linux/drivers/clocksource/sh_cmt.c
<<
>>
Prefs
   1/*
   2 * SuperH Timer Support - CMT
   3 *
   4 *  Copyright (C) 2008 Magnus Damm
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/init.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/ioport.h>
  25#include <linux/irq.h>
  26#include <linux/module.h>
  27#include <linux/of.h>
  28#include <linux/platform_device.h>
  29#include <linux/pm_domain.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/sh_timer.h>
  32#include <linux/slab.h>
  33#include <linux/spinlock.h>
  34
  35struct sh_cmt_device;
  36
  37/*
  38 * The CMT comes in 5 different identified flavours, depending not only on the
  39 * SoC but also on the particular instance. The following table lists the main
  40 * characteristics of those flavours.
  41 *
  42 *                      16B     32B     32B-F   48B     48B-2
  43 * -----------------------------------------------------------------------------
  44 * Channels             2       1/4     1       6       2/8
  45 * Control Width        16      16      16      16      32
  46 * Counter Width        16      32      32      32/48   32/48
  47 * Shared Start/Stop    Y       Y       Y       Y       N
  48 *
  49 * The 48-bit gen2 version has a per-channel start/stop register located in the
  50 * channel registers block. All other versions have a shared start/stop register
  51 * located in the global space.
  52 *
  53 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  54 * infers the start/stop bit position in the control register and the channel
  55 * registers block address. Some CMT instances have a subset of channels
  56 * available, in which case the index in the documentation doesn't match the
  57 * "real" index as implemented in hardware. This is for instance the case with
  58 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  59 * in the documentation but using start/stop bit 5 and having its registers
  60 * block at 0x60.
  61 *
  62 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  63 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  64 */
  65
  66enum sh_cmt_model {
  67        SH_CMT_16BIT,
  68        SH_CMT_32BIT,
  69        SH_CMT_32BIT_FAST,
  70        SH_CMT_48BIT,
  71        SH_CMT_48BIT_GEN2,
  72};
  73
  74struct sh_cmt_info {
  75        enum sh_cmt_model model;
  76
  77        unsigned long width; /* 16 or 32 bit version of hardware block */
  78        unsigned long overflow_bit;
  79        unsigned long clear_bits;
  80
  81        /* callbacks for CMSTR and CMCSR access */
  82        unsigned long (*read_control)(void __iomem *base, unsigned long offs);
  83        void (*write_control)(void __iomem *base, unsigned long offs,
  84                              unsigned long value);
  85
  86        /* callbacks for CMCNT and CMCOR access */
  87        unsigned long (*read_count)(void __iomem *base, unsigned long offs);
  88        void (*write_count)(void __iomem *base, unsigned long offs,
  89                            unsigned long value);
  90};
  91
  92struct sh_cmt_channel {
  93        struct sh_cmt_device *cmt;
  94
  95        unsigned int index;     /* Index in the documentation */
  96        unsigned int hwidx;     /* Real hardware index */
  97
  98        void __iomem *iostart;
  99        void __iomem *ioctrl;
 100
 101        unsigned int timer_bit;
 102        unsigned long flags;
 103        unsigned long match_value;
 104        unsigned long next_match_value;
 105        unsigned long max_match_value;
 106        raw_spinlock_t lock;
 107        struct clock_event_device ced;
 108        struct clocksource cs;
 109        unsigned long total_cycles;
 110        bool cs_enabled;
 111};
 112
 113struct sh_cmt_device {
 114        struct platform_device *pdev;
 115
 116        const struct sh_cmt_info *info;
 117
 118        void __iomem *mapbase;
 119        struct clk *clk;
 120        unsigned long rate;
 121
 122        raw_spinlock_t lock; /* Protect the shared start/stop register */
 123
 124        struct sh_cmt_channel *channels;
 125        unsigned int num_channels;
 126        unsigned int hw_channels;
 127
 128        bool has_clockevent;
 129        bool has_clocksource;
 130};
 131
 132#define SH_CMT16_CMCSR_CMF              (1 << 7)
 133#define SH_CMT16_CMCSR_CMIE             (1 << 6)
 134#define SH_CMT16_CMCSR_CKS8             (0 << 0)
 135#define SH_CMT16_CMCSR_CKS32            (1 << 0)
 136#define SH_CMT16_CMCSR_CKS128           (2 << 0)
