linux/drivers/gpu/drm/i915/intel_pm.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include <drm/drm_plane_helper.h>
  30#include "i915_drv.h"
  31#include "intel_drv.h"
  32#include "../../../platform/x86/intel_ips.h"
  33#include <linux/module.h>
  34#include <drm/drm_atomic_helper.h>
  35
  36/**
  37 * DOC: RC6
  38 *
  39 * RC6 is a special power stage which allows the GPU to enter an very
  40 * low-voltage mode when idle, using down to 0V while at this stage.  This
  41 * stage is entered automatically when the GPU is idle when RC6 support is
  42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  43 *
  44 * There are different RC6 modes available in Intel GPU, which differentiate
  45 * among each other with the latency required to enter and leave RC6 and
  46 * voltage consumed by the GPU in different states.
  47 *
  48 * The combination of the following flags define which states GPU is allowed
  49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  50 * RC6pp is deepest RC6. Their support by hardware varies according to the
  51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  52 * which brings the most power savings; deeper states save more power, but
  53 * require higher latency to switch to and wake up.
  54 */
  55#define INTEL_RC6_ENABLE                        (1<<0)
  56#define INTEL_RC6p_ENABLE                       (1<<1)
  57#define INTEL_RC6pp_ENABLE                      (1<<2)
  58
  59static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  60{
  61        /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
  62        I915_WRITE(CHICKEN_PAR1_1,
  63                   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
  64
  65        /*
  66         * Display WA#0390: skl,bxt,kbl,glk
  67         *
  68         * Must match Sampler, Pixel Back End, and Media
  69         * (0xE194 bit 8, 0x7014 bit 13, 0x4DDC bits 27 and 31).
  70         *
  71         * Including bits outside the page in the hash would
  72         * require 2 (or 4?) MiB alignment of resources. Just
  73         * assume the defaul hashing mode which only uses bits
  74         * within the page.
  75         */
  76        I915_WRITE(CHICKEN_PAR1_1,
  77                   I915_READ(CHICKEN_PAR1_1) & ~SKL_RC_HASH_OUTSIDE);
  78
  79        I915_WRITE(GEN8_CONFIG0,
  80                   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
  81
  82        /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
  83        I915_WRITE(GEN8_CHICKEN_DCPR_1,
  84                   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
  85
  86        /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
  87        /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
  88        I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  89                   DISP_FBC_WM_DIS |
  90                   DISP_FBC_MEMORY_WAKE);
  91
  92        /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
  93        I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  94                   ILK_DPFC_DISABLE_DUMMY0);
  95
  96        if (IS_SKYLAKE(dev_priv)) {
  97                /* WaDisableDopClockGating */
  98                I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
  99                           & ~GEN7_DOP_CLOCK_GATE_ENABLE);
 100        }
 101}
 102
 103static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
 104{
 105        gen9_init_clock_gating(dev_priv);
 106
 107        /* WaDisableSDEUnitClockGating:bxt */
 108        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
 109                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
 110
 111        /*
 112         * FIXME:
 113         * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
 114         */
 115        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
 116                   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
 117
 118        /*
 119         * Wa: Backlight PWM may stop in the asserted state, causing backlight
 120         * to stay fully on.
 121         */
 122        I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
 123                   PWM1_GATING_DIS | PWM2_GATING_DIS);
 124}
 125
 126static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
 127{
 128        gen9_init_clock_gating(dev_priv);
 129
 130        /*
 131         * WaDisablePWMClockGating:glk
 132         * Backlight PWM may stop in the asserted state, causing backlight
 133         * to stay fully on.
 134         */
 135        I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
 136                   PWM1_GATING_DIS | PWM2_GATING_DIS);
 137
 138        /* WaDDIIOTimeout:glk */
 139        if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
 140                u32 val = I915_READ(CHICKEN_MISC_2);
 141                val &= ~(GLK_CL0_PWR_DOWN |
 142                         GLK_CL1_PWR_DOWN |
 143                         GLK_CL2_PWR_DOWN);
 144                I915_WRITE(CHICKEN_MISC_2, val);
 145        }
 146
 147}
 148
 149static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
 150{
 151        u32 tmp;
 152
 153        tmp = I915_READ(CLKCFG);
 154
 155        switch (tmp & CLKCFG_FSB_MASK) {
 156        case CLKCFG_FSB_533:
 157                dev_priv->fsb_freq = 533; /* 133*4 */
 158                break;
 159        case CLKCFG_FSB_800:
 160                dev_priv->fsb_freq = 800; /* 200*4 */
 161                break;
 162        case CLKCFG_FSB_667:
 163                dev_priv->fsb_freq =  667; /* 167*4 */
 164                break;
 165        case CLKCFG_FSB_400:
 166                dev_priv->fsb_freq = 400; /* 100*4 */
 167                break;
 168        }
 169
 170        switch (tmp & CLKCFG_MEM_MASK) {
 171        case CLKCFG_MEM_533:
 172                dev_priv->mem_freq = 533;
 173                break;
 174        case CLKCFG_MEM_667:
 175                dev_priv->mem_freq = 667;
 176                break;
 177        case CLKCFG_MEM_800:
 178                dev_priv->mem_freq = 800;
 179                break;
 180        }
 181
 182        /* detect pineview DDR3 setting */
 183        tmp = I915_READ(CSHRDDR3CTL);
 184        dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 185}
 186
 187static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
 188{
 189        u16 ddrpll, csipll;
 190
 191        ddrpll = I915_READ16(DDRMPLL1);
 192        csipll = I915_READ16(CSIPLL0);
 193
 194        switch (ddrpll & 0xff) {
 195        case 0xc:
 196                dev_priv->mem_freq = 800;
 197                break;
 198        case 0x10:
 199                dev_priv->mem_freq = 1066;
 200                break;
 201        case 0x14:
 202                dev_priv->mem_freq = 1333;
 203                break;
 204        case 0x18:
 205                dev_priv->mem_freq = 1600;
 206                break;
 207        default:
 208                DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 209                                 ddrpll & 0xff);
 210                dev_priv->mem_freq = 0;
 211                break;
 212        }
 213
 214        dev_priv->ips.r_t = dev_priv->mem_freq;
 215
 216        switch (csipll & 0x3ff) {
 217        case 0x00c:
 218                dev_priv->fsb_freq = 3200;
 219                break;
 220        case 0x00e:
 221                dev_priv->fsb_freq = 3733;
 222                break;
 223        case 0x010:
 224                dev_priv->fsb_freq = 4266;
 225                break;
 226        case 0x012:
 227                dev_priv->fsb_freq = 4800;
 228                break;
 229        case 0x014:
 230                dev_priv->fsb_freq = 5333;
 231                break;
 232        case 0x016:
 233                dev_priv->fsb_freq = 5866;
 234                break;
 235        case 0x018:
 236                dev_priv->fsb_freq = 6400;
 237                break;
 238        default:
 239                DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 240                                 csipll & 0x3ff);
 241                dev_priv->fsb_freq = 0;
 242                break;
 243        }
 244
 245        if (dev_priv->fsb_freq == 3200) {
 246                dev_priv->ips.c_m = 0;
 247        } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 248                dev_priv->ips.c_m = 1;
 249        } else {
 250                dev_priv->ips.c_m = 2;
 251        }
 252}
 253
 254static const struct cxsr_latency cxsr_latency_table[] = {
 255        {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 256        {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 257        {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 258        {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 259        {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 260
 261        {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 262        {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 263        {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 264        {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 265        {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 266
 267        {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 268        {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 269        {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 270        {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 271        {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 272
 273        {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 274        {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 275        {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 276        {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 277        {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 278
 279        {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 280        {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 281        {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 282        {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 283        {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 284
 285        {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 286        {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 287        {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 288        {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 289        {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 290};
 291
 292static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
 293                                                         bool is_ddr3,
 294                                                         int fsb,
 295                                                         int mem)
 296{
 297        const struct cxsr_latency *latency;
 298        int i;
 299
 300        if (fsb == 0 || mem == 0)
 301                return NULL;
 302
 303        for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 304                latency = &cxsr_latency_table[i];
 305                if (is_desktop == latency->is_desktop &&
 306                    is_ddr3 == latency->is_ddr3 &&
 307                    fsb == latency->fsb_freq && mem == latency->mem_freq)
 308                        return latency;
 309        }
 310
 311        DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 312
 313        return NULL;
 314}
 315
 316static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 317{
 318        u32 val;
 319
 320        mutex_lock(&dev_priv->rps.hw_lock);
 321
 322        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 323        if (enable)
 324                val &= ~FORCE_DDR_HIGH_FREQ;
 325        else
 326                val |= FORCE_DDR_HIGH_FREQ;
 327        val &= ~FORCE_DDR_LOW_FREQ;
 328        val |= FORCE_DDR_FREQ_REQ_ACK;
 329        vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 330
 331        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 332                      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 333                DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
 334
 335        mutex_unlock(&dev_priv->rps.hw_lock);
 336}
 337
 338static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 339{
 340        u32 val;
 341
 342        mutex_lock(&dev_priv->rps.hw_lock);
 343
 344        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
 345        if (enable)
 346                val |= DSP_MAXFIFO_PM5_ENABLE;
 347        else
 348                val &= ~DSP_MAXFIFO_PM5_ENABLE;
 349        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
 350
 351        mutex_unlock(&dev_priv->rps.hw_lock);
 352}
 353
 354#define FW_WM(value, plane) \
 355        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 356
 357static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 358{
 359        bool was_enabled;
 360        u32 val;
 361
 362        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 363                was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
 364                I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 365                POSTING_READ(FW_BLC_SELF_VLV);
 366        } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
 367                was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
 368                I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 369                POSTING_READ(FW_BLC_SELF);
 370        } else if (IS_PINEVIEW(dev_priv)) {
 371                val = I915_READ(DSPFW3);
 372                was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
 373                if (enable)
 374                        val |= PINEVIEW_SELF_REFRESH_EN;
 375                else
 376                        val &= ~PINEVIEW_SELF_REFRESH_EN;
 377                I915_WRITE(DSPFW3, val);
 378                POSTING_READ(DSPFW3);
 379        } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
 380                was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
 381                val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 382                               _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 383                I915_WRITE(FW_BLC_SELF, val);
 384                POSTING_READ(FW_BLC_SELF);
 385        } else if (IS_I915GM(dev_priv)) {
 386                /*
 387                 * FIXME can't find a bit like this for 915G, and
 388                 * and yet it does have the related watermark in
 389                 * FW_BLC_SELF. What's going on?
 390                 */
 391                was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
 392                val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 393                               _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 394                I915_WRITE(INSTPM, val);
 395                POSTING_READ(INSTPM);
 396        } else {
 397                return false;
 398        }
 399
 400        trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
 401
 402        DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
 403                      enableddisabled(enable),
 404                      enableddisabled(was_enabled));
 405
 406        return was_enabled;
 407}
 408
 409/**
 410 * intel_set_memory_cxsr - Configure CxSR state
 411 * @dev_priv: i915 device
 412 * @enable: Allow vs. disallow CxSR
 413 *
 414 * Allow or disallow the system to enter a special CxSR
 415 * (C-state self refresh) state. What typically happens in CxSR mode
 416 * is that several display FIFOs may get combined into a single larger
 417 * FIFO for a particular plane (so called max FIFO mode) to allow the
 418 * system to defer memory fetches longer, and the memory will enter
 419 * self refresh.
 420 *
 421 * Note that enabling CxSR does not guarantee that the system enter
 422 * this special mode, nor does it guarantee that the system stays
 423 * in that mode once entered. So this just allows/disallows the system
 424 * to autonomously utilize the CxSR mode. Other factors such as core
 425 * C-states will affect when/if the system actually enters/exits the
 426 * CxSR mode.
 427 *
 428 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 429 * and the system is free to enter/exit memory self refresh at any time
 430 * even when the use of CxSR has been disallowed.
 431 *
 432 * While the system is actually in the CxSR/max FIFO mode, some plane
 433 * control registers will not get latched on vblank. Thus in order to
 434 * guarantee the system will respond to changes in the plane registers
 435 * we must always disallow CxSR prior to making changes to those registers.
 436 * Unfortunately the system will re-evaluate the CxSR conditions at
 437 * frame start which happens after vblank start (which is when the plane
 438 * registers would get latched), so we can't proceed with the plane update
 439 * during the same frame where we disallowed CxSR.
 440 *
 441 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 442 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 443 * the hardware w.r.t. HPLL SR when writing to plane registers.
 444 * Disallowing just CxSR is sufficient.
 445 */
 446bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 447{
 448        bool ret;
 449
 450        mutex_lock(&dev_priv->wm.wm_mutex);
 451        ret = _intel_set_memory_cxsr(dev_priv, enable);
 452        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 453                dev_priv->wm.vlv.cxsr = enable;
 454        else if (IS_G4X(dev_priv))
 455                dev_priv->wm.g4x.cxsr = enable;
 456        mutex_unlock(&dev_priv->wm.wm_mutex);
 457
 458        return ret;
 459}
 460
 461/*
 462 * Latency for FIFO fetches is dependent on several factors:
 463 *   - memory configuration (speed, channels)
 464 *   - chipset
 465 *   - current MCH state
 466 * It can be fairly high in some situations, so here we assume a fairly
 467 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 468 * set this value too high, the FIFO will fetch frequently to stay full)
 469 * and power consumption (set it too low to save power and we might see
 470 * FIFO underruns and display "flicker").
 471 *
 472 * A value of 5us seems to be a good balance; safe for very low end
 473 * platforms but not overly aggressive on lower latency configs.
 474 */
 475static const int pessimal_latency_ns = 5000;
 476
 477#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 478        ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 479
 480static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
 481{
 482        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 483        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 484        struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
 485        enum pipe pipe = crtc->pipe;
 486        int sprite0_start, sprite1_start;
 487
 488        switch (pipe) {
 489                uint32_t dsparb, dsparb2, dsparb3;
 490        case PIPE_A:
 491                dsparb = I915_READ(DSPARB);
 492                dsparb2 = I915_READ(DSPARB2);
 493                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 494                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 495                break;
 496        case PIPE_B:
 497                dsparb = I915_READ(DSPARB);
 498                dsparb2 = I915_READ(DSPARB2);
 499                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 500                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 501                break;
 502        case PIPE_C:
 503                dsparb2 = I915_READ(DSPARB2);
 504                dsparb3 = I915_READ(DSPARB3);
 505                sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 506                sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 507                break;
 508        default:
 509                MISSING_CASE(pipe);
 510                return;
 511        }
 512
 513        fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
 514        fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
 515        fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
 516        fifo_state->plane[PLANE_CURSOR] = 63;
 517}
 518
 519static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
 520{
 521        uint32_t dsparb = I915_READ(DSPARB);
 522        int size;
 523
 524        size = dsparb & 0x7f;
 525        if (plane)
 526                size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 527
 528        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 529                      plane ? "B" : "A", size);
 530
 531        return size;
 532}
 533
 534static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
 535{
 536        uint32_t dsparb = I915_READ(DSPARB);
 537        int size;
 538
 539        size = dsparb & 0x1ff;
 540        if (plane)
 541                size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 542        size >>= 1; /* Convert to cachelines */
 543
 544        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 545                      plane ? "B" : "A", size);
 546
 547        return size;
 548}
 549
 550static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
 551{
 552        uint32_t dsparb = I915_READ(DSPARB);
 553        int size;
 554
 555        size = dsparb & 0x7f;
 556        size >>= 2; /* Convert to cachelines */
 557
 558        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 559                      plane ? "B" : "A",
 560                      size);
 561
 562        return size;
 563}
 564
 565/* Pineview has different values for various configs */
 566static const struct intel_watermark_params pineview_display_wm = {
 567        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 568        .max_wm = PINEVIEW_MAX_WM,
 569        .default_wm = PINEVIEW_DFT_WM,
 570        .guard_size = PINEVIEW_GUARD_WM,
 571        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 572};
 573static const struct intel_watermark_params pineview_display_hplloff_wm = {
 574        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 575        .max_wm = PINEVIEW_MAX_WM,
 576        .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 577        .guard_size = PINEVIEW_GUARD_WM,
 578        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 579};
 580static const struct intel_watermark_params pineview_cursor_wm = {
 581        .fifo_size = PINEVIEW_CURSOR_FIFO,
 582        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 583        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 584        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 585        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 586};
 587static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 588        .fifo_size = PINEVIEW_CURSOR_FIFO,
 589        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 590        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 591        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 592        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 593};
 594static const struct intel_watermark_params i965_cursor_wm_info = {
 595        .fifo_size = I965_CURSOR_FIFO,
 596        .max_wm = I965_CURSOR_MAX_WM,
 597        .default_wm = I965_CURSOR_DFT_WM,
 598        .guard_size = 2,
 599        .cacheline_size = I915_FIFO_LINE_SIZE,
 600};
 601static const struct intel_watermark_params i945_wm_info = {
 602        .fifo_size = I945_FIFO_SIZE,
 603        .max_wm = I915_MAX_WM,
 604        .default_wm = 1,
 605        .guard_size = 2,
 606        .cacheline_size = I915_FIFO_LINE_SIZE,
 607};
 608static const struct intel_watermark_params i915_wm_info = {
 609        .fifo_size = I915_FIFO_SIZE,
 610        .max_wm = I915_MAX_WM,
 611        .default_wm = 1,
 612        .guard_size = 2,
 613        .cacheline_size = I915_FIFO_LINE_SIZE,
 614};
 615static const struct intel_watermark_params i830_a_wm_info = {
 616        .fifo_size = I855GM_FIFO_SIZE,
 617        .max_wm = I915_MAX_WM,
 618        .default_wm = 1,
 619        .guard_size = 2,
 620        .cacheline_size = I830_FIFO_LINE_SIZE,
 621};
 622static const struct intel_watermark_params i830_bc_wm_info = {
 623        .fifo_size = I855GM_FIFO_SIZE,
 624        .max_wm = I915_MAX_WM/2,
 625        .default_wm = 1,
 626        .guard_size = 2,
 627        .cacheline_size = I830_FIFO_LINE_SIZE,
 628};
 629static const struct intel_watermark_params i845_wm_info = {
 630        .fifo_size = I830_FIFO_SIZE,
 631        .max_wm = I915_MAX_WM,
 632        .default_wm = 1,
 633        .guard_size = 2,
 634        .cacheline_size = I830_FIFO_LINE_SIZE,
 635};
 636
 637/**
 638 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 639 * @pixel_rate: Pipe pixel rate in kHz
 640 * @cpp: Plane bytes per pixel
 641 * @latency: Memory wakeup latency in 0.1us units
 642 *
 643 * Compute the watermark using the method 1 or "small buffer"
 644 * formula. The caller may additonally add extra cachelines
 645 * to account for TLB misses and clock crossings.
 646 *
 647 * This method is concerned with the short term drain rate
 648 * of the FIFO, ie. it does not account for blanking periods
 649 * which would effectively reduce the average drain rate across
 650 * a longer period. The name "small" refers to the fact the
 651 * FIFO is relatively small compared to the amount of data
 652 * fetched.
 653 *
 654 * The FIFO level vs. time graph might look something like:
 655 *
 656 *   |\   |\
 657 *   | \  | \
 658 * __---__---__ (- plane active, _ blanking)
 659 * -> time
 660 *
 661 * or perhaps like this:
 662 *
 663 *   |\|\  |\|\
 664 * __----__----__ (- plane active, _ blanking)
 665 * -> time
 666 *
 667 * Returns:
 668 * The watermark in bytes
 669 */
 670static unsigned int intel_wm_method1(unsigned int pixel_rate,
 671                                     unsigned int cpp,
 672                                     unsigned int latency)
 673{
 674        uint64_t ret;
 675
 676        ret = (uint64_t) pixel_rate * cpp * latency;
 677        ret = DIV_ROUND_UP_ULL(ret, 10000);
 678
 679        return ret;
 680}
 681
 682/**
 683 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 684 * @pixel_rate: Pipe pixel rate in kHz
 685 * @htotal: Pipe horizontal total
 686 * @width: Plane width in pixels
 687 * @cpp: Plane bytes per pixel
 688 * @latency: Memory wakeup latency in 0.1us units
 689 *
 690 * Compute the watermark using the method 2 or "large buffer"
 691 * formula. The caller may additonally add extra cachelines
 692 * to account for TLB misses and clock crossings.
 693 *
 694 * This method is concerned with the long term drain rate
 695 * of the FIFO, ie. it does account for blanking periods
 696 * which effectively reduce the average drain rate across
 697 * a longer period. The name "large" refers to the fact the
 698 * FIFO is relatively large compared to the amount of data
 699 * fetched.
 700 *
 701 * The FIFO level vs. time graph might look something like:
 702 *
 703 *    |\___       |\___
 704 *    |    \___   |    \___
 705 *    |        \  |        \
 706 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 707 * -> time
 708 *
 709 * Returns:
 710 * The watermark in bytes
 711 */
 712static unsigned int intel_wm_method2(unsigned int pixel_rate,
 713                                     unsigned int htotal,
 714                                     unsigned int width,
 715                                     unsigned int cpp,
 716                                     unsigned int latency)
 717{
 718        unsigned int ret;
 719
 720        /*
 721         * FIXME remove once all users are computing
 722         * watermarks in the correct place.
 723         */
 724        if (WARN_ON_ONCE(htotal == 0))
 725                htotal = 1;
 726
 727        ret = (latency * pixel_rate) / (htotal * 10000);
 728        ret = (ret + 1) * width * cpp;
 729
 730        return ret;
 731}
 732
 733/**
 734 * intel_calculate_wm - calculate watermark level
 735 * @pixel_rate: pixel clock
 736 * @wm: chip FIFO params
 737 * @cpp: bytes per pixel
 738 * @latency_ns: memory latency for the platform
 739 *
 740 * Calculate the watermark level (the level at which the display plane will
 741 * start fetching from memory again).  Each chip has a different display
 742 * FIFO size and allocation, so the caller needs to figure that out and pass
 743 * in the correct intel_watermark_params structure.
 744 *
 745 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 746 * on the pixel size.  When it reaches the watermark level, it'll start
 747 * fetching FIFO line sized based chunks from memory until the FIFO fills
 748 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 749 * will occur, and a display engine hang could result.
 750 */
 751static unsigned int intel_calculate_wm(int pixel_rate,
 752                                       const struct intel_watermark_params *wm,
 753                                       int fifo_size, int cpp,
 754                                       unsigned int latency_ns)
 755{
 756        int entries, wm_size;
 757
 758        /*
 759         * Note: we need to make sure we don't overflow for various clock &
 760         * latency values.
 761         * clocks go from a few thousand to several hundred thousand.
 762         * latency is usually a few thousand
 763         */
 764        entries = intel_wm_method1(pixel_rate, cpp,
 765                                   latency_ns / 100);
 766        entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
 767                wm->guard_size;
 768        DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
 769
 770        wm_size = fifo_size - entries;
 771        DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
 772
 773        /* Don't promote wm_size to unsigned... */
 774        if (wm_size > wm->max_wm)
 775                wm_size = wm->max_wm;
 776        if (wm_size <= 0)
 777                wm_size = wm->default_wm;
 778
 779        /*
 780         * Bspec seems to indicate that the value shouldn't be lower than
 781         * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 782         * Lets go for 8 which is the burst size since certain platforms
 783         * already use a hardcoded 8 (which is what the spec says should be
 784         * done).
 785         */
 786        if (wm_size <= 8)
 787                wm_size = 8;
 788
 789        return wm_size;
 790}
 791
 792static bool is_disabling(int old, int new, int threshold)
 793{
 794        return old >= threshold && new < threshold;
 795}
 796
 797static bool is_enabling(int old, int new, int threshold)
 798{
 799        return old < threshold && new >= threshold;
 800}
 801
 802static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
 803{
 804        return dev_priv->wm.max_level + 1;
 805}
 806
 807static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
 808                                   const struct intel_plane_state *plane_state)
 809{
 810        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
 811
 812        /* FIXME check the 'enable' instead */
 813        if (!crtc_state->base.active)
 814                return false;
 815
 816        /*
 817         * Treat cursor with fb as always visible since cursor updates
 818         * can happen faster than the vrefresh rate, and the current
 819         * watermark code doesn't handle that correctly. Cursor updates
 820         * which set/clear the fb or change the cursor size are going
 821         * to get throttled by intel_legacy_cursor_update() to work
 822         * around this problem with the watermark code.
 823         */
 824        if (plane->id == PLANE_CURSOR)
 825                return plane_state->base.fb != NULL;
 826        else
 827                return plane_state->base.visible;
 828}
 829
 830static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
 831{
 832        struct intel_crtc *crtc, *enabled = NULL;
 833
 834        for_each_intel_crtc(&dev_priv->drm, crtc) {
 835                if (intel_crtc_active(crtc)) {
 836                        if (enabled)
 837                                return NULL;
 838                        enabled = crtc;
 839                }
 840        }
 841
 842        return enabled;
 843}
 844
 845static void pineview_update_wm(struct intel_crtc *unused_crtc)
 846{
 847        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
 848        struct intel_crtc *crtc;
 849        const struct cxsr_latency *latency;
 850        u32 reg;
 851        unsigned int wm;
 852
 853        latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
 854                                         dev_priv->is_ddr3,
 855                                         dev_priv->fsb_freq,
 856                                         dev_priv->mem_freq);
 857        if (!latency) {
 858                DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 859                intel_set_memory_cxsr(dev_priv, false);
 860                return;
 861        }
 862
 863        crtc = single_enabled_crtc(dev_priv);
 864        if (crtc) {
 865                const struct drm_display_mode *adjusted_mode =
 866                        &crtc->config->base.adjusted_mode;
 867                const struct drm_framebuffer *fb =
 868                        crtc->base.primary->state->fb;
 869                int cpp = fb->format->cpp[0];
 870                int clock = adjusted_mode->crtc_clock;
 871
 872                /* Display SR */
 873                wm = intel_calculate_wm(clock, &pineview_display_wm,
 874                                        pineview_display_wm.fifo_size,
 875                                        cpp, latency->display_sr);
 876                reg = I915_READ(DSPFW1);
 877                reg &= ~DSPFW_SR_MASK;
 878                reg |= FW_WM(wm, SR);
 879                I915_WRITE(DSPFW1, reg);
 880                DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
 881
 882                /* cursor SR */
 883                wm = intel_calculate_wm(clock, &pineview_cursor_wm,
 884                                        pineview_display_wm.fifo_size,
 885                                        4, latency->cursor_sr);
 886                reg = I915_READ(DSPFW3);
 887                reg &= ~DSPFW_CURSOR_SR_MASK;
 888                reg |= FW_WM(wm, CURSOR_SR);
 889                I915_WRITE(DSPFW3, reg);
 890
 891                /* Display HPLL off SR */
 892                wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
 893                                        pineview_display_hplloff_wm.fifo_size,
 894                                        cpp, latency->display_hpll_disable);
 895                reg = I915_READ(DSPFW3);
 896                reg &= ~DSPFW_HPLL_SR_MASK;
 897                reg |= FW_WM(wm, HPLL_SR);
 898                I915_WRITE(DSPFW3, reg);
 899
 900                /* cursor HPLL off SR */
 901                wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
 902                                        pineview_display_hplloff_wm.fifo_size,
 903                                        4, latency->cursor_hpll_disable);
 904                reg = I915_READ(DSPFW3);
 905                reg &= ~DSPFW_HPLL_CURSOR_MASK;
 906                reg |= FW_WM(wm, HPLL_CURSOR);
 907                I915_WRITE(DSPFW3, reg);
 908                DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
 909
 910                intel_set_memory_cxsr(dev_priv, true);
 911        } else {
 912                intel_set_memory_cxsr(dev_priv, false);
 913        }
 914}
 915
 916/*
 917 * Documentation says:
 918 * "If the line size is small, the TLB fetches can get in the way of the
 919 *  data fetches, causing some lag in the pixel data return which is not
 920 *  accounted for in the above formulas. The following adjustment only
 921 *  needs to be applied if eight whole lines fit in the buffer at once.
