linux/drivers/cpufreq/powernv-cpufreq.c
<<
>>
Prefs
   1/*
   2 * POWERNV cpufreq driver for the IBM POWER processors
   3 *
   4 * (C) Copyright IBM 2014
   5 *
   6 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 */
  19
  20#define pr_fmt(fmt)     "powernv-cpufreq: " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/sysfs.h>
  24#include <linux/cpumask.h>
  25#include <linux/module.h>
  26#include <linux/cpufreq.h>
  27#include <linux/smp.h>
  28#include <linux/of.h>
  29#include <linux/reboot.h>
  30#include <linux/slab.h>
  31#include <linux/cpu.h>
  32#include <trace/events/power.h>
  33
  34#include <asm/cputhreads.h>
  35#include <asm/firmware.h>
  36#include <asm/reg.h>
  37#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
  38#include <asm/opal.h>
  39#include <linux/timer.h>
  40
  41#define POWERNV_MAX_PSTATES     256
  42#define PMSR_PSAFE_ENABLE       (1UL << 30)
  43#define PMSR_SPR_EM_DISABLE     (1UL << 31)
  44#define PMSR_MAX(x)             ((x >> 32) & 0xFF)
  45#define LPSTATE_SHIFT           48
  46#define GPSTATE_SHIFT           56
  47#define GET_LPSTATE(x)          (((x) >> LPSTATE_SHIFT) & 0xFF)
  48#define GET_GPSTATE(x)          (((x) >> GPSTATE_SHIFT) & 0xFF)
  49
  50#define MAX_RAMP_DOWN_TIME                              5120
  51/*
  52 * On an idle system we want the global pstate to ramp-down from max value to
  53 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
  54 * then ramp-down rapidly later on.
  55 *
  56 * This gives a percentage rampdown for time elapsed in milliseconds.
  57 * ramp_down_percentage = ((ms * ms) >> 18)
  58 *                      ~= 3.8 * (sec * sec)
  59 *
  60 * At 0 ms      ramp_down_percent = 0
  61 * At 5120 ms   ramp_down_percent = 100
  62 */
  63#define ramp_down_percent(time)         ((time * time) >> 18)
  64
  65/* Interval after which the timer is queued to bring down global pstate */
  66#define GPSTATE_TIMER_INTERVAL                          2000
  67
  68/**
  69 * struct global_pstate_info -  Per policy data structure to maintain history of
  70 *                              global pstates
  71 * @highest_lpstate_idx:        The local pstate index from which we are
  72 *                              ramping down
  73 * @elapsed_time:               Time in ms spent in ramping down from
  74 *                              highest_lpstate_idx
  75 * @last_sampled_time:          Time from boot in ms when global pstates were
  76 *                              last set
  77 * @last_lpstate_idx,           Last set value of local pstate and global
  78 * last_gpstate_idx             pstate in terms of cpufreq table index
  79 * @timer:                      Is used for ramping down if cpu goes idle for
  80 *                              a long time with global pstate held high
  81 * @gpstate_lock:               A spinlock to maintain synchronization between
  82 *                              routines called by the timer handler and
  83 *                              governer's target_index calls
  84 */
  85struct global_pstate_info {
  86        int highest_lpstate_idx;
  87        unsigned int elapsed_time;
  88        unsigned int last_sampled_time;
  89        int last_lpstate_idx;
  90        int last_gpstate_idx;
  91        spinlock_t gpstate_lock;
  92        struct timer_list timer;
  93};
  94
  95static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
  96static bool rebooting, throttled, occ_reset;
  97
  98static const char * const throttle_reason[] = {
  99        "No throttling",
 100        "Power Cap",
 101        "Processor Over Temperature",
 102        "Power Supply Failure",
 103        "Over Current",
 104        "OCC Reset"
 105};
 106
 107enum throttle_reason_type {
 108        NO_THROTTLE = 0,
 109        POWERCAP,
 110        CPU_OVERTEMP,
 111        POWER_SUPPLY_FAILURE,
 112        OVERCURRENT,
 113        OCC_RESET_THROTTLE,
 114        OCC_MAX_REASON
 115};
 116
 117static struct chip {
 118        unsigned int id;
 119        bool throttled;
 120        bool restore;
 121        u8 throttle_reason;
 122        cpumask_t mask;
 123        struct work_struct throttle;
 124        int throttle_turbo;
 125        int throttle_sub_turbo;
 126        int reason[OCC_MAX_REASON];
 127} *chips;
 128
 129static int nr_chips;
 130static DEFINE_PER_CPU(struct chip *, chip_info);
 131
 132/*
 133 * Note:
 134 * The set of pstates consists of contiguous integers.