 137#define SH_CMT16_CMCSR_CKS512           (3 << 0)
 138#define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
 139
 140#define SH_CMT32_CMCSR_CMF              (1 << 15)
 141#define SH_CMT32_CMCSR_OVF              (1 << 14)
 142#define SH_CMT32_CMCSR_WRFLG            (1 << 13)
 143#define SH_CMT32_CMCSR_STTF             (1 << 12)
 144#define SH_CMT32_CMCSR_STPF             (1 << 11)
 145#define SH_CMT32_CMCSR_SSIE             (1 << 10)
 146#define SH_CMT32_CMCSR_CMS              (1 << 9)
 147#define SH_CMT32_CMCSR_CMM              (1 << 8)
 148#define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
 149#define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
 150#define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
 151#define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
 152#define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
 153#define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
 154#define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
 157#define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
 158#define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
 159
 160static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 161{
 162        return ioread16(base + (offs << 1));
 163}
 164
 165static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 166{
 167        return ioread32(base + (offs << 2));
 168}
 169
 170static void sh_cmt_write16(void __iomem *base, unsigned long offs,
 171                           unsigned long value)
 172{
 173        iowrite16(value, base + (offs << 1));
 174}
 175
 176static void sh_cmt_write32(void __iomem *base, unsigned long offs,
 177                           unsigned long value)
 178{
 179        iowrite32(value, base + (offs << 2));
 180}
 181
 182static const struct sh_cmt_info sh_cmt_info[] = {
 183        [SH_CMT_16BIT] = {
 184                .model = SH_CMT_16BIT,
 185                .width = 16,
 186                .overflow_bit = SH_CMT16_CMCSR_CMF,
 187                .clear_bits = ~SH_CMT16_CMCSR_CMF,
 188                .read_control = sh_cmt_read16,
 189                .write_control = sh_cmt_write16,
 190                .read_count = sh_cmt_read16,
 191                .write_count = sh_cmt_write16,
 192        },
 193        [SH_CMT_32BIT] = {
 194                .model = SH_CMT_32BIT,
 195                .width = 32,
 196                .overflow_bit = SH_CMT32_CMCSR_CMF,
 197                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 198                .read_control = sh_cmt_read16,
 199                .write_control = sh_cmt_write16,
 200                .read_count = sh_cmt_read32,
 201                .write_count = sh_cmt_write32,
 202        },
 203        [SH_CMT_32BIT_FAST] = {
 204                .model = SH_CMT_32BIT_FAST,
 205                .width = 32,
 206                .overflow_bit = SH_CMT32_CMCSR_CMF,
 207                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 208                .read_control = sh_cmt_read16,
 209                .write_control = sh_cmt_write16,
 210                .read_count = sh_cmt_read32,
 211                .write_count = sh_cmt_write32,
 212        },
 213        [SH_CMT_48BIT] = {
 214                .model = SH_CMT_48BIT,
 215                .width = 32,
 216                .overflow_bit = SH_CMT32_CMCSR_CMF,
 217                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 218                .read_control = sh_cmt_read32,
 219                .write_control = sh_cmt_write32,
 220                .read_count = sh_cmt_read32,
 221                .write_count = sh_cmt_write32,
 222        },
 223        [SH_CMT_48BIT_GEN2] = {
 224                .model = SH_CMT_48BIT_GEN2,
 225                .width = 32,
 226                .overflow_bit = SH_CMT32_CMCSR_CMF,
 227                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 228                .read_control = sh_cmt_read32,
 229                .write_control = sh_cmt_write32,
 230                .read_count = sh_cmt_read32,
 231                .write_count = sh_cmt_write32,
 232        },
 233};
 234
 235#define CMCSR 0 /* channel register */
 236#define CMCNT 1 /* channel register */
 237#define CMCOR 2 /* channel register */
 238
 239static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 240{
 241        if (ch->iostart)
 242                return ch->cmt->info->read_control(ch->iostart, 0);
 243        else
 244                return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 245}