 922 *  The WM is adjusted upwards by the difference between the FIFO size
 923 *  and the size of 8 whole lines. This adjustment is always performed
 924 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 925 */
 926static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
 927{
 928        int tlb_miss = fifo_size * 64 - width * cpp * 8;
 929
 930        return max(0, tlb_miss);
 931}
 932
 933static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
 934                                const struct g4x_wm_values *wm)
 935{
 936        enum pipe pipe;
 937
 938        for_each_pipe(dev_priv, pipe)
 939                trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
 940
 941        I915_WRITE(DSPFW1,
 942                   FW_WM(wm->sr.plane, SR) |
 943                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
 944                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
 945                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
 946        I915_WRITE(DSPFW2,
 947                   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
 948                   FW_WM(wm->sr.fbc, FBC_SR) |
 949                   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
 950                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
 951                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
 952                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
 953        I915_WRITE(DSPFW3,
 954                   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
 955                   FW_WM(wm->sr.cursor, CURSOR_SR) |
 956                   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
 957                   FW_WM(wm->hpll.plane, HPLL_SR));
 958
 959        POSTING_READ(DSPFW1);
 960}
 961
 962#define FW_WM_VLV(value, plane) \
 963        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
 964
 965static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
 966                                const struct vlv_wm_values *wm)
 967{
 968        enum pipe pipe;
 969
 970        for_each_pipe(dev_priv, pipe) {
 971                trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
 972
 973                I915_WRITE(VLV_DDL(pipe),
 974                           (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
 975                           (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
 976                           (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
 977                           (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
 978        }
 979
 980        /*
 981         * Zero the (unused) WM1 watermarks, and also clear all the
 982         * high order bits so that there are no out of bounds values
 983         * present in the registers during the reprogramming.
 984         */
 985        I915_WRITE(DSPHOWM, 0);
 986        I915_WRITE(DSPHOWM1, 0);
 987        I915_WRITE(DSPFW4, 0);
 988        I915_WRITE(DSPFW5, 0);
 989        I915_WRITE(DSPFW6, 0);
 990
 991        I915_WRITE(DSPFW1,
 992                   FW_WM(wm->sr.plane, SR) |
 993                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
 994                   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
 995                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
 996        I915_WRITE(DSPFW2,
 997                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
 998                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
 999                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1000        I915_WRITE(DSPFW3,
1001                   FW_WM(wm->sr.cursor, CURSOR_SR));
1002
1003        if (IS_CHERRYVIEW(dev_priv)) {
1004                I915_WRITE(DSPFW7_CHV,
1005                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1006                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1007                I915_WRITE(DSPFW8_CHV,
1008                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1009                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1010                I915_WRITE(DSPFW9_CHV,
1011                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1012                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1013                I915_WRITE(DSPHOWM,
1014                           FW_WM(wm->sr.plane >> 9, SR_HI) |
1015                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1016                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1017                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1018                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1019                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1020                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1021                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1022                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1023                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1024        } else {
1025                I915_WRITE(DSPFW7,
1026                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1027                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1028                I915_WRITE(DSPHOWM,
1029                           FW_WM(wm->sr.plane >> 9, SR_HI) |
1030                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1031                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1032                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1033                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1034                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1035                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1036        }
1037
1038        POSTING_READ(DSPFW1);
1039}
1040
1041#undef FW_WM_VLV
1042
1043static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1044{
1045        /* all latencies in usec */
1046        dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1047        dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1048        dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1049
1050        dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1051}
1052
1053static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1054{
1055        /*
1056         * DSPCNTR[13] supposedly controls whether the
1057         * primary plane can use the FIFO space otherwise
1058         * reserved for the sprite plane. It's not 100% clear
1059         * what the actual FIFO size is, but it looks like we
1060         * can happily set both primary and sprite watermarks
1061         * up to 127 cachelines. So that would seem to mean
1062         * that either DSPCNTR[13] doesn't do anything, or that
1063         * the total FIFO is >= 256 cachelines in size. Either
1064         * way, we don't seem to have to worry about this
1065         * repartitioning as the maximum watermark value the
1066         * register can hold for each plane is lower than the
1067         * minimum FIFO size.
1068         */
1069        switch (plane_id) {
1070        case PLANE_CURSOR:
1071                return 63;
1072        case PLANE_PRIMARY:
1073                return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1074        case PLANE_SPRITE0:
1075                return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1076        default:
1077                MISSING_CASE(plane_id);
1078                return 0;
1079        }
1080}
1081
1082static int g4x_fbc_fifo_size(int level)
1083{
1084        switch (level) {
1085        case G4X_WM_LEVEL_SR:
1086                return 7;
1087        case G4X_WM_LEVEL_HPLL:
1088                return 15;
1089        default:
1090                MISSING_CASE(level);
1091                return 0;
1092        }
1093}
1094
1095static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1096                               const struct intel_plane_state *plane_state,
1097                               int level)
1098{
1099        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1100        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1101        const struct drm_display_mode *adjusted_mode =
1102                &crtc_state->base.adjusted_mode;
1103        int clock, htotal, cpp, width, wm;
1104        int latency = dev_priv->wm.pri_latency[level] * 10;
1105
1106        if (latency == 0)
1107                return USHRT_MAX;
1108
1109        if (!intel_wm_plane_visible(crtc_state, plane_state))
1110                return 0;
1111
1112        /*
1113         * Not 100% sure which way ELK should go here as the
1114         * spec only says CL/CTG should assume 32bpp and BW
1115         * doesn't need to. But as these things followed the
1116         * mobile vs. desktop lines on gen3 as well, let's
1117         * assume ELK doesn't need this.
1118         *
1119         * The spec also fails to list such a restriction for
1120         * the HPLL watermark, which seems a little strange.
1121         * Let's use 32bpp for the HPLL watermark as well.
1122         */
1123        if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1124            level != G4X_WM_LEVEL_NORMAL)
1125                cpp = 4;
1126        else
1127                cpp = plane_state->base.fb->format->cpp[0];
1128
1129        clock = adjusted_mode->crtc_clock;
1130        htotal = adjusted_mode->crtc_htotal;
1131
1132        if (plane->id == PLANE_CURSOR)
1133                width = plane_state->base.crtc_w;
1134        else
1135                width = drm_rect_width(&plane_state->base.dst);
1136
1137        if (plane->id == PLANE_CURSOR) {
1138                wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1139        } else if (plane->id == PLANE_PRIMARY &&
1140                   level == G4X_WM_LEVEL_NORMAL) {
1141                wm = intel_wm_method1(clock, cpp, latency);
1142        } else {
1143                int small, large;
1144
1145                small = intel_wm_method1(clock, cpp, latency);
1146                large = intel_wm_method2(clock, htotal, width, cpp, latency);
1147
1148                wm = min(small, large);
1149        }
1150
1151        wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1152                              width, cpp);
1153
1154        wm = DIV_ROUND_UP(wm, 64) + 2;
1155
1156        return min_t(int, wm, USHRT_MAX);
1157}
1158
1159static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1160                                 int level, enum plane_id plane_id, u16 value)
1161{
1162        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1163        bool dirty = false;
1164
1165        for (; level < intel_wm_num_levels(dev_priv); level++) {
1166                struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1167
1168                dirty |= raw->plane[plane_id] != value;
1169                raw->plane[plane_id] = value;
1170        }
1171
1172        return dirty;
1173}
1174
1175static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1176                               int level, u16 value)
1177{
1178        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1179        bool dirty = false;
1180
1181        /* NORMAL level doesn't have an FBC watermark */
1182        level = max(level, G4X_WM_LEVEL_SR);
1183
1184        for (; level < intel_wm_num_levels(dev_priv); level++) {
1185                struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1186
1187                dirty |= raw->fbc != value;
1188                raw->fbc = value;
1189        }
1190
1191        return dirty;
1192}
1193
1194static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1195                                   const struct intel_plane_state *pstate,
1196                                   uint32_t pri_val);
1197
1198static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1199                                     const struct intel_plane_state *plane_state)
1200{
1201        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1202        int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1203        enum plane_id plane_id = plane->id;
1204        bool dirty = false;
1205        int level;
1206
1207        if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1208                dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1209                if (plane_id == PLANE_PRIMARY)
1210                        dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1211                goto out;
1212        }
1213
1214        for (level = 0; level < num_levels; level++) {
1215                struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1216                int wm, max_wm;
1217
1218                wm = g4x_compute_wm(crtc_state, plane_state, level);
1219                max_wm = g4x_plane_fifo_size(plane_id, level);
1220
1221                if (wm > max_wm)
1222                        break;
1223
1224                dirty |= raw->plane[plane_id] != wm;
1225                raw->plane[plane_id] = wm;
1226
1227                if (plane_id != PLANE_PRIMARY ||
1228                    level == G4X_WM_LEVEL_NORMAL)
1229                        continue;
1230
1231                wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1232                                        raw->plane[plane_id]);
1233                max_wm = g4x_fbc_fifo_size(level);
1234
1235                /*
1236                 * FBC wm is not mandatory as we
1237                 * can always just disable its use.
1238                 */
1239                if (wm > max_wm)
1240                        wm = USHRT_MAX;
1241
1242                dirty |= raw->fbc != wm;
1243                raw->fbc = wm;
1244        }
1245
1246        /* mark watermarks as invalid */
1247        dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1248
1249        if (plane_id == PLANE_PRIMARY)
1250                dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1251
1252 out:
1253        if (dirty) {
1254                DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1255                              plane->base.name,
1256                              crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1257                              crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1258                              crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1259
1260                if (plane_id == PLANE_PRIMARY)
1261                        DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1262                                      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1263                                      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1264        }
1265
1266        return dirty;
1267}
1268
1269static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1270                                      enum plane_id plane_id, int level)
1271{
1272        const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1273
1274        return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1275}
1276
1277static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1278                                     int level)
1279{
1280        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1281
1282        if (level > dev_priv->wm.max_level)
1283                return false;
1284
1285        return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1286                g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1287                g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1288}
1289
1290/* mark all levels starting from 'level' as invalid */
1291static void g4x_invalidate_wms(struct intel_crtc *crtc,
1292                               struct g4x_wm_state *wm_state, int level)
1293{
1294        if (level <= G4X_WM_LEVEL_NORMAL) {
1295                enum plane_id plane_id;
1296
1297                for_each_plane_id_on_crtc(crtc, plane_id)
1298                        wm_state->wm.plane[plane_id] = USHRT_MAX;
1299        }
1300
1301        if (level <= G4X_WM_LEVEL_SR) {
1302                wm_state->cxsr = false;
1303                wm_state->sr.cursor = USHRT_MAX;
1304                wm_state->sr.plane = USHRT_MAX;
1305                wm_state->sr.fbc = USHRT_MAX;
1306        }
1307
1308        if (level <= G4X_WM_LEVEL_HPLL) {
1309                wm_state->hpll_en = false;
1310                wm_state->hpll.cursor = USHRT_MAX;
1311                wm_state->hpll.plane = USHRT_MAX;
1312                wm_state->hpll.fbc = USHRT_MAX;
1313        }
1314}
1315
1316static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1317{
1318        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1319        struct intel_atomic_state *state =
1320                to_intel_atomic_state(crtc_state->base.state);
1321        struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1322        int num_active_planes = hweight32(crtc_state->active_planes &
1323                                          ~BIT(PLANE_CURSOR));
1324        const struct g4x_pipe_wm *raw;
1325        struct intel_plane_state *plane_state;
1326        struct intel_plane *plane;
1327        enum plane_id plane_id;
1328        int i, level;
1329        unsigned int dirty = 0;
1330
1331        for_each_intel_plane_in_state(state, plane, plane_state, i) {
1332                const struct intel_plane_state *old_plane_state =
1333                        to_intel_plane_state(plane->base.state);
1334
1335                if (plane_state->base.crtc != &crtc->base &&
1336                    old_plane_state->base.crtc != &crtc->base)
1337                        continue;
1338
1339                if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
1340                        dirty |= BIT(plane->id);
1341        }
1342
1343        if (!dirty)
1344                return 0;
1345
1346        level = G4X_WM_LEVEL_NORMAL;
1347        if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1348                goto out;
1349
1350        raw = &crtc_state->wm.g4x.raw[level];
1351        for_each_plane_id_on_crtc(crtc, plane_id)
1352                wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1353
1354        level = G4X_WM_LEVEL_SR;
1355
1356        if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1357                goto out;
1358
1359        raw = &crtc_state->wm.g4x.raw[level];
1360        wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1361        wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1362        wm_state->sr.fbc = raw->fbc;
1363
1364        wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1365
1366        level = G4X_WM_LEVEL_HPLL;
1367
1368        if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1369                goto out;
1370
1371        raw = &crtc_state->wm.g4x.raw[level];
1372        wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1373        wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1374        wm_state->hpll.fbc = raw->fbc;
1375
1376        wm_state->hpll_en = wm_state->cxsr;
1377
1378        level++;
1379
1380 out:
1381        if (level == G4X_WM_LEVEL_NORMAL)
1382                return -EINVAL;
1383
1384        /* invalidate the higher levels */
1385        g4x_invalidate_wms(crtc, wm_state, level);
1386
1387        /*
1388         * Determine if the FBC watermark(s) can be used. IF
1389         * this isn't the case we prefer to disable the FBC
1390         ( watermark(s) rather than disable the SR/HPLL
1391         * level(s) entirely.
1392         */
1393        wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1394
1395        if (level >= G4X_WM_LEVEL_SR &&
1396            wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1397                wm_state->fbc_en = false;
1398        else if (level >= G4X_WM_LEVEL_HPLL &&
1399                 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1400                wm_state->fbc_en = false;
1401
1402        return 0;
1403}
1404
1405static int g4x_compute_intermediate_wm(struct drm_device *dev,
1406                                       struct intel_crtc *crtc,
1407                                       struct intel_crtc_state *crtc_state)
1408{
1409        struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
1410        const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
1411        const struct g4x_wm_state *active = &crtc->wm.active.g4x;
1412        enum plane_id plane_id;
1413
1414        intermediate->cxsr = optimal->cxsr && active->cxsr &&
1415                !crtc_state->disable_cxsr;
1416        intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1417                !crtc_state->disable_cxsr;
1418        intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1419
1420        for_each_plane_id_on_crtc(crtc, plane_id) {
1421                intermediate->wm.plane[plane_id] =
1422                        max(optimal->wm.plane[plane_id],
1423                            active->wm.plane[plane_id]);
1424
1425                WARN_ON(intermediate->wm.plane[plane_id] >
1426                        g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1427        }
1428
1429        intermediate->sr.plane = max(optimal->sr.plane,
1430                                     active->sr.plane);
1431        intermediate->sr.cursor = max(optimal->sr.cursor,
1432                                      active->sr.cursor);
1433        intermediate->sr.fbc = max(optimal->sr.fbc,
1434                                   active->sr.fbc);
1435
1436        intermediate->hpll.plane = max(optimal->hpll.plane,
1437                                       active->hpll.plane);
1438        intermediate->hpll.cursor = max(optimal->hpll.cursor,
1439                                        active->hpll.cursor);
1440        intermediate->hpll.fbc = max(optimal->hpll.fbc,
1441                                     active->hpll.fbc);
1442
1443        WARN_ON((intermediate->sr.plane >
1444                 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1445                 intermediate->sr.cursor >
1446                 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1447                intermediate->cxsr);
1448        WARN_ON((intermediate->sr.plane >
1449                 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1450                 intermediate->sr.cursor >
1451                 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1452                intermediate->hpll_en);
1453
1454        WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1455                intermediate->fbc_en && intermediate->cxsr);
1456        WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1457                intermediate->fbc_en && intermediate->hpll_en);
1458
1459        /*
1460         * If our intermediate WM are identical to the final WM, then we can
1461         * omit the post-vblank programming; only update if it's different.
1462         */
1463        if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1464                crtc_state->wm.need_postvbl_update = true;
1465
1466        return 0;
1467}
1468
1469static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1470                         struct g4x_wm_values *wm)
1471{
1472        struct intel_crtc *crtc;
1473        int num_active_crtcs = 0;
1474
1475        wm->cxsr = true;
1476        wm->hpll_en = true;
1477        wm->fbc_en = true;
1478
1479        for_each_intel_crtc(&dev_priv->drm, crtc) {
1480                const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1481
1482                if (!crtc->active)
1483                        continue;
1484
1485                if (!wm_state->cxsr)
1486                        wm->cxsr = false;
1487                if (!wm_state->hpll_en)
1488                        wm->hpll_en = false;
1489                if (!wm_state->fbc_en)
1490                        wm->fbc_en = false;
1491
1492                num_active_crtcs++;
1493        }
1494
1495        if (num_active_crtcs != 1) {
1496                wm->cxsr = false;
1497                wm->hpll_en = false;
1498                wm->fbc_en = false;
1499        }
1500
1501        for_each_intel_crtc(&dev_priv->drm, crtc) {
1502                const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1503                enum pipe pipe = crtc->pipe;
1504
1505                wm->pipe[pipe] = wm_state->wm;
1506                if (crtc->active && wm->cxsr)
1507                        wm->sr = wm_state->sr;
1508                if (crtc->active && wm->hpll_en)
1509                        wm->hpll = wm_state->hpll;
1510        }
1511}
1512
1513static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1514{
1515        struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1516        struct g4x_wm_values new_wm = {};
1517
1518        g4x_merge_wm(dev_priv, &new_wm);
1519
1520        if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1521                return;
1522
1523        if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1524                _intel_set_memory_cxsr(dev_priv, false);
1525
1526        g4x_write_wm_values(dev_priv, &new_wm);
1527
1528        if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1529                _intel_set_memory_cxsr(dev_priv, true);
1530
1531        *old_wm = new_wm;
1532}
1533
1534static void g4x_initial_watermarks(struct intel_atomic_state *state,
1535                                   struct intel_crtc_state *crtc_state)
1536{
1537        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1538        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1539
1540        mutex_lock(&dev_priv->wm.wm_mutex);
1541        crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1542        g4x_program_watermarks(dev_priv);
1543        mutex_unlock(&dev_priv->wm.wm_mutex);
1544}
1545
1546static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1547                                    struct intel_crtc_state *crtc_state)
1548{
1549        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1550        struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1551
1552        if (!crtc_state->wm.need_postvbl_update)
1553                return;
1554
1555        mutex_lock(&dev_priv->wm.wm_mutex);
1556        intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1557        g4x_program_watermarks(dev_priv);
1558        mutex_unlock(&dev_priv->wm.wm_mutex);
1559}
1560
1561/* latency must be in 0.1us units. */
1562static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1563                                   unsigned int htotal,
1564                                   unsigned int width,
1565                                   unsigned int cpp,
1566                                   unsigned int latency)
1567{
1568        unsigned int ret;
1569
1570        ret = intel_wm_method2(pixel_rate, htotal,
1571                               width, cpp, latency);
1572        ret = DIV_ROUND_UP(ret, 64);
1573
1574        return ret;
1575}
1576
1577static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1578{
1579        /* all latencies in usec */
1580        dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1581
1582        dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1583
1584        if (IS_CHERRYVIEW(dev_priv)) {
1585                dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1586                dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1587
1588                dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1589        }
1590}
1591
1592static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1593                                     const struct intel_plane_state *plane_state,
1594                                     int level)
1595{
1596        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1597        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1598        const struct drm_display_mode *adjusted_mode =
1599                &crtc_state->base.adjusted_mode;
1600        int clock, htotal, cpp, width, wm;
1601
1602        if (dev_priv->wm.pri_latency[level] == 0)
1603                return USHRT_MAX;
1604
1605        if (!intel_wm_plane_visible(crtc_state, plane_state))
1606                return 0;
1607
1608        cpp = plane_state->base.fb->format->cpp[0];
1609        clock = adjusted_mode->crtc_clock;
1610        htotal = adjusted_mode->crtc_htotal;
1611        width = crtc_state->pipe_src_w;
1612
1613        if (plane->id == PLANE_CURSOR) {
1614                /*
1615                 * FIXME the formula gives values that are
1616                 * too big for the cursor FIFO, and hence we
1617                 * would never be able to use cursors. For
1618                 * now just hardcode the watermark.
1619                 */
1620                wm = 63;
1621        } else {
1622                wm = vlv_wm_method2(clock, htotal, width, cpp,
1623                                    dev_priv->wm.pri_latency[level] * 10);
1624        }
1625
1626        return min_t(int, wm, USHRT_MAX);
1627}
1628
1629static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1630{
1631        return (active_planes & (BIT(PLANE_SPRITE0) |
1632                                 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1633}
1634
1635static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1636{
1637        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1638        const struct g4x_pipe_wm *raw =
1639                &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1640        struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1641        unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1642        int num_active_planes = hweight32(active_planes);
1643        const int fifo_size = 511;
1644        int fifo_extra, fifo_left = fifo_size;
1645        int sprite0_fifo_extra = 0;
1646        unsigned int total_rate;
1647        enum plane_id plane_id;
1648
1649        /*
1650         * When enabling sprite0 after sprite1 has already been enabled
1651         * we tend to get an underrun unless sprite0 already has some
1652         * FIFO space allcoated. Hence we always allocate at least one
1653         * cacheline for sprite0 whenever sprite1 is enabled.
1654         *
1655         * All other plane enable sequences appear immune to this problem.
1656         */
1657        if (vlv_need_sprite0_fifo_workaround(active_planes))
1658                sprite0_fifo_extra = 1;
1659
1660        total_rate = raw->plane[PLANE_PRIMARY] +
1661                raw->plane[PLANE_SPRITE0] +
1662                raw->plane[PLANE_SPRITE1] +
1663                sprite0_fifo_extra;
1664
1665        if (total_rate > fifo_size)
1666                return -EINVAL;
1667
1668        if (total_rate == 0)
1669                total_rate = 1;
1670
1671        for_each_plane_id_on_crtc(crtc, plane_id) {
1672                unsigned int rate;
1673
1674                if ((active_planes & BIT(plane_id)) == 0) {
1675                        fifo_state->plane[plane_id] = 0;
1676                        continue;
1677                }
1678
1679                rate = raw->plane[plane_id];
1680                fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1681                fifo_left -= fifo_state->plane[plane_id];
1682        }
1683
1684        fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1685        fifo_left -= sprite0_fifo_extra;
1686
1687        fifo_state->plane[PLANE_CURSOR] = 63;
1688
1689        fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1690
1691        /* spread the remainder evenly */
1692        for_each_plane_id_on_crtc(crtc, plane_id) {
1693                int plane_extra;
1694
1695                if (fifo_left == 0)
1696                        break;
1697
1698                if ((active_planes & BIT(plane_id)) == 0)
1699                        continue;
1700
1701                plane_extra = min(fifo_extra, fifo_left);
1702                fifo_state->plane[plane_id] += plane_extra;
1703                fifo_left -= plane_extra;
1704        }
1705
1706        WARN_ON(active_planes != 0 && fifo_left != 0);
1707
1708        /* give it all to the first plane if none are active */
1709        if (active_planes == 0) {
1710                WARN_ON(fifo_left != fifo_size);
1711                fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1712        }
1713
1714        return 0;
1715}
1716
1717/* mark all levels starting from 'level' as invalid */
1718static void vlv_invalidate_wms(struct intel_crtc *crtc,
1719                               struct vlv_wm_state *wm_state, int level)
1720{
1721        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1722
1723        for (; level < intel_wm_num_levels(dev_priv); level++) {
1724                enum plane_id plane_id;
1725
1726                for_each_plane_id_on_crtc(crtc, plane_id)
1727                        wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1728
1729                wm_state->sr[level].cursor = USHRT_MAX;
1730                wm_state->sr[level].plane = USHRT_MAX;
1731        }
1732}
1733
1734static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1735{
1736        if (wm > fifo_size)
1737                return USHRT_MAX;
1738        else
1739                return fifo_size - wm;
1740}
1741
1742/*
1743 * Starting from 'level' set all higher
1744 * levels to 'value' in the "raw" watermarks.
1745 */
1746static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1747                                 int level, enum plane_id plane_id, u16 value)
1748{
1749        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1750        int num_levels = intel_wm_num_levels(dev_priv);
1751        bool dirty = false;
1752
1753        for (; level < num_levels; level++) {
1754                struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1755
1756                dirty |= raw->plane[plane_id] != value;
1757                raw->plane[plane_id] = value;
1758        }
1759
1760        return dirty;
1761}
1762
1763static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1764                                     const struct intel_plane_state *plane_state)
1765{
1766        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1767        enum plane_id plane_id = plane->id;
1768        int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1769        int level;
1770        bool dirty = false;
1771
1772        if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1773                dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1774                goto out;
1775        }
1776
1777        for (level = 0; level < num_levels; level++) {
1778                struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1779                int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1780                int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1781
1782                if (wm > max_wm)
1783                        break;
1784
1785                dirty |= raw->plane[plane_id] != wm;
1786                raw->plane[plane_id] = wm;
1787        }
1788
1789        /* mark all higher levels as invalid */
1790        dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1791
1792out:
1793        if (dirty)
1794                DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1795                              plane->base.name,
1796                              crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1797                              crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1798                              crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1799
1800        return dirty;
1801}
1802
1803static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1804                                      enum plane_id plane_id, int level)
1805{
1806        const struct g4x_pipe_wm *raw =
1807                &crtc_state->wm.vlv.raw[level];
1808        const struct vlv_fifo_state *fifo_state =
1809                &crtc_state->wm.vlv.fifo_state;
1810
1811        return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1812}
1813
1814static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1815{
1816        return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1817                vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1818                vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1819                vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1820}
1821
1822static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1823{
1824        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1825        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1826        struct intel_atomic_state *state =
1827                to_intel_atomic_state(crtc_state->base.state);
1828        struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1829        const struct vlv_fifo_state *fifo_state =
1830                &crtc_state->wm.vlv.fifo_state;
1831        int num_active_planes = hweight32(crtc_state->active_planes &
1832                                          ~BIT(PLANE_CURSOR));
1833        bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1834        struct intel_plane_state *plane_state;
1835        struct intel_plane *plane;
1836        enum plane_id plane_id;
1837        int level, ret, i;
1838        unsigned int dirty = 0;
1839
1840        for_each_intel_plane_in_state(state, plane, plane_state, i) {
1841                const struct intel_plane_state *old_plane_state =
1842                        to_intel_plane_state(plane->base.state);
1843
1844                if (plane_state->base.crtc != &crtc->base &&
1845                    old_plane_state->base.crtc != &crtc->base)
1846                        continue;
1847
1848                if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
1849                        dirty |= BIT(plane->id);
1850        }
1851
1852        /*
1853         * DSPARB registers may have been reset due to the
1854         * power well being turned off. Make sure we restore
1855         * them to a consistent state even if no primary/sprite
1856         * planes are initially active.
1857         */
1858        if (needs_modeset)
1859                crtc_state->fifo_changed = true;
1860
1861        if (!dirty)
1862                return 0;
1863
1864        /* cursor changes don't warrant a FIFO recompute */
1865        if (dirty & ~BIT(PLANE_CURSOR)) {
1866                const struct intel_crtc_state *old_crtc_state =
1867                        to_intel_crtc_state(crtc->base.state);
1868                const struct vlv_fifo_state *old_fifo_state =
1869                        &old_crtc_state->wm.vlv.fifo_state;
1870
1871                ret = vlv_compute_fifo(crtc_state);
1872                if (ret)
1873                        return ret;
1874
1875                if (needs_modeset ||
1876                    memcmp(old_fifo_state, fifo_state,
1877                           sizeof(*fifo_state)) != 0)
1878                        crtc_state->fifo_changed = true;
1879        }
1880
1881        /* initially allow all levels */
1882        wm_state->num_levels = intel_wm_num_levels(dev_priv);
1883        /*
1884         * Note that enabling cxsr with no primary/sprite planes
1885         * enabled can wedge the pipe. Hence we only allow cxsr
1886         * with exactly one enabled primary/sprite plane.
1887         */
1888        wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1889
1890        for (level = 0; level < wm_state->num_levels; level++) {
1891                const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1892                const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1893
1894                if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1895                        break;
1896
1897                for_each_plane_id_on_crtc(crtc, plane_id) {
1898                        wm_state->wm[level].plane[plane_id] =
1899                                vlv_invert_wm_value(raw->plane[plane_id],
1900                                                    fifo_state->plane[plane_id]);
1901                }
1902
1903                wm_state->sr[level].plane =
1904                        vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1905                                                 raw->plane[PLANE_SPRITE0],
1906                                                 raw->plane[PLANE_SPRITE1]),
1907                                            sr_fifo_size);
1908
1909                wm_state->sr[level].cursor =
1910                        vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1911                                            63);
1912        }
1913
1914        if (level == 0)
1915                return -EINVAL;
1916
1917        /* limit to only levels we can actually handle */
1918        wm_state->num_levels = level;
1919
1920        /* invalidate the higher levels */
1921        vlv_invalidate_wms(crtc, wm_state, level);
1922
1923        return 0;
1924}
1925
1926#define VLV_FIFO(plane, value) \
1927        (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1928
1929static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1930                                   struct intel_crtc_state *crtc_state)
1931{
1932        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1933        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1934        const struct vlv_fifo_state *fifo_state =
1935                &crtc_state->wm.vlv.fifo_state;
1936        int sprite0_start, sprite1_start, fifo_size;
1937
1938        if (!crtc_state->fifo_changed)
1939                return;
1940
1941        sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1942        sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1943        fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1944
1945        WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1946        WARN_ON(fifo_size != 511);
1947
1948        trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1949
1950        /*
1951         * uncore.lock serves a double purpose here. It allows us to
1952         * use the less expensive I915_{READ,WRITE}_FW() functions, and
1953         * it protects the DSPARB registers from getting clobbered by
1954         * parallel updates from multiple pipes.
