index_to_shift        */
  16#include <linux/prefetch.h>             /* prefetchw                    */
  17#include <linux/context_tracking.h>     /* exception_enter(), ...       */
  18#include <linux/uaccess.h>              /* faulthandler_disabled()      */
  19
  20#include <asm/cpufeature.h>             /* boot_cpu_has, ...            */
  21#include <asm/traps.h>                  /* dotraplinkage, ...           */
  22#include <asm/pgalloc.h>                /* pgd_*(), ...                 */
  23#include <asm/kmemcheck.h>              /* kmemcheck_*(), ...           */
  24#include <asm/fixmap.h>                 /* VSYSCALL_ADDR                */
  25#include <asm/vsyscall.h>               /* emulate_vsyscall             */
  26#include <asm/vm86.h>                   /* struct vm86                  */
  27#include <asm/mmu_context.h>            /* vma_pkey()                   */
  28
  29#define CREATE_TRACE_POINTS
  30#include <asm/trace/exceptions.h>
  31
  32/*
  33 * Page fault error code bits:
  34 *
  35 *   bit 0 ==    0: no page found       1: protection fault
  36 *   bit 1 ==    0: read access         1: write access
  37 *   bit 2 ==    0: kernel-mode access  1: user-mode access
  38 *   bit 3 ==                           1: use of reserved bit detected
  39 *   bit 4 ==                           1: fault was an instruction fetch
  40 *   bit 5 ==                           1: protection keys block access
  41 */
  42enum x86_pf_error_code {
  43
  44        PF_PROT         =               1 << 0,
  45        PF_WRITE        =               1 << 1,
  46        PF_USER         =               1 << 2,
  47        PF_RSVD         =               1 << 3,
  48        PF_INSTR        =               1 << 4,
  49        PF_PK           =               1 << 5,
  50};
  51
  52/*
  53 * Returns 0 if mmiotrace is disabled, or if the fault is not
  54 * handled by mmiotrace:
  55 */
  56static nokprobe_inline int
  57kmmio_fault(struct pt_regs *regs, unsigned long addr)
  58{
  59        if (unlikely(is_kmmio_active()))
  60                if (kmmio_handler(regs, addr) == 1)
  61                        return -1;
  62        return 0;
  63}
  64
  65static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
  66{
  67        int ret = 0;
  68
  69        /* kprobe_running() needs smp_processor_id() */
  70        if (kprobes_built_in() && !user_mode(regs)) {
  71                preempt_disable();
  72                if (kprobe_running() && kprobe_fault_handler(regs, 14))
  73                        ret = 1;
  74                preempt_enable();
  75        }
  76
  77        return ret;
  78}
  79
  80/*
  81 * Prefetch quirks:
  82 *
  83 * 32-bit mode:
  84 *
  85 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  86 *   Check that here and ignore it.
  87 *
  88 * 64-bit mode:
  89 *
  90 *   Sometimes the CPU reports invalid exceptions on prefetch.
  91 *   Check that here and ignore it.
  92 *
  93 * Opcode checker based on code by Richard Brunner.
  94 */
  95static inline int
  96check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  97                      unsigned char opcode, int *prefetch)
  98{
  99        unsigned char instr_hi = opcode & 0xf0;
 100        unsigned char instr_lo = opcode & 0x0f;
 101
 102        switch (instr_hi) {
 103        case 0x20:
 104        case 0x30:
 105                /*
 106                 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
 107                 * In X86_64 long mode, the CPU will signal invalid
 108                 * opcode if some of these prefixes are present so
 109                 * X86_64 will never get here anyway
 110                 */
 111                return ((instr_lo & 7) == 0x6);
 112#ifdef CONFIG_X86_64
 113        case 0x40:
 114                /*
 115                 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 116                 * Need to figure out under what instruction mode the
 117                 * instruction was issued. Could check the LDT for lm,
 118                 * but for now it's good enough to assume that long
 119                 * mode only uses well known segments or kernel.
 120                 */
 121                return (!user_mode(regs) || user_64bit_mode(regs));
 122#endif
 123        case 0x60:
 124                /* 0x64 thru 0x67 are valid prefixes in all modes. */
 125                return (instr_lo & 0xC) == 0x4;
 126        case 0xF0:
 127                /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 128                return !instr_lo || (instr_lo>>1) == 1;
 129        case 0x00:
 130                /* Prefetch instruction is 0x0F0D or 0x0F18 */
 131                if (probe_kernel_address(instr, opcode))
 132                        return 0;
 133
 134                *prefetch = (instr_lo == 0xF) &&
 135                        (opcode == 0x0D || opcode == 0x18);
 136                return 0;
 137        default:
 138                return 0;
 139        }
 140}
 141
 142static int
 143is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 144{
 145        unsigned char *max_instr;
 146        unsigned char *instr;
 147        int prefetch = 0;
 148
 149        /*
 150         * If it was a exec (instruction fetch) fault on NX page, then
 151         * do not ignore the fault:
 152         */
 153        if (error_code & PF_INSTR)
 154                return 0;
 155
 156        instr = (void *)convert_ip_to_linear(current, regs);
 157        max_instr = instr + 15;
 158
 159        if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
 160                return 0;
 161
 162        while (instr < max_instr) {
 163                unsigned char opcode;
 164
 165                if (probe_kernel_address(instr, opcode))
 166                        break;
 167
 168                instr++;
 169
 170                if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 171                        break;
 172        }
 173        return prefetch;
 174}
 175
 176/*
 177 * A protection key fault means that the PKRU value did not allow
 178 * access to some PTE.  Userspace can figure out what PKRU was
 179 * from the XSAVE state, and this function fills out a field in
 180 * siginfo so userspace can discover which protection key was set
 181 * on the PTE.
 182 *
 183 * If we get here, we know that the hardware signaled a PF_PK
 184 * fault and that there was a VMA once we got in the fault
 185 * handler.  It does *not* guarantee that the VMA we find here
 186 * was the one that we faulted on.
 187 *
 188 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 189 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 190 * 3. T1   : faults...