 246
 247static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
 248                                      unsigned long value)
 249{
 250        if (ch->iostart)
 251                ch->cmt->info->write_control(ch->iostart, 0, value);
 252        else
 253                ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 254}
 255
 256static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 257{
 258        return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 259}
 260
 261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
 262                                      unsigned long value)
 263{
 264        ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 265}
 266
 267static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 268{
 269        return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 270}
 271
 272static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
 273                                      unsigned long value)
 274{
 275        ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 276}
 277
 278static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
 279                                      unsigned long value)
 280{
 281        ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 282}
 283
 284static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
 285                                        int *has_wrapped)
 286{
 287        unsigned long v1, v2, v3;
 288        int o1, o2;
 289
 290        o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 291
 292        /* Make sure the timer value is stable. Stolen from acpi_pm.c */
 293        do {
 294                o2 = o1;
 295                v1 = sh_cmt_read_cmcnt(ch);
 296                v2 = sh_cmt_read_cmcnt(ch);
 297                v3 = sh_cmt_read_cmcnt(ch);
 298                o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 299        } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 300                          || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 301
 302        *has_wrapped = o1;
 303        return v2;
 304}
 305
 306static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 307{
 308        unsigned long flags, value;
 309
 310        /* start stop register shared by multiple timer channels */
 311        raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 312        value = sh_cmt_read_cmstr(ch);
 313
 314        if (start)
 315                value |= 1 << ch->timer_bit;
 316        else
 317                value &= ~(1 << ch->timer_bit);
 318
 319        sh_cmt_write_cmstr(ch, value);
 320        raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 321}
 322
 323static int sh_cmt_enable(struct sh_cmt_channel *ch)
 324{
 325        int k, ret;
 326
 327        pm_runtime_get_sync(&ch->cmt->pdev->dev);
 328        dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 329
 330        /* enable clock */
 331        ret = clk_enable(ch->cmt->clk);
 332        if (ret) {
 333                dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 334                        ch->index);
 335                goto err0;
 336        }
 337
 338        /* make sure channel is disabled */
 339        sh_cmt_start_stop_ch(ch, 0);
 340
 341        /* configure channel, periodic mode and maximum timeout */
 342        if (ch->cmt->info->width == 16) {
 343                sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 344                                   SH_CMT16_CMCSR_CKS512);
 345        } else {
 346                sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 347                                   SH_CMT32_CMCSR_CMTOUT_IE |
 348                                   SH_CMT32_CMCSR_CMR_IRQ |
 349                                   SH_CMT32_CMCSR_CKS_RCLK8);
 350        }
 351
 352        sh_cmt_write_cmcor(ch, 0xffffffff);
 353        sh_cmt_write_cmcnt(ch, 0);
 354
 355        /*
 356         * According to the sh73a0 user's manual, as CMCNT can be operated
 357         * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 358         * modifying CMCNT register; two RCLK cycles are necessary before
 359         * this register is either read or any modification of the value
 360         * it holds is reflected in the LSI's actual operation.
 361         *
 362         * While at it, we're supposed to clear out the CMCNT as of this
 363         * moment, so make sure it's processed properly here.  This will
 364         * take RCLKx2 at maximum.
