linux/drivers/crypto/mv_cesa.c
<<
>>
Prefs
   1/*
   2 * Support for Marvell's crypto engine which can be found on some Orion5X
   3 * boards.
   4 *
   5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
   6 * License: GPLv2
   7 *
   8 */
   9#include <crypto/aes.h>
  10#include <crypto/algapi.h>
  11#include <linux/crypto.h>
  12#include <linux/genalloc.h>
  13#include <linux/interrupt.h>
  14#include <linux/io.h>
  15#include <linux/kthread.h>
  16#include <linux/platform_device.h>
  17#include <linux/scatterlist.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/clk.h>
  21#include <crypto/hmac.h>
  22#include <crypto/internal/hash.h>
  23#include <crypto/sha.h>
  24#include <linux/of.h>
  25#include <linux/of_platform.h>
  26#include <linux/of_irq.h>
  27
  28#include "mv_cesa.h"
  29
  30#define MV_CESA "MV-CESA:"
  31#define MAX_HW_HASH_SIZE        0xFFFF
  32#define MV_CESA_EXPIRE          500 /* msec */
  33
  34#define MV_CESA_DEFAULT_SRAM_SIZE       2048
  35
  36/*
  37 * STM:
  38 *   /---------------------------------------\
  39 *   |                                       | request complete
  40 *  \./                                      |
  41 * IDLE -> new request -> BUSY -> done -> DEQUEUE
  42 *                         /°\               |
  43 *                          |                | more scatter entries
  44 *                          \________________/
  45 */
  46enum engine_status {
  47        ENGINE_IDLE,
  48        ENGINE_BUSY,
  49        ENGINE_W_DEQUEUE,
  50};
  51
  52/**
  53 * struct req_progress - used for every crypt request
  54 * @src_sg_it:          sg iterator for src
  55 * @dst_sg_it:          sg iterator for dst
  56 * @sg_src_left:        bytes left in src to process (scatter list)
  57 * @src_start:          offset to add to src start position (scatter list)
  58 * @crypt_len:          length of current hw crypt/hash process
  59 * @hw_nbytes:          total bytes to process in hw for this request
  60 * @copy_back:          whether to copy data back (crypt) or not (hash)
  61 * @sg_dst_left:        bytes left dst to process in this scatter list
  62 * @dst_start:          offset to add to dst start position (scatter list)
  63 * @hw_processed_bytes: number of bytes processed by hw (request).
  64 *
  65 * sg helper are used to iterate over the scatterlist. Since the size of the
  66 * SRAM may be less than the scatter size, this struct struct is used to keep
  67 * track of progress within current scatterlist.
  68 */
  69struct req_progress {
  70        struct sg_mapping_iter src_sg_it;
  71        struct sg_mapping_iter dst_sg_it;
  72        void (*complete) (void);
  73        void (*process) (int is_first);
  74
  75        /* src mostly */
  76        int sg_src_left;
  77        int src_start;
  78        int crypt_len;
  79        int hw_nbytes;
  80        /* dst mostly */
  81        int copy_back;
  82        int sg_dst_left;
  83        int dst_start;
  84        int hw_processed_bytes;
  85};
  86
  87struct crypto_priv {
  88        void __iomem *reg;
  89        void __iomem *sram;
  90        struct gen_pool *sram_pool;
  91        dma_addr_t sram_dma;
  92        int irq;
  93        struct clk *clk;
  94        struct task_struct *queue_th;
  95
  96        /* the lock protects queue and eng_st */
  97        spinlock_t lock;
  98        struct crypto_queue queue;
  99        enum engine_status eng_st;
 100        struct timer_list completion_timer;
 101        struct crypto_async_request *cur_req;
 102        struct req_progress p;
 103        int max_req_size;
 104        int sram_size;
 105        int has_sha1;
 106        int has_hmac_sha1;
 107};
 108
 109static struct crypto_priv *cpg;
 110
 111struct mv_ctx {
 112        u8 aes_enc_key[AES_KEY_LEN];
 113        u32 aes_dec_key[8];
 114        int key_len;
 115        u32 need_calc_aes_dkey;
 116};
 117
 118enum crypto_op {
 119        COP_AES_ECB,
 120        COP_AES_CBC,
 121};
 122
 123struct mv_req_ctx {
 124        enum crypto_op op;
 125        int decrypt;
 126};
 127
 128enum hash_op {
 129        COP_SHA1,
 130        COP_HMAC_SHA1
 131};
 132
 133struct mv_tfm_hash_ctx {
 134        struct crypto_shash *fallback;
 135        struct crypto_shash *base_hash;
 136        u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
 137        int count_add;
 138        enum hash_op op;
 139};
 140
 141struct mv_req_hash_ctx {
 142        u64 count;
 143        u32 state[SHA1_DIGEST_SIZE / 4];
 144        u8 buffer[SHA1_BLOCK_SIZE];
 145        int first_hash;         /* marks that we don't have previous state */
 146        int last_chunk;         /* marks that this is the 'final' request */
 147        int extra_bytes;        /* unprocessed bytes in buffer */
 148        enum hash_op op;
 149        int count_add;
 150};
 151
 152static void mv_completion_timer_callback(unsigned long unused)
 153{
 154        int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;
 155
 156        printk(KERN_ERR MV_CESA
 157               "completion timer expired (CESA %sactive), cleaning up.\n",
 158               active ? "" : "in");
 159
 160        del_timer(&cpg->completion_timer);
 161        writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
 162        while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
 163                printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
 164        cpg->eng_st = ENGINE_W_DEQUEUE;
 165        wake_up_process(cpg->queue_th);
 166}
 167
 168static void mv_setup_timer(void)
 169{