 191 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 192 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 193 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 194 *           faulted on a pte with its pkey=4.
 195 */
 196static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey)
 197{
 198        /* This is effectively an #ifdef */
 199        if (!boot_cpu_has(X86_FEATURE_OSPKE))
 200                return;
 201
 202        /* Fault not from Protection Keys: nothing to do */
 203        if (si_code != SEGV_PKUERR)
 204                return;
 205        /*
 206         * force_sig_info_fault() is called from a number of
 207         * contexts, some of which have a VMA and some of which
 208         * do not.  The PF_PK handing happens after we have a
 209         * valid VMA, so we should never reach this without a
 210         * valid VMA.
 211         */
 212        if (!pkey) {
 213                WARN_ONCE(1, "PKU fault with no VMA passed in");
 214                info->si_pkey = 0;
 215                return;
 216        }
 217        /*
 218         * si_pkey should be thought of as a strong hint, but not
 219         * absolutely guranteed to be 100% accurate because of
 220         * the race explained above.
 221         */
 222        info->si_pkey = *pkey;
 223}
 224
 225static void
 226force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 227                     struct task_struct *tsk, u32 *pkey, int fault)
 228{
 229        unsigned lsb = 0;
 230        siginfo_t info;
 231
 232        info.si_signo   = si_signo;
 233        info.si_errno   = 0;
 234        info.si_code    = si_code;
 235        info.si_addr    = (void __user *)address;
 236        if (fault & VM_FAULT_HWPOISON_LARGE)
 237                lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 238        if (fault & VM_FAULT_HWPOISON)
 239                lsb = PAGE_SHIFT;
 240        info.si_addr_lsb = lsb;
 241
 242        fill_sig_info_pkey(si_code, &info, pkey);
 243
 244        force_sig_info(si_signo, &info, tsk);
 245}
 246
 247DEFINE_SPINLOCK(pgd_lock);
 248LIST_HEAD(pgd_list);
 249
 250#ifdef CONFIG_X86_32
 251static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 252{
 253        unsigned index = pgd_index(address);
 254        pgd_t *pgd_k;
 255        p4d_t *p4d, *p4d_k;
 256        pud_t *pud, *pud_k;
 257        pmd_t *pmd, *pmd_k;
 258
 259        pgd += index;
 260        pgd_k = init_mm.pgd + index;
 261
 262        if (!pgd_present(*pgd_k))
 263                return NULL;
 264
 265        /*
 266         * set_pgd(pgd, *pgd_k); here would be useless on PAE
 267         * and redundant with the set_pmd() on non-PAE. As would
 268         * set_p4d/set_pud.
 269         */
 270        p4d = p4d_offset(pgd, address);
 271        p4d_k = p4d_offset(pgd_k, address);
 272        if (!p4d_present(*p4d_k))
 273                return NULL;
 274
 275        pud = pud_offset(p4d, address);
 276        pud_k = pud_offset(p4d_k, address);
 277        if (!pud_present(*pud_k))
 278                return NULL;
 279
 280        pmd = pmd_offset(pud, address);
 281        pmd_k = pmd_offset(pud_k, address);
 282        if (!pmd_present(*pmd_k))
 283                return NULL;
 284
 285        if (!pmd_present(*pmd))
 286                set_pmd(pmd, *pmd_k);
 287        else
 288                BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 289
 290        return pmd_k;
 291}
 292
 293void vmalloc_sync_all(void)
 294{
 295        unsigned long address;
 296
 297        if (SHARED_KERNEL_PMD)
 298                return;
 299
 300        for (address = VMALLOC_START & PMD_MASK;
 301             address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
 302             address += PMD_SIZE) {
 303                struct page *page;
 304
 305                spin_lock(&pgd_lock);
 306                list_for_each_entry(page, &pgd_list, lru) {
 307                        spinlock_t *pgt_lock;
 308                        pmd_t *ret;
 309
 310                        /* the pgt_lock only for Xen */
 311                        pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 312
 313                        spin_lock(pgt_lock);
 314                        ret = vmalloc_sync_one(page_address(page), address);
 315                        spin_unlock(pgt_lock);
 316
 317                        if (!ret)
 318                                break;
 319                }
 320                spin_unlock(&pgd_lock);
 321        }
 322}
 323
 324/*
 325 * 32-bit:
 326 *
 327 *   Handle a fault on the vmalloc or module mapping area
 328 */
 329static noinline int vmalloc_fault(unsigned long address)
 330{
 331        unsigned long pgd_paddr;
 332        pmd_t *pmd_k;
 333        pte_t *pte_k;
 334
 335        /* Make sure we are in vmalloc area: */
 336        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 337                return -1;
 338
 339        WARN_ON_ONCE(in_nmi());
 340
 341        /*
 342         * Synchronize this task's top level page-table
 343         * with the 'reference' page table.
 344         *
 345         * Do _not_ use "current" here. We might be inside
 346         * an interrupt in the middle of a task switch..
 347         */
 348        pgd_paddr = read_cr3_pa();
 349        pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 350        if (!pmd_k)
 351                return -1;
 352
 353        if (pmd_huge(*pmd_k))
 354                return 0;
 355
 356        pte_k = pte_offset_kernel(pmd_k, address);
 357        if (!pte_present(*pte_k))
 358                return -1;
 359
 360        return 0;
 361}
 362NOKPROBE_SYMBOL(vmalloc_fault);
 363
 364/*
 365 * Did it hit the DOS screen memory VA from vm86 mode?