1955         *
1956         * intel_pipe_update_start() has already disabled interrupts
1957         * for us, so a plain spin_lock() is sufficient here.
1958         */
1959        spin_lock(&dev_priv->uncore.lock);
1960
1961        switch (crtc->pipe) {
1962                uint32_t dsparb, dsparb2, dsparb3;
1963        case PIPE_A:
1964                dsparb = I915_READ_FW(DSPARB);
1965                dsparb2 = I915_READ_FW(DSPARB2);
1966
1967                dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1968                            VLV_FIFO(SPRITEB, 0xff));
1969                dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1970                           VLV_FIFO(SPRITEB, sprite1_start));
1971
1972                dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1973                             VLV_FIFO(SPRITEB_HI, 0x1));
1974                dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1975                           VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1976
1977                I915_WRITE_FW(DSPARB, dsparb);
1978                I915_WRITE_FW(DSPARB2, dsparb2);
1979                break;
1980        case PIPE_B:
1981                dsparb = I915_READ_FW(DSPARB);
1982                dsparb2 = I915_READ_FW(DSPARB2);
1983
1984                dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1985                            VLV_FIFO(SPRITED, 0xff));
1986                dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1987                           VLV_FIFO(SPRITED, sprite1_start));
1988
1989                dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1990                             VLV_FIFO(SPRITED_HI, 0xff));
1991                dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1992                           VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1993
1994                I915_WRITE_FW(DSPARB, dsparb);
1995                I915_WRITE_FW(DSPARB2, dsparb2);
1996                break;
1997        case PIPE_C:
1998                dsparb3 = I915_READ_FW(DSPARB3);
1999                dsparb2 = I915_READ_FW(DSPARB2);
2000
2001                dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2002                             VLV_FIFO(SPRITEF, 0xff));
2003                dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2004                            VLV_FIFO(SPRITEF, sprite1_start));
2005
2006                dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2007                             VLV_FIFO(SPRITEF_HI, 0xff));
2008                dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2009                           VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2010
2011                I915_WRITE_FW(DSPARB3, dsparb3);
2012                I915_WRITE_FW(DSPARB2, dsparb2);
2013                break;
2014        default:
2015                break;
2016        }
2017
2018        POSTING_READ_FW(DSPARB);
2019
2020        spin_unlock(&dev_priv->uncore.lock);
2021}
2022
2023#undef VLV_FIFO
2024
2025static int vlv_compute_intermediate_wm(struct drm_device *dev,
2026                                       struct intel_crtc *crtc,
2027                                       struct intel_crtc_state *crtc_state)
2028{
2029        struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
2030        const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
2031        const struct vlv_wm_state *active = &crtc->wm.active.vlv;
2032        int level;
2033
2034        intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2035        intermediate->cxsr = optimal->cxsr && active->cxsr &&
2036                !crtc_state->disable_cxsr;
2037
2038        for (level = 0; level < intermediate->num_levels; level++) {
2039                enum plane_id plane_id;
2040
2041                for_each_plane_id_on_crtc(crtc, plane_id) {
2042                        intermediate->wm[level].plane[plane_id] =
2043                                min(optimal->wm[level].plane[plane_id],
2044                                    active->wm[level].plane[plane_id]);
2045                }
2046
2047                intermediate->sr[level].plane = min(optimal->sr[level].plane,
2048                                                    active->sr[level].plane);
2049                intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2050                                                     active->sr[level].cursor);
2051        }
2052
2053        vlv_invalidate_wms(crtc, intermediate, level);
2054
2055        /*
2056         * If our intermediate WM are identical to the final WM, then we can
2057         * omit the post-vblank programming; only update if it's different.
2058         */
2059        if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2060                crtc_state->wm.need_postvbl_update = true;
2061
2062        return 0;
2063}
2064
2065static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2066                         struct vlv_wm_values *wm)
2067{
2068        struct intel_crtc *crtc;
2069        int num_active_crtcs = 0;
2070
2071        wm->level = dev_priv->wm.max_level;
2072        wm->cxsr = true;
2073
2074        for_each_intel_crtc(&dev_priv->drm, crtc) {
2075                const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2076
2077                if (!crtc->active)
2078                        continue;
2079
2080                if (!wm_state->cxsr)
2081                        wm->cxsr = false;
2082
2083                num_active_crtcs++;
2084                wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2085        }
2086
2087        if (num_active_crtcs != 1)
2088                wm->cxsr = false;
2089
2090        if (num_active_crtcs > 1)
2091                wm->level = VLV_WM_LEVEL_PM2;
2092
2093        for_each_intel_crtc(&dev_priv->drm, crtc) {
2094                const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2095                enum pipe pipe = crtc->pipe;
2096
2097                wm->pipe[pipe] = wm_state->wm[wm->level];
2098                if (crtc->active && wm->cxsr)
2099                        wm->sr = wm_state->sr[wm->level];
2100
2101                wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2102                wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2103                wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2104                wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2105        }
2106}
2107
2108static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2109{
2110        struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2111        struct vlv_wm_values new_wm = {};
2112
2113        vlv_merge_wm(dev_priv, &new_wm);
2114
2115        if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2116                return;
2117
2118        if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2119                chv_set_memory_dvfs(dev_priv, false);
2120
2121        if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2122                chv_set_memory_pm5(dev_priv, false);
2123
2124        if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2125                _intel_set_memory_cxsr(dev_priv, false);
2126
2127        vlv_write_wm_values(dev_priv, &new_wm);
2128
2129        if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2130                _intel_set_memory_cxsr(dev_priv, true);
2131
2132        if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2133                chv_set_memory_pm5(dev_priv, true);
2134
2135        if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2136                chv_set_memory_dvfs(dev_priv, true);
2137
2138        *old_wm = new_wm;
2139}
2140
2141static void vlv_initial_watermarks(struct intel_atomic_state *state,
2142                                   struct intel_crtc_state *crtc_state)
2143{
2144        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2145        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2146
2147        mutex_lock(&dev_priv->wm.wm_mutex);
2148        crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2149        vlv_program_watermarks(dev_priv);
2150        mutex_unlock(&dev_priv->wm.wm_mutex);
2151}
2152
2153static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2154                                    struct intel_crtc_state *crtc_state)
2155{
2156        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2157        struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2158
2159        if (!crtc_state->wm.need_postvbl_update)
2160                return;
2161
2162        mutex_lock(&dev_priv->wm.wm_mutex);
2163        intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2164        vlv_program_watermarks(dev_priv);
2165        mutex_unlock(&dev_priv->wm.wm_mutex);
2166}
2167
2168static void i965_update_wm(struct intel_crtc *unused_crtc)
2169{
2170        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2171        struct intel_crtc *crtc;
2172        int srwm = 1;
2173        int cursor_sr = 16;
2174        bool cxsr_enabled;
2175
2176        /* Calc sr entries for one plane configs */
2177        crtc = single_enabled_crtc(dev_priv);
2178        if (crtc) {
2179                /* self-refresh has much higher latency */
2180                static const int sr_latency_ns = 12000;
2181                const struct drm_display_mode *adjusted_mode =
2182                        &crtc->config->base.adjusted_mode;
2183                const struct drm_framebuffer *fb =
2184                        crtc->base.primary->state->fb;
2185                int clock = adjusted_mode->crtc_clock;
2186                int htotal = adjusted_mode->crtc_htotal;
2187                int hdisplay = crtc->config->pipe_src_w;
2188                int cpp = fb->format->cpp[0];
2189                int entries;
2190
2191                entries = intel_wm_method2(clock, htotal,
2192                                           hdisplay, cpp, sr_latency_ns / 100);
2193                entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2194                srwm = I965_FIFO_SIZE - entries;
2195                if (srwm < 0)
2196                        srwm = 1;
2197                srwm &= 0x1ff;
2198                DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2199                              entries, srwm);
2200
2201                entries = intel_wm_method2(clock, htotal,
2202                                           crtc->base.cursor->state->crtc_w, 4,
2203                                           sr_latency_ns / 100);
2204                entries = DIV_ROUND_UP(entries,
2205                                       i965_cursor_wm_info.cacheline_size) +
2206                        i965_cursor_wm_info.guard_size;
2207
2208                cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2209                if (cursor_sr > i965_cursor_wm_info.max_wm)
2210                        cursor_sr = i965_cursor_wm_info.max_wm;
2211
2212                DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2213                              "cursor %d\n", srwm, cursor_sr);
2214
2215                cxsr_enabled = true;
2216        } else {
2217                cxsr_enabled = false;
2218                /* Turn off self refresh if both pipes are enabled */
2219                intel_set_memory_cxsr(dev_priv, false);
2220        }
2221
2222        DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2223                      srwm);
2224
2225        /* 965 has limitations... */
2226        I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2227                   FW_WM(8, CURSORB) |
2228                   FW_WM(8, PLANEB) |
2229                   FW_WM(8, PLANEA));
2230        I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2231                   FW_WM(8, PLANEC_OLD));
2232        /* update cursor SR watermark */
2233        I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2234
2235        if (cxsr_enabled)
2236                intel_set_memory_cxsr(dev_priv, true);
2237}
2238
2239#undef FW_WM
2240
2241static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2242{
2243        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2244        const struct intel_watermark_params *wm_info;
2245        uint32_t fwater_lo;
2246        uint32_t fwater_hi;
2247        int cwm, srwm = 1;
2248        int fifo_size;
2249        int planea_wm, planeb_wm;
2250        struct intel_crtc *crtc, *enabled = NULL;
2251
2252        if (IS_I945GM(dev_priv))
2253                wm_info = &i945_wm_info;
2254        else if (!IS_GEN2(dev_priv))
2255                wm_info = &i915_wm_info;
2256        else
2257                wm_info = &i830_a_wm_info;
2258
2259        fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2260        crtc = intel_get_crtc_for_plane(dev_priv, 0);
2261        if (intel_crtc_active(crtc)) {
2262                const struct drm_display_mode *adjusted_mode =
2263                        &crtc->config->base.adjusted_mode;
2264                const struct drm_framebuffer *fb =
2265                        crtc->base.primary->state->fb;
2266                int cpp;
2267
2268                if (IS_GEN2(dev_priv))
2269                        cpp = 4;
2270                else
2271                        cpp = fb->format->cpp[0];
2272
2273                planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2274                                               wm_info, fifo_size, cpp,
2275                                               pessimal_latency_ns);
2276                enabled = crtc;
2277        } else {
2278                planea_wm = fifo_size - wm_info->guard_size;
2279                if (planea_wm > (long)wm_info->max_wm)
2280                        planea_wm = wm_info->max_wm;
2281        }
2282
2283        if (IS_GEN2(dev_priv))
2284                wm_info = &i830_bc_wm_info;
2285
2286        fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2287        crtc = intel_get_crtc_for_plane(dev_priv, 1);
2288        if (intel_crtc_active(crtc)) {
2289                const struct drm_display_mode *adjusted_mode =
2290                        &crtc->config->base.adjusted_mode;
2291                const struct drm_framebuffer *fb =
2292                        crtc->base.primary->state->fb;
2293                int cpp;
2294
2295                if (IS_GEN2(dev_priv))
2296                        cpp = 4;
2297                else
2298                        cpp = fb->format->cpp[0];
2299
2300                planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2301                                               wm_info, fifo_size, cpp,
2302                                               pessimal_latency_ns);
2303                if (enabled == NULL)
2304                        enabled = crtc;
2305                else
2306                        enabled = NULL;
2307        } else {
2308                planeb_wm = fifo_size - wm_info->guard_size;
2309                if (planeb_wm > (long)wm_info->max_wm)
2310                        planeb_wm = wm_info->max_wm;
2311        }
2312
2313        DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2314
2315        if (IS_I915GM(dev_priv) && enabled) {
2316                struct drm_i915_gem_object *obj;
2317
2318                obj = intel_fb_obj(enabled->base.primary->state->fb);
2319
2320                /* self-refresh seems busted with untiled */
2321                if (!i915_gem_object_is_tiled(obj))
2322                        enabled = NULL;
2323        }
2324
2325        /*
2326         * Overlay gets an aggressive default since video jitter is bad.
2327         */
2328        cwm = 2;
2329
2330        /* Play safe and disable self-refresh before adjusting watermarks. */
2331        intel_set_memory_cxsr(dev_priv, false);
2332
2333        /* Calc sr entries for one plane configs */
2334        if (HAS_FW_BLC(dev_priv) && enabled) {
2335                /* self-refresh has much higher latency */
2336                static const int sr_latency_ns = 6000;
2337                const struct drm_display_mode *adjusted_mode =
2338                        &enabled->config->base.adjusted_mode;
2339                const struct drm_framebuffer *fb =
2340                        enabled->base.primary->state->fb;
2341                int clock = adjusted_mode->crtc_clock;
2342                int htotal = adjusted_mode->crtc_htotal;
2343                int hdisplay = enabled->config->pipe_src_w;
2344                int cpp;
2345                int entries;
2346
2347                if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2348                        cpp = 4;
2349                else
2350                        cpp = fb->format->cpp[0];
2351
2352                entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2353                                           sr_latency_ns / 100);
2354                entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2355                DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2356                srwm = wm_info->fifo_size - entries;
2357                if (srwm < 0)
2358                        srwm = 1;
2359
2360                if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2361                        I915_WRITE(FW_BLC_SELF,
2362                                   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2363                else
2364                        I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2365        }
2366
2367        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2368                      planea_wm, planeb_wm, cwm, srwm);
2369
2370        fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2371        fwater_hi = (cwm & 0x1f);
2372
2373        /* Set request length to 8 cachelines per fetch */
2374        fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2375        fwater_hi = fwater_hi | (1 << 8);
2376
2377        I915_WRITE(FW_BLC, fwater_lo);
2378        I915_WRITE(FW_BLC2, fwater_hi);
2379
2380        if (enabled)
2381                intel_set_memory_cxsr(dev_priv, true);
2382}
2383
2384static void i845_update_wm(struct intel_crtc *unused_crtc)
2385{
2386        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2387        struct intel_crtc *crtc;
2388        const struct drm_display_mode *adjusted_mode;
2389        uint32_t fwater_lo;
2390        int planea_wm;
2391
2392        crtc = single_enabled_crtc(dev_priv);
2393        if (crtc == NULL)
2394                return;
2395
2396        adjusted_mode = &crtc->config->base.adjusted_mode;
2397        planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2398                                       &i845_wm_info,
2399                                       dev_priv->display.get_fifo_size(dev_priv, 0),
2400                                       4, pessimal_latency_ns);
2401        fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2402        fwater_lo |= (3<<8) | planea_wm;
2403
2404        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2405
2406        I915_WRITE(FW_BLC, fwater_lo);
2407}
2408
2409/* latency must be in 0.1us units. */
2410static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2411                                   unsigned int cpp,
2412                                   unsigned int latency)
2413{
2414        unsigned int ret;
2415
2416        ret = intel_wm_method1(pixel_rate, cpp, latency);
2417        ret = DIV_ROUND_UP(ret, 64) + 2;
2418
2419        return ret;
2420}
2421
2422/* latency must be in 0.1us units. */
2423static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2424                                   unsigned int htotal,
2425                                   unsigned int width,
2426                                   unsigned int cpp,
2427                                   unsigned int latency)
2428{
2429        unsigned int ret;
2430
2431        ret = intel_wm_method2(pixel_rate, htotal,
2432                               width, cpp, latency);
2433        ret = DIV_ROUND_UP(ret, 64) + 2;
2434
2435        return ret;
2436}
2437
2438static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2439                           uint8_t cpp)
2440{
2441        /*
2442         * Neither of these should be possible since this function shouldn't be
2443         * called if the CRTC is off or the plane is invisible.  But let's be
2444         * extra paranoid to avoid a potential divide-by-zero if we screw up
2445         * elsewhere in the driver.
2446         */
2447        if (WARN_ON(!cpp))
2448                return 0;
2449        if (WARN_ON(!horiz_pixels))
2450                return 0;
2451
2452        return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2453}
2454
2455struct ilk_wm_maximums {
2456        uint16_t pri;
2457        uint16_t spr;
2458        uint16_t cur;
2459        uint16_t fbc;
2460};
2461
2462/*
2463 * For both WM_PIPE and WM_LP.
2464 * mem_value must be in 0.1us units.
2465 */
2466static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2467                                   const struct intel_plane_state *pstate,
2468                                   uint32_t mem_value,
2469                                   bool is_lp)
2470{
2471        uint32_t method1, method2;
2472        int cpp;
2473
2474        if (!intel_wm_plane_visible(cstate, pstate))
2475                return 0;
2476
2477        cpp = pstate->base.fb->format->cpp[0];
2478
2479        method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2480
2481        if (!is_lp)
2482                return method1;
2483
2484        method2 = ilk_wm_method2(cstate->pixel_rate,
2485                                 cstate->base.adjusted_mode.crtc_htotal,
2486                                 drm_rect_width(&pstate->base.dst),
2487                                 cpp, mem_value);
2488
2489        return min(method1, method2);
2490}
2491
2492/*
2493 * For both WM_PIPE and WM_LP.
2494 * mem_value must be in 0.1us units.
2495 */
2496static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2497                                   const struct intel_plane_state *pstate,
2498                                   uint32_t mem_value)
2499{
2500        uint32_t method1, method2;
2501        int cpp;
2502
2503        if (!intel_wm_plane_visible(cstate, pstate))
2504                return 0;
2505
2506        cpp = pstate->base.fb->format->cpp[0];
2507
2508        method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2509        method2 = ilk_wm_method2(cstate->pixel_rate,
2510                                 cstate->base.adjusted_mode.crtc_htotal,
2511                                 drm_rect_width(&pstate->base.dst),
2512                                 cpp, mem_value);
2513        return min(method1, method2);
2514}
2515
2516/*
2517 * For both WM_PIPE and WM_LP.
2518 * mem_value must be in 0.1us units.
2519 */
2520static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2521                                   const struct intel_plane_state *pstate,
2522                                   uint32_t mem_value)
2523{
2524        int cpp;
2525
2526        if (!intel_wm_plane_visible(cstate, pstate))
2527                return 0;
2528
2529        cpp = pstate->base.fb->format->cpp[0];
2530
2531        return ilk_wm_method2(cstate->pixel_rate,
2532                              cstate->base.adjusted_mode.crtc_htotal,
2533                              pstate->base.crtc_w, cpp, mem_value);
2534}
2535
2536/* Only for WM_LP. */
2537static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2538                                   const struct intel_plane_state *pstate,
2539                                   uint32_t pri_val)
2540{
2541        int cpp;
2542
2543        if (!intel_wm_plane_visible(cstate, pstate))
2544                return 0;
2545
2546        cpp = pstate->base.fb->format->cpp[0];
2547
2548        return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2549}
2550
2551static unsigned int
2552ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2553{
2554        if (INTEL_GEN(dev_priv) >= 8)
2555                return 3072;
2556        else if (INTEL_GEN(dev_priv) >= 7)
2557                return 768;
2558        else
2559                return 512;
2560}
2561
2562static unsigned int
2563ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2564                     int level, bool is_sprite)
2565{
2566        if (INTEL_GEN(dev_priv) >= 8)
2567                /* BDW primary/sprite plane watermarks */
2568                return level == 0 ? 255 : 2047;
2569        else if (INTEL_GEN(dev_priv) >= 7)
2570                /* IVB/HSW primary/sprite plane watermarks */
2571                return level == 0 ? 127 : 1023;
2572        else if (!is_sprite)
2573                /* ILK/SNB primary plane watermarks */
2574                return level == 0 ? 127 : 511;
2575        else
2576                /* ILK/SNB sprite plane watermarks */
2577                return level == 0 ? 63 : 255;
2578}
2579
2580static unsigned int
2581ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2582{
2583        if (INTEL_GEN(dev_priv) >= 7)
2584                return level == 0 ? 63 : 255;
2585        else
2586                return level == 0 ? 31 : 63;
2587}
2588
2589static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2590{
2591        if (INTEL_GEN(dev_priv) >= 8)
2592                return 31;
2593        else
2594                return 15;
2595}
2596
2597/* Calculate the maximum primary/sprite plane watermark */
2598static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2599                                     int level,
2600                                     const struct intel_wm_config *config,
2601                                     enum intel_ddb_partitioning ddb_partitioning,
2602                                     bool is_sprite)
2603{
2604        struct drm_i915_private *dev_priv = to_i915(dev);
2605        unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2606
2607        /* if sprites aren't enabled, sprites get nothing */
2608        if (is_sprite && !config->sprites_enabled)
2609                return 0;
2610
2611        /* HSW allows LP1+ watermarks even with multiple pipes */
2612        if (level == 0 || config->num_pipes_active > 1) {
2613                fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2614
2615                /*
2616                 * For some reason the non self refresh
2617                 * FIFO size is only half of the self
2618                 * refresh FIFO size on ILK/SNB.
2619                 */
2620                if (INTEL_GEN(dev_priv) <= 6)
2621                        fifo_size /= 2;
2622        }
2623
2624        if (config->sprites_enabled) {
2625                /* level 0 is always calculated with 1:1 split */
2626                if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2627                        if (is_sprite)
2628                                fifo_size *= 5;
2629                        fifo_size /= 6;
2630                } else {
2631                        fifo_size /= 2;
2632                }
2633        }
2634
2635        /* clamp to max that the registers can hold */
2636        return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2637}
2638
2639/* Calculate the maximum cursor plane watermark */
2640static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2641                                      int level,
2642                                      const struct intel_wm_config *config)
2643{
2644        /* HSW LP1+ watermarks w/ multiple pipes */
2645        if (level > 0 && config->num_pipes_active > 1)
2646                return 64;
2647
2648        /* otherwise just report max that registers can hold */
2649        return ilk_cursor_wm_reg_max(to_i915(dev), level);
2650}
2651
2652static void ilk_compute_wm_maximums(const struct drm_device *dev,
2653                                    int level,
2654                                    const struct intel_wm_config *config,
2655                                    enum intel_ddb_partitioning ddb_partitioning,
2656                                    struct ilk_wm_maximums *max)
2657{
2658        max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2659        max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2660        max->cur = ilk_cursor_wm_max(dev, level, config);
2661        max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2662}
2663
2664static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2665                                        int level,
2666                                        struct ilk_wm_maximums *max)
2667{
2668        max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2669        max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2670        max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2671        max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2672}
2673
2674static bool ilk_validate_wm_level(int level,
2675                                  const struct ilk_wm_maximums *max,
2676                                  struct intel_wm_level *result)
2677{
2678        bool ret;
2679
2680        /* already determined to be invalid? */
2681        if (!result->enable)
2682                return false;
2683
2684        result->enable = result->pri_val <= max->pri &&
2685                         result->spr_val <= max->spr &&
2686                         result->cur_val <= max->cur;
2687
2688        ret = result->enable;
2689
2690        /*
2691         * HACK until we can pre-compute everything,
2692         * and thus fail gracefully if LP0 watermarks
2693         * are exceeded...
2694         */
2695        if (level == 0 && !result->enable) {
2696                if (result->pri_val > max->pri)
2697                        DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2698                                      level, result->pri_val, max->pri);
2699                if (result->spr_val > max->spr)
2700                        DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2701                                      level, result->spr_val, max->spr);
2702                if (result->cur_val > max->cur)
2703                        DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2704                                      level, result->cur_val, max->cur);
2705
2706                result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2707                result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2708                result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2709                result->enable = true;
2710        }
2711
2712        return ret;
2713}
2714
2715static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2716                                 const struct intel_crtc *intel_crtc,
2717                                 int level,
2718                                 struct intel_crtc_state *cstate,
2719                                 const struct intel_plane_state *pristate,
2720                                 const struct intel_plane_state *sprstate,
2721                                 const struct intel_plane_state *curstate,
2722                                 struct intel_wm_level *result)
2723{
2724        uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2725        uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2726        uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2727
2728        /* WM1+ latency values stored in 0.5us units */
2729        if (level > 0) {
2730                pri_latency *= 5;
2731                spr_latency *= 5;
2732                cur_latency *= 5;
2733        }
2734
2735        if (pristate) {
2736                result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2737                                                     pri_latency, level);
2738                result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2739        }
2740
2741        if (sprstate)
2742                result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2743
2744        if (curstate)
2745                result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2746
2747        result->enable = true;
2748}
2749
2750static uint32_t
2751hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2752{
2753        const struct intel_atomic_state *intel_state =
2754                to_intel_atomic_state(cstate->base.state);
2755        const struct drm_display_mode *adjusted_mode =
2756                &cstate->base.adjusted_mode;
2757        u32 linetime, ips_linetime;
2758
2759        if (!cstate->base.active)
2760                return 0;
2761        if (WARN_ON(adjusted_mode->crtc_clock == 0))
2762                return 0;
2763        if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2764                return 0;
2765
2766        /* The WM are computed with base on how long it takes to fill a single
2767         * row at the given clock rate, multiplied by 8.
2768         * */
2769        linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2770                                     adjusted_mode->crtc_clock);
2771        ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2772                                         intel_state->cdclk.logical.cdclk);
2773
2774        return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2775               PIPE_WM_LINETIME_TIME(linetime);
2776}
2777
2778static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2779                                  uint16_t wm[8])
2780{
2781        if (INTEL_GEN(dev_priv) >= 9) {
2782                uint32_t val;
2783                int ret, i;
2784                int level, max_level = ilk_wm_max_level(dev_priv);
2785
2786                /* read the first set of memory latencies[0:3] */
2787                val = 0; /* data0 to be programmed to 0 for first set */
2788                mutex_lock(&dev_priv->rps.hw_lock);
2789                ret = sandybridge_pcode_read(dev_priv,
2790                                             GEN9_PCODE_READ_MEM_LATENCY,
2791                                             &val);
2792                mutex_unlock(&dev_priv->rps.hw_lock);
2793
2794                if (ret) {
2795                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2796                        return;
2797                }
2798
2799                wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2800                wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2801                                GEN9_MEM_LATENCY_LEVEL_MASK;
2802                wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2803                                GEN9_MEM_LATENCY_LEVEL_MASK;
2804                wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2805                                GEN9_MEM_LATENCY_LEVEL_MASK;
2806
2807                /* read the second set of memory latencies[4:7] */
2808                val = 1; /* data0 to be programmed to 1 for second set */
2809                mutex_lock(&dev_priv->rps.hw_lock);
2810                ret = sandybridge_pcode_read(dev_priv,
2811                                             GEN9_PCODE_READ_MEM_LATENCY,
2812                                             &val);
2813                mutex_unlock(&dev_priv->rps.hw_lock);
2814                if (ret) {
2815                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2816                        return;
2817                }
2818
2819                wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2820                wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2821                                GEN9_MEM_LATENCY_LEVEL_MASK;
2822                wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2823                                GEN9_MEM_LATENCY_LEVEL_MASK;
2824                wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2825                                GEN9_MEM_LATENCY_LEVEL_MASK;
2826
2827                /*
2828                 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2829                 * need to be disabled. We make sure to sanitize the values out
2830                 * of the punit to satisfy this requirement.
2831                 */
2832                for (level = 1; level <= max_level; level++) {
2833                        if (wm[level] == 0) {
2834                                for (i = level + 1; i <= max_level; i++)
2835                                        wm[i] = 0;
2836                                break;
2837                        }
2838                }
2839
2840                /*
2841                 * WaWmMemoryReadLatency:skl+,glk
2842                 *
2843                 * punit doesn't take into account the read latency so we need
2844                 * to add 2us to the various latency levels we retrieve from the
2845                 * punit when level 0 response data us 0us.