 170        setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
 171        mod_timer(&cpg->completion_timer,
 172                        jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
 173}
 174
 175static void compute_aes_dec_key(struct mv_ctx *ctx)
 176{
 177        struct crypto_aes_ctx gen_aes_key;
 178        int key_pos;
 179
 180        if (!ctx->need_calc_aes_dkey)
 181                return;
 182
 183        crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
 184
 185        key_pos = ctx->key_len + 24;
 186        memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
 187        switch (ctx->key_len) {
 188        case AES_KEYSIZE_256:
 189                key_pos -= 2;
 190                /* fall */
 191        case AES_KEYSIZE_192:
 192                key_pos -= 2;
 193                memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
 194                                4 * 4);
 195                break;
 196        }
 197        ctx->need_calc_aes_dkey = 0;
 198}
 199
 200static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
 201                unsigned int len)
 202{
 203        struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 204        struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
 205
 206        switch (len) {
 207        case AES_KEYSIZE_128:
 208        case AES_KEYSIZE_192:
 209        case AES_KEYSIZE_256:
 210                break;
 211        default:
 212                crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 213                return -EINVAL;
 214        }
 215        ctx->key_len = len;
 216        ctx->need_calc_aes_dkey = 1;
 217
 218        memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
 219        return 0;
 220}
 221
 222static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
 223{
 224        int ret;
 225        void *sbuf;
 226        int copy_len;
 227
 228        while (len) {
 229                if (!p->sg_src_left) {
 230                        ret = sg_miter_next(&p->src_sg_it);
 231                        BUG_ON(!ret);
 232                        p->sg_src_left = p->src_sg_it.length;
 233                        p->src_start = 0;
 234                }
 235
 236                sbuf = p->src_sg_it.addr + p->src_start;
 237
 238                copy_len = min(p->sg_src_left, len);
 239                memcpy(dbuf, sbuf, copy_len);
 240
 241                p->src_start += copy_len;
 242                p->sg_src_left -= copy_len;
 243
 244                len -= copy_len;
 245                dbuf += copy_len;
 246        }
 247}
 248
 249static void setup_data_in(void)
 250{
 251        struct req_progress *p = &cpg->p;
 252        int data_in_sram =
 253            min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
 254        copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
 255                        data_in_sram - p->crypt_len);
 256        p->crypt_len = data_in_sram;
 257}
 258
 259static void mv_process_current_q(int first_block)
 260{
 261        struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 262        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 263        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 264        struct sec_accel_config op;
 265
 266        switch (req_ctx->op) {
 267        case COP_AES_ECB:
 268                op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
 269                break;
 270        case COP_AES_CBC:
 271        default:
 272                op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
 273                op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
 274                        ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
 275                if (first_block)
 276                        memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
 277                break;
 278        }
 279        if (req_ctx->decrypt) {
 280                op.config |= CFG_DIR_DEC;
 281                memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
 282                                AES_KEY_LEN);
 283        } else {
 284                op.config |= CFG_DIR_ENC;
 285                memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
 286                                AES_KEY_LEN);
 287        }
 288
 289        switch (ctx->key_len) {
 290        case AES_KEYSIZE_128:
 291                op.config |= CFG_AES_LEN_128;
 292                break;
 293        case AES_KEYSIZE_192:
 294                op.config |= CFG_AES_LEN_192;
 295                break;
 296        case AES_KEYSIZE_256:
 297                op.config |= CFG_AES_LEN_256;
 298                break;
 299        }
 300        op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
 301                ENC_P_DST(SRAM_DATA_OUT_START);
 302        op.enc_key_p = SRAM_DATA_KEY_P;
 303
 304        setup_data_in();
 305        op.enc_len = cpg->p.crypt_len;
 306        memcpy(cpg->sram + SRAM_CONFIG, &op,
 307                        sizeof(struct sec_accel_config));
 308
 309        /* GO */
 310        mv_setup_timer();
 311        writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 312}
 313
 314static void mv_crypto_algo_completion(void)
 315{
 316        struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 317        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 318
 319        sg_miter_stop(&cpg->p.src_sg_it);
 320        sg_miter_stop(&cpg->p.dst_sg_it);
 321
 322        if (req_ctx->op != COP_AES_CBC)
 323                return ;
 324
 325        memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