 366 */
 367static inline void
 368check_v8086_mode(struct pt_regs *regs, unsigned long address,
 369                 struct task_struct *tsk)
 370{
 371#ifdef CONFIG_VM86
 372        unsigned long bit;
 373
 374        if (!v8086_mode(regs) || !tsk->thread.vm86)
 375                return;
 376
 377        bit = (address - 0xA0000) >> PAGE_SHIFT;
 378        if (bit < 32)
 379                tsk->thread.vm86->screen_bitmap |= 1 << bit;
 380#endif
 381}
 382
 383static bool low_pfn(unsigned long pfn)
 384{
 385        return pfn < max_low_pfn;
 386}
 387
 388static void dump_pagetable(unsigned long address)
 389{
 390        pgd_t *base = __va(read_cr3_pa());
 391        pgd_t *pgd = &base[pgd_index(address)];
 392        p4d_t *p4d;
 393        pud_t *pud;
 394        pmd_t *pmd;
 395        pte_t *pte;
 396
 397#ifdef CONFIG_X86_PAE
 398        pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 399        if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 400                goto out;
 401#define pr_pde pr_cont
 402#else
 403#define pr_pde pr_info
 404#endif
 405        p4d = p4d_offset(pgd, address);
 406        pud = pud_offset(p4d, address);
 407        pmd = pmd_offset(pud, address);
 408        pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 409#undef pr_pde
 410
 411        /*
 412         * We must not directly access the pte in the highpte
 413         * case if the page table is located in highmem.
 414         * And let's rather not kmap-atomic the pte, just in case
 415         * it's allocated already:
 416         */
 417        if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 418                goto out;
 419
 420        pte = pte_offset_kernel(pmd, address);
 421        pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 422out:
 423        pr_cont("\n");
 424}
 425
 426#else /* CONFIG_X86_64: */
 427
 428void vmalloc_sync_all(void)
 429{
 430        sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 431}
 432
 433/*
 434 * 64-bit:
 435 *
 436 *   Handle a fault on the vmalloc area
 437 */
 438static noinline int vmalloc_fault(unsigned long address)
 439{
 440        pgd_t *pgd, *pgd_ref;
 441        p4d_t *p4d, *p4d_ref;
 442        pud_t *pud, *pud_ref;
 443        pmd_t *pmd, *pmd_ref;
 444        pte_t *pte, *pte_ref;
 445
 446        /* Make sure we are in vmalloc area: */
 447        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 448                return -1;
 449
 450        WARN_ON_ONCE(in_nmi());
 451
 452        /*
 453         * Copy kernel mappings over when needed. This can also
 454         * happen within a race in page table update. In the later
 455         * case just flush:
 456         */
 457        pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
 458        pgd_ref = pgd_offset_k(address);
 459        if (pgd_none(*pgd_ref))
 460                return -1;
 461
 462        if (pgd_none(*pgd)) {
 463                set_pgd(pgd, *pgd_ref);
 464                arch_flush_lazy_mmu_mode();
 465        } else if (CONFIG_PGTABLE_LEVELS > 4) {
 466                /*
 467                 * With folded p4d, pgd_none() is always false, so the pgd may
 468                 * point to an empty page table entry and pgd_page_vaddr()
 469                 * will return garbage.
 470                 *
 471                 * We will do the correct sanity check on the p4d level.
 472                 */
 473                BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 474        }
 475
 476        /* With 4-level paging, copying happens on the p4d level. */
 477        p4d = p4d_offset(pgd, address);
 478        p4d_ref = p4d_offset(pgd_ref, address);
 479        if (p4d_none(*p4d_ref))
 480                return -1;
 481
 482        if (p4d_none(*p4d)) {
 483                set_p4d(p4d, *p4d_ref);
 484                arch_flush_lazy_mmu_mode();
 485        } else {
 486                BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
 487        }
 488
 489        /*
 490         * Below here mismatches are bugs because these lower tables
 491         * are shared:
 492         */
 493
 494        pud = pud_offset(p4d, address);
 495        pud_ref = pud_offset(p4d_ref, address);
 496        if (pud_none(*pud_ref))
 497                return -1;
 498
 499        if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
 500                BUG();
 501
 502        if (pud_huge(*pud))
 503                return 0;
 504
 505        pmd = pmd_offset(pud, address);
 506        pmd_ref = pmd_offset(pud_ref, address);
 507        if (pmd_none(*pmd_ref))
 508                return -1;
 509
 510        if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
 511                BUG();
 512
 513        if (pmd_huge(*pmd))
 514                return 0;
 515
 516        pte_ref = pte_offset_kernel(pmd_ref, address);
 517        if (!pte_present(*pte_ref))
 518                return -1;
 519
 520        pte = pte_offset_kernel(pmd, address);
 521
 522        /*
 523         * Don't use pte_page here, because the mappings can point
 524         * outside mem_map, and the NUMA hash lookup cannot handle
 525         * that:
 526         */
 527        if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
 528                BUG();
 529
 530        return 0;
 531}
 532NOKPROBE_SYMBOL(vmalloc_fault);
 533
 534#ifdef CONFIG_CPU_SUP_AMD
 535static const char errata93_warning[] =
 536KERN_ERR 
 537"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 538"******* Working around it, but it may cause SEGVs or burn power.\n"
 539"******* Please consider a BIOS update.\n"
 540"******* Disabling USB legacy in the BIOS may also help.\n";
 541#endif
 542
 543/*
 544 * No vm86 mode in 64-bit mode:
 545 */
 546static inline void
 547check_v8086_mode(struct pt_regs *regs, unsigned long address,
 548                 struct task_struct *tsk)
 549{
 550}
 551
 552static int bad_address(void *p)
 553{
 554        unsigned long dummy;
 555
 556        return probe_kernel_address((unsigned long *)p, dummy);
 557}
 558
 559static void dump_pagetable(unsigned long address)
 560{
 561        pgd_t *base = __va(read_cr3_pa());
 562        pgd_t *pgd = base + pgd_index(address);
 563        p4d_t *p4d;
 564        pud_t *pud;
 565        pmd_t *pmd;
 566        pte_t *pte;
 567
 568        if (bad_address(pgd))
 569                goto bad;
 570
 571        pr_info("PGD %lx ", pgd_val(*pgd));
 572
 573        if (!pgd_present(*pgd))
 574                goto out;
 575
 576        p4d = p4d_offset(pgd, address);
 577        if (bad_address(p4d))
 578                goto bad;
 579
 580        pr_cont("P4D %lx ", p4d_val(*p4d));
 581        if (!p4d_present(*p4d) || p4d_large(*p4d))
 582                goto out;
 583
 584        pud = pud_offset(p4d, address);
 585        if (bad_address(pud))
 586                goto bad;
 587
 588        pr_cont("PUD %lx ", pud_val(*pud));
 589        if (!pud_present(*pud) || pud_large(*pud))
 590                goto out;
 591
 592        pmd = pmd_offset(pud, address);
 593        if (bad_address(pmd))
 594                goto bad;
 595
 596        pr_cont("PMD %lx ", pmd_val(*pmd));
 597        if (!pmd_present(*pmd) || pmd_large(*pmd))
 598                goto out;
 599
 600        pte = pte_offset_kernel(pmd, address);
 601        if (bad_address(pte))
 602                goto bad;
 603
 604        pr_cont("PTE %lx", pte_val(*pte));
 605out:
 606        pr_cont("\n");
 607        return;
 608bad:
 609        pr_info("BAD\n");
 610}
 611
 612#endif /* CONFIG_X86_64 */
 613
 614/*
 615 * Workaround for K8 erratum #93 & buggy BIOS.