 135 * powernv_pstate_info stores the index of the frequency table for
 136 * max, min and nominal frequencies. It also stores number of
 137 * available frequencies.
 138 *
 139 * powernv_pstate_info.nominal indicates the index to the highest
 140 * non-turbo frequency.
 141 */
 142static struct powernv_pstate_info {
 143        unsigned int min;
 144        unsigned int max;
 145        unsigned int nominal;
 146        unsigned int nr_pstates;
 147        bool wof_enabled;
 148} powernv_pstate_info;
 149
 150/* Use following macros for conversions between pstate_id and index */
 151static inline int idx_to_pstate(unsigned int i)
 152{
 153        if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
 154                pr_warn_once("index %u is out of bound\n", i);
 155                return powernv_freqs[powernv_pstate_info.nominal].driver_data;
 156        }
 157
 158        return powernv_freqs[i].driver_data;
 159}
 160
 161static inline unsigned int pstate_to_idx(int pstate)
 162{
 163        int min = powernv_freqs[powernv_pstate_info.min].driver_data;
 164        int max = powernv_freqs[powernv_pstate_info.max].driver_data;
 165
 166        if (min > 0) {
 167                if (unlikely((pstate < max) || (pstate > min))) {
 168                        pr_warn_once("pstate %d is out of bound\n", pstate);
 169                        return powernv_pstate_info.nominal;
 170                }
 171        } else {
 172                if (unlikely((pstate > max) || (pstate < min))) {
 173                        pr_warn_once("pstate %d is out of bound\n", pstate);
 174                        return powernv_pstate_info.nominal;
 175                }
 176        }
 177        /*
 178         * abs() is deliberately used so that is works with
 179         * both monotonically increasing and decreasing
 180         * pstate values
 181         */
 182        return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
 183}
 184
 185static inline void reset_gpstates(struct cpufreq_policy *policy)
 186{
 187        struct global_pstate_info *gpstates = policy->driver_data;
 188
 189        gpstates->highest_lpstate_idx = 0;
 190        gpstates->elapsed_time = 0;
 191        gpstates->last_sampled_time = 0;
 192        gpstates->last_lpstate_idx = 0;
 193        gpstates->last_gpstate_idx = 0;
 194}
 195
 196/*
 197 * Initialize the freq table based on data obtained
 198 * from the firmware passed via device-tree
 199 */
 200static int init_powernv_pstates(void)
 201{
 202        struct device_node *power_mgt;
 203        int i, nr_pstates = 0;
 204        const __be32 *pstate_ids, *pstate_freqs;
 205        u32 len_ids, len_freqs;
 206        u32 pstate_min, pstate_max, pstate_nominal;
 207        u32 pstate_turbo, pstate_ultra_turbo;
 208
 209        power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
 210        if (!power_mgt) {
 211                pr_warn("power-mgt node not found\n");
 212                return -ENODEV;
 213        }
 214
 215        if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
 216                pr_warn("ibm,pstate-min node not found\n");
 217                return -ENODEV;
 218        }
 219
 220        if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
 221                pr_warn("ibm,pstate-max node not found\n");
 222                return -ENODEV;
 223        }
 224
 225        if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
 226                                 &pstate_nominal)) {
 227                pr_warn("ibm,pstate-nominal not found\n");
 228                return -ENODEV;
 229        }
 230
 231        if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
 232                                 &pstate_ultra_turbo)) {
 233                powernv_pstate_info.wof_enabled = false;
 234                goto next;
 235        }
 236
 237        if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
 238                                 &pstate_turbo)) {
 239                powernv_pstate_info.wof_enabled = false;
 240                goto next;
 241        }
 242
 243        if (pstate_turbo == pstate_ultra_turbo)
 244                powernv_pstate_info.wof_enabled = false;
 245        else
 246                powernv_pstate_info.wof_enabled = true;
 247
 248next:
 249        pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
 250                pstate_nominal, pstate_max);
 251        pr_info("Workload Optimized Frequency is %s in the platform\n",
 252                (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
 253
 254        pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
 255        if (!pstate_ids) {
 256                pr_warn("ibm,pstate-ids not found\n");
 257                return -ENODEV;
 258        }
 259
 260        pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
 261                                      &len_freqs);
 262        if (!pstate_freqs) {
 263                pr_warn("ibm,pstate-frequencies-mhz not found\n");
 264                return -ENODEV;
 265        }
 266
 267        if (len_ids != len_freqs) {
 268                pr_warn("Entries in ibm,pstate-ids and "
 269                        "ibm,pstate-frequencies-mhz does not match\n");
 270        }
 271
 272        nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
 273        if (!nr_pstates) {