 365         */
 366        for (k = 0; k < 100; k++) {
 367                if (!sh_cmt_read_cmcnt(ch))
 368                        break;
 369                udelay(1);
 370        }
 371
 372        if (sh_cmt_read_cmcnt(ch)) {
 373                dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 374                        ch->index);
 375                ret = -ETIMEDOUT;
 376                goto err1;
 377        }
 378
 379        /* enable channel */
 380        sh_cmt_start_stop_ch(ch, 1);
 381        return 0;
 382 err1:
 383        /* stop clock */
 384        clk_disable(ch->cmt->clk);
 385
 386 err0:
 387        return ret;
 388}
 389
 390static void sh_cmt_disable(struct sh_cmt_channel *ch)
 391{
 392        /* disable channel */
 393        sh_cmt_start_stop_ch(ch, 0);
 394
 395        /* disable interrupts in CMT block */
 396        sh_cmt_write_cmcsr(ch, 0);
 397
 398        /* stop clock */
 399        clk_disable(ch->cmt->clk);
 400
 401        dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 402        pm_runtime_put(&ch->cmt->pdev->dev);
 403}
 404
 405/* private flags */
 406#define FLAG_CLOCKEVENT (1 << 0)
 407#define FLAG_CLOCKSOURCE (1 << 1)
 408#define FLAG_REPROGRAM (1 << 2)
 409#define FLAG_SKIPEVENT (1 << 3)
 410#define FLAG_IRQCONTEXT (1 << 4)
 411
 412static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 413                                              int absolute)
 414{
 415        unsigned long new_match;
 416        unsigned long value = ch->next_match_value;
 417        unsigned long delay = 0;
 418        unsigned long now = 0;
 419        int has_wrapped;
 420
 421        now = sh_cmt_get_counter(ch, &has_wrapped);
 422        ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 423
 424        if (has_wrapped) {
 425                /* we're competing with the interrupt handler.
 426                 *  -> let the interrupt handler reprogram the timer.
 427                 *  -> interrupt number two handles the event.
 428                 */
 429                ch->flags |= FLAG_SKIPEVENT;
 430                return;
 431        }
 432
 433        if (absolute)
 434                now = 0;
 435
 436        do {
 437                /* reprogram the timer hardware,
 438                 * but don't save the new match value yet.
 439                 */
 440                new_match = now + value + delay;
 441                if (new_match > ch->max_match_value)
 442                        new_match = ch->max_match_value;
 443
 444                sh_cmt_write_cmcor(ch, new_match);
 445
 446                now = sh_cmt_get_counter(ch, &has_wrapped);
 447                if (has_wrapped && (new_match > ch->match_value)) {
 448                        /* we are changing to a greater match value,
 449                         * so this wrap must be caused by the counter
 450                         * matching the old value.
 451                         * -> first interrupt reprograms the timer.
 452                         * -> interrupt number two handles the event.
 453                         */
 454                        ch->flags |= FLAG_SKIPEVENT;
 455                        break;
 456                }
 457
 458                if (has_wrapped) {
 459                        /* we are changing to a smaller match value,
 460                         * so the wrap must be caused by the counter
 461                         * matching the new value.
 462                         * -> save programmed match value.
 463                         * -> let isr handle the event.
 464                         */
 465                        ch->match_value = new_match;
 466                        break;
 467                }
 468
 469                /* be safe: verify hardware settings */
 470                if (now < new_match) {
 471                        /* timer value is below match value, all good.
 472                         * this makes sure we won't miss any match events.
 473                         * -> save programmed match value.
 474                         * -> let isr handle the event.
 475                         */
 476                        ch->match_value = new_match;
 477                        break;
 478                }
 479
 480                /* the counter has reached a value greater
 481                 * than our new match value. and since the
 482                 * has_wrapped flag isn't set we must have
 483                 * programmed a too close event.
 484                 * -> increase delay and retry.
 485                 */
 486                if (delay)
 487                        delay <<= 1;
 488                else
 489                        delay = 1;
 490
 491                if (!delay)
 492                        dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 493                                 ch->index);
 494
 495        } while (delay);
 496}
 497
 498static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 499{
 500        if (delta > ch->max_match_value)
 501                dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 502                         ch->index);
 503
 504        ch->next_match_value = delta;
 505        sh_cmt_clock_event_program_verify(ch, 0);
 506}
 507
 508static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 509{
 510        unsigned long flags;
 511
 512        raw_spin_lock_irqsave(&ch->lock, flags);
 513        __sh_cmt_set_next(ch, delta);
 514        raw_spin_unlock_irqrestore(&ch->lock, flags);
 515}
 516
 517static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 518{
 519        struct sh_cmt_channel *ch = dev_id;
 520
 521        /* clear flags */
 522        sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 523                           ch->cmt->info->clear_bits);
 524
 525        /* update clock source counter to begin with if enabled
 526         * the wrap flag should be cleared by the timer specific
 527         * isr before we end up here.