 616 *
 617 * BIOS SMM functions are required to use a specific workaround
 618 * to avoid corruption of the 64bit RIP register on C stepping K8.
 619 *
 620 * A lot of BIOS that didn't get tested properly miss this.
 621 *
 622 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 623 * Try to work around it here.
 624 *
 625 * Note we only handle faults in kernel here.
 626 * Does nothing on 32-bit.
 627 */
 628static int is_errata93(struct pt_regs *regs, unsigned long address)
 629{
 630#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 631        if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 632            || boot_cpu_data.x86 != 0xf)
 633                return 0;
 634
 635        if (address != regs->ip)
 636                return 0;
 637
 638        if ((address >> 32) != 0)
 639                return 0;
 640
 641        address |= 0xffffffffUL << 32;
 642        if ((address >= (u64)_stext && address <= (u64)_etext) ||
 643            (address >= MODULES_VADDR && address <= MODULES_END)) {
 644                printk_once(errata93_warning);
 645                regs->ip = address;
 646                return 1;
 647        }
 648#endif
 649        return 0;
 650}
 651
 652/*
 653 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 654 * to illegal addresses >4GB.
 655 *
 656 * We catch this in the page fault handler because these addresses
 657 * are not reachable. Just detect this case and return.  Any code
 658 * segment in LDT is compatibility mode.
 659 */
 660static int is_errata100(struct pt_regs *regs, unsigned long address)
 661{
 662#ifdef CONFIG_X86_64
 663        if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 664                return 1;
 665#endif
 666        return 0;
 667}
 668
 669static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 670{
 671#ifdef CONFIG_X86_F00F_BUG
 672        unsigned long nr;
 673
 674        /*
 675         * Pentium F0 0F C7 C8 bug workaround:
 676         */
 677        if (boot_cpu_has_bug(X86_BUG_F00F)) {
 678                nr = (address - idt_descr.address) >> 3;
 679
 680                if (nr == 6) {
 681                        do_invalid_op(regs, 0);
 682                        return 1;
 683                }
 684        }
 685#endif
 686        return 0;
 687}
 688
 689static const char nx_warning[] = KERN_CRIT
 690"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 691static const char smep_warning[] = KERN_CRIT
 692"unable to execute userspace code (SMEP?) (uid: %d)\n";
 693
 694static void
 695show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 696                unsigned long address)
 697{
 698        if (!oops_may_print())
 699                return;
 700
 701        if (error_code & PF_INSTR) {
 702                unsigned int level;
 703                pgd_t *pgd;
 704                pte_t *pte;
 705
 706                pgd = __va(read_cr3_pa());
 707                pgd += pgd_index(address);
 708
 709                pte = lookup_address_in_pgd(pgd, address, &level);
 710
 711                if (pte && pte_present(*pte) && !pte_exec(*pte))
 712                        printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
 713                if (pte && pte_present(*pte) && pte_exec(*pte) &&
 714                                (pgd_flags(*pgd) & _PAGE_USER) &&
 715                                (__read_cr4() & X86_CR4_SMEP))
 716                        printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
 717        }
 718
 719        printk(KERN_ALERT "BUG: unable to handle kernel ");
 720        if (address < PAGE_SIZE)
 721                printk(KERN_CONT "NULL pointer dereference");
 722        else
 723                printk(KERN_CONT "paging request");
 724
 725        printk(KERN_CONT " at %p\n", (void *) address);
 726        printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
 727
 728        dump_pagetable(address);
 729}
 730
 731static noinline void
 732pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 733            unsigned long address)
 734{
 735        struct task_struct *tsk;
 736        unsigned long flags;
 737        int sig;
 738
 739        flags = oops_begin();
 740        tsk = current;
 741        sig = SIGKILL;
 742
 743        printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 744               tsk->comm, address);
 745        dump_pagetable(address);
 746
 747        tsk->thread.cr2         = address;
 748        tsk->thread.trap_nr     = X86_TRAP_PF;
 749        tsk->thread.error_code  = error_code;
 750
 751        if (__die("Bad pagetable", regs, error_code))
 752                sig = 0;
 753
 754        oops_end(flags, regs, sig);
 755}
 756
 757static noinline void
 758no_context(struct pt_regs *regs, unsigned long error_code,
 759           unsigned long address, int signal, int si_code)
 760{
 761        struct task_struct *tsk = current;
 762        unsigned long flags;
 763        int sig;
 764
 765        /* Are we prepared to handle this kernel fault? */
 766        if (fixup_exception(regs, X86_TRAP_PF)) {
 767                /*
 768                 * Any interrupt that takes a fault gets the fixup. This makes
 769                 * the below recursive fault logic only apply to a faults from
 770                 * task context.
 771                 */
 772                if (in_interrupt())
 773                        return;
 774
 775                /*
 776                 * Per the above we're !in_interrupt(), aka. task context.
 777                 *
 778                 * In this case we need to make sure we're not recursively
 779                 * faulting through the emulate_vsyscall() logic.