 326}
 327
 328static void mv_process_hash_current(int first_block)
 329{
 330        struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 331        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 332        struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 333        struct req_progress *p = &cpg->p;
 334        struct sec_accel_config op = { 0 };
 335        int is_last;
 336
 337        switch (req_ctx->op) {
 338        case COP_SHA1:
 339        default:
 340                op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
 341                break;
 342        case COP_HMAC_SHA1:
 343                op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
 344                memcpy(cpg->sram + SRAM_HMAC_IV_IN,
 345                                tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
 346                break;
 347        }
 348
 349        op.mac_src_p =
 350                MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
 351                req_ctx->
 352                count);
 353
 354        setup_data_in();
 355
 356        op.mac_digest =
 357                MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
 358        op.mac_iv =
 359                MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
 360                MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
 361
 362        is_last = req_ctx->last_chunk
 363                && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
 364                && (req_ctx->count <= MAX_HW_HASH_SIZE);
 365        if (req_ctx->first_hash) {
 366                if (is_last)
 367                        op.config |= CFG_NOT_FRAG;
 368                else
 369                        op.config |= CFG_FIRST_FRAG;
 370
 371                req_ctx->first_hash = 0;
 372        } else {
 373                if (is_last)
 374                        op.config |= CFG_LAST_FRAG;
 375                else
 376                        op.config |= CFG_MID_FRAG;
 377
 378                if (first_block) {
 379                        writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
 380                        writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
 381                        writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
 382                        writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
 383                        writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
 384                }
 385        }
 386
 387        memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
 388
 389        /* GO */
 390        mv_setup_timer();
 391        writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 392}
 393
 394static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
 395                                          struct shash_desc *desc)
 396{
 397        int i;
 398        struct sha1_state shash_state;
 399
 400        shash_state.count = ctx->count + ctx->count_add;
 401        for (i = 0; i < 5; i++)
 402                shash_state.state[i] = ctx->state[i];
 403        memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
 404        return crypto_shash_import(desc, &shash_state);
 405}
 406
 407static int mv_hash_final_fallback(struct ahash_request *req)
 408{
 409        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 410        struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 411        SHASH_DESC_ON_STACK(shash, tfm_ctx->fallback);
 412        int rc;
 413
 414        shash->tfm = tfm_ctx->fallback;
 415        shash->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 416        if (unlikely(req_ctx->first_hash)) {
 417                crypto_shash_init(shash);
 418                crypto_shash_update(shash, req_ctx->buffer,
 419                                    req_ctx->extra_bytes);
 420        } else {
 421                /* only SHA1 for now....
 422                 */
 423                rc = mv_hash_import_sha1_ctx(req_ctx, shash);
 424                if (rc)
 425                        goto out;
 426        }
 427        rc = crypto_shash_final(shash, req->result);
 428out:
 429        return rc;
 430}
 431
 432static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
 433{
 434        ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
 435        ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
 436        ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
 437        ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
 438        ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
 439}
 440
 441static void mv_hash_algo_completion(void)
 442{
 443        struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 444        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 445
 446        if (ctx->extra_bytes)
 447                copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
 448        sg_miter_stop(&cpg->p.src_sg_it);
 449
 450        if (likely(ctx->last_chunk)) {
 451                if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
 452                        memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
 453                               crypto_ahash_digestsize(crypto_ahash_reqtfm
 454                                                       (req)));
 455                } else {
 456                        mv_save_digest_state(ctx);
 457                        mv_hash_final_fallback(req);
 458                }
 459        } else {
 460                mv_save_digest_state(ctx);
 461        }
 462}
 463