 274                pr_warn("No PStates found\n");
 275                return -ENODEV;
 276        }
 277
 278        powernv_pstate_info.nr_pstates = nr_pstates;
 279        pr_debug("NR PStates %d\n", nr_pstates);
 280        for (i = 0; i < nr_pstates; i++) {
 281                u32 id = be32_to_cpu(pstate_ids[i]);
 282                u32 freq = be32_to_cpu(pstate_freqs[i]);
 283
 284                pr_debug("PState id %d freq %d MHz\n", id, freq);
 285                powernv_freqs[i].frequency = freq * 1000; /* kHz */
 286                powernv_freqs[i].driver_data = id;
 287
 288                if (id == pstate_max)
 289                        powernv_pstate_info.max = i;
 290                else if (id == pstate_nominal)
 291                        powernv_pstate_info.nominal = i;
 292                else if (id == pstate_min)
 293                        powernv_pstate_info.min = i;
 294
 295                if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
 296                        int j;
 297
 298                        for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
 299                                powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
 300                }
 301        }
 302
 303        /* End of list marker entry */
 304        powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
 305        return 0;
 306}
 307
 308/* Returns the CPU frequency corresponding to the pstate_id. */
 309static unsigned int pstate_id_to_freq(int pstate_id)
 310{
 311        int i;
 312
 313        i = pstate_to_idx(pstate_id);
 314        if (i >= powernv_pstate_info.nr_pstates || i < 0) {
 315                pr_warn("PState id %d outside of PState table, "
 316                        "reporting nominal id %d instead\n",
 317                        pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
 318                i = powernv_pstate_info.nominal;
 319        }
 320
 321        return powernv_freqs[i].frequency;
 322}
 323
 324/*
 325 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
 326 * the firmware
 327 */
 328static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
 329                                        char *buf)
 330{
 331        return sprintf(buf, "%u\n",
 332                powernv_freqs[powernv_pstate_info.nominal].frequency);
 333}
 334
 335struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
 336        __ATTR_RO(cpuinfo_nominal_freq);
 337
 338#define SCALING_BOOST_FREQS_ATTR_INDEX          2
 339
 340static struct freq_attr *powernv_cpu_freq_attr[] = {
 341        &cpufreq_freq_attr_scaling_available_freqs,
 342        &cpufreq_freq_attr_cpuinfo_nominal_freq,
 343        &cpufreq_freq_attr_scaling_boost_freqs,
 344        NULL,
 345};
 346
 347#define throttle_attr(name, member)                                     \
 348static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
 349{                                                                       \
 350        struct chip *chip = per_cpu(chip_info, policy->cpu);            \
 351                                                                        \
 352        return sprintf(buf, "%u\n", chip->member);                      \
 353}                                                                       \
 354                                                                        \
 355static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
 356
 357throttle_attr(unthrottle, reason[NO_THROTTLE]);
 358throttle_attr(powercap, reason[POWERCAP]);
 359throttle_attr(overtemp, reason[CPU_OVERTEMP]);
 360throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
 361throttle_attr(overcurrent, reason[OVERCURRENT]);
 362throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
 363throttle_attr(turbo_stat, throttle_turbo);
 364throttle_attr(sub_turbo_stat, throttle_sub_turbo);
 365
 366static struct attribute *throttle_attrs[] = {
 367        &throttle_attr_unthrottle.attr,
 368        &throttle_attr_powercap.attr,
 369        &throttle_attr_overtemp.attr,
 370        &throttle_attr_supply_fault.attr,
 371        &throttle_attr_overcurrent.attr,
 372        &throttle_attr_occ_reset.attr,
 373        &throttle_attr_turbo_stat.attr,
 374        &throttle_attr_sub_turbo_stat.attr,
 375        NULL,
 376};
 377
 378static const struct attribute_group throttle_attr_grp = {
 379        .name   = "throttle_stats",
 380        .attrs  = throttle_attrs,
 381};
 382
 383/* Helper routines */
 384
 385/* Access helpers to power mgt SPR */
 386
 387static inline unsigned long get_pmspr(unsigned long sprn)
 388{
 389        switch (sprn) {
 390        case SPRN_PMCR:
 391                return mfspr(SPRN_PMCR);
 392
 393        case SPRN_PMICR:
 394                return mfspr(SPRN_PMICR);
 395
 396        case SPRN_PMSR:
 397                return mfspr(SPRN_PMSR);
 398        }
 399        BUG();
 400}
 401
 402static inline void set_pmspr(unsigned long sprn, unsigned long val)
 403{
 404        switch (sprn) {
 405        case SPRN_PMCR:
 406                mtspr(SPRN_PMCR, val);
 407                return;
 408
 409        case SPRN_PMICR:
 410                mtspr(SPRN_PMICR, val);
 411                return;
 412        }
 413        BUG();
 414}
 415
 416/*
 417 * Use objects of this type to query/update
 418 * pstates on a remote CPU via smp_call_function.