 528         */
 529        if (ch->flags & FLAG_CLOCKSOURCE)
 530                ch->total_cycles += ch->match_value + 1;
 531
 532        if (!(ch->flags & FLAG_REPROGRAM))
 533                ch->next_match_value = ch->max_match_value;
 534
 535        ch->flags |= FLAG_IRQCONTEXT;
 536
 537        if (ch->flags & FLAG_CLOCKEVENT) {
 538                if (!(ch->flags & FLAG_SKIPEVENT)) {
 539                        if (clockevent_state_oneshot(&ch->ced)) {
 540                                ch->next_match_value = ch->max_match_value;
 541                                ch->flags |= FLAG_REPROGRAM;
 542                        }
 543
 544                        ch->ced.event_handler(&ch->ced);
 545                }
 546        }
 547
 548        ch->flags &= ~FLAG_SKIPEVENT;
 549
 550        if (ch->flags & FLAG_REPROGRAM) {
 551                ch->flags &= ~FLAG_REPROGRAM;
 552                sh_cmt_clock_event_program_verify(ch, 1);
 553
 554                if (ch->flags & FLAG_CLOCKEVENT)
 555                        if ((clockevent_state_shutdown(&ch->ced))
 556                            || (ch->match_value == ch->next_match_value))
 557                                ch->flags &= ~FLAG_REPROGRAM;
 558        }
 559
 560        ch->flags &= ~FLAG_IRQCONTEXT;
 561
 562        return IRQ_HANDLED;
 563}
 564
 565static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 566{
 567        int ret = 0;
 568        unsigned long flags;
 569
 570        raw_spin_lock_irqsave(&ch->lock, flags);
 571
 572        if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 573                ret = sh_cmt_enable(ch);
 574
 575        if (ret)
 576                goto out;
 577        ch->flags |= flag;
 578
 579        /* setup timeout if no clockevent */
 580        if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 581                __sh_cmt_set_next(ch, ch->max_match_value);
 582 out:
 583        raw_spin_unlock_irqrestore(&ch->lock, flags);
 584
 585        return ret;
 586}
 587
 588static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 589{
 590        unsigned long flags;
 591        unsigned long f;
 592
 593        raw_spin_lock_irqsave(&ch->lock, flags);
 594
 595        f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 596        ch->flags &= ~flag;
 597
 598        if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 599                sh_cmt_disable(ch);
 600
 601        /* adjust the timeout to maximum if only clocksource left */
 602        if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 603                __sh_cmt_set_next(ch, ch->max_match_value);
 604
 605        raw_spin_unlock_irqrestore(&ch->lock, flags);
 606}
 607
 608static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 609{
 610        return container_of(cs, struct sh_cmt_channel, cs);
 611}
 612
 613static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 614{
 615        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 616        unsigned long flags, raw;
 617        unsigned long value;
 618        int has_wrapped;
 619
 620        raw_spin_lock_irqsave(&ch->lock, flags);
 621        value = ch->total_cycles;
 622        raw = sh_cmt_get_counter(ch, &has_wrapped);
 623
 624        if (unlikely(has_wrapped))
 625                raw += ch->match_value + 1;
 626        raw_spin_unlock_irqrestore(&ch->lock, flags);
 627
 628        return value + raw;
 629}
 630
 631static int sh_cmt_clocksource_enable(struct clocksource *cs)
 632{
 633        int ret;
 634        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 635
 636        WARN_ON(ch->cs_enabled);
 637
 638        ch->total_cycles = 0;
 639
 640        ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 641        if (!ret)
 642                ch->cs_enabled = true;
 643
 644        return ret;
 645}
 646
 647static void sh_cmt_clocksource_disable(struct clocksource *cs)
 648{
 649        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 650
 651        WARN_ON(!ch->cs_enabled);
 652
 653        sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 654        ch->cs_enabled = false;
 655}
 656
 657static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 658{
 659        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 660
 661        if (!ch->cs_enabled)
 662                return;
 663
 664        sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 665        pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 666}
 667
 668static void sh_cmt_clocksource_resume(struct clocksource *cs)
 669{
 670        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 671
 672        if (!ch->cs_enabled)
 673                return;
 674
 675        pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 676        sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 677}
 678
 679static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 680                                       const char *name)
 681{
 682        struct clocksource *cs = &ch->cs;
 683
 684        cs->name = name;
 685        cs->rating = 125;
 686        cs->read = sh_cmt_clocksource_read;
 687        cs->enable = sh_cmt_clocksource_enable;
 688        cs->disable = sh_cmt_clocksource_disable;
 689        cs->suspend = sh_cmt_clocksource_suspend;
 690        cs->resume = sh_cmt_clocksource_resume;
 691        cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
 692        cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 693
 694        dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 695                 ch->index);
 696
 697        clocksource_register_hz(cs, ch->cmt->rate);
 698        return 0;
 699}
 700
 701static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 702{
 703        return container_of(ced, struct sh_cmt_channel, ced);