 464static void dequeue_complete_req(void)
 465{
 466        struct crypto_async_request *req = cpg->cur_req;
 467        void *buf;
 468        int ret;
 469        cpg->p.hw_processed_bytes += cpg->p.crypt_len;
 470        if (cpg->p.copy_back) {
 471                int need_copy_len = cpg->p.crypt_len;
 472                int sram_offset = 0;
 473                do {
 474                        int dst_copy;
 475
 476                        if (!cpg->p.sg_dst_left) {
 477                                ret = sg_miter_next(&cpg->p.dst_sg_it);
 478                                BUG_ON(!ret);
 479                                cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
 480                                cpg->p.dst_start = 0;
 481                        }
 482
 483                        buf = cpg->p.dst_sg_it.addr;
 484                        buf += cpg->p.dst_start;
 485
 486                        dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
 487
 488                        memcpy(buf,
 489                               cpg->sram + SRAM_DATA_OUT_START + sram_offset,
 490                               dst_copy);
 491                        sram_offset += dst_copy;
 492                        cpg->p.sg_dst_left -= dst_copy;
 493                        need_copy_len -= dst_copy;
 494                        cpg->p.dst_start += dst_copy;
 495                } while (need_copy_len > 0);
 496        }
 497
 498        cpg->p.crypt_len = 0;
 499
 500        BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
 501        if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
 502                /* process next scatter list entry */
 503                cpg->eng_st = ENGINE_BUSY;
 504                cpg->p.process(0);
 505        } else {
 506                cpg->p.complete();
 507                cpg->eng_st = ENGINE_IDLE;
 508                local_bh_disable();
 509                req->complete(req, 0);
 510                local_bh_enable();
 511        }
 512}
 513
 514static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
 515{
 516        int i = 0;
 517        size_t cur_len;
 518
 519        while (sl) {
 520                cur_len = sl[i].length;
 521                ++i;
 522                if (total_bytes > cur_len)
 523                        total_bytes -= cur_len;
 524                else
 525                        break;
 526        }
 527
 528        return i;
 529}
 530
 531static void mv_start_new_crypt_req(struct ablkcipher_request *req)
 532{
 533        struct req_progress *p = &cpg->p;
 534        int num_sgs;
 535
 536        cpg->cur_req = &req->base;
 537        memset(p, 0, sizeof(struct req_progress));
 538        p->hw_nbytes = req->nbytes;
 539        p->complete = mv_crypto_algo_completion;
 540        p->process = mv_process_current_q;
 541        p->copy_back = 1;
 542
 543        num_sgs = count_sgs(req->src, req->nbytes);
 544        sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 545
 546        num_sgs = count_sgs(req->dst, req->nbytes);
 547        sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
 548
 549        mv_process_current_q(1);
 550}
 551
 552static void mv_start_new_hash_req(struct ahash_request *req)
 553{
 554        struct req_progress *p = &cpg->p;
 555        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 556        int num_sgs, hw_bytes, old_extra_bytes, rc;
 557        cpg->cur_req = &req->base;
 558        memset(p, 0, sizeof(struct req_progress));
 559        hw_bytes = req->nbytes + ctx->extra_bytes;
 560        old_extra_bytes = ctx->extra_bytes;
 561
 562        ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
 563        if (ctx->extra_bytes != 0
 564            && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
 565                hw_bytes -= ctx->extra_bytes;
 566        else
 567                ctx->extra_bytes = 0;
 568
 569        num_sgs = count_sgs(req->src, req->nbytes);
 570        sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 571
 572        if (hw_bytes) {
 573                p->hw_nbytes = hw_bytes;
 574                p->complete = mv_hash_algo_completion;
 575                p->process = mv_process_hash_current;
 576
 577                if (unlikely(old_extra_bytes)) {
 578                        memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
 579                               old_extra_bytes);
 580                        p->crypt_len = old_extra_bytes;
 581                }
 582
 583                mv_process_hash_current(1);
 584        } else {
 585                copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
 586                                ctx->extra_bytes - old_extra_bytes);
 587                sg_miter_stop(&p->src_sg_it);
 588                if (ctx->last_chunk)
 589                        rc = mv_hash_final_fallback(req);
 590                else
 591                        rc = 0;
 592                cpg->eng_st = ENGINE_IDLE;
 593                local_bh_disable();
 594                req->base.complete(&req->base, rc);
 595                local_bh_enable();
 596        }
 597}
 598
 599static int queue_manag(void *data)
 600{
 601        cpg->eng_st = ENGINE_IDLE;
 602        do {
 603                struct crypto_async_request *async_req = NULL;
 604                struct crypto_async_request *backlog = NULL;
 605
 606                __set_current_state(TASK_INTERRUPTIBLE);
 607
 608                if (cpg->eng_st == ENGINE_W_DEQUEUE)
 609                        dequeue_complete_req();
 610
 611                spin_lock_irq(&cpg->lock);