 419 */
 420struct powernv_smp_call_data {
 421        unsigned int freq;
 422        int pstate_id;
 423        int gpstate_id;
 424};
 425
 426/*
 427 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
 428 *
 429 * Called via smp_call_function.
 430 *
 431 * Note: The caller of the smp_call_function should pass an argument of
 432 * the type 'struct powernv_smp_call_data *' along with this function.
 433 *
 434 * The current frequency on this CPU will be returned via
 435 * ((struct powernv_smp_call_data *)arg)->freq;
 436 */
 437static void powernv_read_cpu_freq(void *arg)
 438{
 439        unsigned long pmspr_val;
 440        s8 local_pstate_id;
 441        struct powernv_smp_call_data *freq_data = arg;
 442
 443        pmspr_val = get_pmspr(SPRN_PMSR);
 444
 445        /*
 446         * The local pstate id corresponds bits 48..55 in the PMSR.
 447         * Note: Watch out for the sign!
 448         */
 449        local_pstate_id = (pmspr_val >> 48) & 0xFF;
 450        freq_data->pstate_id = local_pstate_id;
 451        freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
 452
 453        pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
 454                raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
 455                freq_data->freq);
 456}
 457
 458/*
 459 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
 460 * firmware for CPU 'cpu'. This value is reported through the sysfs
 461 * file cpuinfo_cur_freq.
 462 */
 463static unsigned int powernv_cpufreq_get(unsigned int cpu)
 464{
 465        struct powernv_smp_call_data freq_data;
 466
 467        smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
 468                        &freq_data, 1);
 469
 470        return freq_data.freq;
 471}
 472
 473/*
 474 * set_pstate: Sets the pstate on this CPU.
 475 *
 476 * This is called via an smp_call_function.
 477 *
 478 * The caller must ensure that freq_data is of the type
 479 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
 480 * on this CPU should be present in freq_data->pstate_id.
 481 */
 482static void set_pstate(void *data)
 483{
 484        unsigned long val;
 485        struct powernv_smp_call_data *freq_data = data;
 486        unsigned long pstate_ul = freq_data->pstate_id;
 487        unsigned long gpstate_ul = freq_data->gpstate_id;
 488
 489        val = get_pmspr(SPRN_PMCR);
 490        val = val & 0x0000FFFFFFFFFFFFULL;
 491
 492        pstate_ul = pstate_ul & 0xFF;
 493        gpstate_ul = gpstate_ul & 0xFF;
 494
 495        /* Set both global(bits 56..63) and local(bits 48..55) PStates */
 496        val = val | (gpstate_ul << 56) | (pstate_ul << 48);
 497
 498        pr_debug("Setting cpu %d pmcr to %016lX\n",
 499                        raw_smp_processor_id(), val);
 500        set_pmspr(SPRN_PMCR, val);
 501}
 502
 503/*
 504 * get_nominal_index: Returns the index corresponding to the nominal
 505 * pstate in the cpufreq table
 506 */
 507static inline unsigned int get_nominal_index(void)
 508{
 509        return powernv_pstate_info.nominal;
 510}
 511
 512static void powernv_cpufreq_throttle_check(void *data)
 513{
 514        struct chip *chip;
 515        unsigned int cpu = smp_processor_id();
 516        unsigned long pmsr;
 517        int pmsr_pmax;
 518        unsigned int pmsr_pmax_idx;
 519
 520        pmsr = get_pmspr(SPRN_PMSR);
 521        chip = this_cpu_read(chip_info);
 522
 523        /* Check for Pmax Capping */
 524        pmsr_pmax = (s8)PMSR_MAX(pmsr);
 525        pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
 526        if (pmsr_pmax_idx != powernv_pstate_info.max) {
 527                if (chip->throttled)
 528                        goto next;
 529                chip->throttled = true;
 530                if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
 531                        pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
 532                                     cpu, chip->id, pmsr_pmax,
 533                                     idx_to_pstate(powernv_pstate_info.nominal));
 534                        chip->throttle_sub_turbo++;
 535                } else {
 536                        chip->throttle_turbo++;
 537                }
 538                trace_powernv_throttle(chip->id,
 539                                      throttle_reason[chip->throttle_reason],