 780                 */
 781                if (current->thread.sig_on_uaccess_err && signal) {
 782                        tsk->thread.trap_nr = X86_TRAP_PF;
 783                        tsk->thread.error_code = error_code | PF_USER;
 784                        tsk->thread.cr2 = address;
 785
 786                        /* XXX: hwpoison faults will set the wrong code. */
 787                        force_sig_info_fault(signal, si_code, address,
 788                                             tsk, NULL, 0);
 789                }
 790
 791                /*
 792                 * Barring that, we can do the fixup and be happy.
 793                 */
 794                return;
 795        }
 796
 797#ifdef CONFIG_VMAP_STACK
 798        /*
 799         * Stack overflow?  During boot, we can fault near the initial
 800         * stack in the direct map, but that's not an overflow -- check
 801         * that we're in vmalloc space to avoid this.
 802         */
 803        if (is_vmalloc_addr((void *)address) &&
 804            (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
 805             address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
 806                unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
 807                /*
 808                 * We're likely to be running with very little stack space
 809                 * left.  It's plausible that we'd hit this condition but
 810                 * double-fault even before we get this far, in which case
 811                 * we're fine: the double-fault handler will deal with it.
 812                 *
 813                 * We don't want to make it all the way into the oops code
 814                 * and then double-fault, though, because we're likely to
 815                 * break the console driver and lose most of the stack dump.
 816                 */
 817                asm volatile ("movq %[stack], %%rsp\n\t"
 818                              "call handle_stack_overflow\n\t"
 819                              "1: jmp 1b"
 820                              : ASM_CALL_CONSTRAINT
 821                              : "D" ("kernel stack overflow (page fault)"),
 822                                "S" (regs), "d" (address),
 823                                [stack] "rm" (stack));
 824                unreachable();
 825        }
 826#endif
 827
 828        /*
 829         * 32-bit:
 830         *
 831         *   Valid to do another page fault here, because if this fault
 832         *   had been triggered by is_prefetch fixup_exception would have
 833         *   handled it.
 834         *
 835         * 64-bit:
 836         *
 837         *   Hall of shame of CPU/BIOS bugs.
 838         */
 839        if (is_prefetch(regs, error_code, address))
 840                return;
 841
 842        if (is_errata93(regs, address))
 843                return;
 844
 845        /*
 846         * Oops. The kernel tried to access some bad page. We'll have to
 847         * terminate things with extreme prejudice:
 848         */
 849        flags = oops_begin();
 850
 851        show_fault_oops(regs, error_code, address);
 852
 853        if (task_stack_end_corrupted(tsk))
 854                printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 855
 856        tsk->thread.cr2         = address;
 857        tsk->thread.trap_nr     = X86_TRAP_PF;
 858        tsk->thread.error_code  = error_code;
 859
 860        sig = SIGKILL;
 861        if (__die("Oops", regs, error_code))
 862                sig = 0;
 863
 864        /* Executive summary in case the body of the oops scrolled away */
 865        printk(KERN_DEFAULT "CR2: %016lx\n", address);
 866
 867        oops_end(flags, regs, sig);
 868}
 869
 870/*
 871 * Print out info about fatal segfaults, if the show_unhandled_signals
 872 * sysctl is set:
 873 */
 874static inline void
 875show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 876                unsigned long address, struct task_struct *tsk)
 877{
 878        if (!unhandled_signal(tsk, SIGSEGV))
 879                return;
 880
 881        if (!printk_ratelimit())
 882                return;
 883
 884        printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
 885                task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 886                tsk->comm, task_pid_nr(tsk), address,
 887                (void *)regs->ip, (void *)regs->sp, error_code);
 888
 889        print_vma_addr(KERN_CONT " in ", regs->ip);
 890
 891        printk(KERN_CONT "\n");
 892}
 893
 894static void
 895__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 896                       unsigned long address, u32 *pkey, int si_code)
 897{
 898        struct task_struct *tsk = current;
 899
 900        /* User mode accesses just cause a SIGSEGV */
 901        if (error_code & PF_USER) {
 902                /*
 903                 * It's possible to have interrupts off here:
 904                 */
 905                local_irq_enable();
 906
 907                /*
 908                 * Valid to do another page fault here because this one came
 909                 * from user space:
 910                 */
 911                if (is_prefetch(regs, error_code, address))
 912                        return;
 913
 914                if (is_errata100(regs, address))
 915                        return;
 916
 917#ifdef CONFIG_X86_64
 918                /*
 919                 * Instruction fetch faults in the vsyscall page might need
 920                 * emulation.
 921                 */
 922                if (unlikely((error_code & PF_INSTR) &&
 923                             ((address & ~0xfff) == VSYSCALL_ADDR))) {
 924                        if (emulate_vsyscall(regs, address))
 925                                return;
 926                }
 927#endif
 928
 929                /*
 930                 * To avoid leaking information about the kernel page table
 931                 * layout, pretend that user-mode accesses to kernel addresses
 932                 * are always protection faults.
 933                 */
 934                if (address >= TASK_SIZE_MAX)
 935                        error_code |= PF_PROT;
 936
 937                if (likely(show_unhandled_signals))
 938                        show_signal_msg(regs, error_code, address, tsk);
 939
 940                tsk->thread.cr2         = address;
 941                tsk->thread.error_code  = error_code;
 942                tsk->thread.trap_nr     = X86_TRAP_PF;
 943
 944                force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
 945
 946                return;
 947        }
 948
 949        if (is_f00f_bug(regs, address))
 950                return;
 951
 952        no_context(regs, error_code, address, SIGSEGV, si_code);
 953}
 954
 955static noinline void
 956bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 957                     unsigned long address, u32 *pkey)
 958{
 959        __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
 960}
 961
 962static void
 963__bad_area(struct pt_regs *regs, unsigned long error_code,
 964           unsigned long address,  struct vm_area_struct *vma, int si_code)
 965{
 966        struct mm_struct *mm = current->mm;
 967        u32 pkey;
 968
 969        if (vma)
 970                pkey = vma_pkey(vma);
 971
 972        /*
 973         * Something tried to access memory that isn't in our memory map..