 612                if (cpg->eng_st == ENGINE_IDLE) {
 613                        backlog = crypto_get_backlog(&cpg->queue);
 614                        async_req = crypto_dequeue_request(&cpg->queue);
 615                        if (async_req) {
 616                                BUG_ON(cpg->eng_st != ENGINE_IDLE);
 617                                cpg->eng_st = ENGINE_BUSY;
 618                        }
 619                }
 620                spin_unlock_irq(&cpg->lock);
 621
 622                if (backlog) {
 623                        backlog->complete(backlog, -EINPROGRESS);
 624                        backlog = NULL;
 625                }
 626
 627                if (async_req) {
 628                        if (crypto_tfm_alg_type(async_req->tfm) !=
 629                            CRYPTO_ALG_TYPE_AHASH) {
 630                                struct ablkcipher_request *req =
 631                                    ablkcipher_request_cast(async_req);
 632                                mv_start_new_crypt_req(req);
 633                        } else {
 634                                struct ahash_request *req =
 635                                    ahash_request_cast(async_req);
 636                                mv_start_new_hash_req(req);
 637                        }
 638                        async_req = NULL;
 639                }
 640
 641                schedule();
 642
 643        } while (!kthread_should_stop());
 644        return 0;
 645}
 646
 647static int mv_handle_req(struct crypto_async_request *req)
 648{
 649        unsigned long flags;
 650        int ret;
 651
 652        spin_lock_irqsave(&cpg->lock, flags);
 653        ret = crypto_enqueue_request(&cpg->queue, req);
 654        spin_unlock_irqrestore(&cpg->lock, flags);
 655        wake_up_process(cpg->queue_th);
 656        return ret;
 657}
 658
 659static int mv_enc_aes_ecb(struct ablkcipher_request *req)
 660{
 661        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 662
 663        req_ctx->op = COP_AES_ECB;
 664        req_ctx->decrypt = 0;
 665
 666        return mv_handle_req(&req->base);
 667}
 668
 669static int mv_dec_aes_ecb(struct ablkcipher_request *req)
 670{
 671        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 672        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 673
 674        req_ctx->op = COP_AES_ECB;
 675        req_ctx->decrypt = 1;
 676
 677        compute_aes_dec_key(ctx);
 678        return mv_handle_req(&req->base);
 679}
 680
 681static int mv_enc_aes_cbc(struct ablkcipher_request *req)
 682{
 683        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 684
 685        req_ctx->op = COP_AES_CBC;
 686        req_ctx->decrypt = 0;
 687
 688        return mv_handle_req(&req->base);
 689}
 690
 691static int mv_dec_aes_cbc(struct ablkcipher_request *req)
 692{
 693        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 694        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 695
 696        req_ctx->op = COP_AES_CBC;
 697        req_ctx->decrypt = 1;
 698
 699        compute_aes_dec_key(ctx);
 700        return mv_handle_req(&req->base);
 701}
 702
 703static int mv_cra_init(struct crypto_tfm *tfm)
 704{
 705        tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
 706        return 0;
 707}
 708
 709static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
 710                                 int is_last, unsigned int req_len,
 711                                 int count_add)
 712{
 713        memset(ctx, 0, sizeof(*ctx));
 714        ctx->op = op;
 715        ctx->count = req_len;
 716        ctx->first_hash = 1;
 717        ctx->last_chunk = is_last;
 718        ctx->count_add = count_add;
 719}
 720
 721static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
 722                                   unsigned req_len)
 723{
 724        ctx->last_chunk = is_last;
 725        ctx->count += req_len;
 726}
 727
 728static int mv_hash_init(struct ahash_request *req)
 729{
 730        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 731        mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
 732                             tfm_ctx->count_add);
 733        return 0;
 734}
 735
 736static int mv_hash_update(struct ahash_request *req)
 737{
 738        if (!req->nbytes)
 739                return 0;
 740
 741        mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
 742        return mv_handle_req(&req->base);
 743}
 744
 745static int mv_hash_final(struct ahash_request *req)
 746{
 747        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 748
 749        ahash_request_set_crypt(req, NULL, req->result, 0);
 750        mv_update_hash_req_ctx(ctx, 1, 0);
 751        return mv_handle_req(&req->base);
 752}
 753
 754static int mv_hash_finup(struct ahash_request *req)
 755{
 756        mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
 757        return mv_handle_req(&req->base);
 758}
 759
 760static int mv_hash_digest(struct ahash_request *req)
 761{
 762        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 763        mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
 764                             req->nbytes, tfm_ctx->count_add);
 765        return mv_handle_req(&req->base);
 766}
 767
 768static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
 769                             const void *ostate)
 770{
 771        const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
 772        int i;
 773        for (i = 0; i < 5; i++) {