 540                                      pmsr_pmax);
 541        } else if (chip->throttled) {
 542                chip->throttled = false;
 543                trace_powernv_throttle(chip->id,
 544                                      throttle_reason[chip->throttle_reason],
 545                                      pmsr_pmax);
 546        }
 547
 548        /* Check if Psafe_mode_active is set in PMSR. */
 549next:
 550        if (pmsr & PMSR_PSAFE_ENABLE) {
 551                throttled = true;
 552                pr_info("Pstate set to safe frequency\n");
 553        }
 554
 555        /* Check if SPR_EM_DISABLE is set in PMSR */
 556        if (pmsr & PMSR_SPR_EM_DISABLE) {
 557                throttled = true;
 558                pr_info("Frequency Control disabled from OS\n");
 559        }
 560
 561        if (throttled) {
 562                pr_info("PMSR = %16lx\n", pmsr);
 563                pr_warn("CPU Frequency could be throttled\n");
 564        }
 565}
 566
 567/**
 568 * calc_global_pstate - Calculate global pstate
 569 * @elapsed_time:               Elapsed time in milliseconds
 570 * @local_pstate_idx:           New local pstate
 571 * @highest_lpstate_idx:        pstate from which its ramping down
 572 *
 573 * Finds the appropriate global pstate based on the pstate from which its
 574 * ramping down and the time elapsed in ramping down. It follows a quadratic
 575 * equation which ensures that it reaches ramping down to pmin in 5sec.
 576 */
 577static inline int calc_global_pstate(unsigned int elapsed_time,
 578                                     int highest_lpstate_idx,
 579                                     int local_pstate_idx)
 580{
 581        int index_diff;
 582
 583        /*
 584         * Using ramp_down_percent we get the percentage of rampdown
 585         * that we are expecting to be dropping. Difference between
 586         * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
 587         * number of how many pstates we will drop eventually by the end of
 588         * 5 seconds, then just scale it get the number pstates to be dropped.
 589         */
 590        index_diff =  ((int)ramp_down_percent(elapsed_time) *
 591                        (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
 592
 593        /* Ensure that global pstate is >= to local pstate */
 594        if (highest_lpstate_idx + index_diff >= local_pstate_idx)
 595                return local_pstate_idx;
 596        else
 597                return highest_lpstate_idx + index_diff;
 598}
 599
 600static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
 601{
 602        unsigned int timer_interval;
 603
 604        /*
 605         * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
 606         * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
 607         * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
 608         * seconds of ramp down time.
 609         */
 610        if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
 611             > MAX_RAMP_DOWN_TIME)
 612                timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
 613        else
 614                timer_interval = GPSTATE_TIMER_INTERVAL;
 615
 616        mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
 617}
 618
 619/**
 620 * gpstate_timer_handler
 621 *
 622 * @data: pointer to cpufreq_policy on which timer was queued
 623 *
 624 * This handler brings down the global pstate closer to the local pstate
 625 * according quadratic equation. Queues a new timer if it is still not equal
 626 * to local pstate
 627 */
 628void gpstate_timer_handler(unsigned long data)
 629{
 630        struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
 631        struct global_pstate_info *gpstates = policy->driver_data;
 632        int gpstate_idx, lpstate_idx;
 633        unsigned long val;
 634        unsigned int time_diff = jiffies_to_msecs(jiffies)
 635                                        - gpstates->last_sampled_time;
 636        struct powernv_smp_call_data freq_data;
 637
 638        if (!spin_trylock(&gpstates->gpstate_lock))
 639                return;
 640
 641        /*
 642         * If PMCR was last updated was using fast_swtich then
 643         * We may have wrong in gpstate->last_lpstate_idx
 644         * value. Hence, read from PMCR to get correct data.