2846                 */
2847                if (wm[0] == 0) {
2848                        wm[0] += 2;
2849                        for (level = 1; level <= max_level; level++) {
2850                                if (wm[level] == 0)
2851                                        break;
2852                                wm[level] += 2;
2853                        }
2854                }
2855
2856        } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2857                uint64_t sskpd = I915_READ64(MCH_SSKPD);
2858
2859                wm[0] = (sskpd >> 56) & 0xFF;
2860                if (wm[0] == 0)
2861                        wm[0] = sskpd & 0xF;
2862                wm[1] = (sskpd >> 4) & 0xFF;
2863                wm[2] = (sskpd >> 12) & 0xFF;
2864                wm[3] = (sskpd >> 20) & 0x1FF;
2865                wm[4] = (sskpd >> 32) & 0x1FF;
2866        } else if (INTEL_GEN(dev_priv) >= 6) {
2867                uint32_t sskpd = I915_READ(MCH_SSKPD);
2868
2869                wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2870                wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2871                wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2872                wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2873        } else if (INTEL_GEN(dev_priv) >= 5) {
2874                uint32_t mltr = I915_READ(MLTR_ILK);
2875
2876                /* ILK primary LP0 latency is 700 ns */
2877                wm[0] = 7;
2878                wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2879                wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2880        } else {
2881                MISSING_CASE(INTEL_DEVID(dev_priv));
2882        }
2883}
2884
2885static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2886                                       uint16_t wm[5])
2887{
2888        /* ILK sprite LP0 latency is 1300 ns */
2889        if (IS_GEN5(dev_priv))
2890                wm[0] = 13;
2891}
2892
2893static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2894                                       uint16_t wm[5])
2895{
2896        /* ILK cursor LP0 latency is 1300 ns */
2897        if (IS_GEN5(dev_priv))
2898                wm[0] = 13;
2899
2900        /* WaDoubleCursorLP3Latency:ivb */
2901        if (IS_IVYBRIDGE(dev_priv))
2902                wm[3] *= 2;
2903}
2904
2905int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2906{
2907        /* how many WM levels are we expecting */
2908        if (INTEL_GEN(dev_priv) >= 9)
2909                return 7;
2910        else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2911                return 4;
2912        else if (INTEL_GEN(dev_priv) >= 6)
2913                return 3;
2914        else
2915                return 2;
2916}
2917
2918static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2919                                   const char *name,
2920                                   const uint16_t wm[8])
2921{
2922        int level, max_level = ilk_wm_max_level(dev_priv);
2923
2924        for (level = 0; level <= max_level; level++) {
2925                unsigned int latency = wm[level];
2926
2927                if (latency == 0) {
2928                        DRM_ERROR("%s WM%d latency not provided\n",
2929                                  name, level);
2930                        continue;
2931                }
2932
2933                /*
2934                 * - latencies are in us on gen9.
2935                 * - before then, WM1+ latency values are in 0.5us units
2936                 */
2937                if (INTEL_GEN(dev_priv) >= 9)
2938                        latency *= 10;
2939                else if (level > 0)
2940                        latency *= 5;
2941
2942                DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2943                              name, level, wm[level],
2944                              latency / 10, latency % 10);
2945        }
2946}
2947
2948static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2949                                    uint16_t wm[5], uint16_t min)
2950{
2951        int level, max_level = ilk_wm_max_level(dev_priv);
2952
2953        if (wm[0] >= min)
2954                return false;
2955
2956        wm[0] = max(wm[0], min);
2957        for (level = 1; level <= max_level; level++)
2958                wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2959
2960        return true;
2961}
2962
2963static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2964{
2965        bool changed;
2966
2967        /*
2968         * The BIOS provided WM memory latency values are often
2969         * inadequate for high resolution displays. Adjust them.
2970         */
2971        changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2972                ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2973                ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2974
2975        if (!changed)
2976                return;
2977
2978        DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2979        intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2980        intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2981        intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2982}
2983
2984static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2985{
2986        intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2987
2988        memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2989               sizeof(dev_priv->wm.pri_latency));
2990        memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2991               sizeof(dev_priv->wm.pri_latency));
2992
2993        intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2994        intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2995
2996        intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2997        intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2998        intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2999
3000        if (IS_GEN6(dev_priv))
3001                snb_wm_latency_quirk(dev_priv);
3002}
3003
3004static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3005{
3006        intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3007        intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3008}
3009
3010static bool ilk_validate_pipe_wm(struct drm_device *dev,
3011                                 struct intel_pipe_wm *pipe_wm)
3012{
3013        /* LP0 watermark maximums depend on this pipe alone */
3014        const struct intel_wm_config config = {
3015                .num_pipes_active = 1,
3016                .sprites_enabled = pipe_wm->sprites_enabled,
3017                .sprites_scaled = pipe_wm->sprites_scaled,
3018        };
3019        struct ilk_wm_maximums max;
3020
3021        /* LP0 watermarks always use 1/2 DDB partitioning */
3022        ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3023
3024        /* At least LP0 must be valid */
3025        if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3026                DRM_DEBUG_KMS("LP0 watermark invalid\n");
3027                return false;
3028        }
3029
3030        return true;
3031}
3032
3033/* Compute new watermarks for the pipe */
3034static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3035{
3036        struct drm_atomic_state *state = cstate->base.state;
3037        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3038        struct intel_pipe_wm *pipe_wm;
3039        struct drm_device *dev = state->dev;
3040        const struct drm_i915_private *dev_priv = to_i915(dev);
3041        struct drm_plane *plane;
3042        const struct drm_plane_state *plane_state;
3043        const struct intel_plane_state *pristate = NULL;
3044        const struct intel_plane_state *sprstate = NULL;
3045        const struct intel_plane_state *curstate = NULL;
3046        int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3047        struct ilk_wm_maximums max;
3048
3049        pipe_wm = &cstate->wm.ilk.optimal;
3050
3051        drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3052                const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3053
3054                if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3055                        pristate = ps;
3056                else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3057                        sprstate = ps;
3058                else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3059                        curstate = ps;
3060        }
3061
3062        pipe_wm->pipe_enabled = cstate->base.active;
3063        if (sprstate) {
3064                pipe_wm->sprites_enabled = sprstate->base.visible;
3065                pipe_wm->sprites_scaled = sprstate->base.visible &&
3066                        (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3067                         drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3068        }
3069
3070        usable_level = max_level;
3071
3072        /* ILK/SNB: LP2+ watermarks only w/o sprites */
3073        if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3074                usable_level = 1;
3075
3076        /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3077        if (pipe_wm->sprites_scaled)
3078                usable_level = 0;
3079
3080        memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3081        ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3082                             pristate, sprstate, curstate, &pipe_wm->wm[0]);
3083
3084        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3085                pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3086
3087        if (!ilk_validate_pipe_wm(dev, pipe_wm))
3088                return -EINVAL;
3089
3090        ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3091
3092        for (level = 1; level <= usable_level; level++) {
3093                struct intel_wm_level *wm = &pipe_wm->wm[level];
3094
3095                ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3096                                     pristate, sprstate, curstate, wm);
3097
3098                /*
3099                 * Disable any watermark level that exceeds the
3100                 * register maximums since such watermarks are
3101                 * always invalid.
3102                 */
3103                if (!ilk_validate_wm_level(level, &max, wm)) {
3104                        memset(wm, 0, sizeof(*wm));
3105                        break;
3106                }
3107        }
3108
3109        return 0;
3110}
3111
3112/*
3113 * Build a set of 'intermediate' watermark values that satisfy both the old
3114 * state and the new state.  These can be programmed to the hardware
3115 * immediately.
3116 */
3117static int ilk_compute_intermediate_wm(struct drm_device *dev,
3118                                       struct intel_crtc *intel_crtc,
3119                                       struct intel_crtc_state *newstate)
3120{
3121        struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3122        struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
3123        int level, max_level = ilk_wm_max_level(to_i915(dev));
3124
3125        /*
3126         * Start with the final, target watermarks, then combine with the
3127         * currently active watermarks to get values that are safe both before
3128         * and after the vblank.
3129         */
3130        *a = newstate->wm.ilk.optimal;
3131        a->pipe_enabled |= b->pipe_enabled;
3132        a->sprites_enabled |= b->sprites_enabled;
3133        a->sprites_scaled |= b->sprites_scaled;
3134
3135        for (level = 0; level <= max_level; level++) {
3136                struct intel_wm_level *a_wm = &a->wm[level];
3137                const struct intel_wm_level *b_wm = &b->wm[level];
3138
3139                a_wm->enable &= b_wm->enable;
3140                a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3141                a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3142                a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3143                a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3144        }
3145
3146        /*
3147         * We need to make sure that these merged watermark values are
3148         * actually a valid configuration themselves.  If they're not,
3149         * there's no safe way to transition from the old state to
3150         * the new state, so we need to fail the atomic transaction.
3151         */
3152        if (!ilk_validate_pipe_wm(dev, a))
3153                return -EINVAL;
3154
3155        /*
3156         * If our intermediate WM are identical to the final WM, then we can
3157         * omit the post-vblank programming; only update if it's different.
3158         */
3159        if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3160                newstate->wm.need_postvbl_update = true;
3161
3162        return 0;
3163}
3164
3165/*
3166 * Merge the watermarks from all active pipes for a specific level.
3167 */
3168static void ilk_merge_wm_level(struct drm_device *dev,
3169                               int level,
3170                               struct intel_wm_level *ret_wm)
3171{
3172        const struct intel_crtc *intel_crtc;
3173
3174        ret_wm->enable = true;
3175
3176        for_each_intel_crtc(dev, intel_crtc) {
3177                const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3178                const struct intel_wm_level *wm = &active->wm[level];
3179
3180                if (!active->pipe_enabled)
3181                        continue;
3182
3183                /*
3184                 * The watermark values may have been used in the past,
3185                 * so we must maintain them in the registers for some
3186                 * time even if the level is now disabled.
3187                 */
3188                if (!wm->enable)
3189                        ret_wm->enable = false;
3190
3191                ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3192                ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3193                ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3194                ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3195        }
3196}
3197
3198/*
3199 * Merge all low power watermarks for all active pipes.
3200 */
3201static void ilk_wm_merge(struct drm_device *dev,
3202                         const struct intel_wm_config *config,
3203                         const struct ilk_wm_maximums *max,
3204                         struct intel_pipe_wm *merged)
3205{
3206        struct drm_i915_private *dev_priv = to_i915(dev);
3207        int level, max_level = ilk_wm_max_level(dev_priv);
3208        int last_enabled_level = max_level;
3209
3210        /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3211        if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3212            config->num_pipes_active > 1)
3213                last_enabled_level = 0;
3214
3215        /* ILK: FBC WM must be disabled always */
3216        merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3217
3218        /* merge each WM1+ level */
3219        for (level = 1; level <= max_level; level++) {
3220                struct intel_wm_level *wm = &merged->wm[level];
3221
3222                ilk_merge_wm_level(dev, level, wm);
3223
3224                if (level > last_enabled_level)
3225                        wm->enable = false;
3226                else if (!ilk_validate_wm_level(level, max, wm))
3227                        /* make sure all following levels get disabled */
3228                        last_enabled_level = level - 1;
3229
3230                /*
3231                 * The spec says it is preferred to disable
3232                 * FBC WMs instead of disabling a WM level.
3233                 */
3234                if (wm->fbc_val > max->fbc) {
3235                        if (wm->enable)
3236                                merged->fbc_wm_enabled = false;
3237                        wm->fbc_val = 0;
3238                }
3239        }
3240
3241        /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3242        /*
3243         * FIXME this is racy. FBC might get enabled later.
3244         * What we should check here is whether FBC can be
3245         * enabled sometime later.
3246         */
3247        if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3248            intel_fbc_is_active(dev_priv)) {
3249                for (level = 2; level <= max_level; level++) {
3250                        struct intel_wm_level *wm = &merged->wm[level];
3251
3252                        wm->enable = false;
3253                }
3254        }
3255}
3256
3257static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3258{
3259        /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3260        return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3261}
3262
3263/* The value we need to program into the WM_LPx latency field */
3264static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3265{
3266        struct drm_i915_private *dev_priv = to_i915(dev);
3267
3268        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3269                return 2 * level;
3270        else
3271                return dev_priv->wm.pri_latency[level];
3272}
3273
3274static void ilk_compute_wm_results(struct drm_device *dev,
3275                                   const struct intel_pipe_wm *merged,
3276                                   enum intel_ddb_partitioning partitioning,
3277                                   struct ilk_wm_values *results)
3278{
3279        struct drm_i915_private *dev_priv = to_i915(dev);
3280        struct intel_crtc *intel_crtc;
3281        int level, wm_lp;
3282
3283        results->enable_fbc_wm = merged->fbc_wm_enabled;
3284        results->partitioning = partitioning;
3285
3286        /* LP1+ register values */
3287        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3288                const struct intel_wm_level *r;
3289
3290                level = ilk_wm_lp_to_level(wm_lp, merged);
3291
3292                r = &merged->wm[level];
3293
3294                /*
3295                 * Maintain the watermark values even if the level is
3296                 * disabled. Doing otherwise could cause underruns.
3297                 */
3298                results->wm_lp[wm_lp - 1] =
3299                        (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3300                        (r->pri_val << WM1_LP_SR_SHIFT) |
3301                        r->cur_val;
3302
3303                if (r->enable)
3304                        results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3305
3306                if (INTEL_GEN(dev_priv) >= 8)
3307                        results->wm_lp[wm_lp - 1] |=
3308                                r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3309                else
3310                        results->wm_lp[wm_lp - 1] |=
3311                                r->fbc_val << WM1_LP_FBC_SHIFT;
3312
3313                /*
3314                 * Always set WM1S_LP_EN when spr_val != 0, even if the
3315                 * level is disabled. Doing otherwise could cause underruns.
3316                 */
3317                if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3318                        WARN_ON(wm_lp != 1);
3319                        results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3320                } else
3321                        results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3322        }
3323
3324        /* LP0 register values */
3325        for_each_intel_crtc(dev, intel_crtc) {
3326                enum pipe pipe = intel_crtc->pipe;
3327                const struct intel_wm_level *r =
3328                        &intel_crtc->wm.active.ilk.wm[0];
3329
3330                if (WARN_ON(!r->enable))
3331                        continue;
3332
3333                results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3334
3335                results->wm_pipe[pipe] =
3336                        (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3337                        (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3338                        r->cur_val;
3339        }
3340}
3341
3342/* Find the result with the highest level enabled. Check for enable_fbc_wm in
3343 * case both are at the same level. Prefer r1 in case they're the same. */
3344static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3345                                                  struct intel_pipe_wm *r1,
3346                                                  struct intel_pipe_wm *r2)
3347{
3348        int level, max_level = ilk_wm_max_level(to_i915(dev));
3349        int level1 = 0, level2 = 0;
3350
3351        for (level = 1; level <= max_level; level++) {
3352                if (r1->wm[level].enable)
3353                        level1 = level;
3354                if (r2->wm[level].enable)
3355                        level2 = level;
3356        }
3357
3358        if (level1 == level2) {
3359                if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3360                        return r2;
3361                else
3362                        return r1;
3363        } else if (level1 > level2) {
3364                return r1;
3365        } else {
3366                return r2;
3367        }
3368}
3369
3370/* dirty bits used to track which watermarks need changes */
3371#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3372#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3373#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3374#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3375#define WM_DIRTY_FBC (1 << 24)
3376#define WM_DIRTY_DDB (1 << 25)
3377
3378static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3379                                         const struct ilk_wm_values *old,
3380                                         const struct ilk_wm_values *new)
3381{
3382        unsigned int dirty = 0;
3383        enum pipe pipe;
3384        int wm_lp;
3385
3386        for_each_pipe(dev_priv, pipe) {
3387                if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3388                        dirty |= WM_DIRTY_LINETIME(pipe);
3389                        /* Must disable LP1+ watermarks too */
3390                        dirty |= WM_DIRTY_LP_ALL;
3391                }
3392
3393                if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3394                        dirty |= WM_DIRTY_PIPE(pipe);
3395                        /* Must disable LP1+ watermarks too */
3396                        dirty |= WM_DIRTY_LP_ALL;
3397                }
3398        }
3399
3400        if (old->enable_fbc_wm != new->enable_fbc_wm) {
3401                dirty |= WM_DIRTY_FBC;
3402                /* Must disable LP1+ watermarks too */
3403                dirty |= WM_DIRTY_LP_ALL;
3404        }
3405
3406        if (old->partitioning != new->partitioning) {
3407                dirty |= WM_DIRTY_DDB;
3408                /* Must disable LP1+ watermarks too */
3409                dirty |= WM_DIRTY_LP_ALL;
3410        }
3411
3412        /* LP1+ watermarks already deemed dirty, no need to continue */
3413        if (dirty & WM_DIRTY_LP_ALL)
3414                return dirty;
3415
3416        /* Find the lowest numbered LP1+ watermark in need of an update... */
3417        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3418                if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3419                    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3420                        break;
3421        }
3422
3423        /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3424        for (; wm_lp <= 3; wm_lp++)
3425                dirty |= WM_DIRTY_LP(wm_lp);
3426
3427        return dirty;
3428}
3429
3430static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3431                               unsigned int dirty)
3432{
3433        struct ilk_wm_values *previous = &dev_priv->wm.hw;
3434        bool changed = false;
3435
3436        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3437                previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3438                I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3439                changed = true;
3440        }
3441        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3442                previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3443                I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3444                changed = true;
3445        }
3446        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3447                previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3448                I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3449                changed = true;
3450        }
3451
3452        /*
3453         * Don't touch WM1S_LP_EN here.
3454         * Doing so could cause underruns.
3455         */
3456
3457        return changed;
3458}
3459
3460/*
3461 * The spec says we shouldn't write when we don't need, because every write
3462 * causes WMs to be re-evaluated, expending some power.
3463 */
3464static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3465                                struct ilk_wm_values *results)
3466{
3467        struct ilk_wm_values *previous = &dev_priv->wm.hw;
3468        unsigned int dirty;
3469        uint32_t val;
3470
3471        dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3472        if (!dirty)
3473                return;
3474
3475        _ilk_disable_lp_wm(dev_priv, dirty);
3476
3477        if (dirty & WM_DIRTY_PIPE(PIPE_A))
3478                I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3479        if (dirty & WM_DIRTY_PIPE(PIPE_B))
3480                I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3481        if (dirty & WM_DIRTY_PIPE(PIPE_C))
3482                I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3483
3484        if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3485                I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3486        if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3487                I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3488        if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3489                I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3490
3491        if (dirty & WM_DIRTY_DDB) {
3492                if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3493                        val = I915_READ(WM_MISC);
3494                        if (results->partitioning == INTEL_DDB_PART_1_2)
3495                                val &= ~WM_MISC_DATA_PARTITION_5_6;
3496                        else
3497                                val |= WM_MISC_DATA_PARTITION_5_6;
3498                        I915_WRITE(WM_MISC, val);
3499                } else {
3500                        val = I915_READ(DISP_ARB_CTL2);
3501                        if (results->partitioning == INTEL_DDB_PART_1_2)
3502                                val &= ~DISP_DATA_PARTITION_5_6;
3503                        else
3504                                val |= DISP_DATA_PARTITION_5_6;
3505                        I915_WRITE(DISP_ARB_CTL2, val);
3506                }
3507        }
3508
3509        if (dirty & WM_DIRTY_FBC) {
3510                val = I915_READ(DISP_ARB_CTL);
3511                if (results->enable_fbc_wm)
3512                        val &= ~DISP_FBC_WM_DIS;
3513                else
3514                        val |= DISP_FBC_WM_DIS;
3515                I915_WRITE(DISP_ARB_CTL, val);
3516        }
3517
3518        if (dirty & WM_DIRTY_LP(1) &&
3519            previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3520                I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3521
3522        if (INTEL_GEN(dev_priv) >= 7) {
3523                if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3524                        I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3525                if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3526                        I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3527        }
3528
3529        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3530                I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3531        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3532                I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3533        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3534                I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3535
3536        dev_priv->wm.hw = *results;
3537}
3538
3539bool ilk_disable_lp_wm(struct drm_device *dev)
3540{
3541        struct drm_i915_private *dev_priv = to_i915(dev);
3542
3543        return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3544}
3545
3546/*
3547 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3548 * so assume we'll always need it in order to avoid underruns.
3549 */
3550static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3551{
3552        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3553
3554        if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3555                return true;
3556
3557        return false;
3558}
3559
3560static bool
3561intel_has_sagv(struct drm_i915_private *dev_priv)
3562{
3563        if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3564            IS_CANNONLAKE(dev_priv))
3565                return true;
3566
3567        if (IS_SKYLAKE(dev_priv) &&
3568            dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3569                return true;
3570
3571        return false;
3572}
3573
3574/*
3575 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3576 * depending on power and performance requirements. The display engine access
3577 * to system memory is blocked during the adjustment time. Because of the
3578 * blocking time, having this enabled can cause full system hangs and/or pipe
3579 * underruns if we don't meet all of the following requirements:
3580 *
3581 *  - <= 1 pipe enabled
3582 *  - All planes can enable watermarks for latencies >= SAGV engine block time
3583 *  - We're not using an interlaced display configuration
3584 */
3585int
3586intel_enable_sagv(struct drm_i915_private *dev_priv)
3587{
3588        int ret;
3589
3590        if (!intel_has_sagv(dev_priv))
3591                return 0;
3592
3593        if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3594                return 0;
3595
3596        DRM_DEBUG_KMS("Enabling the SAGV\n");
3597        mutex_lock(&dev_priv->rps.hw_lock);
3598
3599        ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3600                                      GEN9_SAGV_ENABLE);
3601
3602        /* We don't need to wait for the SAGV when enabling */
3603        mutex_unlock(&dev_priv->rps.hw_lock);
3604
3605        /*
3606         * Some skl systems, pre-release machines in particular,
3607         * don't actually have an SAGV.
3608         */
3609        if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3610                DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3611                dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3612                return 0;
3613        } else if (ret < 0) {
3614                DRM_ERROR("Failed to enable the SAGV\n");
3615                return ret;
3616        }
3617
3618        dev_priv->sagv_status = I915_SAGV_ENABLED;
3619        return 0;
3620}
3621
3622int
3623intel_disable_sagv(struct drm_i915_private *dev_priv)
3624{
3625        int ret;
3626
3627        if (!intel_has_sagv(dev_priv))
3628                return 0;
3629
3630        if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3631                return 0;
3632
3633        DRM_DEBUG_KMS("Disabling the SAGV\n");
3634        mutex_lock(&dev_priv->rps.hw_lock);
3635
3636        /* bspec says to keep retrying for at least 1 ms */
3637        ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3638                                GEN9_SAGV_DISABLE,
3639                                GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3640                                1);
3641        mutex_unlock(&dev_priv->rps.hw_lock);
3642
3643        /*
3644         * Some skl systems, pre-release machines in particular,
3645         * don't actually have an SAGV.
3646         */
3647        if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3648                DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3649                dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3650                return 0;
3651        } else if (ret < 0) {
3652                DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3653                return ret;
3654        }
3655
3656        dev_priv->sagv_status = I915_SAGV_DISABLED;
3657        return 0;
3658}
3659
3660bool intel_can_enable_sagv(struct drm_atomic_state *state)
3661{
3662        struct drm_device *dev = state->dev;
3663        struct drm_i915_private *dev_priv = to_i915(dev);
3664        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3665        struct intel_crtc *crtc;
3666        struct intel_plane *plane;
3667        struct intel_crtc_state *cstate;
3668        enum pipe pipe;
3669        int level, latency;
3670        int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
3671
3672        if (!intel_has_sagv(dev_priv))
3673                return false;
3674
3675        /*
3676         * SKL+ workaround: bspec recommends we disable the SAGV when we have
3677         * more then one pipe enabled
3678         *
3679         * If there are no active CRTCs, no additional checks need be performed
3680         */
3681        if (hweight32(intel_state->active_crtcs) == 0)
3682                return true;
3683        else if (hweight32(intel_state->active_crtcs) > 1)
3684                return false;
3685
3686        /* Since we're now guaranteed to only have one active CRTC... */
3687        pipe = ffs(intel_state->active_crtcs) - 1;
3688        crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3689        cstate = to_intel_crtc_state(crtc->base.state);
3690
3691        if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3692                return false;
3693
3694        for_each_intel_plane_on_crtc(dev, crtc, plane) {
3695                struct skl_plane_wm *wm =
3696                        &cstate->wm.skl.optimal.planes[plane->id];
3697
3698                /* Skip this plane if it's not enabled */
3699                if (!wm->wm[0].plane_en)
3700                        continue;
3701
3702                /* Find the highest enabled wm level for this plane */
3703                for (level = ilk_wm_max_level(dev_priv);
3704                     !wm->wm[level].plane_en; --level)
3705                     { }
3706
3707                latency = dev_priv->wm.skl_latency[level];
3708
3709                if (skl_needs_memory_bw_wa(intel_state) &&
3710                    plane->base.state->fb->modifier ==
3711                    I915_FORMAT_MOD_X_TILED)
3712                        latency += 15;
3713
3714                /*
3715                 * If any of the planes on this pipe don't enable wm levels that
3716                 * incur memory latencies higher than sagv_block_time_us we
3717                 * can't enable the SAGV.
3718                 */
3719                if (latency < sagv_block_time_us)
3720                        return false;
3721        }
3722
3723        return true;
3724}
3725
3726static void
3727skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3728                                   const struct intel_crtc_state *cstate,
3729                                   struct skl_ddb_entry *alloc, /* out */
3730                                   int *num_active /* out */)
3731{
3732        struct drm_atomic_state *state = cstate->base.state;
3733        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3734        struct drm_i915_private *dev_priv = to_i915(dev);
3735        struct drm_crtc *for_crtc = cstate->base.crtc;
3736        unsigned int pipe_size, ddb_size;
3737        int nth_active_pipe;
3738
3739        if (WARN_ON(!state) || !cstate->base.active) {
3740                alloc->start = 0;
3741                alloc->end = 0;
3742                *num_active = hweight32(dev_priv->active_crtcs);
3743                return;
3744        }
3745
3746        if (intel_state->active_pipe_changes)
3747                *num_active = hweight32(intel_state->active_crtcs);
3748        else
3749                *num_active = hweight32(dev_priv->active_crtcs);
3750
3751        ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3752        WARN_ON(ddb_size == 0);
3753
3754        ddb_size -= 4; /* 4 blocks for bypass path allocation */
3755
3756        /*
3757         * If the state doesn't change the active CRTC's, then there's
3758         * no need to recalculate; the existing pipe allocation limits
3759         * should remain unchanged.  Note that we're safe from racing
3760         * commits since any racing commit that changes the active CRTC
3761         * list would need to grab _all_ crtc locks, including the one
3762         * we currently hold.
3763         */
3764        if (!intel_state->active_pipe_changes) {
3765                /*
3766                 * alloc may be cleared by clear_intel_crtc_state,
3767                 * copy from old state to be sure
3768                 */
3769                *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3770                return;
3771        }
3772
3773        nth_active_pipe = hweight32(intel_state->active_crtcs &
3774                                    (drm_crtc_mask(for_crtc) - 1));
3775        pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3776        alloc->start = nth_active_pipe * ddb_size / *num_active;
3777        alloc->end = alloc->start + pipe_size;
3778}
3779
3780static unsigned int skl_cursor_allocation(int num_active)
3781{
3782        if (num_active == 1)
3783                return 32;
3784
3785        return 8;
3786}
3787
3788static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3789{
3790        entry->start = reg & 0x3ff;
3791        entry->end = (reg >> 16) & 0x3ff;
3792        if (entry->end)
3793                entry->end += 1;
3794}
3795
3796void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3797                          struct skl_ddb_allocation *ddb /* out */)
3798{
3799        struct intel_crtc *crtc;
3800
3801        memset(ddb, 0, sizeof(*ddb));
3802
3803        for_each_intel_crtc(&dev_priv->drm, crtc) {
3804                enum intel_display_power_domain power_domain;
3805                enum plane_id plane_id;
3806                enum pipe pipe = crtc->pipe;
3807
3808                power_domain = POWER_DOMAIN_PIPE(pipe);
3809                if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3810                        continue;
3811
3812                for_each_plane_id_on_crtc(crtc, plane_id) {
3813                        u32 val;
3814
3815                        if (plane_id != PLANE_CURSOR)
3816                                val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3817                        else
3818                                val = I915_READ(CUR_BUF_CFG(pipe));
3819
3820                        skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3821                }
3822
3823                intel_display_power_put(dev_priv, power_domain);
3824        }
3825}
3826
3827/*
3828 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3829 * The bspec defines downscale amount as:
3830 *
3831 * """
3832 * Horizontal down scale amount = maximum[1, Horizontal source size /
3833 *                                           Horizontal destination size]
3834 * Vertical down scale amount = maximum[1, Vertical source size /
3835 *                                         Vertical destination size]
3836 * Total down scale amount = Horizontal down scale amount *
3837 *                           Vertical down scale amount
3838 * """
3839 *
3840 * Return value is provided in 16.16 fixed point form to retain fractional part.