 774                ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
 775                ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
 776        }
 777}
 778
 779static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
 780                          unsigned int keylen)
 781{
 782        int rc;
 783        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 784        int bs, ds, ss;
 785
 786        if (!ctx->base_hash)
 787                return 0;
 788
 789        rc = crypto_shash_setkey(ctx->fallback, key, keylen);
 790        if (rc)
 791                return rc;
 792
 793        /* Can't see a way to extract the ipad/opad from the fallback tfm
 794           so I'm basically copying code from the hmac module */
 795        bs = crypto_shash_blocksize(ctx->base_hash);
 796        ds = crypto_shash_digestsize(ctx->base_hash);
 797        ss = crypto_shash_statesize(ctx->base_hash);
 798
 799        {
 800                SHASH_DESC_ON_STACK(shash, ctx->base_hash);
 801
 802                unsigned int i;
 803                char ipad[ss];
 804                char opad[ss];
 805
 806                shash->tfm = ctx->base_hash;
 807                shash->flags = crypto_shash_get_flags(ctx->base_hash) &
 808                    CRYPTO_TFM_REQ_MAY_SLEEP;
 809
 810                if (keylen > bs) {
 811                        int err;
 812
 813                        err =
 814                            crypto_shash_digest(shash, key, keylen, ipad);
 815                        if (err)
 816                                return err;
 817
 818                        keylen = ds;
 819                } else
 820                        memcpy(ipad, key, keylen);
 821
 822                memset(ipad + keylen, 0, bs - keylen);
 823                memcpy(opad, ipad, bs);
 824
 825                for (i = 0; i < bs; i++) {
 826                        ipad[i] ^= HMAC_IPAD_VALUE;
 827                        opad[i] ^= HMAC_OPAD_VALUE;
 828                }
 829
 830                rc = crypto_shash_init(shash) ? :
 831                    crypto_shash_update(shash, ipad, bs) ? :
 832                    crypto_shash_export(shash, ipad) ? :
 833                    crypto_shash_init(shash) ? :
 834                    crypto_shash_update(shash, opad, bs) ? :
 835                    crypto_shash_export(shash, opad);
 836
 837                if (rc == 0)
 838                        mv_hash_init_ivs(ctx, ipad, opad);
 839
 840                return rc;
 841        }
 842}
 843
 844static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
 845                            enum hash_op op, int count_add)
 846{
 847        const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 848        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 849        struct crypto_shash *fallback_tfm = NULL;
 850        struct crypto_shash *base_hash = NULL;
 851        int err = -ENOMEM;
 852
 853        ctx->op = op;
 854        ctx->count_add = count_add;
 855
 856        /* Allocate a fallback and abort if it failed. */
 857        fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
 858                                          CRYPTO_ALG_NEED_FALLBACK);
 859        if (IS_ERR(fallback_tfm)) {
 860                printk(KERN_WARNING MV_CESA
 861                       "Fallback driver '%s' could not be loaded!\n",
 862                       fallback_driver_name);
 863                err = PTR_ERR(fallback_tfm);
 864                goto out;
 865        }
 866        ctx->fallback = fallback_tfm;
 867
 868        if (base_hash_name) {
 869                /* Allocate a hash to compute the ipad/opad of hmac. */
 870                base_hash = crypto_alloc_shash(base_hash_name, 0,
 871                                               CRYPTO_ALG_NEED_FALLBACK);
 872                if (IS_ERR(base_hash)) {
 873                        printk(KERN_WARNING MV_CESA
 874                               "Base driver '%s' could not be loaded!\n",
 875                               base_hash_name);
 876                        err = PTR_ERR(base_hash);
 877                        goto err_bad_base;
 878                }
 879        }
 880        ctx->base_hash = base_hash;
 881
 882        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 883                                 sizeof(struct mv_req_hash_ctx) +
 884                                 crypto_shash_descsize(ctx->fallback));
 885        return 0;
 886err_bad_base:
 887        crypto_free_shash(fallback_tfm);
 888out:
 889        return err;
 890}
 891
 892static void mv_cra_hash_exit(struct crypto_tfm *tfm)
 893{
 894        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 895
 896        crypto_free_shash(ctx->fallback);
 897        if (ctx->base_hash)
 898                crypto_free_shash(ctx->base_hash);
 899}
 900
 901static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
 902{
 903        return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
 904}
 905
 906static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
 907{
 908        return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
 909}
 910
 911static irqreturn_t crypto_int(int irq, void *priv)
 912{
 913        u32 val;
 914
 915        val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
 916        if (!(val & SEC_INT_ACCEL0_DONE))
 917                return IRQ_NONE;
 918
 919        if (!del_timer(&cpg->completion_timer)) {
 920                printk(KERN_WARNING MV_CESA
 921                       "got an interrupt but no pending timer?\n");
 922        }
 923        val &= ~SEC_INT_ACCEL0_DONE;