 645         */
 646        val = get_pmspr(SPRN_PMCR);
 647        freq_data.gpstate_id = (s8)GET_GPSTATE(val);
 648        freq_data.pstate_id = (s8)GET_LPSTATE(val);
 649        if (freq_data.gpstate_id  == freq_data.pstate_id) {
 650                reset_gpstates(policy);
 651                spin_unlock(&gpstates->gpstate_lock);
 652                return;
 653        }
 654
 655        gpstates->last_sampled_time += time_diff;
 656        gpstates->elapsed_time += time_diff;
 657
 658        if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
 659                gpstate_idx = pstate_to_idx(freq_data.pstate_id);
 660                lpstate_idx = gpstate_idx;
 661                reset_gpstates(policy);
 662                gpstates->highest_lpstate_idx = gpstate_idx;
 663        } else {
 664                lpstate_idx = pstate_to_idx(freq_data.pstate_id);
 665                gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
 666                                                 gpstates->highest_lpstate_idx,
 667                                                 lpstate_idx);
 668        }
 669        freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
 670        gpstates->last_gpstate_idx = gpstate_idx;
 671        gpstates->last_lpstate_idx = lpstate_idx;
 672        /*
 673         * If local pstate is equal to global pstate, rampdown is over
 674         * So timer is not required to be queued.
 675         */
 676        if (gpstate_idx != gpstates->last_lpstate_idx)
 677                queue_gpstate_timer(gpstates);
 678
 679        spin_unlock(&gpstates->gpstate_lock);
 680
 681        /* Timer may get migrated to a different cpu on cpu hot unplug */
 682        smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
 683}
 684
 685/*
 686 * powernv_cpufreq_target_index: Sets the frequency corresponding to
 687 * the cpufreq table entry indexed by new_index on the cpus in the
 688 * mask policy->cpus
 689 */
 690static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
 691                                        unsigned int new_index)
 692{
 693        struct powernv_smp_call_data freq_data;
 694        unsigned int cur_msec, gpstate_idx;
 695        struct global_pstate_info *gpstates = policy->driver_data;
 696
 697        if (unlikely(rebooting) && new_index != get_nominal_index())
 698                return 0;
 699
 700        if (!throttled) {
 701                /* we don't want to be preempted while
 702                 * checking if the CPU frequency has been throttled
 703                 */
 704                preempt_disable();
 705                powernv_cpufreq_throttle_check(NULL);
 706                preempt_enable();
 707        }
 708
 709        cur_msec = jiffies_to_msecs(get_jiffies_64());
 710
 711        spin_lock(&gpstates->gpstate_lock);
 712        freq_data.pstate_id = idx_to_pstate(new_index);
 713
 714        if (!gpstates->last_sampled_time) {
 715                gpstate_idx = new_index;
 716                gpstates->highest_lpstate_idx = new_index;
 717                goto gpstates_done;
 718        }
 719
 720        if (gpstates->last_gpstate_idx < new_index) {
 721                gpstates->elapsed_time += cur_msec -
 722                                                 gpstates->last_sampled_time;
 723
 724                /*
 725                 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
 726                 * we should be resetting all global pstate related data. Set it
 727                 * equal to local pstate to start fresh.
 728                 */
 729                if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
 730                        reset_gpstates(policy);
 731                        gpstates->highest_lpstate_idx = new_index;
 732                        gpstate_idx = new_index;
 733                } else {
 734                /* Elaspsed_time is less than 5 seconds, continue to rampdown */
 735                        gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
 736                                                         gpstates->highest_lpstate_idx,
 737                                                         new_index);
 738                }
 739        } else {
 740                reset_gpstates(policy);
 741                gpstates->highest_lpstate_idx = new_index;
 742                gpstate_idx = new_index;
 743        }
 744
 745        /*
 746         * If local pstate is equal to global pstate, rampdown is over
 747         * So timer is not required to be queued.