 974         * Fix it, but check if it's kernel or user first..
 975         */
 976        up_read(&mm->mmap_sem);
 977
 978        __bad_area_nosemaphore(regs, error_code, address,
 979                               (vma) ? &pkey : NULL, si_code);
 980}
 981
 982static noinline void
 983bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 984{
 985        __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
 986}
 987
 988static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 989                struct vm_area_struct *vma)
 990{
 991        /* This code is always called on the current mm */
 992        bool foreign = false;
 993
 994        if (!boot_cpu_has(X86_FEATURE_OSPKE))
 995                return false;
 996        if (error_code & PF_PK)
 997                return true;
 998        /* this checks permission keys on the VMA: */
 999        if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1000                                (error_code & PF_INSTR), foreign))
1001                return true;
1002        return false;
1003}
1004
1005static noinline void
1006bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
1007                      unsigned long address, struct vm_area_struct *vma)
1008{
1009        /*
1010         * This OSPKE check is not strictly necessary at runtime.
1011         * But, doing it this way allows compiler optimizations
1012         * if pkeys are compiled out.
1013         */
1014        if (bad_area_access_from_pkeys(error_code, vma))
1015                __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
1016        else
1017                __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
1018}
1019
1020static void
1021do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1022          u32 *pkey, unsigned int fault)
1023{
1024        struct task_struct *tsk = current;
1025        int code = BUS_ADRERR;
1026
1027        /* Kernel mode? Handle exceptions or die: */
1028        if (!(error_code & PF_USER)) {
1029                no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1030                return;
1031        }
1032
1033        /* User-space => ok to do another page fault: */
1034        if (is_prefetch(regs, error_code, address))
1035                return;
1036
1037        tsk->thread.cr2         = address;
1038        tsk->thread.error_code  = error_code;
1039        tsk->thread.trap_nr     = X86_TRAP_PF;
1040
1041#ifdef CONFIG_MEMORY_FAILURE
1042        if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1043                printk(KERN_ERR
1044        "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1045                        tsk->comm, tsk->pid, address);
1046                code = BUS_MCEERR_AR;
1047        }
1048#endif
1049        force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1050}
1051
1052static noinline void
1053mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1054               unsigned long address, u32 *pkey, unsigned int fault)
1055{
1056        if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
1057                no_context(regs, error_code, address, 0, 0);
1058                return;
1059        }
1060
1061        if (fault & VM_FAULT_OOM) {
1062                /* Kernel mode? Handle exceptions or die: */
1063                if (!(error_code & PF_USER)) {
1064                        no_context(regs, error_code, address,
1065                                   SIGSEGV, SEGV_MAPERR);
1066                        return;
1067                }
1068
1069                /*
1070                 * We ran out of memory, call the OOM killer, and return the
1071                 * userspace (which will retry the fault, or kill us if we got
1072                 * oom-killed):
1073                 */
1074                pagefault_out_of_memory();
1075        } else {
1076                if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1077                             VM_FAULT_HWPOISON_LARGE))
1078                        do_sigbus(regs, error_code, address, pkey, fault);
1079                else if (fault & VM_FAULT_SIGSEGV)
1080                        bad_area_nosemaphore(regs, error_code, address, pkey);
1081                else
1082                        BUG();
1083        }
1084}
1085
1086static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1087{
1088        if ((error_code & PF_WRITE) && !pte_write(*pte))
1089                return 0;
1090
1091        if ((error_code & PF_INSTR) && !pte_exec(*pte))
1092                return 0;
1093        /*
1094         * Note: We do not do lazy flushing on protection key
1095         * changes, so no spurious fault will ever set PF_PK.
1096         */
1097        if ((error_code & PF_PK))
1098                return 1;
1099
1100        return 1;
1101}
1102
1103/*
1104 * Handle a spurious fault caused by a stale TLB entry.
1105 *
1106 * This allows us to lazily refresh the TLB when increasing the
1107 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1108 * eagerly is very expensive since that implies doing a full
1109 * cross-processor TLB flush, even if no stale TLB entries exist
1110 * on other processors.
1111 *
1112 * Spurious faults may only occur if the TLB contains an entry with
1113 * fewer permission than the page table entry.  Non-present (P = 0)
1114 * and reserved bit (R = 1) faults are never spurious.
1115 *
1116 * There are no security implications to leaving a stale TLB when
1117 * increasing the permissions on a page.
1118 *
1119 * Returns non-zero if a spurious fault was handled, zero otherwise.
1120 *
1121 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1122 * (Optional Invalidation).
1123 */
1124static noinline int
1125spurious_fault(unsigned long error_code, unsigned long address)
1126{
1127        pgd_t *pgd;
1128        p4d_t *p4d;
1129        pud_t *pud;
1130        pmd_t *pmd;
1131        pte_t *pte;
1132        int ret;
1133
1134        /*
1135         * Only writes to RO or instruction fetches from NX may cause
1136         * spurious faults.
1137         *
1138         * These could be from user or supervisor accesses but the TLB
1139         * is only lazily flushed after a kernel mapping protection
1140         * change, so user accesses are not expected to cause spurious
1141         * faults.
1142         */
1143        if (error_code != (PF_WRITE | PF_PROT)
1144            && error_code != (PF_INSTR | PF_PROT))
1145                return 0;
1146
1147        pgd = init_mm.pgd + pgd_index(address);
1148        if (!pgd_present(*pgd))
1149                return 0;
1150
1151        p4d = p4d_offset(pgd, address);
1152        if (!p4d_present(*p4d))
1153                return 0;
1154
1155        if (p4d_large(*p4d))
1156                return spurious_fault_check(error_code, (pte_t *) p4d);
1157
1158        pud = pud_offset(p4d, address);
1159        if (!pud_present(*pud))
1160                return 0;
1161
1162        if (pud_large(*pud))
1163                return spurious_fault_check(error_code, (pte_t *) pud);
1164
1165        pmd = pmd_offset(pud, address);
1166        if (!pmd_present(*pmd))
1167                return 0;
1168
1169        if (pmd_large(*pmd))
1170                return spurious_fault_check(error_code, (pte_t *) pmd);
1171
1172        pte = pte_offset_kernel(pmd, address);
1173        if (!pte_present(*pte))
1174                return 0;
1175
1176        ret = spurious_fault_check(error_code, pte);
1177        if (!ret)
1178                return 0;
1179
1180        /*
1181         * Make sure we have permissions in PMD.