 704}
 705
 706static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 707{
 708        sh_cmt_start(ch, FLAG_CLOCKEVENT);
 709
 710        if (periodic)
 711                sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 712        else
 713                sh_cmt_set_next(ch, ch->max_match_value);
 714}
 715
 716static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 717{
 718        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 719
 720        sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 721        return 0;
 722}
 723
 724static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 725                                        int periodic)
 726{
 727        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 728
 729        /* deal with old setting first */
 730        if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 731                sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 732
 733        dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 734                 ch->index, periodic ? "periodic" : "oneshot");
 735        sh_cmt_clock_event_start(ch, periodic);
 736        return 0;
 737}
 738
 739static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 740{
 741        return sh_cmt_clock_event_set_state(ced, 0);
 742}
 743
 744static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 745{
 746        return sh_cmt_clock_event_set_state(ced, 1);
 747}
 748
 749static int sh_cmt_clock_event_next(unsigned long delta,
 750                                   struct clock_event_device *ced)
 751{
 752        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 753
 754        BUG_ON(!clockevent_state_oneshot(ced));
 755        if (likely(ch->flags & FLAG_IRQCONTEXT))
 756                ch->next_match_value = delta - 1;
 757        else
 758                sh_cmt_set_next(ch, delta - 1);
 759
 760        return 0;
 761}
 762
 763static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 764{
 765        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 766
 767        pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 768        clk_unprepare(ch->cmt->clk);
 769}
 770
 771static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 772{
 773        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 774
 775        clk_prepare(ch->cmt->clk);
 776        pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 777}
 778
 779static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 780                                      const char *name)
 781{
 782        struct clock_event_device *ced = &ch->ced;
 783        int irq;
 784        int ret;
 785
 786        irq = platform_get_irq(ch->cmt->pdev, ch->index);
 787        if (irq < 0) {
 788                dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
 789                        ch->index);
 790                return irq;
 791        }
 792
 793        ret = request_irq(irq, sh_cmt_interrupt,
 794                          IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 795                          dev_name(&ch->cmt->pdev->dev), ch);
 796        if (ret) {
 797                dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 798                        ch->index, irq);
 799                return ret;
 800        }
 801
 802        ced->name = name;
 803        ced->features = CLOCK_EVT_FEAT_PERIODIC;
 804        ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 805        ced->rating = 125;
 806        ced->cpumask = cpu_possible_mask;
 807        ced->set_next_event = sh_cmt_clock_event_next;
 808        ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 809        ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 810        ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 811        ced->suspend = sh_cmt_clock_event_suspend;
 812        ced->resume = sh_cmt_clock_event_resume;
 813
 814        /* TODO: calculate good shift from rate and counter bit width */
 815        ced->shift = 32;
 816        ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 817        ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 818        ced->max_delta_ticks = ch->max_match_value;
 819        ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 820        ced->min_delta_ticks = 0x1f;
 821
 822        dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 823                 ch->index);
 824        clockevents_register_device(ced);
 825
 826        return 0;
 827}
 828
 829static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 830                           bool clockevent, bool clocksource)
 831{
 832        int ret;
 833
 834        if (clockevent) {
 835                ch->cmt->has_clockevent = true;
 836                ret = sh_cmt_register_clockevent(ch, name);
 837                if (ret < 0)
 838                        return ret;
 839        }
 840
 841        if (clocksource) {
 842                ch->cmt->has_clocksource = true;
 843                sh_cmt_register_clocksource(ch, name);
 844        }
 845
 846        return 0;
 847}
 848
 849static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 850                                unsigned int hwidx, bool clockevent,
 851                                bool clocksource, struct sh_cmt_device *cmt)
 852{
 853        int ret;
 854
 855        /* Skip unused channels. */
 856        if (!clockevent && !clocksource)
 857                return 0;
 858
 859        ch->cmt = cmt;
 860        ch->index = index;
 861        ch->hwidx = hwidx;
 862
 863        /*
 864         * Compute the address of the channel control register block. For the
 865         * timers with a per-channel start/stop register, compute its address
 866         * as well.