 748         */
 749        if (gpstate_idx != new_index)
 750                queue_gpstate_timer(gpstates);
 751        else
 752                del_timer_sync(&gpstates->timer);
 753
 754gpstates_done:
 755        freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
 756        gpstates->last_sampled_time = cur_msec;
 757        gpstates->last_gpstate_idx = gpstate_idx;
 758        gpstates->last_lpstate_idx = new_index;
 759
 760        spin_unlock(&gpstates->gpstate_lock);
 761
 762        /*
 763         * Use smp_call_function to send IPI and execute the
 764         * mtspr on target CPU.  We could do that without IPI
 765         * if current CPU is within policy->cpus (core)
 766         */
 767        smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
 768        return 0;
 769}
 770
 771static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
 772{
 773        int base, i, ret;
 774        struct kernfs_node *kn;
 775        struct global_pstate_info *gpstates;
 776
 777        base = cpu_first_thread_sibling(policy->cpu);
 778
 779        for (i = 0; i < threads_per_core; i++)
 780                cpumask_set_cpu(base + i, policy->cpus);
 781
 782        kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
 783        if (!kn) {
 784                int ret;
 785
 786                ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
 787                if (ret) {
 788                        pr_info("Failed to create throttle stats directory for cpu %d\n",
 789                                policy->cpu);
 790                        return ret;
 791                }
 792        } else {
 793                kernfs_put(kn);
 794        }
 795
 796        gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
 797        if (!gpstates)
 798                return -ENOMEM;
 799
 800        policy->driver_data = gpstates;
 801
 802        /* initialize timer */
 803        init_timer_pinned_deferrable(&gpstates->timer);
 804        gpstates->timer.data = (unsigned long)policy;
 805        gpstates->timer.function = gpstate_timer_handler;
 806        gpstates->timer.expires = jiffies +
 807                                msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
 808        spin_lock_init(&gpstates->gpstate_lock);
 809        ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
 810
 811        if (ret < 0) {
 812                kfree(policy->driver_data);
 813                return ret;
 814        }
 815
 816        policy->fast_switch_possible = true;
 817        return ret;
 818}
 819
 820static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 821{
 822        /* timer is deleted in cpufreq_cpu_stop() */
 823        kfree(policy->driver_data);
 824
 825        return 0;
 826}
 827
 828static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
 829                                unsigned long action, void *unused)
 830{
 831        int cpu;
 832        struct cpufreq_policy cpu_policy;
 833
 834        rebooting = true;
 835        for_each_online_cpu(cpu) {
 836                cpufreq_get_policy(&cpu_policy, cpu);
 837                powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
 838        }
 839
 840        return NOTIFY_DONE;
 841}
 842
 843static struct notifier_block powernv_cpufreq_reboot_nb = {
 844        .notifier_call = powernv_cpufreq_reboot_notifier,
 845};
 846
 847void powernv_cpufreq_work_fn(struct work_struct *work)
 848{
 849        struct chip *chip = container_of(work, struct chip, throttle);
 850        unsigned int cpu;
 851        cpumask_t mask;
 852
 853        get_online_cpus();
 854        cpumask_and(&mask, &chip->mask, cpu_online_mask);
 855        smp_call_function_any(&mask,
 856                              powernv_cpufreq_throttle_check, NULL, 0);
 857
 858        if (!chip->restore)
 859                goto out;
 860
 861        chip->restore = false;
 862        for_each_cpu(cpu, &mask) {
 863                int index;
 864                struct cpufreq_policy policy;
 865
 866                cpufreq_get_policy(&policy, cpu);
 867                index = cpufreq_table_find_index_c(&policy, policy.cur);
 868                powernv_cpufreq_target_index(&policy, index);
 869                cpumask_andnot(&mask, &mask, policy.cpus);
 870        }
 871out:
 872        put_online_cpus();
 873}
 874
 875static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
 876                                   unsigned long msg_type, void *_msg)
 877{
 878        struct opal_msg *msg = _msg;
 879        struct opal_occ_msg omsg;
 880        int i;
 881
 882        if (msg_type != OPAL_MSG_OCC)
 883                return 0;
 884
 885        omsg.type = be64_to_cpu(msg->params[0]);
 886
 887        switch (omsg.type) {
 888        case OCC_RESET:
 889                occ_reset = true;
 890                pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
 891                /*
 892                 * powernv_cpufreq_throttle_check() is called in
 893                 * target() callback which can detect the throttle state
 894                 * for governors like ondemand.
 895                 * But static governors will not call target() often thus
 896                 * report throttling here.