3841 * Caller should take care of dividing & rounding off the value.
3842 */
3843static uint_fixed_16_16_t
3844skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3845                           const struct intel_plane_state *pstate)
3846{
3847        struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3848        uint32_t src_w, src_h, dst_w, dst_h;
3849        uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3850        uint_fixed_16_16_t downscale_h, downscale_w;
3851
3852        if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3853                return u32_to_fixed16(0);
3854
3855        /* n.b., src is 16.16 fixed point, dst is whole integer */
3856        if (plane->id == PLANE_CURSOR) {
3857                /*
3858                 * Cursors only support 0/180 degree rotation,
3859                 * hence no need to account for rotation here.
3860                 */
3861                src_w = pstate->base.src_w >> 16;
3862                src_h = pstate->base.src_h >> 16;
3863                dst_w = pstate->base.crtc_w;
3864                dst_h = pstate->base.crtc_h;
3865        } else {
3866                /*
3867                 * Src coordinates are already rotated by 270 degrees for
3868                 * the 90/270 degree plane rotation cases (to match the
3869                 * GTT mapping), hence no need to account for rotation here.
3870                 */
3871                src_w = drm_rect_width(&pstate->base.src) >> 16;
3872                src_h = drm_rect_height(&pstate->base.src) >> 16;
3873                dst_w = drm_rect_width(&pstate->base.dst);
3874                dst_h = drm_rect_height(&pstate->base.dst);
3875        }
3876
3877        fp_w_ratio = div_fixed16(src_w, dst_w);
3878        fp_h_ratio = div_fixed16(src_h, dst_h);
3879        downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3880        downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3881
3882        return mul_fixed16(downscale_w, downscale_h);
3883}
3884
3885static uint_fixed_16_16_t
3886skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
3887{
3888        uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3889
3890        if (!crtc_state->base.enable)
3891                return pipe_downscale;
3892
3893        if (crtc_state->pch_pfit.enabled) {
3894                uint32_t src_w, src_h, dst_w, dst_h;
3895                uint32_t pfit_size = crtc_state->pch_pfit.size;
3896                uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3897                uint_fixed_16_16_t downscale_h, downscale_w;
3898
3899                src_w = crtc_state->pipe_src_w;
3900                src_h = crtc_state->pipe_src_h;
3901                dst_w = pfit_size >> 16;
3902                dst_h = pfit_size & 0xffff;
3903
3904                if (!dst_w || !dst_h)
3905                        return pipe_downscale;
3906
3907                fp_w_ratio = div_fixed16(src_w, dst_w);
3908                fp_h_ratio = div_fixed16(src_h, dst_h);
3909                downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3910                downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3911
3912                pipe_downscale = mul_fixed16(downscale_w, downscale_h);
3913        }
3914
3915        return pipe_downscale;
3916}
3917
3918int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
3919                                  struct intel_crtc_state *cstate)
3920{
3921        struct drm_crtc_state *crtc_state = &cstate->base;
3922        struct drm_atomic_state *state = crtc_state->state;
3923        struct drm_plane *plane;
3924        const struct drm_plane_state *pstate;
3925        struct intel_plane_state *intel_pstate;
3926        int crtc_clock, dotclk;
3927        uint32_t pipe_max_pixel_rate;
3928        uint_fixed_16_16_t pipe_downscale;
3929        uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3930
3931        if (!cstate->base.enable)
3932                return 0;
3933
3934        drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
3935                uint_fixed_16_16_t plane_downscale;
3936                uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3937                int bpp;
3938
3939                if (!intel_wm_plane_visible(cstate,
3940                                            to_intel_plane_state(pstate)))
3941                        continue;
3942
3943                if (WARN_ON(!pstate->fb))
3944                        return -EINVAL;
3945
3946                intel_pstate = to_intel_plane_state(pstate);
3947                plane_downscale = skl_plane_downscale_amount(cstate,
3948                                                             intel_pstate);
3949                bpp = pstate->fb->format->cpp[0] * 8;
3950                if (bpp == 64)
3951                        plane_downscale = mul_fixed16(plane_downscale,
3952                                                      fp_9_div_8);
3953
3954                max_downscale = max_fixed16(plane_downscale, max_downscale);
3955        }
3956        pipe_downscale = skl_pipe_downscale_amount(cstate);
3957
3958        pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
3959
3960        crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3961        dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
3962
3963        if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
3964                dotclk *= 2;
3965
3966        pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3967
3968        if (pipe_max_pixel_rate < crtc_clock) {
3969                DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3970                return -EINVAL;
3971        }
3972
3973        return 0;
3974}
3975
3976static unsigned int
3977skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3978                             const struct drm_plane_state *pstate,
3979                             int y)
3980{
3981        struct intel_plane *plane = to_intel_plane(pstate->plane);
3982        struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3983        uint32_t data_rate;
3984        uint32_t width = 0, height = 0;
3985        struct drm_framebuffer *fb;
3986        u32 format;
3987        uint_fixed_16_16_t down_scale_amount;
3988
3989        if (!intel_pstate->base.visible)
3990                return 0;
3991
3992        fb = pstate->fb;
3993        format = fb->format->format;
3994
3995        if (plane->id == PLANE_CURSOR)
3996                return 0;
3997        if (y && format != DRM_FORMAT_NV12)
3998                return 0;
3999
4000        /*
4001         * Src coordinates are already rotated by 270 degrees for
4002         * the 90/270 degree plane rotation cases (to match the
4003         * GTT mapping), hence no need to account for rotation here.
4004         */
4005        width = drm_rect_width(&intel_pstate->base.src) >> 16;
4006        height = drm_rect_height(&intel_pstate->base.src) >> 16;
4007
4008        /* for planar format */
4009        if (format == DRM_FORMAT_NV12) {
4010                if (y)  /* y-plane data rate */
4011                        data_rate = width * height *
4012                                fb->format->cpp[0];
4013                else    /* uv-plane data rate */
4014                        data_rate = (width / 2) * (height / 2) *
4015                                fb->format->cpp[1];
4016        } else {
4017                /* for packed formats */
4018                data_rate = width * height * fb->format->cpp[0];
4019        }
4020
4021        down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4022
4023        return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4024}
4025
4026/*
4027 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4028 * a 8192x4096@32bpp framebuffer:
4029 *   3 * 4096 * 8192  * 4 < 2^32
4030 */
4031static unsigned int
4032skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4033                                 unsigned *plane_data_rate,
4034                                 unsigned *plane_y_data_rate)
4035{
4036        struct drm_crtc_state *cstate = &intel_cstate->base;
4037        struct drm_atomic_state *state = cstate->state;
4038        struct drm_plane *plane;
4039        const struct drm_plane_state *pstate;
4040        unsigned int total_data_rate = 0;
4041
4042        if (WARN_ON(!state))
4043                return 0;
4044
4045        /* Calculate and cache data rate for each plane */
4046        drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4047                enum plane_id plane_id = to_intel_plane(plane)->id;
4048                unsigned int rate;
4049
4050                /* packed/uv */
4051                rate = skl_plane_relative_data_rate(intel_cstate,
4052                                                    pstate, 0);
4053                plane_data_rate[plane_id] = rate;
4054
4055                total_data_rate += rate;
4056
4057                /* y-plane */
4058                rate = skl_plane_relative_data_rate(intel_cstate,
4059                                                    pstate, 1);
4060                plane_y_data_rate[plane_id] = rate;
4061
4062                total_data_rate += rate;
4063        }
4064
4065        return total_data_rate;
4066}
4067
4068static uint16_t
4069skl_ddb_min_alloc(const struct drm_plane_state *pstate,
4070                  const int y)
4071{
4072        struct drm_framebuffer *fb = pstate->fb;
4073        struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4074        uint32_t src_w, src_h;
4075        uint32_t min_scanlines = 8;
4076        uint8_t plane_bpp;
4077
4078        if (WARN_ON(!fb))
4079                return 0;
4080
4081        /* For packed formats, no y-plane, return 0 */
4082        if (y && fb->format->format != DRM_FORMAT_NV12)
4083                return 0;
4084
4085        /* For Non Y-tile return 8-blocks */
4086        if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4087            fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4088            fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4089            fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4090                return 8;
4091
4092        /*
4093         * Src coordinates are already rotated by 270 degrees for
4094         * the 90/270 degree plane rotation cases (to match the
4095         * GTT mapping), hence no need to account for rotation here.
4096         */
4097        src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4098        src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4099
4100        /* Halve UV plane width and height for NV12 */
4101        if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4102                src_w /= 2;
4103                src_h /= 2;
4104        }
4105
4106        if (fb->format->format == DRM_FORMAT_NV12 && !y)
4107                plane_bpp = fb->format->cpp[1];
4108        else
4109                plane_bpp = fb->format->cpp[0];
4110
4111        if (drm_rotation_90_or_270(pstate->rotation)) {
4112                switch (plane_bpp) {
4113                case 1:
4114                        min_scanlines = 32;
4115                        break;
4116                case 2:
4117                        min_scanlines = 16;
4118                        break;
4119                case 4:
4120                        min_scanlines = 8;
4121                        break;
4122                case 8:
4123                        min_scanlines = 4;
4124                        break;
4125                default:
4126                        WARN(1, "Unsupported pixel depth %u for rotation",
4127                             plane_bpp);
4128                        min_scanlines = 32;
4129                }
4130        }
4131
4132        return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4133}
4134
4135static void
4136skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4137                 uint16_t *minimum, uint16_t *y_minimum)
4138{
4139        const struct drm_plane_state *pstate;
4140        struct drm_plane *plane;
4141
4142        drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4143                enum plane_id plane_id = to_intel_plane(plane)->id;
4144
4145                if (plane_id == PLANE_CURSOR)
4146                        continue;
4147
4148                if (!pstate->visible)
4149                        continue;
4150
4151                minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4152                y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4153        }
4154
4155        minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4156}
4157
4158static int
4159skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4160                      struct skl_ddb_allocation *ddb /* out */)
4161{
4162        struct drm_atomic_state *state = cstate->base.state;
4163        struct drm_crtc *crtc = cstate->base.crtc;
4164        struct drm_device *dev = crtc->dev;
4165        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4166        enum pipe pipe = intel_crtc->pipe;
4167        struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4168        uint16_t alloc_size, start;
4169        uint16_t minimum[I915_MAX_PLANES] = {};
4170        uint16_t y_minimum[I915_MAX_PLANES] = {};
4171        unsigned int total_data_rate;
4172        enum plane_id plane_id;
4173        int num_active;
4174        unsigned plane_data_rate[I915_MAX_PLANES] = {};
4175        unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4176        uint16_t total_min_blocks = 0;
4177
4178        /* Clear the partitioning for disabled planes. */
4179        memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4180        memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
4181
4182        if (WARN_ON(!state))
4183                return 0;
4184
4185        if (!cstate->base.active) {
4186                alloc->start = alloc->end = 0;
4187                return 0;
4188        }
4189
4190        skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4191        alloc_size = skl_ddb_entry_size(alloc);
4192        if (alloc_size == 0)
4193                return 0;
4194
4195        skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4196
4197        /*
4198         * 1. Allocate the mininum required blocks for each active plane
4199         * and allocate the cursor, it doesn't require extra allocation
4200         * proportional to the data rate.
4201         */
4202
4203        for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4204                total_min_blocks += minimum[plane_id];
4205                total_min_blocks += y_minimum[plane_id];
4206        }
4207
4208        if (total_min_blocks > alloc_size) {
4209                DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4210                DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4211                                                        alloc_size);
4212                return -EINVAL;
4213        }
4214
4215        alloc_size -= total_min_blocks;
4216        ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4217        ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4218
4219        /*
4220         * 2. Distribute the remaining space in proportion to the amount of
4221         * data each plane needs to fetch from memory.
4222         *
4223         * FIXME: we may not allocate every single block here.
4224         */
4225        total_data_rate = skl_get_total_relative_data_rate(cstate,
4226                                                           plane_data_rate,
4227                                                           plane_y_data_rate);
4228        if (total_data_rate == 0)
4229                return 0;
4230
4231        start = alloc->start;
4232        for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4233                unsigned int data_rate, y_data_rate;
4234                uint16_t plane_blocks, y_plane_blocks = 0;
4235
4236                if (plane_id == PLANE_CURSOR)
4237                        continue;
4238
4239                data_rate = plane_data_rate[plane_id];
4240
4241                /*
4242                 * allocation for (packed formats) or (uv-plane part of planar format):
4243                 * promote the expression to 64 bits to avoid overflowing, the
4244                 * result is < available as data_rate / total_data_rate < 1
4245                 */
4246                plane_blocks = minimum[plane_id];
4247                plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4248                                        total_data_rate);
4249
4250                /* Leave disabled planes at (0,0) */
4251                if (data_rate) {
4252                        ddb->plane[pipe][plane_id].start = start;
4253                        ddb->plane[pipe][plane_id].end = start + plane_blocks;
4254                }
4255
4256                start += plane_blocks;
4257
4258                /*
4259                 * allocation for y_plane part of planar format:
4260                 */
4261                y_data_rate = plane_y_data_rate[plane_id];
4262
4263                y_plane_blocks = y_minimum[plane_id];
4264                y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
4265                                        total_data_rate);
4266
4267                if (y_data_rate) {
4268                        ddb->y_plane[pipe][plane_id].start = start;
4269                        ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4270                }
4271
4272                start += y_plane_blocks;
4273        }
4274
4275        return 0;
4276}
4277
4278/*
4279 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4280 * for the read latency) and cpp should always be <= 8, so that
4281 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4282 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4283*/
4284static uint_fixed_16_16_t
4285skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4286               uint8_t cpp, uint32_t latency)
4287{
4288        uint32_t wm_intermediate_val;
4289        uint_fixed_16_16_t ret;
4290
4291        if (latency == 0)
4292                return FP_16_16_MAX;
4293
4294        wm_intermediate_val = latency * pixel_rate * cpp;
4295        ret = div_fixed16(wm_intermediate_val, 1000 * 512);
4296
4297        if (INTEL_GEN(dev_priv) >= 10)
4298                ret = add_fixed16_u32(ret, 1);
4299
4300        return ret;
4301}
4302
4303static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4304                        uint32_t pipe_htotal,
4305                        uint32_t latency,
4306                        uint_fixed_16_16_t plane_blocks_per_line)
4307{
4308        uint32_t wm_intermediate_val;
4309        uint_fixed_16_16_t ret;
4310
4311        if (latency == 0)
4312                return FP_16_16_MAX;
4313
4314        wm_intermediate_val = latency * pixel_rate;
4315        wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4316                                           pipe_htotal * 1000);
4317        ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4318        return ret;
4319}
4320
4321static uint_fixed_16_16_t
4322intel_get_linetime_us(struct intel_crtc_state *cstate)
4323{
4324        uint32_t pixel_rate;
4325        uint32_t crtc_htotal;
4326        uint_fixed_16_16_t linetime_us;
4327
4328        if (!cstate->base.active)
4329                return u32_to_fixed16(0);
4330
4331        pixel_rate = cstate->pixel_rate;
4332
4333        if (WARN_ON(pixel_rate == 0))
4334                return u32_to_fixed16(0);
4335
4336        crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4337        linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4338
4339        return linetime_us;
4340}
4341
4342static uint32_t
4343skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4344                              const struct intel_plane_state *pstate)
4345{
4346        uint64_t adjusted_pixel_rate;
4347        uint_fixed_16_16_t downscale_amount;
4348
4349        /* Shouldn't reach here on disabled planes... */
4350        if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4351                return 0;
4352
4353        /*
4354         * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4355         * with additional adjustments for plane-specific scaling.
4356         */
4357        adjusted_pixel_rate = cstate->pixel_rate;
4358        downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4359
4360        return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4361                                            downscale_amount);
4362}
4363
4364static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4365                                struct intel_crtc_state *cstate,
4366                                const struct intel_plane_state *intel_pstate,
4367                                uint16_t ddb_allocation,
4368                                int level,
4369                                uint16_t *out_blocks, /* out */
4370                                uint8_t *out_lines, /* out */
4371                                bool *enabled /* out */)
4372{
4373        struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4374        const struct drm_plane_state *pstate = &intel_pstate->base;
4375        const struct drm_framebuffer *fb = pstate->fb;
4376        uint32_t latency = dev_priv->wm.skl_latency[level];
4377        uint_fixed_16_16_t method1, method2;
4378        uint_fixed_16_16_t plane_blocks_per_line;
4379        uint_fixed_16_16_t selected_result;
4380        uint32_t interm_pbpl;
4381        uint32_t plane_bytes_per_line;
4382        uint32_t res_blocks, res_lines;
4383        uint8_t cpp;
4384        uint32_t width = 0;
4385        uint32_t plane_pixel_rate;
4386        uint_fixed_16_16_t y_tile_minimum;
4387        uint32_t y_min_scanlines;
4388        struct intel_atomic_state *state =
4389                to_intel_atomic_state(cstate->base.state);
4390        bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4391        bool y_tiled, x_tiled;
4392
4393        if (latency == 0 ||
4394            !intel_wm_plane_visible(cstate, intel_pstate)) {
4395                *enabled = false;
4396                return 0;
4397        }
4398
4399        y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4400                  fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4401                  fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4402                  fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4403        x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4404
4405        /* Display WA #1141: kbl,cfl */
4406        if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
4407            dev_priv->ipc_enabled)
4408                latency += 4;
4409
4410        if (apply_memory_bw_wa && x_tiled)
4411                latency += 15;
4412
4413        if (plane->id == PLANE_CURSOR) {
4414                width = intel_pstate->base.crtc_w;
4415        } else {
4416                /*
4417                 * Src coordinates are already rotated by 270 degrees for
4418                 * the 90/270 degree plane rotation cases (to match the
4419                 * GTT mapping), hence no need to account for rotation here.
4420                 */
4421                width = drm_rect_width(&intel_pstate->base.src) >> 16;
4422        }
4423
4424        cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
4425                                                        fb->format->cpp[0];
4426        plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
4427
4428        if (drm_rotation_90_or_270(pstate->rotation)) {
4429
4430                switch (cpp) {
4431                case 1:
4432                        y_min_scanlines = 16;
4433                        break;
4434                case 2:
4435                        y_min_scanlines = 8;
4436                        break;
4437                case 4:
4438                        y_min_scanlines = 4;
4439                        break;
4440                default:
4441                        MISSING_CASE(cpp);
4442                        return -EINVAL;
4443                }
4444        } else {
4445                y_min_scanlines = 4;
4446        }
4447
4448        if (apply_memory_bw_wa)
4449                y_min_scanlines *= 2;
4450
4451        plane_bytes_per_line = width * cpp;
4452        if (y_tiled) {
4453                interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
4454                                           y_min_scanlines, 512);
4455
4456                if (INTEL_GEN(dev_priv) >= 10)
4457                        interm_pbpl++;
4458
4459                plane_blocks_per_line = div_fixed16(interm_pbpl,
4460                                                        y_min_scanlines);
4461        } else if (x_tiled && INTEL_GEN(dev_priv) == 9) {
4462                interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
4463                plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4464        } else {
4465                interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
4466                plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4467        }
4468
4469        method1 = skl_wm_method1(dev_priv, plane_pixel_rate, cpp, latency);
4470        method2 = skl_wm_method2(plane_pixel_rate,
4471                                 cstate->base.adjusted_mode.crtc_htotal,
4472                                 latency,
4473                                 plane_blocks_per_line);
4474
4475        y_tile_minimum = mul_u32_fixed16(y_min_scanlines,
4476                                         plane_blocks_per_line);
4477
4478        if (y_tiled) {
4479                selected_result = max_fixed16(method2, y_tile_minimum);
4480        } else {
4481                uint32_t linetime_us;
4482
4483                linetime_us = fixed16_to_u32_round_up(
4484                                intel_get_linetime_us(cstate));
4485                if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
4486                    (plane_bytes_per_line / 512 < 1))
4487                        selected_result = method2;
4488                else if (ddb_allocation >=
4489                         fixed16_to_u32_round_up(plane_blocks_per_line))
4490                        selected_result = min_fixed16(method1, method2);
4491                else if (latency >= linetime_us)
4492                        selected_result = min_fixed16(method1, method2);
4493                else
4494                        selected_result = method1;
4495        }
4496
4497        res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4498        res_lines = div_round_up_fixed16(selected_result,
4499                                         plane_blocks_per_line);
4500
4501        /* Display WA #1125: skl,bxt,kbl,glk */
4502        if (level == 0 &&
4503            (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4504             fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS))
4505                res_blocks += fixed16_to_u32_round_up(y_tile_minimum);
4506
4507        /* Display WA #1126: skl,bxt,kbl,glk */
4508        if (level >= 1 && level <= 7) {
4509                if (y_tiled) {
4510                        res_blocks += fixed16_to_u32_round_up(y_tile_minimum);
4511                        res_lines += y_min_scanlines;
4512                } else {
4513                        res_blocks++;
4514                }
4515        }
4516
4517        if (res_blocks >= ddb_allocation || res_lines > 31) {
4518                *enabled = false;
4519
4520                /*
4521                 * If there are no valid level 0 watermarks, then we can't
4522                 * support this display configuration.
4523                 */
4524                if (level) {
4525                        return 0;
4526                } else {
4527                        struct drm_plane *plane = pstate->plane;
4528
4529                        DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4530                        DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4531                                      plane->base.id, plane->name,
4532                                      res_blocks, ddb_allocation, res_lines);
4533                        return -EINVAL;
4534                }
4535        }
4536
4537        *out_blocks = res_blocks;
4538        *out_lines = res_lines;
4539        *enabled = true;
4540
4541        return 0;
4542}
4543
4544static int
4545skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4546                      struct skl_ddb_allocation *ddb,
4547                      struct intel_crtc_state *cstate,
4548                      const struct intel_plane_state *intel_pstate,
4549                      struct skl_plane_wm *wm)
4550{
4551        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4552        struct drm_plane *plane = intel_pstate->base.plane;
4553        struct intel_plane *intel_plane = to_intel_plane(plane);
4554        uint16_t ddb_blocks;
4555        enum pipe pipe = intel_crtc->pipe;
4556        int level, max_level = ilk_wm_max_level(dev_priv);
4557        int ret;
4558
4559        if (WARN_ON(!intel_pstate->base.fb))
4560                return -EINVAL;
4561
4562        ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4563
4564        for (level = 0; level <= max_level; level++) {
4565                struct skl_wm_level *result = &wm->wm[level];
4566
4567                ret = skl_compute_plane_wm(dev_priv,
4568                                           cstate,
4569                                           intel_pstate,
4570                                           ddb_blocks,
4571                                           level,
4572                                           &result->plane_res_b,
4573                                           &result->plane_res_l,
4574                                           &result->plane_en);
4575                if (ret)
4576                        return ret;
4577        }
4578
4579        return 0;
4580}
4581
4582static uint32_t
4583skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4584{
4585        struct drm_atomic_state *state = cstate->base.state;
4586        struct drm_i915_private *dev_priv = to_i915(state->dev);
4587        uint_fixed_16_16_t linetime_us;
4588        uint32_t linetime_wm;
4589
4590        linetime_us = intel_get_linetime_us(cstate);
4591
4592        if (is_fixed16_zero(linetime_us))
4593                return 0;
4594
4595        linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4596
4597        /* Display WA #1135: bxt. */
4598        if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
4599                linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
4600
4601        return linetime_wm;
4602}
4603
4604static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4605                                      struct skl_wm_level *trans_wm /* out */)
4606{
4607        if (!cstate->base.active)
4608                return;
4609
4610        /* Until we know more, just disable transition WMs */
4611        trans_wm->plane_en = false;
4612}
4613
4614static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4615                             struct skl_ddb_allocation *ddb,
4616                             struct skl_pipe_wm *pipe_wm)
4617{
4618        struct drm_device *dev = cstate->base.crtc->dev;
4619        struct drm_crtc_state *crtc_state = &cstate->base;
4620        const struct drm_i915_private *dev_priv = to_i915(dev);
4621        struct drm_plane *plane;
4622        const struct drm_plane_state *pstate;
4623        struct skl_plane_wm *wm;
4624        int ret;
4625
4626        /*
4627         * We'll only calculate watermarks for planes that are actually
4628         * enabled, so make sure all other planes are set as disabled.
4629         */
4630        memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4631
4632        drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4633                const struct intel_plane_state *intel_pstate =
4634                                                to_intel_plane_state(pstate);
4635                enum plane_id plane_id = to_intel_plane(plane)->id;
4636
4637                wm = &pipe_wm->planes[plane_id];
4638
4639                ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4640                                            intel_pstate, wm);
4641                if (ret)
4642                        return ret;
4643                skl_compute_transition_wm(cstate, &wm->trans_wm);
4644        }
4645        pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4646
4647        return 0;
4648}
4649
4650static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4651                                i915_reg_t reg,
4652                                const struct skl_ddb_entry *entry)
4653{
4654        if (entry->end)
4655                I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4656        else
4657                I915_WRITE(reg, 0);
4658}
4659
4660static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4661                               i915_reg_t reg,
4662                               const struct skl_wm_level *level)
4663{
4664        uint32_t val = 0;
4665
4666        if (level->plane_en) {
4667                val |= PLANE_WM_EN;
4668                val |= level->plane_res_b;
4669                val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4670        }
4671
4672        I915_WRITE(reg, val);
4673}
4674
4675static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4676                               const struct skl_plane_wm *wm,
4677                               const struct skl_ddb_allocation *ddb,
4678                               enum plane_id plane_id)
4679{
4680        struct drm_crtc *crtc = &intel_crtc->base;
4681        struct drm_device *dev = crtc->dev;
4682        struct drm_i915_private *dev_priv = to_i915(dev);
4683        int level, max_level = ilk_wm_max_level(dev_priv);
4684        enum pipe pipe = intel_crtc->pipe;
4685
4686        for (level = 0; level <= max_level; level++) {
4687                skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4688                                   &wm->wm[level]);
4689        }
4690        skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4691                           &wm->trans_wm);
4692
4693        skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4694                            &ddb->plane[pipe][plane_id]);
4695        skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4696                            &ddb->y_plane[pipe][plane_id]);
4697}
4698
4699static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4700                                const struct skl_plane_wm *wm,
4701                                const struct skl_ddb_allocation *ddb)
4702{
4703        struct drm_crtc *crtc = &intel_crtc->base;
4704        struct drm_device *dev = crtc->dev;
4705        struct drm_i915_private *dev_priv = to_i915(dev);
4706        int level, max_level = ilk_wm_max_level(dev_priv);
4707        enum pipe pipe = intel_crtc->pipe;
4708
4709        for (level = 0; level <= max_level; level++) {
4710                skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4711                                   &wm->wm[level]);
4712        }
4713        skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4714
4715        skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4716                            &ddb->plane[pipe][PLANE_CURSOR]);
4717}
4718
4719bool skl_wm_level_equals(const struct skl_wm_level *l1,
4720                         const struct skl_wm_level *l2)
4721{
4722        if (l1->plane_en != l2->plane_en)
4723                return false;
4724
4725        /* If both planes aren't enabled, the rest shouldn't matter */
4726        if (!l1->plane_en)
4727                return true;
4728
4729        return (l1->plane_res_l == l2->plane_res_l &&
4730                l1->plane_res_b == l2->plane_res_b);
4731}
4732
4733static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4734                                           const struct skl_ddb_entry *b)
4735{
4736        return a->start < b->end && b->start < a->end;
4737}
4738
4739bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
4740                                 const struct skl_ddb_entry *ddb,
4741                                 int ignore)
4742{
4743        int i;
4744
4745        for (i = 0; i < I915_MAX_PIPES; i++)
4746                if (i != ignore && entries[i] &&
4747                    skl_ddb_entries_overlap(ddb, entries[i]))
4748                        return true;
4749
4750        return false;
4751}
4752
4753static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4754                              const struct skl_pipe_wm *old_pipe_wm,
4755                              struct skl_pipe_wm *pipe_wm, /* out */
4756                              struct skl_ddb_allocation *ddb, /* out */
4757                              bool *changed /* out */)
4758{
4759        struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4760        int ret;
4761
4762        ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4763        if (ret)
4764                return ret;
4765
4766        if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4767                *changed = false;
4768        else
4769                *changed = true;
4770
4771        return 0;
4772}
4773
4774static uint32_t
4775pipes_modified(struct drm_atomic_state *state)
4776{
4777        struct drm_crtc *crtc;
4778        struct drm_crtc_state *cstate;
4779        uint32_t i, ret = 0;
4780
4781        for_each_new_crtc_in_state(state, crtc, cstate, i)
4782                ret |= drm_crtc_mask(crtc);
4783
4784        return ret;
4785}
4786
4787static int
4788skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4789{
4790        struct drm_atomic_state *state = cstate->base.state;
4791        struct drm_device *dev = state->dev;
4792        struct drm_crtc *crtc = cstate->base.crtc;
4793        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4794        struct drm_i915_private *dev_priv = to_i915(dev);
4795        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4796        struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4797        struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4798        struct drm_plane_state *plane_state;
4799        struct drm_plane *plane;
4800        enum pipe pipe = intel_crtc->pipe;
4801
4802        WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4803
4804        drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4805                enum plane_id plane_id = to_intel_plane(plane)->id;
4806
4807                if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4808                                        &new_ddb->plane[pipe][plane_id]) &&
4809                    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4810                                        &new_ddb->y_plane[pipe][plane_id]))
4811                        continue;
4812
4813                plane_state = drm_atomic_get_plane_state(state, plane);
4814                if (IS_ERR(plane_state))
4815                        return PTR_ERR(plane_state);
4816        }
4817
4818        return 0;
4819}
4820
4821static int
4822skl_compute_ddb(struct drm_atomic_state *state)
4823{
4824        struct drm_device *dev = state->dev;
4825        struct drm_i915_private *dev_priv = to_i915(dev);
4826        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4827        struct intel_crtc *intel_crtc;
4828        struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4829        uint32_t realloc_pipes = pipes_modified(state);
4830        int ret;
4831
4832        /*
4833         * If this is our first atomic update following hardware readout,
4834         * we can't trust the DDB that the BIOS programmed for us.  Let's
4835         * pretend that all pipes switched active status so that we'll
4836         * ensure a full DDB recompute.