 924        writel(val, cpg->reg + FPGA_INT_STATUS);
 925        writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
 926        BUG_ON(cpg->eng_st != ENGINE_BUSY);
 927        cpg->eng_st = ENGINE_W_DEQUEUE;
 928        wake_up_process(cpg->queue_th);
 929        return IRQ_HANDLED;
 930}
 931
 932static struct crypto_alg mv_aes_alg_ecb = {
 933        .cra_name               = "ecb(aes)",
 934        .cra_driver_name        = "mv-ecb-aes",
 935        .cra_priority   = 300,
 936        .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
 937                          CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 938        .cra_blocksize  = 16,
 939        .cra_ctxsize    = sizeof(struct mv_ctx),
 940        .cra_alignmask  = 0,
 941        .cra_type       = &crypto_ablkcipher_type,
 942        .cra_module     = THIS_MODULE,
 943        .cra_init       = mv_cra_init,
 944        .cra_u          = {
 945                .ablkcipher = {
 946                        .min_keysize    =       AES_MIN_KEY_SIZE,
 947                        .max_keysize    =       AES_MAX_KEY_SIZE,
 948                        .setkey         =       mv_setkey_aes,
 949                        .encrypt        =       mv_enc_aes_ecb,
 950                        .decrypt        =       mv_dec_aes_ecb,
 951                },
 952        },
 953};
 954
 955static struct crypto_alg mv_aes_alg_cbc = {
 956        .cra_name               = "cbc(aes)",
 957        .cra_driver_name        = "mv-cbc-aes",
 958        .cra_priority   = 300,
 959        .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
 960                          CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 961        .cra_blocksize  = AES_BLOCK_SIZE,
 962        .cra_ctxsize    = sizeof(struct mv_ctx),
 963        .cra_alignmask  = 0,
 964        .cra_type       = &crypto_ablkcipher_type,
 965        .cra_module     = THIS_MODULE,
 966        .cra_init       = mv_cra_init,
 967        .cra_u          = {
 968                .ablkcipher = {
 969                        .ivsize         =       AES_BLOCK_SIZE,
 970                        .min_keysize    =       AES_MIN_KEY_SIZE,
 971                        .max_keysize    =       AES_MAX_KEY_SIZE,
 972                        .setkey         =       mv_setkey_aes,
 973                        .encrypt        =       mv_enc_aes_cbc,
 974                        .decrypt        =       mv_dec_aes_cbc,
 975                },
 976        },
 977};
 978
 979static struct ahash_alg mv_sha1_alg = {
 980        .init = mv_hash_init,
 981        .update = mv_hash_update,
 982        .final = mv_hash_final,
 983        .finup = mv_hash_finup,
 984        .digest = mv_hash_digest,
 985        .halg = {
 986                 .digestsize = SHA1_DIGEST_SIZE,
 987                 .base = {
 988                          .cra_name = "sha1",
 989                          .cra_driver_name = "mv-sha1",
 990                          .cra_priority = 300,
 991                          .cra_flags =
 992                          CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
 993                          CRYPTO_ALG_NEED_FALLBACK,
 994                          .cra_blocksize = SHA1_BLOCK_SIZE,
 995                          .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 996                          .cra_init = mv_cra_hash_sha1_init,
 997                          .cra_exit = mv_cra_hash_exit,
 998                          .cra_module = THIS_MODULE,
 999                          }
1000                 }
1001};
1002
1003static struct ahash_alg mv_hmac_sha1_alg = {
1004        .init = mv_hash_init,
1005        .update = mv_hash_update,
1006        .final = mv_hash_final,
1007        .finup = mv_hash_finup,
1008        .digest = mv_hash_digest,
1009        .setkey = mv_hash_setkey,
1010        .halg = {
1011                 .digestsize = SHA1_DIGEST_SIZE,
1012                 .base = {
1013                          .cra_name = "hmac(sha1)",
1014                          .cra_driver_name = "mv-hmac-sha1",
1015                          .cra_priority = 300,
1016                          .cra_flags =
1017                          CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
1018                          CRYPTO_ALG_NEED_FALLBACK,
1019                          .cra_blocksize = SHA1_BLOCK_SIZE,
1020                          .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
1021                          .cra_init = mv_cra_hash_hmac_sha1_init,
1022                          .cra_exit = mv_cra_hash_exit,
1023                          .cra_module = THIS_MODULE,
1024                          }
1025                 }
1026};
1027
1028static int mv_cesa_get_sram(struct platform_device *pdev,
1029                            struct crypto_priv *cp)
1030{
1031        struct resource *res;
1032        u32 sram_size = MV_CESA_DEFAULT_SRAM_SIZE;
1033
1034        of_property_read_u32(pdev->dev.of_node, "marvell,crypto-sram-size",
1035                             &sram_size);
1036
1037        cp->sram_size = sram_size;
1038        cp->sram_pool = of_gen_pool_get(pdev->dev.of_node,
1039                                        "marvell,crypto-srams", 0);
1040        if (cp->sram_pool) {
1041                cp->sram = gen_pool_dma_alloc(cp->sram_pool, sram_size,
1042                                              &cp->sram_dma);
1043                if (cp->sram)
1044                        return 0;
1045
1046                return -ENOMEM;
1047        }
1048