 897                 */
 898                if (!throttled) {
 899                        throttled = true;
 900                        pr_warn("CPU frequency is throttled for duration\n");
 901                }
 902
 903                break;
 904        case OCC_LOAD:
 905                pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
 906                break;
 907        case OCC_THROTTLE:
 908                omsg.chip = be64_to_cpu(msg->params[1]);
 909                omsg.throttle_status = be64_to_cpu(msg->params[2]);
 910
 911                if (occ_reset) {
 912                        occ_reset = false;
 913                        throttled = false;
 914                        pr_info("OCC Active, CPU frequency is no longer throttled\n");
 915
 916                        for (i = 0; i < nr_chips; i++) {
 917                                chips[i].restore = true;
 918                                schedule_work(&chips[i].throttle);
 919                        }
 920
 921                        return 0;
 922                }
 923
 924                for (i = 0; i < nr_chips; i++)
 925                        if (chips[i].id == omsg.chip)
 926                                break;
 927
 928                if (omsg.throttle_status >= 0 &&
 929                    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
 930                        chips[i].throttle_reason = omsg.throttle_status;
 931                        chips[i].reason[omsg.throttle_status]++;
 932                }
 933
 934                if (!omsg.throttle_status)
 935                        chips[i].restore = true;
 936
 937                schedule_work(&chips[i].throttle);
 938        }
 939        return 0;
 940}
 941
 942static struct notifier_block powernv_cpufreq_opal_nb = {
 943        .notifier_call  = powernv_cpufreq_occ_msg,
 944        .next           = NULL,
 945        .priority       = 0,
 946};
 947
 948static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
 949{
 950        struct powernv_smp_call_data freq_data;
 951        struct global_pstate_info *gpstates = policy->driver_data;
 952
 953        freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
 954        freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
 955        smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
 956        del_timer_sync(&gpstates->timer);
 957}
 958
 959static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
 960                                        unsigned int target_freq)
 961{
 962        int index;
 963        struct powernv_smp_call_data freq_data;
 964
 965        index = cpufreq_table_find_index_dl(policy, target_freq);
 966        freq_data.pstate_id = powernv_freqs[index].driver_data;
 967        freq_data.gpstate_id = powernv_freqs[index].driver_data;
 968        set_pstate(&freq_data);
 969
 970        return powernv_freqs[index].frequency;
 971}
 972
 973static struct cpufreq_driver powernv_cpufreq_driver = {
 974        .name           = "powernv-cpufreq",
 975        .flags          = CPUFREQ_CONST_LOOPS,
 976        .init           = powernv_cpufreq_cpu_init,
 977        .exit           = powernv_cpufreq_cpu_exit,
 978        .verify         = cpufreq_generic_frequency_table_verify,
 979        .target_index   = powernv_cpufreq_target_index,
 980        .fast_switch    = powernv_fast_switch,
 981        .get            = powernv_cpufreq_get,
 982        .stop_cpu       = powernv_cpufreq_stop_cpu,
 983        .attr           = powernv_cpu_freq_attr,
 984};
 985
 986static int init_chip_info(void)
 987{
 988        unsigned int chip[256];
 989        unsigned int cpu, i;
 990        unsigned int prev_chip_id = UINT_MAX;
 991
 992        for_each_possible_cpu(cpu) {
 993                unsigned int id = cpu_to_chip_id(cpu);
 994
 995                if (prev_chip_id != id) {
 996                        prev_chip_id = id;
 997                        chip[nr_chips++] = id;
 998                }
 999        }
1000
1001        chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1002        if (!chips)
1003                return -ENOMEM;
1004
1005        for (i = 0; i < nr_chips; i++) {
1006                chips[i].id = chip[i];
1007                cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1008                INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1009                for_each_cpu(cpu, &chips[i].mask)
1010                        per_cpu(chip_info, cpu) =  &chips[i];
1011        }
1012
1013        return 0;
1014}
1015
1016static inline void clean_chip_info(void)
1017{
1018        kfree(chips);
1019}
1020
1021static inline void unregister_all_notifiers(void)
1022{
1023        opal_message_notifier_unregister(OPAL_MSG_OCC,
1024                                         &powernv_cpufreq_opal_nb);
1025        unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1026}
1027
1028static int __init powernv_cpufreq_init(void)
1029{
1030        int rc = 0;
1031
1032        /* Don't probe on pseries (guest) platforms */
1033        if (!firmware_has_feature(FW_FEATURE_OPAL))
1034                return -ENODEV;
1035
1036        /* Discover pstates from device tree and init */
1037        rc = init_powernv_pstates();
1038        if (rc)
1039                goto out;
1040
1041        /* Populate chip info */
1042        rc = init_chip_info();
1043        if (rc)
1044                goto out;
1045
1046        register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1047        opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1048
1049        if (powernv_pstate_info.wof_enabled)
1050                powernv_cpufreq_driver.boost_enabled = true;
1051        else
1052                powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1053
1054        rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1055        if (rc) {
1056                pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1057                goto cleanup_notifiers;
1058        }
1059
1060        if (powernv_pstate_info.wof_enabled)
1061                cpufreq_enable_boost_support();
1062
1063        return 0;
1064cleanup_notifiers:
1065        unregister_all_notifiers();
1066        clean_chip_info();
1067out:
1068        pr_info("Platform driver disabled. System does not support PState control\n");
1069        return rc;
1070}
1071module_init(powernv_cpufreq_init);
1072
1073static void __exit powernv_cpufreq_exit(void)
1074{
1075        cpufreq_unregister_driver(&powernv_cpufreq_driver);
1076        unregister_all_notifiers();
1077        clean_chip_info();
1078}
1079module_exit(powernv_cpufreq_exit);
1080
1081MODULE_LICENSE("GPL");
1082MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1083