4837         */
4838        if (dev_priv->wm.distrust_bios_wm) {
4839                ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4840                                       state->acquire_ctx);
4841                if (ret)
4842                        return ret;
4843
4844                intel_state->active_pipe_changes = ~0;
4845
4846                /*
4847                 * We usually only initialize intel_state->active_crtcs if we
4848                 * we're doing a modeset; make sure this field is always
4849                 * initialized during the sanitization process that happens
4850                 * on the first commit too.
4851                 */
4852                if (!intel_state->modeset)
4853                        intel_state->active_crtcs = dev_priv->active_crtcs;
4854        }
4855
4856        /*
4857         * If the modeset changes which CRTC's are active, we need to
4858         * recompute the DDB allocation for *all* active pipes, even
4859         * those that weren't otherwise being modified in any way by this
4860         * atomic commit.  Due to the shrinking of the per-pipe allocations
4861         * when new active CRTC's are added, it's possible for a pipe that
4862         * we were already using and aren't changing at all here to suddenly
4863         * become invalid if its DDB needs exceeds its new allocation.
4864         *
4865         * Note that if we wind up doing a full DDB recompute, we can't let
4866         * any other display updates race with this transaction, so we need
4867         * to grab the lock on *all* CRTC's.
4868         */
4869        if (intel_state->active_pipe_changes) {
4870                realloc_pipes = ~0;
4871                intel_state->wm_results.dirty_pipes = ~0;
4872        }
4873
4874        /*
4875         * We're not recomputing for the pipes not included in the commit, so
4876         * make sure we start with the current state.
4877         */
4878        memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4879
4880        for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4881                struct intel_crtc_state *cstate;
4882
4883                cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4884                if (IS_ERR(cstate))
4885                        return PTR_ERR(cstate);
4886
4887                ret = skl_allocate_pipe_ddb(cstate, ddb);
4888                if (ret)
4889                        return ret;
4890
4891                ret = skl_ddb_add_affected_planes(cstate);
4892                if (ret)
4893                        return ret;
4894        }
4895
4896        return 0;
4897}
4898
4899static void
4900skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4901                     struct skl_wm_values *src,
4902                     enum pipe pipe)
4903{
4904        memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4905               sizeof(dst->ddb.y_plane[pipe]));
4906        memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4907               sizeof(dst->ddb.plane[pipe]));
4908}
4909
4910static void
4911skl_print_wm_changes(const struct drm_atomic_state *state)
4912{
4913        const struct drm_device *dev = state->dev;
4914        const struct drm_i915_private *dev_priv = to_i915(dev);
4915        const struct intel_atomic_state *intel_state =
4916                to_intel_atomic_state(state);
4917        const struct drm_crtc *crtc;
4918        const struct drm_crtc_state *cstate;
4919        const struct intel_plane *intel_plane;
4920        const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4921        const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4922        int i;
4923
4924        for_each_new_crtc_in_state(state, crtc, cstate, i) {
4925                const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4926                enum pipe pipe = intel_crtc->pipe;
4927
4928                for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4929                        enum plane_id plane_id = intel_plane->id;
4930                        const struct skl_ddb_entry *old, *new;
4931
4932                        old = &old_ddb->plane[pipe][plane_id];
4933                        new = &new_ddb->plane[pipe][plane_id];
4934
4935                        if (skl_ddb_entry_equal(old, new))
4936                                continue;
4937
4938                        DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4939                                         intel_plane->base.base.id,
4940                                         intel_plane->base.name,
4941                                         old->start, old->end,
4942                                         new->start, new->end);
4943                }
4944        }
4945}
4946
4947static int
4948skl_compute_wm(struct drm_atomic_state *state)
4949{
4950        struct drm_crtc *crtc;
4951        struct drm_crtc_state *cstate;
4952        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4953        struct skl_wm_values *results = &intel_state->wm_results;
4954        struct drm_device *dev = state->dev;
4955        struct skl_pipe_wm *pipe_wm;
4956        bool changed = false;
4957        int ret, i;
4958
4959        /*
4960         * When we distrust bios wm we always need to recompute to set the
4961         * expected DDB allocations for each CRTC.
4962         */
4963        if (to_i915(dev)->wm.distrust_bios_wm)
4964                changed = true;
4965
4966        /*
4967         * If this transaction isn't actually touching any CRTC's, don't
4968         * bother with watermark calculation.  Note that if we pass this
4969         * test, we're guaranteed to hold at least one CRTC state mutex,
4970         * which means we can safely use values like dev_priv->active_crtcs
4971         * since any racing commits that want to update them would need to
4972         * hold _all_ CRTC state mutexes.
4973         */
4974        for_each_new_crtc_in_state(state, crtc, cstate, i)
4975                changed = true;
4976
4977        if (!changed)
4978                return 0;
4979
4980        /* Clear all dirty flags */
4981        results->dirty_pipes = 0;
4982
4983        ret = skl_compute_ddb(state);
4984        if (ret)
4985                return ret;
4986
4987        /*
4988         * Calculate WM's for all pipes that are part of this transaction.
4989         * Note that the DDB allocation above may have added more CRTC's that
4990         * weren't otherwise being modified (and set bits in dirty_pipes) if
4991         * pipe allocations had to change.
4992         *
4993         * FIXME:  Now that we're doing this in the atomic check phase, we
4994         * should allow skl_update_pipe_wm() to return failure in cases where
4995         * no suitable watermark values can be found.
4996         */
4997        for_each_new_crtc_in_state(state, crtc, cstate, i) {
4998                struct intel_crtc_state *intel_cstate =
4999                        to_intel_crtc_state(cstate);
5000                const struct skl_pipe_wm *old_pipe_wm =
5001                        &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5002
5003                pipe_wm = &intel_cstate->wm.skl.optimal;
5004                ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5005                                         &results->ddb, &changed);
5006                if (ret)
5007                        return ret;
5008
5009                if (changed)
5010                        results->dirty_pipes |= drm_crtc_mask(crtc);
5011
5012                if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5013                        /* This pipe's WM's did not change */
5014                        continue;
5015
5016                intel_cstate->update_wm_pre = true;
5017        }
5018
5019        skl_print_wm_changes(state);
5020
5021        return 0;
5022}
5023
5024static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5025                                      struct intel_crtc_state *cstate)
5026{
5027        struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5028        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5029        struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5030        const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5031        enum pipe pipe = crtc->pipe;
5032        enum plane_id plane_id;
5033
5034        if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5035                return;
5036
5037        I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5038
5039        for_each_plane_id_on_crtc(crtc, plane_id) {
5040                if (plane_id != PLANE_CURSOR)
5041                        skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5042                                           ddb, plane_id);
5043                else
5044                        skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5045                                            ddb);
5046        }
5047}
5048
5049static void skl_initial_wm(struct intel_atomic_state *state,
5050                           struct intel_crtc_state *cstate)
5051{
5052        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5053        struct drm_device *dev = intel_crtc->base.dev;
5054        struct drm_i915_private *dev_priv = to_i915(dev);
5055        struct skl_wm_values *results = &state->wm_results;
5056        struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5057        enum pipe pipe = intel_crtc->pipe;
5058
5059        if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5060                return;
5061
5062        mutex_lock(&dev_priv->wm.wm_mutex);
5063
5064        if (cstate->base.active_changed)
5065                skl_atomic_update_crtc_wm(state, cstate);
5066
5067        skl_copy_wm_for_pipe(hw_vals, results, pipe);
5068
5069        mutex_unlock(&dev_priv->wm.wm_mutex);
5070}
5071
5072static void ilk_compute_wm_config(struct drm_device *dev,
5073                                  struct intel_wm_config *config)
5074{
5075        struct intel_crtc *crtc;
5076
5077        /* Compute the currently _active_ config */
5078        for_each_intel_crtc(dev, crtc) {
5079                const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5080
5081                if (!wm->pipe_enabled)
5082                        continue;
5083
5084                config->sprites_enabled |= wm->sprites_enabled;
5085                config->sprites_scaled |= wm->sprites_scaled;
5086                config->num_pipes_active++;
5087        }
5088}
5089
5090static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5091{
5092        struct drm_device *dev = &dev_priv->drm;
5093        struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5094        struct ilk_wm_maximums max;
5095        struct intel_wm_config config = {};
5096        struct ilk_wm_values results = {};
5097        enum intel_ddb_partitioning partitioning;
5098
5099        ilk_compute_wm_config(dev, &config);
5100
5101        ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5102        ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5103
5104        /* 5/6 split only in single pipe config on IVB+ */
5105        if (INTEL_GEN(dev_priv) >= 7 &&
5106            config.num_pipes_active == 1 && config.sprites_enabled) {
5107                ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5108                ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5109
5110                best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5111        } else {
5112                best_lp_wm = &lp_wm_1_2;
5113        }
5114
5115        partitioning = (best_lp_wm == &lp_wm_1_2) ?
5116                       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5117
5118        ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5119
5120        ilk_write_wm_values(dev_priv, &results);
5121}
5122
5123static void ilk_initial_watermarks(struct intel_atomic_state *state,
5124                                   struct intel_crtc_state *cstate)
5125{
5126        struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5127        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5128
5129        mutex_lock(&dev_priv->wm.wm_mutex);
5130        intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5131        ilk_program_watermarks(dev_priv);
5132        mutex_unlock(&dev_priv->wm.wm_mutex);
5133}
5134
5135static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5136                                    struct intel_crtc_state *cstate)
5137{
5138        struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5139        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5140
5141        mutex_lock(&dev_priv->wm.wm_mutex);
5142        if (cstate->wm.need_postvbl_update) {
5143                intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5144                ilk_program_watermarks(dev_priv);
5145        }
5146        mutex_unlock(&dev_priv->wm.wm_mutex);
5147}
5148
5149static inline void skl_wm_level_from_reg_val(uint32_t val,
5150                                             struct skl_wm_level *level)
5151{
5152        level->plane_en = val & PLANE_WM_EN;
5153        level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5154        level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5155                PLANE_WM_LINES_MASK;
5156}
5157
5158void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5159                              struct skl_pipe_wm *out)
5160{
5161        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5162        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5163        enum pipe pipe = intel_crtc->pipe;
5164        int level, max_level;
5165        enum plane_id plane_id;
5166        uint32_t val;
5167
5168        max_level = ilk_wm_max_level(dev_priv);
5169
5170        for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5171                struct skl_plane_wm *wm = &out->planes[plane_id];
5172
5173                for (level = 0; level <= max_level; level++) {
5174                        if (plane_id != PLANE_CURSOR)
5175                                val = I915_READ(PLANE_WM(pipe, plane_id, level));
5176                        else
5177                                val = I915_READ(CUR_WM(pipe, level));
5178
5179                        skl_wm_level_from_reg_val(val, &wm->wm[level]);
5180                }
5181
5182                if (plane_id != PLANE_CURSOR)
5183                        val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5184                else
5185                        val = I915_READ(CUR_WM_TRANS(pipe));
5186
5187                skl_wm_level_from_reg_val(val, &wm->trans_wm);
5188        }
5189
5190        if (!intel_crtc->active)
5191                return;
5192
5193        out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5194}
5195
5196void skl_wm_get_hw_state(struct drm_device *dev)
5197{
5198        struct drm_i915_private *dev_priv = to_i915(dev);
5199        struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5200        struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5201        struct drm_crtc *crtc;
5202        struct intel_crtc *intel_crtc;
5203        struct intel_crtc_state *cstate;
5204
5205        skl_ddb_get_hw_state(dev_priv, ddb);
5206        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5207                intel_crtc = to_intel_crtc(crtc);
5208                cstate = to_intel_crtc_state(crtc->state);
5209
5210                skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5211
5212                if (intel_crtc->active)
5213                        hw->dirty_pipes |= drm_crtc_mask(crtc);
5214        }
5215
5216        if (dev_priv->active_crtcs) {
5217                /* Fully recompute DDB on first atomic commit */
5218                dev_priv->wm.distrust_bios_wm = true;
5219        } else {
5220                /* Easy/common case; just sanitize DDB now if everything off */
5221                memset(ddb, 0, sizeof(*ddb));
5222        }
5223}
5224
5225static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5226{
5227        struct drm_device *dev = crtc->dev;
5228        struct drm_i915_private *dev_priv = to_i915(dev);
5229        struct ilk_wm_values *hw = &dev_priv->wm.hw;
5230        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5231        struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5232        struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5233        enum pipe pipe = intel_crtc->pipe;
5234        static const i915_reg_t wm0_pipe_reg[] = {
5235                [PIPE_A] = WM0_PIPEA_ILK,
5236                [PIPE_B] = WM0_PIPEB_ILK,
5237                [PIPE_C] = WM0_PIPEC_IVB,
5238        };
5239
5240        hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5241        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5242                hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5243
5244        memset(active, 0, sizeof(*active));
5245
5246        active->pipe_enabled = intel_crtc->active;
5247
5248        if (active->pipe_enabled) {
5249                u32 tmp = hw->wm_pipe[pipe];
5250
5251                /*
5252                 * For active pipes LP0 watermark is marked as
5253                 * enabled, and LP1+ watermaks as disabled since
5254                 * we can't really reverse compute them in case
5255                 * multiple pipes are active.
5256                 */
5257                active->wm[0].enable = true;
5258                active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5259                active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5260                active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5261                active->linetime = hw->wm_linetime[pipe];
5262        } else {
5263                int level, max_level = ilk_wm_max_level(dev_priv);
5264
5265                /*
5266                 * For inactive pipes, all watermark levels
5267                 * should be marked as enabled but zeroed,
5268                 * which is what we'd compute them to.
5269                 */
5270                for (level = 0; level <= max_level; level++)
5271                        active->wm[level].enable = true;
5272        }
5273
5274        intel_crtc->wm.active.ilk = *active;
5275}
5276
5277#define _FW_WM(value, plane) \
5278        (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5279#define _FW_WM_VLV(value, plane) \
5280        (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5281
5282static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5283                               struct g4x_wm_values *wm)
5284{
5285        uint32_t tmp;
5286
5287        tmp = I915_READ(DSPFW1);
5288        wm->sr.plane = _FW_WM(tmp, SR);
5289        wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5290        wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5291        wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5292
5293        tmp = I915_READ(DSPFW2);
5294        wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5295        wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5296        wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5297        wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5298        wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5299        wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5300
5301        tmp = I915_READ(DSPFW3);
5302        wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5303        wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5304        wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5305        wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5306}
5307
5308static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5309                               struct vlv_wm_values *wm)
5310{
5311        enum pipe pipe;
5312        uint32_t tmp;
5313
5314        for_each_pipe(dev_priv, pipe) {
5315                tmp = I915_READ(VLV_DDL(pipe));
5316
5317                wm->ddl[pipe].plane[PLANE_PRIMARY] =
5318                        (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5319                wm->ddl[pipe].plane[PLANE_CURSOR] =
5320                        (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5321                wm->ddl[pipe].plane[PLANE_SPRITE0] =
5322                        (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5323                wm->ddl[pipe].plane[PLANE_SPRITE1] =
5324                        (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5325        }
5326
5327        tmp = I915_READ(DSPFW1);
5328        wm->sr.plane = _FW_WM(tmp, SR);
5329        wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5330        wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5331        wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5332
5333        tmp = I915_READ(DSPFW2);
5334        wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5335        wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5336        wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5337
5338        tmp = I915_READ(DSPFW3);
5339        wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5340
5341        if (IS_CHERRYVIEW(dev_priv)) {
5342                tmp = I915_READ(DSPFW7_CHV);
5343                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5344                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5345
5346                tmp = I915_READ(DSPFW8_CHV);
5347                wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5348                wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5349
5350                tmp = I915_READ(DSPFW9_CHV);
5351                wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5352                wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5353
5354                tmp = I915_READ(DSPHOWM);
5355                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5356                wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5357                wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5358                wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5359                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5360                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5361                wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5362                wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5363                wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5364                wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5365        } else {
5366                tmp = I915_READ(DSPFW7);
5367                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5368                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5369
5370                tmp = I915_READ(DSPHOWM);
5371                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5372                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5373                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5374                wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5375                wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5376                wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5377                wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5378        }
5379}
5380
5381#undef _FW_WM
5382#undef _FW_WM_VLV
5383
5384void g4x_wm_get_hw_state(struct drm_device *dev)
5385{
5386        struct drm_i915_private *dev_priv = to_i915(dev);
5387        struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5388        struct intel_crtc *crtc;
5389
5390        g4x_read_wm_values(dev_priv, wm);
5391
5392        wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5393
5394        for_each_intel_crtc(dev, crtc) {
5395                struct intel_crtc_state *crtc_state =
5396                        to_intel_crtc_state(crtc->base.state);
5397                struct g4x_wm_state *active = &crtc->wm.active.g4x;
5398                struct g4x_pipe_wm *raw;
5399                enum pipe pipe = crtc->pipe;
5400                enum plane_id plane_id;
5401                int level, max_level;
5402
5403                active->cxsr = wm->cxsr;
5404                active->hpll_en = wm->hpll_en;
5405                active->fbc_en = wm->fbc_en;
5406
5407                active->sr = wm->sr;
5408                active->hpll = wm->hpll;
5409
5410                for_each_plane_id_on_crtc(crtc, plane_id) {
5411                        active->wm.plane[plane_id] =
5412                                wm->pipe[pipe].plane[plane_id];
5413                }
5414
5415                if (wm->cxsr && wm->hpll_en)
5416                        max_level = G4X_WM_LEVEL_HPLL;
5417                else if (wm->cxsr)
5418                        max_level = G4X_WM_LEVEL_SR;
5419                else
5420                        max_level = G4X_WM_LEVEL_NORMAL;
5421
5422                level = G4X_WM_LEVEL_NORMAL;
5423                raw = &crtc_state->wm.g4x.raw[level];
5424                for_each_plane_id_on_crtc(crtc, plane_id)
5425                        raw->plane[plane_id] = active->wm.plane[plane_id];
5426
5427                if (++level > max_level)
5428                        goto out;
5429
5430                raw = &crtc_state->wm.g4x.raw[level];
5431                raw->plane[PLANE_PRIMARY] = active->sr.plane;
5432                raw->plane[PLANE_CURSOR] = active->sr.cursor;
5433                raw->plane[PLANE_SPRITE0] = 0;
5434                raw->fbc = active->sr.fbc;
5435
5436                if (++level > max_level)
5437                        goto out;
5438
5439                raw = &crtc_state->wm.g4x.raw[level];
5440                raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5441                raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5442                raw->plane[PLANE_SPRITE0] = 0;
5443                raw->fbc = active->hpll.fbc;
5444
5445        out:
5446                for_each_plane_id_on_crtc(crtc, plane_id)
5447                        g4x_raw_plane_wm_set(crtc_state, level,
5448                                             plane_id, USHRT_MAX);
5449                g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5450
5451                crtc_state->wm.g4x.optimal = *active;
5452                crtc_state->wm.g4x.intermediate = *active;
5453
5454                DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5455                              pipe_name(pipe),
5456                              wm->pipe[pipe].plane[PLANE_PRIMARY],
5457                              wm->pipe[pipe].plane[PLANE_CURSOR],
5458                              wm->pipe[pipe].plane[PLANE_SPRITE0]);
5459        }
5460
5461        DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5462                      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5463        DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5464                      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5465        DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5466                      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5467}
5468
5469void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5470{
5471        struct intel_plane *plane;
5472        struct intel_crtc *crtc;
5473
5474        mutex_lock(&dev_priv->wm.wm_mutex);
5475
5476        for_each_intel_plane(&dev_priv->drm, plane) {
5477                struct intel_crtc *crtc =
5478                        intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5479                struct intel_crtc_state *crtc_state =
5480                        to_intel_crtc_state(crtc->base.state);
5481                struct intel_plane_state *plane_state =
5482                        to_intel_plane_state(plane->base.state);
5483                struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5484                enum plane_id plane_id = plane->id;
5485                int level;
5486
5487                if (plane_state->base.visible)
5488                        continue;
5489
5490                for (level = 0; level < 3; level++) {
5491                        struct g4x_pipe_wm *raw =
5492                                &crtc_state->wm.g4x.raw[level];
5493
5494                        raw->plane[plane_id] = 0;
5495                        wm_state->wm.plane[plane_id] = 0;
5496                }
5497
5498                if (plane_id == PLANE_PRIMARY) {
5499                        for (level = 0; level < 3; level++) {
5500                                struct g4x_pipe_wm *raw =
5501                                        &crtc_state->wm.g4x.raw[level];
5502                                raw->fbc = 0;
5503                        }
5504
5505                        wm_state->sr.fbc = 0;
5506                        wm_state->hpll.fbc = 0;
5507                        wm_state->fbc_en = false;
5508                }
5509        }
5510
5511        for_each_intel_crtc(&dev_priv->drm, crtc) {
5512                struct intel_crtc_state *crtc_state =
5513                        to_intel_crtc_state(crtc->base.state);
5514
5515                crtc_state->wm.g4x.intermediate =
5516                        crtc_state->wm.g4x.optimal;
5517                crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5518        }
5519
5520        g4x_program_watermarks(dev_priv);
5521
5522        mutex_unlock(&dev_priv->wm.wm_mutex);
5523}
5524
5525void vlv_wm_get_hw_state(struct drm_device *dev)
5526{
5527        struct drm_i915_private *dev_priv = to_i915(dev);
5528        struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5529        struct intel_crtc *crtc;
5530        u32 val;
5531
5532        vlv_read_wm_values(dev_priv, wm);
5533
5534        wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5535        wm->level = VLV_WM_LEVEL_PM2;
5536
5537        if (IS_CHERRYVIEW(dev_priv)) {
5538                mutex_lock(&dev_priv->rps.hw_lock);
5539
5540                val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5541                if (val & DSP_MAXFIFO_PM5_ENABLE)
5542                        wm->level = VLV_WM_LEVEL_PM5;
5543
5544                /*
5545                 * If DDR DVFS is disabled in the BIOS, Punit
5546                 * will never ack the request. So if that happens
5547                 * assume we don't have to enable/disable DDR DVFS
5548                 * dynamically. To test that just set the REQ_ACK
5549                 * bit to poke the Punit, but don't change the
5550                 * HIGH/LOW bits so that we don't actually change
5551                 * the current state.
5552                 */
5553                val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5554                val |= FORCE_DDR_FREQ_REQ_ACK;
5555                vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5556
5557                if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5558                              FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5559                        DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5560                                      "assuming DDR DVFS is disabled\n");
5561                        dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5562                } else {
5563                        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5564                        if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5565                                wm->level = VLV_WM_LEVEL_DDR_DVFS;
5566                }
5567
5568                mutex_unlock(&dev_priv->rps.hw_lock);
5569        }
5570
5571        for_each_intel_crtc(dev, crtc) {
5572                struct intel_crtc_state *crtc_state =
5573                        to_intel_crtc_state(crtc->base.state);
5574                struct vlv_wm_state *active = &crtc->wm.active.vlv;
5575                const struct vlv_fifo_state *fifo_state =
5576                        &crtc_state->wm.vlv.fifo_state;
5577                enum pipe pipe = crtc->pipe;
5578                enum plane_id plane_id;
5579                int level;
5580
5581                vlv_get_fifo_size(crtc_state);
5582
5583                active->num_levels = wm->level + 1;
5584                active->cxsr = wm->cxsr;
5585
5586                for (level = 0; level < active->num_levels; level++) {
5587                        struct g4x_pipe_wm *raw =
5588                                &crtc_state->wm.vlv.raw[level];
5589
5590                        active->sr[level].plane = wm->sr.plane;
5591                        active->sr[level].cursor = wm->sr.cursor;
5592
5593                        for_each_plane_id_on_crtc(crtc, plane_id) {
5594                                active->wm[level].plane[plane_id] =
5595                                        wm->pipe[pipe].plane[plane_id];
5596
5597                                raw->plane[plane_id] =
5598                                        vlv_invert_wm_value(active->wm[level].plane[plane_id],
5599                                                            fifo_state->plane[plane_id]);
5600                        }
5601                }
5602
5603                for_each_plane_id_on_crtc(crtc, plane_id)
5604                        vlv_raw_plane_wm_set(crtc_state, level,
5605                                             plane_id, USHRT_MAX);
5606                vlv_invalidate_wms(crtc, active, level);
5607
5608                crtc_state->wm.vlv.optimal = *active;
5609                crtc_state->wm.vlv.intermediate = *active;
5610
5611                DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5612                              pipe_name(pipe),
5613                              wm->pipe[pipe].plane[PLANE_PRIMARY],
5614                              wm->pipe[pipe].plane[PLANE_CURSOR],
5615                              wm->pipe[pipe].plane[PLANE_SPRITE0],
5616                              wm->pipe[pipe].plane[PLANE_SPRITE1]);
5617        }
5618
5619        DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5620                      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5621}
5622
5623void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5624{
5625        struct intel_plane *plane;
5626        struct intel_crtc *crtc;
5627
5628        mutex_lock(&dev_priv->wm.wm_mutex);
5629
5630        for_each_intel_plane(&dev_priv->drm, plane) {
5631                struct intel_crtc *crtc =
5632                        intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5633                struct intel_crtc_state *crtc_state =
5634                        to_intel_crtc_state(crtc->base.state);
5635                struct intel_plane_state *plane_state =
5636                        to_intel_plane_state(plane->base.state);
5637                struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5638                const struct vlv_fifo_state *fifo_state =
5639                        &crtc_state->wm.vlv.fifo_state;
5640                enum plane_id plane_id = plane->id;
5641                int level;
5642
5643                if (plane_state->base.visible)
5644                        continue;
5645
5646                for (level = 0; level < wm_state->num_levels; level++) {
5647                        struct g4x_pipe_wm *raw =
5648                                &crtc_state->wm.vlv.raw[level];
5649
5650                        raw->plane[plane_id] = 0;
5651
5652                        wm_state->wm[level].plane[plane_id] =
5653                                vlv_invert_wm_value(raw->plane[plane_id],
5654                                                    fifo_state->plane[plane_id]);
5655                }
5656        }
5657
5658        for_each_intel_crtc(&dev_priv->drm, crtc) {
5659                struct intel_crtc_state *crtc_state =
5660                        to_intel_crtc_state(crtc->base.state);
5661
5662                crtc_state->wm.vlv.intermediate =
5663                        crtc_state->wm.vlv.optimal;
5664                crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5665        }
5666
5667        vlv_program_watermarks(dev_priv);
5668
5669        mutex_unlock(&dev_priv->wm.wm_mutex);
5670}
5671
5672void ilk_wm_get_hw_state(struct drm_device *dev)
5673{
5674        struct drm_i915_private *dev_priv = to_i915(dev);
5675        struct ilk_wm_values *hw = &dev_priv->wm.hw;
5676        struct drm_crtc *crtc;
5677
5678        for_each_crtc(dev, crtc)
5679                ilk_pipe_wm_get_hw_state(crtc);
5680
5681        hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
5682        hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
5683        hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
5684
5685        hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5686        if (INTEL_GEN(dev_priv) >= 7) {
5687                hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
5688                hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5689        }
5690
5691        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5692                hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
5693                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5694        else if (IS_IVYBRIDGE(dev_priv))
5695                hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
5696                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5697
5698        hw->enable_fbc_wm =
5699                !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
5700}
5701
5702/**
5703 * intel_update_watermarks - update FIFO watermark values based on current modes
5704 *
5705 * Calculate watermark values for the various WM regs based on current mode
5706 * and plane configuration.