1049        res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1050                                           "sram");
1051        if (!res || resource_size(res) < cp->sram_size)
1052                return -EINVAL;
1053
1054        cp->sram = devm_ioremap_resource(&pdev->dev, res);
1055        if (IS_ERR(cp->sram))
1056                return PTR_ERR(cp->sram);
1057
1058        return 0;
1059}
1060
1061static int mv_probe(struct platform_device *pdev)
1062{
1063        struct crypto_priv *cp;
1064        struct resource *res;
1065        int irq;
1066        int ret;
1067
1068        if (cpg) {
1069                printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1070                return -EEXIST;
1071        }
1072
1073        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1074        if (!res)
1075                return -ENXIO;
1076
1077        cp = devm_kzalloc(&pdev->dev, sizeof(*cp), GFP_KERNEL);
1078        if (!cp)
1079                return -ENOMEM;
1080
1081        spin_lock_init(&cp->lock);
1082        crypto_init_queue(&cp->queue, 50);
1083        cp->reg = devm_ioremap_resource(&pdev->dev, res);
1084        if (IS_ERR(cp->reg)) {
1085                ret = PTR_ERR(cp->reg);
1086                goto err;
1087        }
1088
1089        ret = mv_cesa_get_sram(pdev, cp);
1090        if (ret)
1091                goto err;
1092
1093        cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1094
1095        irq = platform_get_irq(pdev, 0);
1096        if (irq < 0) {
1097                ret = irq;
1098                goto err;
1099        }
1100        cp->irq = irq;
1101
1102        platform_set_drvdata(pdev, cp);
1103        cpg = cp;
1104
1105        cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1106        if (IS_ERR(cp->queue_th)) {
1107                ret = PTR_ERR(cp->queue_th);
1108                goto err;
1109        }
1110
1111        ret = request_irq(irq, crypto_int, 0, dev_name(&pdev->dev),
1112                        cp);
1113        if (ret)
1114                goto err_thread;
1115
1116        /* Not all platforms can gate the clock, so it is not
1117           an error if the clock does not exists. */
1118        cp->clk = clk_get(&pdev->dev, NULL);
1119        if (!IS_ERR(cp->clk))
1120                clk_prepare_enable(cp->clk);
1121
1122        writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1123        writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1124        writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1125        writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1126
1127        ret = crypto_register_alg(&mv_aes_alg_ecb);
1128        if (ret) {
1129                printk(KERN_WARNING MV_CESA
1130                       "Could not register aes-ecb driver\n");
1131                goto err_irq;
1132        }
1133
1134        ret = crypto_register_alg(&mv_aes_alg_cbc);
1135        if (ret) {
1136                printk(KERN_WARNING MV_CESA
1137                       "Could not register aes-cbc driver\n");
1138                goto err_unreg_ecb;
1139        }
1140
1141        ret = crypto_register_ahash(&mv_sha1_alg);
1142        if (ret == 0)
1143                cpg->has_sha1 = 1;
1144        else
1145                printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1146
1147        ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1148        if (ret == 0) {
1149                cpg->has_hmac_sha1 = 1;
1150        } else {
1151                printk(KERN_WARNING MV_CESA
1152                       "Could not register hmac-sha1 driver\n");
1153        }
1154
1155        return 0;
1156err_unreg_ecb:
1157        crypto_unregister_alg(&mv_aes_alg_ecb);
1158err_irq:
1159        free_irq(irq, cp);
1160        if (!IS_ERR(cp->clk)) {
1161                clk_disable_unprepare(cp->clk);
1162                clk_put(cp->clk);
1163        }
1164err_thread:
1165        kthread_stop(cp->queue_th);
1166err:
1167        cpg = NULL;
1168        return ret;
1169}
1170
1171static int mv_remove(struct platform_device *pdev)
1172{
1173        struct crypto_priv *cp = platform_get_drvdata(pdev);
1174
1175        crypto_unregister_alg(&mv_aes_alg_ecb);
1176        crypto_unregister_alg(&mv_aes_alg_cbc);
1177        if (cp->has_sha1)
1178                crypto_unregister_ahash(&mv_sha1_alg);
1179        if (cp->has_hmac_sha1)
1180                crypto_unregister_ahash(&mv_hmac_sha1_alg);
1181        kthread_stop(cp->queue_th);
1182        free_irq(cp->irq, cp);
1183        memset(cp->sram, 0, cp->sram_size);
1184
1185        if (!IS_ERR(cp->clk)) {
1186                clk_disable_unprepare(cp->clk);
1187                clk_put(cp->clk);
1188        }
1189
1190        cpg = NULL;
1191        return 0;
1192}
1193
1194static const struct of_device_id mv_cesa_of_match_table[] = {
1195        { .compatible = "marvell,orion-crypto", },
1196        { .compatible = "marvell,kirkwood-crypto", },
1197        { .compatible = "marvell,dove-crypto", },
1198        {}
1199};
1200MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
1201
1202static struct platform_driver marvell_crypto = {
1203        .probe          = mv_probe,
1204        .remove         = mv_remove,
1205        .driver         = {
1206                .name   = "mv_crypto",
1207                .of_match_table = mv_cesa_of_match_table,
1208        },
1209};
1210MODULE_ALIAS("platform:mv_crypto");
1211
1212module_platform_driver(marvell_crypto);
1213
1214MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1215MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1216MODULE_LICENSE("GPL");
1217