1182         * If not, then there's a bug in the page tables:
1183         */
1184        ret = spurious_fault_check(error_code, (pte_t *) pmd);
1185        WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1186
1187        return ret;
1188}
1189NOKPROBE_SYMBOL(spurious_fault);
1190
1191int show_unhandled_signals = 1;
1192
1193static inline int
1194access_error(unsigned long error_code, struct vm_area_struct *vma)
1195{
1196        /* This is only called for the current mm, so: */
1197        bool foreign = false;
1198
1199        /*
1200         * Read or write was blocked by protection keys.  This is
1201         * always an unconditional error and can never result in
1202         * a follow-up action to resolve the fault, like a COW.
1203         */
1204        if (error_code & PF_PK)
1205                return 1;
1206
1207        /*
1208         * Make sure to check the VMA so that we do not perform
1209         * faults just to hit a PF_PK as soon as we fill in a
1210         * page.
1211         */
1212        if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1213                                (error_code & PF_INSTR), foreign))
1214                return 1;
1215
1216        if (error_code & PF_WRITE) {
1217                /* write, present and write, not present: */
1218                if (unlikely(!(vma->vm_flags & VM_WRITE)))
1219                        return 1;
1220                return 0;
1221        }
1222
1223        /* read, present: */
1224        if (unlikely(error_code & PF_PROT))
1225                return 1;
1226
1227        /* read, not present: */
1228        if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1229                return 1;
1230
1231        return 0;
1232}
1233
1234static int fault_in_kernel_space(unsigned long address)
1235{
1236        return address >= TASK_SIZE_MAX;
1237}
1238
1239static inline bool smap_violation(int error_code, struct pt_regs *regs)
1240{
1241        if (!IS_ENABLED(CONFIG_X86_SMAP))
1242                return false;
1243
1244        if (!static_cpu_has(X86_FEATURE_SMAP))
1245                return false;
1246
1247        if (error_code & PF_USER)
1248                return false;
1249
1250        if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1251                return false;
1252
1253        return true;
1254}
1255
1256/*
1257 * This routine handles page faults.  It determines the address,
1258 * and the problem, and then passes it off to one of the appropriate
1259 * routines.
1260 */
1261static noinline void
1262__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1263                unsigned long address)
1264{
1265        struct vm_area_struct *vma;
1266        struct task_struct *tsk;
1267        struct mm_struct *mm;
1268        int fault, major = 0;
1269        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1270        u32 pkey;
1271
1272        tsk = current;
1273        mm = tsk->mm;
1274
1275        /*
1276         * Detect and handle instructions that would cause a page fault for
1277         * both a tracked kernel page and a userspace page.
1278         */
1279        if (kmemcheck_active(regs))
1280                kmemcheck_hide(regs);
1281        prefetchw(&mm->mmap_sem);
1282
1283        if (unlikely(kmmio_fault(regs, address)))
1284                return;
1285
1286        /*
1287         * We fault-in kernel-space virtual memory on-demand. The
1288         * 'reference' page table is init_mm.pgd.
1289         *
1290         * NOTE! We MUST NOT take any locks for this case. We may
1291         * be in an interrupt or a critical region, and should
1292         * only copy the information from the master page table,
1293         * nothing more.
1294         *
1295         * This verifies that the fault happens in kernel space
1296         * (error_code & 4) == 0, and that the fault was not a
1297         * protection error (error_code & 9) == 0.
1298         */
1299        if (unlikely(fault_in_kernel_space(address))) {
1300                if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1301                        if (vmalloc_fault(address) >= 0)
1302                                return;
1303
1304                        if (kmemcheck_fault(regs, address, error_code))
1305                                return;
1306                }
1307
1308                /* Can handle a stale RO->RW TLB: */
1309                if (spurious_fault(error_code, address))
1310                        return;
1311
1312                /* kprobes don't want to hook the spurious faults: */
1313                if (kprobes_fault(regs))
1314                        return;
1315                /*
1316                 * Don't take the mm semaphore here. If we fixup a prefetch
1317                 * fault we could otherwise deadlock:
1318                 */
1319                bad_area_nosemaphore(regs, error_code, address, NULL);
1320
1321                return;
1322        }
1323
1324        /* kprobes don't want to hook the spurious faults: */
1325        if (unlikely(kprobes_fault(regs)))
1326                return;
1327
1328        if (unlikely(error_code & PF_RSVD))
1329                pgtable_bad(regs, error_code, address);
1330
1331        if (unlikely(smap_violation(error_code, regs))) {
1332                bad_area_nosemaphore(regs, error_code, address, NULL);
1333                return;
1334        }
1335
1336        /*
1337         * If we're in an interrupt, have no user context or are running
1338         * in a region with pagefaults disabled then we must not take the fault
1339         */
1340        if (unlikely(faulthandler_disabled() || !mm)) {
1341                bad_area_nosemaphore(regs, error_code, address, NULL);
1342                return;
1343        }
1344
1345        /*
1346         * It's safe to allow irq's after cr2 has been saved and the
1347         * vmalloc fault has been handled.