5707 *
5708 * There are several cases to deal with here:
5709 *   - normal (i.e. non-self-refresh)
5710 *   - self-refresh (SR) mode
5711 *   - lines are large relative to FIFO size (buffer can hold up to 2)
5712 *   - lines are small relative to FIFO size (buffer can hold more than 2
5713 *     lines), so need to account for TLB latency
5714 *
5715 *   The normal calculation is:
5716 *     watermark = dotclock * bytes per pixel * latency
5717 *   where latency is platform & configuration dependent (we assume pessimal
5718 *   values here).
5719 *
5720 *   The SR calculation is:
5721 *     watermark = (trunc(latency/line time)+1) * surface width *
5722 *       bytes per pixel
5723 *   where
5724 *     line time = htotal / dotclock
5725 *     surface width = hdisplay for normal plane and 64 for cursor
5726 *   and latency is assumed to be high, as above.
5727 *
5728 * The final value programmed to the register should always be rounded up,
5729 * and include an extra 2 entries to account for clock crossings.
5730 *
5731 * We don't use the sprite, so we can ignore that.  And on Crestline we have
5732 * to set the non-SR watermarks to 8.
5733 */
5734void intel_update_watermarks(struct intel_crtc *crtc)
5735{
5736        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5737
5738        if (dev_priv->display.update_wm)
5739                dev_priv->display.update_wm(crtc);
5740}
5741
5742/*
5743 * Lock protecting IPS related data structures
5744 */
5745DEFINE_SPINLOCK(mchdev_lock);
5746
5747/* Global for IPS driver to get at the current i915 device. Protected by
5748 * mchdev_lock. */
5749static struct drm_i915_private *i915_mch_dev;
5750
5751bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5752{
5753        u16 rgvswctl;
5754
5755        lockdep_assert_held(&mchdev_lock);
5756
5757        rgvswctl = I915_READ16(MEMSWCTL);
5758        if (rgvswctl & MEMCTL_CMD_STS) {
5759                DRM_DEBUG("gpu busy, RCS change rejected\n");
5760                return false; /* still busy with another command */
5761        }
5762
5763        rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5764                (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5765        I915_WRITE16(MEMSWCTL, rgvswctl);
5766        POSTING_READ16(MEMSWCTL);
5767
5768        rgvswctl |= MEMCTL_CMD_STS;
5769        I915_WRITE16(MEMSWCTL, rgvswctl);
5770
5771        return true;
5772}
5773
5774static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5775{
5776        u32 rgvmodectl;
5777        u8 fmax, fmin, fstart, vstart;
5778
5779        spin_lock_irq(&mchdev_lock);
5780
5781        rgvmodectl = I915_READ(MEMMODECTL);
5782
5783        /* Enable temp reporting */
5784        I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5785        I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5786
5787        /* 100ms RC evaluation intervals */
5788        I915_WRITE(RCUPEI, 100000);
5789        I915_WRITE(RCDNEI, 100000);
5790
5791        /* Set max/min thresholds to 90ms and 80ms respectively */
5792        I915_WRITE(RCBMAXAVG, 90000);
5793        I915_WRITE(RCBMINAVG, 80000);
5794
5795        I915_WRITE(MEMIHYST, 1);
5796
5797        /* Set up min, max, and cur for interrupt handling */
5798        fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5799        fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5800        fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5801                MEMMODE_FSTART_SHIFT;
5802
5803        vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5804                PXVFREQ_PX_SHIFT;
5805
5806        dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5807        dev_priv->ips.fstart = fstart;
5808
5809        dev_priv->ips.max_delay = fstart;
5810        dev_priv->ips.min_delay = fmin;
5811        dev_priv->ips.cur_delay = fstart;
5812
5813        DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5814                         fmax, fmin, fstart);
5815
5816        I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5817
5818        /*
5819         * Interrupts will be enabled in ironlake_irq_postinstall
5820         */
5821
5822        I915_WRITE(VIDSTART, vstart);
5823        POSTING_READ(VIDSTART);
5824
5825        rgvmodectl |= MEMMODE_SWMODE_EN;
5826        I915_WRITE(MEMMODECTL, rgvmodectl);
5827
5828        if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5829                DRM_ERROR("stuck trying to change perf mode\n");
5830        mdelay(1);
5831
5832        ironlake_set_drps(dev_priv, fstart);
5833
5834        dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5835                I915_READ(DDREC) + I915_READ(CSIEC);
5836        dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5837        dev_priv->ips.last_count2 = I915_READ(GFXEC);
5838        dev_priv->ips.last_time2 = ktime_get_raw_ns();
5839
5840        spin_unlock_irq(&mchdev_lock);
5841}
5842
5843static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5844{
5845        u16 rgvswctl;
5846
5847        spin_lock_irq(&mchdev_lock);
5848
5849        rgvswctl = I915_READ16(MEMSWCTL);
5850
5851        /* Ack interrupts, disable EFC interrupt */
5852        I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5853        I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5854        I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5855        I915_WRITE(DEIIR, DE_PCU_EVENT);
5856        I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5857
5858        /* Go back to the starting frequency */
5859        ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5860        mdelay(1);
5861        rgvswctl |= MEMCTL_CMD_STS;
5862        I915_WRITE(MEMSWCTL, rgvswctl);
5863        mdelay(1);
5864
5865        spin_unlock_irq(&mchdev_lock);
5866}
5867
5868/* There's a funny hw issue where the hw returns all 0 when reading from
5869 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
5870 * ourselves, instead of doing a rmw cycle (which might result in us clearing
5871 * all limits and the gpu stuck at whatever frequency it is at atm).
5872 */
5873static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5874{
5875        u32 limits;
5876
5877        /* Only set the down limit when we've reached the lowest level to avoid
5878         * getting more interrupts, otherwise leave this clear. This prevents a
5879         * race in the hw when coming out of rc6: There's a tiny window where
5880         * the hw runs at the minimal clock before selecting the desired
5881         * frequency, if the down threshold expires in that window we will not
5882         * receive a down interrupt. */
5883        if (INTEL_GEN(dev_priv) >= 9) {
5884                limits = (dev_priv->rps.max_freq_softlimit) << 23;
5885                if (val <= dev_priv->rps.min_freq_softlimit)
5886                        limits |= (dev_priv->rps.min_freq_softlimit) << 14;
5887        } else {
5888                limits = dev_priv->rps.max_freq_softlimit << 24;
5889                if (val <= dev_priv->rps.min_freq_softlimit)
5890                        limits |= dev_priv->rps.min_freq_softlimit << 16;
5891        }
5892
5893        return limits;
5894}
5895
5896static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
5897{
5898        int new_power;
5899        u32 threshold_up = 0, threshold_down = 0; /* in % */
5900        u32 ei_up = 0, ei_down = 0;
5901
5902        new_power = dev_priv->rps.power;
5903        switch (dev_priv->rps.power) {
5904        case LOW_POWER:
5905                if (val > dev_priv->rps.efficient_freq + 1 &&
5906                    val > dev_priv->rps.cur_freq)
5907                        new_power = BETWEEN;
5908                break;
5909
5910        case BETWEEN:
5911                if (val <= dev_priv->rps.efficient_freq &&
5912                    val < dev_priv->rps.cur_freq)
5913                        new_power = LOW_POWER;
5914                else if (val >= dev_priv->rps.rp0_freq &&
5915                         val > dev_priv->rps.cur_freq)
5916                        new_power = HIGH_POWER;
5917                break;
5918
5919        case HIGH_POWER:
5920                if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
5921                    val < dev_priv->rps.cur_freq)
5922                        new_power = BETWEEN;
5923                break;
5924        }
5925        /* Max/min bins are special */
5926        if (val <= dev_priv->rps.min_freq_softlimit)
5927                new_power = LOW_POWER;
5928        if (val >= dev_priv->rps.max_freq_softlimit)
5929                new_power = HIGH_POWER;
5930        if (new_power == dev_priv->rps.power)
5931                return;
5932
5933        /* Note the units here are not exactly 1us, but 1280ns. */
5934        switch (new_power) {
5935        case LOW_POWER:
5936                /* Upclock if more than 95% busy over 16ms */
5937                ei_up = 16000;
5938                threshold_up = 95;
5939
5940                /* Downclock if less than 85% busy over 32ms */
5941                ei_down = 32000;
5942                threshold_down = 85;
5943                break;
5944
5945        case BETWEEN:
5946                /* Upclock if more than 90% busy over 13ms */
5947                ei_up = 13000;
5948                threshold_up = 90;
5949
5950                /* Downclock if less than 75% busy over 32ms */
5951                ei_down = 32000;
5952                threshold_down = 75;
5953                break;
5954
5955        case HIGH_POWER:
5956                /* Upclock if more than 85% busy over 10ms */
5957                ei_up = 10000;
5958                threshold_up = 85;
5959
5960                /* Downclock if less than 60% busy over 32ms */
5961                ei_down = 32000;
5962                threshold_down = 60;
5963                break;
5964        }
5965
5966        /* When byt can survive without system hang with dynamic
5967         * sw freq adjustments, this restriction can be lifted.
5968         */
5969        if (IS_VALLEYVIEW(dev_priv))
5970                goto skip_hw_write;
5971
5972        I915_WRITE(GEN6_RP_UP_EI,
5973                   GT_INTERVAL_FROM_US(dev_priv, ei_up));
5974        I915_WRITE(GEN6_RP_UP_THRESHOLD,
5975                   GT_INTERVAL_FROM_US(dev_priv,
5976                                       ei_up * threshold_up / 100));
5977
5978        I915_WRITE(GEN6_RP_DOWN_EI,
5979                   GT_INTERVAL_FROM_US(dev_priv, ei_down));
5980        I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5981                   GT_INTERVAL_FROM_US(dev_priv,
5982                                       ei_down * threshold_down / 100));
5983
5984        I915_WRITE(GEN6_RP_CONTROL,
5985                   GEN6_RP_MEDIA_TURBO |
5986                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5987                   GEN6_RP_MEDIA_IS_GFX |
5988                   GEN6_RP_ENABLE |
5989                   GEN6_RP_UP_BUSY_AVG |
5990                   GEN6_RP_DOWN_IDLE_AVG);
5991
5992skip_hw_write:
5993        dev_priv->rps.power = new_power;
5994        dev_priv->rps.up_threshold = threshold_up;
5995        dev_priv->rps.down_threshold = threshold_down;
5996        dev_priv->rps.last_adj = 0;
5997}
5998
5999static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6000{
6001        u32 mask = 0;
6002
6003        /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6004        if (val > dev_priv->rps.min_freq_softlimit)
6005                mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6006        if (val < dev_priv->rps.max_freq_softlimit)
6007                mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6008
6009        mask &= dev_priv->pm_rps_events;
6010
6011        return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6012}
6013
6014/* gen6_set_rps is called to update the frequency request, but should also be
6015 * called when the range (min_delay and max_delay) is modified so that we can
6016 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6017static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6018{
6019        /* min/max delay may still have been modified so be sure to
6020         * write the limits value.
6021         */
6022        if (val != dev_priv->rps.cur_freq) {
6023                gen6_set_rps_thresholds(dev_priv, val);
6024
6025                if (INTEL_GEN(dev_priv) >= 9)
6026                        I915_WRITE(GEN6_RPNSWREQ,
6027                                   GEN9_FREQUENCY(val));
6028                else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6029                        I915_WRITE(GEN6_RPNSWREQ,
6030                                   HSW_FREQUENCY(val));
6031                else
6032                        I915_WRITE(GEN6_RPNSWREQ,
6033                                   GEN6_FREQUENCY(val) |
6034                                   GEN6_OFFSET(0) |
6035                                   GEN6_AGGRESSIVE_TURBO);
6036        }
6037
6038        /* Make sure we continue to get interrupts
6039         * until we hit the minimum or maximum frequencies.
6040         */
6041        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6042        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6043
6044        dev_priv->rps.cur_freq = val;
6045        trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6046
6047        return 0;
6048}
6049
6050static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6051{
6052        int err;
6053
6054        if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6055                      "Odd GPU freq value\n"))
6056                val &= ~1;
6057
6058        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6059
6060        if (val != dev_priv->rps.cur_freq) {
6061                err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6062                if (err)
6063                        return err;
6064
6065                gen6_set_rps_thresholds(dev_priv, val);
6066        }
6067
6068        dev_priv->rps.cur_freq = val;
6069        trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6070
6071        return 0;
6072}
6073
6074/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6075 *
6076 * * If Gfx is Idle, then
6077 * 1. Forcewake Media well.
6078 * 2. Request idle freq.
6079 * 3. Release Forcewake of Media well.
6080*/
6081static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6082{
6083        u32 val = dev_priv->rps.idle_freq;
6084        int err;
6085
6086        if (dev_priv->rps.cur_freq <= val)
6087                return;
6088
6089        /* The punit delays the write of the frequency and voltage until it
6090         * determines the GPU is awake. During normal usage we don't want to
6091         * waste power changing the frequency if the GPU is sleeping (rc6).
6092         * However, the GPU and driver is now idle and we do not want to delay
6093         * switching to minimum voltage (reducing power whilst idle) as we do
6094         * not expect to be woken in the near future and so must flush the
6095         * change by waking the device.
6096         *
6097         * We choose to take the media powerwell (either would do to trick the
6098         * punit into committing the voltage change) as that takes a lot less
6099         * power than the render powerwell.
6100         */
6101        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6102        err = valleyview_set_rps(dev_priv, val);
6103        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6104
6105        if (err)
6106                DRM_ERROR("Failed to set RPS for idle\n");
6107}
6108
6109void gen6_rps_busy(struct drm_i915_private *dev_priv)
6110{
6111        mutex_lock(&dev_priv->rps.hw_lock);
6112        if (dev_priv->rps.enabled) {
6113                u8 freq;
6114
6115                if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6116                        gen6_rps_reset_ei(dev_priv);
6117                I915_WRITE(GEN6_PMINTRMSK,
6118                           gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
6119
6120                gen6_enable_rps_interrupts(dev_priv);
6121
6122                /* Use the user's desired frequency as a guide, but for better
6123                 * performance, jump directly to RPe as our starting frequency.
6124                 */
6125                freq = max(dev_priv->rps.cur_freq,
6126                           dev_priv->rps.efficient_freq);
6127
6128                if (intel_set_rps(dev_priv,
6129                                  clamp(freq,
6130                                        dev_priv->rps.min_freq_softlimit,
6131                                        dev_priv->rps.max_freq_softlimit)))
6132                        DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6133        }
6134        mutex_unlock(&dev_priv->rps.hw_lock);
6135}
6136
6137void gen6_rps_idle(struct drm_i915_private *dev_priv)
6138{
6139        /* Flush our bottom-half so that it does not race with us
6140         * setting the idle frequency and so that it is bounded by
6141         * our rpm wakeref. And then disable the interrupts to stop any
6142         * futher RPS reclocking whilst we are asleep.
6143         */
6144        gen6_disable_rps_interrupts(dev_priv);
6145
6146        mutex_lock(&dev_priv->rps.hw_lock);
6147        if (dev_priv->rps.enabled) {
6148                if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6149                        vlv_set_rps_idle(dev_priv);
6150                else
6151                        gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
6152                dev_priv->rps.last_adj = 0;
6153                I915_WRITE(GEN6_PMINTRMSK,
6154                           gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6155        }
6156        mutex_unlock(&dev_priv->rps.hw_lock);
6157}
6158
6159void gen6_rps_boost(struct drm_i915_gem_request *rq,
6160                    struct intel_rps_client *rps)
6161{
6162        struct drm_i915_private *i915 = rq->i915;
6163        bool boost;
6164
6165        /* This is intentionally racy! We peek at the state here, then
6166         * validate inside the RPS worker.
6167         */
6168        if (!i915->rps.enabled)
6169                return;
6170
6171        boost = false;
6172        spin_lock_irq(&rq->lock);
6173        if (!rq->waitboost && !i915_gem_request_completed(rq)) {
6174                atomic_inc(&i915->rps.num_waiters);
6175                rq->waitboost = true;
6176                boost = true;
6177        }
6178        spin_unlock_irq(&rq->lock);
6179        if (!boost)
6180                return;
6181
6182        if (READ_ONCE(i915->rps.cur_freq) < i915->rps.boost_freq)
6183                schedule_work(&i915->rps.work);
6184
6185        atomic_inc(rps ? &rps->boosts : &i915->rps.boosts);
6186}
6187
6188int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6189{
6190        int err;
6191
6192        lockdep_assert_held(&dev_priv->rps.hw_lock);
6193        GEM_BUG_ON(val > dev_priv->rps.max_freq);
6194        GEM_BUG_ON(val < dev_priv->rps.min_freq);
6195
6196        if (!dev_priv->rps.enabled) {
6197                dev_priv->rps.cur_freq = val;
6198                return 0;
6199        }
6200
6201        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6202                err = valleyview_set_rps(dev_priv, val);
6203        else
6204                err = gen6_set_rps(dev_priv, val);
6205
6206        return err;
6207}
6208
6209static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6210{
6211        I915_WRITE(GEN6_RC_CONTROL, 0);
6212        I915_WRITE(GEN9_PG_ENABLE, 0);
6213}
6214
6215static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6216{
6217        I915_WRITE(GEN6_RP_CONTROL, 0);
6218}
6219
6220static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6221{
6222        I915_WRITE(GEN6_RC_CONTROL, 0);
6223        I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6224        I915_WRITE(GEN6_RP_CONTROL, 0);
6225}
6226
6227static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6228{
6229        I915_WRITE(GEN6_RC_CONTROL, 0);
6230}
6231
6232static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6233{
6234        /* we're doing forcewake before Disabling RC6,
6235         * This what the BIOS expects when going into suspend */
6236        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6237
6238        I915_WRITE(GEN6_RC_CONTROL, 0);
6239
6240        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6241}
6242
6243static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
6244{
6245        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6246                if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
6247                        mode = GEN6_RC_CTL_RC6_ENABLE;
6248                else
6249                        mode = 0;
6250        }
6251        if (HAS_RC6p(dev_priv))
6252                DRM_DEBUG_DRIVER("Enabling RC6 states: "
6253                                 "RC6 %s RC6p %s RC6pp %s\n",
6254                                 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
6255                                 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
6256                                 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6257
6258        else
6259                DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
6260                                 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
6261}
6262
6263static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6264{
6265        struct i915_ggtt *ggtt = &dev_priv->ggtt;
6266        bool enable_rc6 = true;
6267        unsigned long rc6_ctx_base;
6268        u32 rc_ctl;
6269        int rc_sw_target;
6270
6271        rc_ctl = I915_READ(GEN6_RC_CONTROL);
6272        rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6273                       RC_SW_TARGET_STATE_SHIFT;
6274        DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6275                         "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6276                         onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6277                         onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6278                         rc_sw_target);
6279
6280        if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6281                DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6282                enable_rc6 = false;
6283        }
6284
6285        /*
6286         * The exact context size is not known for BXT, so assume a page size
6287         * for this check.
6288         */
6289        rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6290        if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
6291              (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
6292                                        ggtt->stolen_reserved_size))) {
6293                DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6294                enable_rc6 = false;
6295        }
6296
6297        if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6298              ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6299              ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6300              ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6301                DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6302                enable_rc6 = false;
6303        }
6304
6305        if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6306            !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6307            !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6308                DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6309                enable_rc6 = false;
6310        }
6311
6312        if (!I915_READ(GEN6_GFXPAUSE)) {
6313                DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6314                enable_rc6 = false;
6315        }
6316
6317        if (!I915_READ(GEN8_MISC_CTRL0)) {
6318                DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6319                enable_rc6 = false;
6320        }
6321
6322        return enable_rc6;
6323}
6324
6325int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6326{
6327        /* No RC6 before Ironlake and code is gone for ilk. */
6328        if (INTEL_INFO(dev_priv)->gen < 6)
6329                return 0;
6330
6331        if (!enable_rc6)
6332                return 0;
6333
6334        if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6335                DRM_INFO("RC6 disabled by BIOS\n");
6336                return 0;
6337        }
6338
6339        /* Respect the kernel parameter if it is set */
6340        if (enable_rc6 >= 0) {
6341                int mask;
6342
6343                if (HAS_RC6p(dev_priv))
6344                        mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
6345                               INTEL_RC6pp_ENABLE;
6346                else
6347                        mask = INTEL_RC6_ENABLE;
6348
6349                if ((enable_rc6 & mask) != enable_rc6)
6350                        DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
6351                                         "(requested %d, valid %d)\n",
6352                                         enable_rc6 & mask, enable_rc6, mask);
6353
6354                return enable_rc6 & mask;
6355        }
6356
6357        if (IS_IVYBRIDGE(dev_priv))
6358                return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6359
6360        return INTEL_RC6_ENABLE;
6361}
6362
6363static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6364{
6365        /* All of these values are in units of 50MHz */
6366
6367        /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6368        if (IS_GEN9_LP(dev_priv)) {
6369                u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6370                dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
6371                dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
6372                dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
6373        } else {
6374                u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6375                dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
6376                dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
6377                dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
6378        }
6379        /* hw_max = RP0 until we check for overclocking */
6380        dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
6381
6382        dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6383        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6384            IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6385                u32 ddcc_status = 0;
6386
6387                if (sandybridge_pcode_read(dev_priv,
6388                                           HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6389                                           &ddcc_status) == 0)
6390                        dev_priv->rps.efficient_freq =
6391                                clamp_t(u8,
6392                                        ((ddcc_status >> 8) & 0xff),
6393                                        dev_priv->rps.min_freq,
6394                                        dev_priv->rps.max_freq);
6395        }
6396
6397        if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6398                /* Store the frequency values in 16.66 MHZ units, which is
6399                 * the natural hardware unit for SKL
6400                 */
6401                dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
6402                dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
6403                dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
6404                dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
6405                dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
6406        }
6407}
6408
6409static void reset_rps(struct drm_i915_private *dev_priv,
6410                      int (*set)(struct drm_i915_private *, u8))
6411{
6412        u8 freq = dev_priv->rps.cur_freq;
6413
6414        /* force a reset */
6415        dev_priv->rps.power = -1;
6416        dev_priv->rps.cur_freq = -1;
6417
6418        if (set(dev_priv, freq))
6419                DRM_ERROR("Failed to reset RPS to initial values\n");
6420}
6421
6422/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6423static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6424{
6425        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6426
6427        /* Program defaults and thresholds for RPS*/
6428        I915_WRITE(GEN6_RC_VIDEO_FREQ,
6429                GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
6430
6431        /* 1 second timeout*/
6432        I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6433                GT_INTERVAL_FROM_US(dev_priv, 1000000));
6434
6435        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6436
6437        /* Leaning on the below call to gen6_set_rps to program/setup the
6438         * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6439         * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6440        reset_rps(dev_priv, gen6_set_rps);
6441
6442        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6443}
6444
6445static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6446{
6447        struct intel_engine_cs *engine;
6448        enum intel_engine_id id;
6449        uint32_t rc6_mask = 0;
6450
6451        /* 1a: Software RC state - RC0 */
6452        I915_WRITE(GEN6_RC_STATE, 0);
6453
6454        /* 1b: Get forcewake during program sequence. Although the driver
6455         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6456        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6457
6458        /* 2a: Disable RC states. */
6459        I915_WRITE(GEN6_RC_CONTROL, 0);
6460
6461        /* 2b: Program RC6 thresholds.*/
6462
6463        /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6464        if (IS_SKYLAKE(dev_priv))
6465                I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6466        else
6467                I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6468        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6469        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6470        for_each_engine(engine, dev_priv, id)
6471                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6472
6473        if (HAS_GUC(dev_priv))
6474                I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6475
6476        I915_WRITE(GEN6_RC_SLEEP, 0);
6477
6478        /* 2c: Program Coarse Power Gating Policies. */
6479        I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
6480        I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
6481
6482        /* 3a: Enable RC6 */
6483        if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6484                rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6485        DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6486        I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6487        I915_WRITE(GEN6_RC_CONTROL,
6488                   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
6489
6490        /*
6491         * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6492         * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6493         */
6494        if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6495                I915_WRITE(GEN9_PG_ENABLE, 0);
6496        else
6497                I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
6498                                (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6499
6500        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6501}
6502
6503static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6504{
6505        struct intel_engine_cs *engine;
6506        enum intel_engine_id id;
6507        uint32_t rc6_mask = 0;
6508
6509        /* 1a: Software RC state - RC0 */
6510        I915_WRITE(GEN6_RC_STATE, 0);
6511
6512        /* 1c & 1d: Get forcewake during program sequence. Although the driver
6513         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6514        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6515
6516        /* 2a: Disable RC states. */
6517        I915_WRITE(GEN6_RC_CONTROL, 0);
6518
6519        /* 2b: Program RC6 thresholds.*/
6520        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6521        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6522        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6523        for_each_engine(engine, dev_priv, id)
6524                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6525        I915_WRITE(GEN6_RC_SLEEP, 0);
6526        if (IS_BROADWELL(dev_priv))
6527                I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6528        else
6529                I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
6530
6531        /* 3: Enable RC6 */
6532        if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6533                rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6534        intel_print_rc6_info(dev_priv, rc6_mask);
6535        if (IS_BROADWELL(dev_priv))
6536                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6537                                GEN7_RC_CTL_TO_MODE |
6538                                rc6_mask);
6539        else
6540                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6541                                GEN6_RC_CTL_EI_MODE(1) |
6542                                rc6_mask);
6543
6544        /* 4 Program defaults and thresholds for RPS*/
6545        I915_WRITE(GEN6_RPNSWREQ,
6546                   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6547        I915_WRITE(GEN6_RC_VIDEO_FREQ,
6548                   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6549        /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6550        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6551
6552        /* Docs recommend 900MHz, and 300 MHz respectively */
6553        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6554                   dev_priv->rps.max_freq_softlimit << 24 |
6555                   dev_priv->rps.min_freq_softlimit << 16);
6556
6557        I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6558        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6559        I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6560        I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6561
6562        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6563
6564        /* 5: Enable RPS */
6565        I915_WRITE(GEN6_RP_CONTROL,
6566                   GEN6_RP_MEDIA_TURBO |
6567                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6568                   GEN6_RP_MEDIA_IS_GFX |
6569                   GEN6_RP_ENABLE |
6570                   GEN6_RP_UP_BUSY_AVG |
6571                   GEN6_RP_DOWN_IDLE_AVG);
6572
6573        /* 6: Ring frequency + overclocking (our driver does this later */
6574
6575        reset_rps(dev_priv, gen6_set_rps);
6576
6577        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6578}
6579
6580static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6581{
6582        struct intel_engine_cs *engine;
6583        enum intel_engine_id id;
6584        u32 rc6vids, rc6_mask = 0;
6585        u32 gtfifodbg;
6586        int rc6_mode;
6587        int ret;
6588
6589        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6590
6591        /* Here begins a magic sequence of register writes to enable
6592         * auto-downclocking.
6593         *
6594         * Perhaps there might be some value in exposing these to
6595         * userspace...