 867         */
 868        switch (cmt->info->model) {
 869        case SH_CMT_16BIT:
 870                ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 871                break;
 872        case SH_CMT_32BIT:
 873        case SH_CMT_48BIT:
 874                ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 875                break;
 876        case SH_CMT_32BIT_FAST:
 877                /*
 878                 * The 32-bit "fast" timer has a single channel at hwidx 5 but
 879                 * is located at offset 0x40 instead of 0x60 for some reason.
 880                 */
 881                ch->ioctrl = cmt->mapbase + 0x40;
 882                break;
 883        case SH_CMT_48BIT_GEN2:
 884                ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 885                ch->ioctrl = ch->iostart + 0x10;
 886                break;
 887        }
 888
 889        if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 890                ch->max_match_value = ~0;
 891        else
 892                ch->max_match_value = (1 << cmt->info->width) - 1;
 893
 894        ch->match_value = ch->max_match_value;
 895        raw_spin_lock_init(&ch->lock);
 896
 897        ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
 898
 899        ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 900                              clockevent, clocksource);
 901        if (ret) {
 902                dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 903                        ch->index);
 904                return ret;
 905        }
 906        ch->cs_enabled = false;
 907
 908        return 0;
 909}
 910
 911static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 912{
 913        struct resource *mem;
 914
 915        mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 916        if (!mem) {
 917                dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 918                return -ENXIO;
 919        }
 920
 921        cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 922        if (cmt->mapbase == NULL) {
 923                dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 924                return -ENXIO;
 925        }
 926
 927        return 0;
 928}
 929
 930static const struct platform_device_id sh_cmt_id_table[] = {
 931        { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 932        { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 933        { }
 934};
 935MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 936
 937static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 938        { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
 939        { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
 940        { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
 941        { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
 942        { }
 943};
 944MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 945
 946static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
 947{
 948        struct device_node *np = cmt->pdev->dev.of_node;
 949
 950        return of_property_read_u32(np, "renesas,channels-mask",
 951                                    &cmt->hw_channels);
 952}
 953
 954static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 955{
 956        unsigned int mask;
 957        unsigned int i;
 958        int ret;
 959
 960        cmt->pdev = pdev;
 961        raw_spin_lock_init(&cmt->lock);
 962
 963        if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 964                const struct of_device_id *id;
 965
 966                id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
 967                cmt->info = id->data;
 968
 969                ret = sh_cmt_parse_dt(cmt);
 970                if (ret < 0)
 971                        return ret;
 972        } else if (pdev->dev.platform_data) {
 973                struct sh_timer_config *cfg = pdev->dev.platform_data;
 974                const struct platform_device_id *id = pdev->id_entry;
 975
 976                cmt->info = (const struct sh_cmt_info *)id->driver_data;
 977                cmt->hw_channels = cfg->channels_mask;
 978        } else {
 979                dev_err(&cmt->pdev->dev, "missing platform data\n");
 980                return -ENXIO;
 981        }
 982
 983        /* Get hold of clock. */
 984        cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 985        if (IS_ERR(cmt->clk)) {
 986                dev_err(&cmt->pdev->dev, "cannot get clock\n");
 987                return PTR_ERR(cmt->clk);
 988        }
 989
 990        ret = clk_prepare(cmt->clk);
 991        if (ret < 0)
 992                goto err_clk_put;
 993
 994        /* Determine clock rate. */
 995        ret = clk_enable(cmt->clk);
 996        if (ret < 0)
 997                goto err_clk_unprepare;
 998
 999        if (cmt->info->width == 16)
1000                cmt->rate = clk_get_rate(cmt->clk) / 512;
1001        else
1002                cmt->rate = clk_get_rate(cmt->clk) / 8;
1003
1004        clk_disable(cmt->clk);
1005
1006        /* Map the memory resource(s). */
1007        ret = sh_cmt_map_memory(cmt);
1008        if (ret < 0)
1009                goto err_clk_unprepare;
1010
1011        /* Allocate and setup the channels. */
1012        cmt->num_channels = hweight8(cmt->hw_channels);
1013        cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1014                                GFP_KERNEL);
1015        if (cmt->channels == NULL) {
1016                ret = -ENOMEM;
1017                goto err_unmap;
1018        }
1019
1020        /*
1021         * Use the first channel as a clock event device and the second channel
1022         * as a clock source. If only one channel is available use it for both.