1348         *
1349         * User-mode registers count as a user access even for any
1350         * potential system fault or CPU buglet:
1351         */
1352        if (user_mode(regs)) {
1353                local_irq_enable();
1354                error_code |= PF_USER;
1355                flags |= FAULT_FLAG_USER;
1356        } else {
1357                if (regs->flags & X86_EFLAGS_IF)
1358                        local_irq_enable();
1359        }
1360
1361        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1362
1363        if (error_code & PF_WRITE)
1364                flags |= FAULT_FLAG_WRITE;
1365        if (error_code & PF_INSTR)
1366                flags |= FAULT_FLAG_INSTRUCTION;
1367
1368        /*
1369         * When running in the kernel we expect faults to occur only to
1370         * addresses in user space.  All other faults represent errors in
1371         * the kernel and should generate an OOPS.  Unfortunately, in the
1372         * case of an erroneous fault occurring in a code path which already
1373         * holds mmap_sem we will deadlock attempting to validate the fault
1374         * against the address space.  Luckily the kernel only validly
1375         * references user space from well defined areas of code, which are
1376         * listed in the exceptions table.
1377         *
1378         * As the vast majority of faults will be valid we will only perform
1379         * the source reference check when there is a possibility of a
1380         * deadlock. Attempt to lock the address space, if we cannot we then
1381         * validate the source. If this is invalid we can skip the address
1382         * space check, thus avoiding the deadlock:
1383         */
1384        if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1385                if ((error_code & PF_USER) == 0 &&
1386                    !search_exception_tables(regs->ip)) {
1387                        bad_area_nosemaphore(regs, error_code, address, NULL);
1388                        return;
1389                }
1390retry:
1391                down_read(&mm->mmap_sem);
1392        } else {
1393                /*
1394                 * The above down_read_trylock() might have succeeded in
1395                 * which case we'll have missed the might_sleep() from
1396                 * down_read():
1397                 */
1398                might_sleep();
1399        }
1400
1401        vma = find_vma(mm, address);
1402        if (unlikely(!vma)) {
1403                bad_area(regs, error_code, address);
1404                return;
1405        }
1406        if (likely(vma->vm_start <= address))
1407                goto good_area;
1408        if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1409                bad_area(regs, error_code, address);
1410                return;
1411        }
1412        if (error_code & PF_USER) {
1413                /*
1414                 * Accessing the stack below %sp is always a bug.
1415                 * The large cushion allows instructions like enter
1416                 * and pusha to work. ("enter $65535, $31" pushes
1417                 * 32 pointers and then decrements %sp by 65535.)
1418                 */
1419                if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1420                        bad_area(regs, error_code, address);
1421                        return;
1422                }
1423        }
1424        if (unlikely(expand_stack(vma, address))) {
1425                bad_area(regs, error_code, address);
1426                return;
1427        }
1428
1429        /*
1430         * Ok, we have a good vm_area for this memory access, so
1431         * we can handle it..
1432         */
1433good_area:
1434        if (unlikely(access_error(error_code, vma))) {
1435                bad_area_access_error(regs, error_code, address, vma);
1436                return;
1437        }
1438
1439        /*
1440         * If for any reason at all we couldn't handle the fault,
1441         * make sure we exit gracefully rather than endlessly redo
1442         * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1443         * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1444         *
1445         * Note that handle_userfault() may also release and reacquire mmap_sem
1446         * (and not return with VM_FAULT_RETRY), when returning to userland to
1447         * repeat the page fault later with a VM_FAULT_NOPAGE retval
1448         * (potentially after handling any pending signal during the return to
1449         * userland). The return to userland is identified whenever
1450         * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1451         * Thus we have to be careful about not touching vma after handling the
1452         * fault, so we read the pkey beforehand.
1453         */
1454        pkey = vma_pkey(vma);
1455        fault = handle_mm_fault(vma, address, flags);
1456        major |= fault & VM_FAULT_MAJOR;
1457
1458        /*
1459         * If we need to retry the mmap_sem has already been released,
1460         * and if there is a fatal signal pending there is no guarantee
1461         * that we made any progress. Handle this case first.
1462         */
1463        if (unlikely(fault & VM_FAULT_RETRY)) {
1464                /* Retry at most once */
1465                if (flags & FAULT_FLAG_ALLOW_RETRY) {
1466                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
1467                        flags |= FAULT_FLAG_TRIED;
1468                        if (!fatal_signal_pending(tsk))
1469                                goto retry;
1470                }
1471
1472                /* User mode? Just return to handle the fatal exception */
1473                if (flags & FAULT_FLAG_USER)
1474                        return;
1475
1476                /* Not returning to user mode? Handle exceptions or die: */
1477                no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1478                return;
1479        }
1480
1481        up_read(&mm->mmap_sem);
1482        if (unlikely(fault & VM_FAULT_ERROR)) {
1483                mm_fault_error(regs, error_code, address, &pkey, fault);
1484                return;
1485        }
1486
1487        /*
1488         * Major/minor page fault accounting. If any of the events
1489         * returned VM_FAULT_MAJOR, we account it as a major fault.
1490         */
1491        if (major) {
1492                tsk->maj_flt++;
1493                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1494        } else {
1495                tsk->min_flt++;
1496                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1497        }
1498
1499        check_v8086_mode(regs, address, tsk);
1500}
1501NOKPROBE_SYMBOL(__do_page_fault);
1502
1503static nokprobe_inline void
1504trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1505                         unsigned long error_code)
1506{
1507        if (user_mode(regs))
1508                trace_page_fault_user(address, regs, error_code);
1509        else
1510                trace_page_fault_kernel(address, regs, error_code);
1511}
1512
1513/*
1514 * We must have this function blacklisted from kprobes, tagged with notrace
1515 * and call read_cr2() before calling anything else. To avoid calling any
1516 * kind of tracing machinery before we've observed the CR2 value.
1517 *
1518 * exception_{enter,exit}() contains all sorts of tracepoints.
1519 */
1520dotraplinkage void notrace
1521do_page_fault(struct pt_regs *regs, unsigned long error_code)
1522{
1523        unsigned long address = read_cr2(); /* Get the faulting address */
1524        enum ctx_state prev_state;
1525
1526        prev_state = exception_enter();
1527        if (trace_pagefault_enabled())
1528                trace_page_fault_entries(address, regs, error_code);
1529
1530        __do_page_fault(regs, error_code, address);
1531        exception_exit(prev_state);
1532}
1533NOKPROBE_SYMBOL(do_page_fault);
1534