1023         */
1024        for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1025                unsigned int hwidx = ffs(mask) - 1;
1026                bool clocksource = i == 1 || cmt->num_channels == 1;
1027                bool clockevent = i == 0;
1028
1029                ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1030                                           clockevent, clocksource, cmt);
1031                if (ret < 0)
1032                        goto err_unmap;
1033
1034                mask &= ~(1 << hwidx);
1035        }
1036
1037        platform_set_drvdata(pdev, cmt);
1038
1039        return 0;
1040
1041err_unmap:
1042        kfree(cmt->channels);
1043        iounmap(cmt->mapbase);
1044err_clk_unprepare:
1045        clk_unprepare(cmt->clk);
1046err_clk_put:
1047        clk_put(cmt->clk);
1048        return ret;
1049}
1050
1051static int sh_cmt_probe(struct platform_device *pdev)
1052{
1053        struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1054        int ret;
1055
1056        if (!is_early_platform_device(pdev)) {
1057                pm_runtime_set_active(&pdev->dev);
1058                pm_runtime_enable(&pdev->dev);
1059        }
1060
1061        if (cmt) {
1062                dev_info(&pdev->dev, "kept as earlytimer\n");
1063                goto out;
1064        }
1065
1066        cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1067        if (cmt == NULL)
1068                return -ENOMEM;
1069
1070        ret = sh_cmt_setup(cmt, pdev);
1071        if (ret) {
1072                kfree(cmt);
1073                pm_runtime_idle(&pdev->dev);
1074                return ret;
1075        }
1076        if (is_early_platform_device(pdev))
1077                return 0;
1078
1079 out:
1080        if (cmt->has_clockevent || cmt->has_clocksource)
1081                pm_runtime_irq_safe(&pdev->dev);
1082        else
1083                pm_runtime_idle(&pdev->dev);
1084
1085        return 0;
1086}
1087
1088static int sh_cmt_remove(struct platform_device *pdev)
1089{
1090        return -EBUSY; /* cannot unregister clockevent and clocksource */
1091}
1092
1093static struct platform_driver sh_cmt_device_driver = {
1094        .probe          = sh_cmt_probe,
1095        .remove         = sh_cmt_remove,
1096        .driver         = {
1097                .name   = "sh_cmt",
1098                .of_match_table = of_match_ptr(sh_cmt_of_table),
1099        },
1100        .id_table       = sh_cmt_id_table,
1101};
1102
1103static int __init sh_cmt_init(void)
1104{
1105        return platform_driver_register(&sh_cmt_device_driver);
1106}
1107
1108static void __exit sh_cmt_exit(void)
1109{
1110        platform_driver_unregister(&sh_cmt_device_driver);
1111}
1112
1113early_platform_init("earlytimer", &sh_cmt_device_driver);
1114subsys_initcall(sh_cmt_init);
1115module_exit(sh_cmt_exit);
1116
1117MODULE_AUTHOR("Magnus Damm");
1118MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1119MODULE_LICENSE("GPL v2");
1120