6596         */
6597        I915_WRITE(GEN6_RC_STATE, 0);
6598
6599        /* Clear the DBG now so we don't confuse earlier errors */
6600        gtfifodbg = I915_READ(GTFIFODBG);
6601        if (gtfifodbg) {
6602                DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6603                I915_WRITE(GTFIFODBG, gtfifodbg);
6604        }
6605
6606        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6607
6608        /* disable the counters and set deterministic thresholds */
6609        I915_WRITE(GEN6_RC_CONTROL, 0);
6610
6611        I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6612        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6613        I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6614        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6615        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6616
6617        for_each_engine(engine, dev_priv, id)
6618                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6619
6620        I915_WRITE(GEN6_RC_SLEEP, 0);
6621        I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6622        if (IS_IVYBRIDGE(dev_priv))
6623                I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
6624        else
6625                I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6626        I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6627        I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6628
6629        /* Check if we are enabling RC6 */
6630        rc6_mode = intel_enable_rc6();
6631        if (rc6_mode & INTEL_RC6_ENABLE)
6632                rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
6633
6634        /* We don't use those on Haswell */
6635        if (!IS_HASWELL(dev_priv)) {
6636                if (rc6_mode & INTEL_RC6p_ENABLE)
6637                        rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6638
6639                if (rc6_mode & INTEL_RC6pp_ENABLE)
6640                        rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6641        }
6642
6643        intel_print_rc6_info(dev_priv, rc6_mask);
6644
6645        I915_WRITE(GEN6_RC_CONTROL,
6646                   rc6_mask |
6647                   GEN6_RC_CTL_EI_MODE(1) |
6648                   GEN6_RC_CTL_HW_ENABLE);
6649
6650        /* Power down if completely idle for over 50ms */
6651        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6652        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6653
6654        reset_rps(dev_priv, gen6_set_rps);
6655
6656        rc6vids = 0;
6657        ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6658        if (IS_GEN6(dev_priv) && ret) {
6659                DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6660        } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6661                DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
6662                          GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
6663                rc6vids &= 0xffff00;
6664                rc6vids |= GEN6_ENCODE_RC6_VID(450);
6665                ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
6666                if (ret)
6667                        DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
6668        }
6669
6670        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6671}
6672
6673static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6674{
6675        int min_freq = 15;
6676        unsigned int gpu_freq;
6677        unsigned int max_ia_freq, min_ring_freq;
6678        unsigned int max_gpu_freq, min_gpu_freq;
6679        int scaling_factor = 180;
6680        struct cpufreq_policy *policy;
6681
6682        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6683
6684        policy = cpufreq_cpu_get(0);
6685        if (policy) {
6686                max_ia_freq = policy->cpuinfo.max_freq;
6687                cpufreq_cpu_put(policy);
6688        } else {
6689                /*
6690                 * Default to measured freq if none found, PCU will ensure we
6691                 * don't go over
6692                 */
6693                max_ia_freq = tsc_khz;
6694        }
6695
6696        /* Convert from kHz to MHz */
6697        max_ia_freq /= 1000;
6698
6699        min_ring_freq = I915_READ(DCLK) & 0xf;
6700        /* convert DDR frequency from units of 266.6MHz to bandwidth */
6701        min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6702
6703        if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6704                /* Convert GT frequency to 50 HZ units */
6705                min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
6706                max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
6707        } else {
6708                min_gpu_freq = dev_priv->rps.min_freq;
6709                max_gpu_freq = dev_priv->rps.max_freq;
6710        }
6711
6712        /*
6713         * For each potential GPU frequency, load a ring frequency we'd like
6714         * to use for memory access.  We do this by specifying the IA frequency
6715         * the PCU should use as a reference to determine the ring frequency.
6716         */
6717        for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
6718                int diff = max_gpu_freq - gpu_freq;
6719                unsigned int ia_freq = 0, ring_freq = 0;
6720
6721                if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6722                        /*
6723                         * ring_freq = 2 * GT. ring_freq is in 100MHz units
6724                         * No floor required for ring frequency on SKL.
6725                         */
6726                        ring_freq = gpu_freq;
6727                } else if (INTEL_INFO(dev_priv)->gen >= 8) {
6728                        /* max(2 * GT, DDR). NB: GT is 50MHz units */
6729                        ring_freq = max(min_ring_freq, gpu_freq);
6730                } else if (IS_HASWELL(dev_priv)) {
6731                        ring_freq = mult_frac(gpu_freq, 5, 4);
6732                        ring_freq = max(min_ring_freq, ring_freq);
6733                        /* leave ia_freq as the default, chosen by cpufreq */
6734                } else {
6735                        /* On older processors, there is no separate ring
6736                         * clock domain, so in order to boost the bandwidth
6737                         * of the ring, we need to upclock the CPU (ia_freq).
6738                         *
6739                         * For GPU frequencies less than 750MHz,
6740                         * just use the lowest ring freq.
6741                         */
6742                        if (gpu_freq < min_freq)
6743                                ia_freq = 800;
6744                        else
6745                                ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
6746                        ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
6747                }
6748
6749                sandybridge_pcode_write(dev_priv,
6750                                        GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6751                                        ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
6752                                        ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
6753                                        gpu_freq);
6754        }
6755}
6756
6757static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6758{
6759        u32 val, rp0;
6760
6761        val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6762
6763        switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6764        case 8:
6765                /* (2 * 4) config */
6766                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6767                break;
6768        case 12:
6769                /* (2 * 6) config */
6770                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6771                break;
6772        case 16:
6773                /* (2 * 8) config */
6774        default:
6775                /* Setting (2 * 8) Min RP0 for any other combination */
6776                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6777                break;
6778        }
6779
6780        rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6781
6782        return rp0;
6783}
6784
6785static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6786{
6787        u32 val, rpe;
6788
6789        val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6790        rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6791
6792        return rpe;
6793}
6794
6795static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6796{
6797        u32 val, rp1;
6798
6799        val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6800        rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6801
6802        return rp1;
6803}
6804
6805static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6806{
6807        u32 val, rpn;
6808
6809        val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6810        rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6811                       FB_GFX_FREQ_FUSE_MASK);
6812
6813        return rpn;
6814}
6815
6816static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6817{
6818        u32 val, rp1;
6819
6820        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6821
6822        rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6823
6824        return rp1;
6825}
6826
6827static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6828{
6829        u32 val, rp0;
6830
6831        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6832
6833        rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
6834        /* Clamp to max */
6835        rp0 = min_t(u32, rp0, 0xea);
6836
6837        return rp0;
6838}
6839
6840static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6841{
6842        u32 val, rpe;
6843
6844        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6845        rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6846        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6847        rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
6848
6849        return rpe;
6850}
6851
6852static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6853{
6854        u32 val;
6855
6856        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
6857        /*
6858         * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
6859         * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
6860         * a BYT-M B0 the above register contains 0xbf. Moreover when setting
6861         * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
6862         * to make sure it matches what Punit accepts.
6863         */
6864        return max_t(u32, val, 0xc0);
6865}
6866
6867/* Check that the pctx buffer wasn't move under us. */
6868static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
6869{
6870        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6871
6872        WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
6873                             dev_priv->vlv_pctx->stolen->start);
6874}
6875
6876
6877/* Check that the pcbr address is not empty. */
6878static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
6879{
6880        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6881
6882        WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
6883}
6884
6885static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6886{
6887        struct i915_ggtt *ggtt = &dev_priv->ggtt;
6888        unsigned long pctx_paddr, paddr;
6889        u32 pcbr;
6890        int pctx_size = 32*1024;
6891
6892        pcbr = I915_READ(VLV_PCBR);
6893        if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6894                DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6895                paddr = (dev_priv->mm.stolen_base +
6896                         (ggtt->stolen_size - pctx_size));
6897
6898                pctx_paddr = (paddr & (~4095));
6899                I915_WRITE(VLV_PCBR, pctx_paddr);
6900        }
6901
6902        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6903}
6904
6905static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6906{
6907        struct drm_i915_gem_object *pctx;
6908        unsigned long pctx_paddr;
6909        u32 pcbr;
6910        int pctx_size = 24*1024;
6911
6912        pcbr = I915_READ(VLV_PCBR);
6913        if (pcbr) {
6914                /* BIOS set it up already, grab the pre-alloc'd space */
6915                int pcbr_offset;
6916
6917                pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6918                pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6919                                                                      pcbr_offset,
6920                                                                      I915_GTT_OFFSET_NONE,
6921                                                                      pctx_size);
6922                goto out;
6923        }
6924
6925        DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6926
6927        /*
6928         * From the Gunit register HAS:
6929         * The Gfx driver is expected to program this register and ensure
6930         * proper allocation within Gfx stolen memory.  For example, this
6931         * register should be programmed such than the PCBR range does not
6932         * overlap with other ranges, such as the frame buffer, protected
6933         * memory, or any other relevant ranges.
6934         */
6935        pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6936        if (!pctx) {
6937                DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6938                goto out;
6939        }
6940
6941        pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
6942        I915_WRITE(VLV_PCBR, pctx_paddr);
6943
6944out:
6945        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6946        dev_priv->vlv_pctx = pctx;
6947}
6948
6949static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6950{
6951        if (WARN_ON(!dev_priv->vlv_pctx))
6952                return;
6953
6954        i915_gem_object_put(dev_priv->vlv_pctx);
6955        dev_priv->vlv_pctx = NULL;
6956}
6957
6958static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
6959{
6960        dev_priv->rps.gpll_ref_freq =
6961                vlv_get_cck_clock(dev_priv, "GPLL ref",
6962                                  CCK_GPLL_CLOCK_CONTROL,
6963                                  dev_priv->czclk_freq);
6964
6965        DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
6966                         dev_priv->rps.gpll_ref_freq);
6967}
6968
6969static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6970{
6971        u32 val;
6972
6973        valleyview_setup_pctx(dev_priv);
6974
6975        vlv_init_gpll_ref_freq(dev_priv);
6976
6977        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6978        switch ((val >> 6) & 3) {
6979        case 0:
6980        case 1:
6981                dev_priv->mem_freq = 800;
6982                break;
6983        case 2:
6984                dev_priv->mem_freq = 1066;
6985                break;
6986        case 3:
6987                dev_priv->mem_freq = 1333;
6988                break;
6989        }
6990        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6991
6992        dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
6993        dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6994        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6995                         intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6996                         dev_priv->rps.max_freq);
6997
6998        dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
6999        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7000                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7001                         dev_priv->rps.efficient_freq);
7002
7003        dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
7004        DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7005                         intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7006                         dev_priv->rps.rp1_freq);
7007
7008        dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
7009        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7010                         intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7011                         dev_priv->rps.min_freq);
7012}
7013
7014static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7015{
7016        u32 val;
7017
7018        cherryview_setup_pctx(dev_priv);
7019
7020        vlv_init_gpll_ref_freq(dev_priv);
7021
7022        mutex_lock(&dev_priv->sb_lock);
7023        val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7024        mutex_unlock(&dev_priv->sb_lock);
7025
7026        switch ((val >> 2) & 0x7) {
7027        case 3:
7028                dev_priv->mem_freq = 2000;
7029                break;
7030        default:
7031                dev_priv->mem_freq = 1600;
7032                break;
7033        }
7034        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7035
7036        dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
7037        dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
7038        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7039                         intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
7040                         dev_priv->rps.max_freq);
7041
7042        dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7043        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7044                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7045                         dev_priv->rps.efficient_freq);
7046
7047        dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
7048        DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7049                         intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7050                         dev_priv->rps.rp1_freq);
7051
7052        dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
7053        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7054                         intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7055                         dev_priv->rps.min_freq);
7056
7057        WARN_ONCE((dev_priv->rps.max_freq |
7058                   dev_priv->rps.efficient_freq |
7059                   dev_priv->rps.rp1_freq |
7060                   dev_priv->rps.min_freq) & 1,
7061                  "Odd GPU freq values\n");
7062}
7063
7064static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7065{
7066        valleyview_cleanup_pctx(dev_priv);
7067}
7068
7069static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7070{
7071        struct intel_engine_cs *engine;
7072        enum intel_engine_id id;
7073        u32 gtfifodbg, val, rc6_mode = 0, pcbr;
7074
7075        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7076
7077        gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7078                                             GT_FIFO_FREE_ENTRIES_CHV);
7079        if (gtfifodbg) {
7080                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7081                                 gtfifodbg);
7082                I915_WRITE(GTFIFODBG, gtfifodbg);
7083        }
7084
7085        cherryview_check_pctx(dev_priv);
7086
7087        /* 1a & 1b: Get forcewake during program sequence. Although the driver
7088         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7089        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7090
7091        /*  Disable RC states. */
7092        I915_WRITE(GEN6_RC_CONTROL, 0);
7093
7094        /* 2a: Program RC6 thresholds.*/
7095        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7096        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7097        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7098
7099        for_each_engine(engine, dev_priv, id)
7100                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7101        I915_WRITE(GEN6_RC_SLEEP, 0);
7102
7103        /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7104        I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7105
7106        /* allows RC6 residency counter to work */
7107        I915_WRITE(VLV_COUNTER_CONTROL,
7108                   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7109                                      VLV_MEDIA_RC6_COUNT_EN |
7110                                      VLV_RENDER_RC6_COUNT_EN));
7111
7112        /* For now we assume BIOS is allocating and populating the PCBR  */
7113        pcbr = I915_READ(VLV_PCBR);
7114
7115        /* 3: Enable RC6 */
7116        if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
7117            (pcbr >> VLV_PCBR_ADDR_SHIFT))
7118                rc6_mode = GEN7_RC_CTL_TO_MODE;
7119
7120        I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7121
7122        /* 4 Program defaults and thresholds for RPS*/
7123        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7124        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7125        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7126        I915_WRITE(GEN6_RP_UP_EI, 66000);
7127        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7128
7129        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7130
7131        /* 5: Enable RPS */
7132        I915_WRITE(GEN6_RP_CONTROL,
7133                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7134                   GEN6_RP_MEDIA_IS_GFX |
7135                   GEN6_RP_ENABLE |
7136                   GEN6_RP_UP_BUSY_AVG |
7137                   GEN6_RP_DOWN_IDLE_AVG);
7138
7139        /* Setting Fixed Bias */
7140        val = VLV_OVERRIDE_EN |
7141                  VLV_SOC_TDP_EN |
7142                  CHV_BIAS_CPU_50_SOC_50;
7143        vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7144
7145        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7146
7147        /* RPS code assumes GPLL is used */
7148        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7149
7150        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7151        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7152
7153        reset_rps(dev_priv, valleyview_set_rps);
7154
7155        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7156}
7157
7158static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7159{
7160        struct intel_engine_cs *engine;
7161        enum intel_engine_id id;
7162        u32 gtfifodbg, val, rc6_mode = 0;
7163
7164        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7165
7166        valleyview_check_pctx(dev_priv);
7167
7168        gtfifodbg = I915_READ(GTFIFODBG);
7169        if (gtfifodbg) {
7170                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7171                                 gtfifodbg);
7172                I915_WRITE(GTFIFODBG, gtfifodbg);
7173        }
7174
7175        /* If VLV, Forcewake all wells, else re-direct to regular path */
7176        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7177
7178        /*  Disable RC states. */
7179        I915_WRITE(GEN6_RC_CONTROL, 0);
7180
7181        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7182        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7183        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7184        I915_WRITE(GEN6_RP_UP_EI, 66000);
7185        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7186
7187        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7188
7189        I915_WRITE(GEN6_RP_CONTROL,
7190                   GEN6_RP_MEDIA_TURBO |
7191                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7192                   GEN6_RP_MEDIA_IS_GFX |
7193                   GEN6_RP_ENABLE |
7194                   GEN6_RP_UP_BUSY_AVG |
7195                   GEN6_RP_DOWN_IDLE_CONT);
7196
7197        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7198        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7199        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7200
7201        for_each_engine(engine, dev_priv, id)
7202                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7203
7204        I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7205
7206        /* allows RC6 residency counter to work */
7207        I915_WRITE(VLV_COUNTER_CONTROL,
7208                   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7209                                      VLV_MEDIA_RC0_COUNT_EN |
7210                                      VLV_RENDER_RC0_COUNT_EN |
7211                                      VLV_MEDIA_RC6_COUNT_EN |
7212                                      VLV_RENDER_RC6_COUNT_EN));
7213
7214        if (intel_enable_rc6() & INTEL_RC6_ENABLE)
7215                rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
7216
7217        intel_print_rc6_info(dev_priv, rc6_mode);
7218
7219        I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7220
7221        /* Setting Fixed Bias */
7222        val = VLV_OVERRIDE_EN |
7223                  VLV_SOC_TDP_EN |
7224                  VLV_BIAS_CPU_125_SOC_875;
7225        vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7226
7227        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7228
7229        /* RPS code assumes GPLL is used */
7230        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7231
7232        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7233        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7234
7235        reset_rps(dev_priv, valleyview_set_rps);
7236
7237        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7238}
7239
7240static unsigned long intel_pxfreq(u32 vidfreq)
7241{
7242        unsigned long freq;
7243        int div = (vidfreq & 0x3f0000) >> 16;
7244        int post = (vidfreq & 0x3000) >> 12;
7245        int pre = (vidfreq & 0x7);
7246
7247        if (!pre)
7248                return 0;
7249
7250        freq = ((div * 133333) / ((1<<post) * pre));
7251
7252        return freq;
7253}
7254
7255static const struct cparams {
7256        u16 i;
7257        u16 t;
7258        u16 m;
7259        u16 c;
7260} cparams[] = {
7261        { 1, 1333, 301, 28664 },
7262        { 1, 1066, 294, 24460 },
7263        { 1, 800, 294, 25192 },
7264        { 0, 1333, 276, 27605 },
7265        { 0, 1066, 276, 27605 },
7266        { 0, 800, 231, 23784 },
7267};
7268
7269static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7270{
7271        u64 total_count, diff, ret;
7272        u32 count1, count2, count3, m = 0, c = 0;
7273        unsigned long now = jiffies_to_msecs(jiffies), diff1;
7274        int i;
7275
7276        lockdep_assert_held(&mchdev_lock);
7277
7278        diff1 = now - dev_priv->ips.last_time1;
7279
7280        /* Prevent division-by-zero if we are asking too fast.
7281         * Also, we don't get interesting results if we are polling
7282         * faster than once in 10ms, so just return the saved value
7283         * in such cases.
7284         */
7285        if (diff1 <= 10)
7286                return dev_priv->ips.chipset_power;
7287
7288        count1 = I915_READ(DMIEC);
7289        count2 = I915_READ(DDREC);
7290        count3 = I915_READ(CSIEC);
7291
7292        total_count = count1 + count2 + count3;
7293
7294        /* FIXME: handle per-counter overflow */
7295        if (total_count < dev_priv->ips.last_count1) {
7296                diff = ~0UL - dev_priv->ips.last_count1;
7297                diff += total_count;
7298        } else {
7299                diff = total_count - dev_priv->ips.last_count1;
7300        }
7301
7302        for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7303                if (cparams[i].i == dev_priv->ips.c_m &&
7304                    cparams[i].t == dev_priv->ips.r_t) {
7305                        m = cparams[i].m;
7306                        c = cparams[i].c;
7307                        break;
7308                }
7309        }
7310
7311        diff = div_u64(diff, diff1);
7312        ret = ((m * diff) + c);
7313        ret = div_u64(ret, 10);
7314
7315        dev_priv->ips.last_count1 = total_count;
7316        dev_priv->ips.last_time1 = now;
7317
7318        dev_priv->ips.chipset_power = ret;
7319
7320        return ret;
7321}
7322
7323unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7324{
7325        unsigned long val;
7326
7327        if (INTEL_INFO(dev_priv)->gen != 5)
7328                return 0;
7329
7330        spin_lock_irq(&mchdev_lock);
7331
7332        val = __i915_chipset_val(dev_priv);
7333
7334        spin_unlock_irq(&mchdev_lock);
7335
7336        return val;
7337}
7338
7339unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7340{
7341        unsigned long m, x, b;
7342        u32 tsfs;
7343
7344        tsfs = I915_READ(TSFS);
7345
7346        m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7347        x = I915_READ8(TR1);
7348
7349        b = tsfs & TSFS_INTR_MASK;
7350
7351        return ((m * x) / 127) - b;
7352}
7353
7354static int _pxvid_to_vd(u8 pxvid)
7355{
7356        if (pxvid == 0)
7357                return 0;
7358
7359        if (pxvid >= 8 && pxvid < 31)
7360                pxvid = 31;
7361
7362        return (pxvid + 2) * 125;
7363}
7364
7365static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7366{
7367        const int vd = _pxvid_to_vd(pxvid);
7368        const int vm = vd - 1125;
7369
7370        if (INTEL_INFO(dev_priv)->is_mobile)
7371                return vm > 0 ? vm : 0;
7372
7373        return vd;
7374}
7375
7376static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7377{
7378        u64 now, diff, diffms;
7379        u32 count;
7380
7381        lockdep_assert_held(&mchdev_lock);
7382
7383        now = ktime_get_raw_ns();
7384        diffms = now - dev_priv->ips.last_time2;
7385        do_div(diffms, NSEC_PER_MSEC);
7386
7387        /* Don't divide by 0 */
7388        if (!diffms)
7389                return;
7390
7391        count = I915_READ(GFXEC);
7392
7393        if (count < dev_priv->ips.last_count2) {
7394                diff = ~0UL - dev_priv->ips.last_count2;
7395                diff += count;
7396        } else {
7397                diff = count - dev_priv->ips.last_count2;
7398        }
7399
7400        dev_priv->ips.last_count2 = count;
7401        dev_priv->ips.last_time2 = now;
7402
7403        /* More magic constants... */
7404        diff = diff * 1181;
7405        diff = div_u64(diff, diffms * 10);
7406        dev_priv->ips.gfx_power = diff;
7407}
7408
7409void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7410{
7411        if (INTEL_INFO(dev_priv)->gen != 5)
7412                return;
7413
7414        spin_lock_irq(&mchdev_lock);
7415
7416        __i915_update_gfx_val(dev_priv);
7417
7418        spin_unlock_irq(&mchdev_lock);
7419}
7420
7421static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7422{
7423        unsigned long t, corr, state1, corr2, state2;
7424        u32 pxvid, ext_v;
7425
7426        lockdep_assert_held(&mchdev_lock);
7427
7428        pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
7429        pxvid = (pxvid >> 24) & 0x7f;
7430        ext_v = pvid_to_extvid(dev_priv, pxvid);
7431
7432        state1 = ext_v;
7433
7434        t = i915_mch_val(dev_priv);
7435
7436        /* Revel in the empirically derived constants */
7437
7438        /* Correction factor in 1/100000 units */
7439        if (t > 80)
7440                corr = ((t * 2349) + 135940);
7441        else if (t >= 50)
7442                corr = ((t * 964) + 29317);
7443        else /* < 50 */
7444                corr = ((t * 301) + 1004);
7445
7446        corr = corr * ((150142 * state1) / 10000 - 78642);
7447        corr /= 100000;
7448        corr2 = (corr * dev_priv->ips.corr);
7449
7450        state2 = (corr2 * state1) / 10000;
7451        state2 /= 100; /* convert to mW */
7452
7453        __i915_update_gfx_val(dev_priv);
7454
7455        return dev_priv->ips.gfx_power + state2;
7456}
7457
7458unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7459{
7460        unsigned long val;
7461
7462        if (INTEL_INFO(dev_priv)->gen != 5)
7463                return 0;
7464
7465        spin_lock_irq(&mchdev_lock);
7466
7467        val = __i915_gfx_val(dev_priv);
7468
7469        spin_unlock_irq(&mchdev_lock);
7470
7471        return val;
7472}
7473
7474/**
7475 * i915_read_mch_val - return value for IPS use
7476 *
7477 * Calculate and return a value for the IPS driver to use when deciding whether
7478 * we have thermal and power headroom to increase CPU or GPU power budget.
7479 */
7480unsigned long i915_read_mch_val(void)
7481{
7482        struct drm_i915_private *dev_priv;
7483        unsigned long chipset_val, graphics_val, ret = 0;
7484
7485        spin_lock_irq(&mchdev_lock);
7486        if (!i915_mch_dev)
7487                goto out_unlock;
7488        dev_priv = i915_mch_dev;
7489
7490        chipset_val = __i915_chipset_val(dev_priv);
7491        graphics_val = __i915_gfx_val(dev_priv);
7492
7493        ret = chipset_val + graphics_val;
7494
7495out_unlock:
7496        spin_unlock_irq(&mchdev_lock);
7497
7498        return ret;
7499}
7500EXPORT_SYMBOL_GPL(i915_read_mch_val);
7501
7502/**
7503 * i915_gpu_raise - raise GPU frequency limit
7504 *
7505 * Raise the limit; IPS indicates we have thermal headroom.
7506 */
7507bool i915_gpu_raise(void)
7508{
7509        struct drm_i915_private *dev_priv;
7510        bool ret = true;
7511
7512        spin_lock_irq(&mchdev_lock);
7513        if (!i915_mch_dev) {
7514                ret = false;
7515                goto out_unlock;
7516        }
7517        dev_priv = i915_mch_dev;
7518
7519        if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7520                dev_priv->ips.max_delay--;
7521
7522out_unlock:
7523        spin_unlock_irq(&mchdev_lock);
7524
7525        return ret;
7526}
7527EXPORT_SYMBOL_GPL(i915_gpu_raise);
7528
7529/**
7530 * i915_gpu_lower - lower GPU frequency limit
7531 *
7532 * IPS indicates we're close to a thermal limit, so throttle back the GPU
7533 * frequency maximum.
7534 */
7535bool i915_gpu_lower(void)
7536{
7537        struct drm_i915_private *dev_priv;
7538        bool ret = true;
7539
7540        spin_lock_irq(&mchdev_lock);
7541        if (!i915_mch_dev) {
7542                ret = false;
7543                goto out_unlock;
7544        }
7545        dev_priv = i915_mch_dev;
7546
7547        if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7548                dev_priv->ips.max_delay++;
7549
7550out_unlock:
7551        spin_unlock_irq(&mchdev_lock);
7552
7553        return ret;
7554}
7555EXPORT_SYMBOL_GPL(i915_gpu_lower);
7556
7557/**
7558 * i915_gpu_busy - indicate GPU business to IPS
7559 *
7560 * Tell the IPS driver whether or not the GPU is busy.
7561 */
7562bool i915_gpu_busy(void)
7563{
7564        bool ret = false;
7565
7566        spin_lock_irq(&mchdev_lock);
7567        if (i915_mch_dev)
7568                ret = i915_mch_dev->gt.awake;
7569        spin_unlock_irq(&mchdev_lock);
7570
7571        return ret;
7572}
7573EXPORT_SYMBOL_GPL(i915_gpu_busy);
7574
7575/**
7576 * i915_gpu_turbo_disable - disable graphics turbo
7577 *
7578 * Disable graphics turbo by resetting the max frequency and setting the
7579 * current frequency to the default.
7580 */
7581bool i915_gpu_turbo_disable(void)
7582{
7583        struct drm_i915_private *dev_priv;
7584        bool ret = true;
7585
7586        spin_lock_irq(&mchdev_lock);
7587        if (!i915_mch_dev) {
7588                ret = false;
7589                goto out_unlock;
7590        }
7591        dev_priv = i915_mch_dev;
7592
7593        dev_priv->ips.max_delay = dev_priv->ips.fstart;
7594
7595        if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7596                ret = false;
7597
7598out_unlock:
7599        spin_unlock_irq(&mchdev_lock);
7600
7601        return ret;
7602}
7603EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
7604
7605/**
7606 * Tells the intel_ips driver that the i915 driver is now loaded, if
7607 * IPS got loaded first.
7608 *
7609 * This awkward dance is so that neither module has to depend on the
7610 * other in order for IPS to do the appropriate communication of
7611 * GPU turbo limits to i915.
7612 */
7613static void
7614ips_ping_for_i915_load(void)
7615{
7616        void (*link)(void);
7617
7618        link = symbol_get(ips_link_to_i915_driver);
7619        if (link) {
7620                link();
7621                symbol_put(ips_link_to_i915_driver);
7622        }
7623}
7624
7625void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
7626{
7627        /* We only register the i915 ips part with intel-ips once everything is
7628         * set up, to avoid intel-ips sneaking in and reading bogus values. */
7629        spin_lock_irq(&mchdev_lock);
7630        i915_mch_dev = dev_priv;
7631        spin_unlock_irq(&mchdev_lock);
7632
7633        ips_ping_for_i915_load();
7634}
7635
7636void intel_gpu_ips_teardown(void)
7637{
7638        spin_lock_irq(&mchdev_lock);
7639        i915_mch_dev = NULL;
7640        spin_unlock_irq(&mchdev_lock);
7641}
7642
7643static void intel_init_emon(struct drm_i915_private *dev_priv)
7644{
7645        u32 lcfuse;
7646        u8 pxw[16];
7647        int i;
7648
7649        /* Disable to program */
7650        I915_WRITE(ECR, 0);
7651        POSTING_READ(ECR);
7652
7653        /* Program energy weights for various events */
7654        I915_WRITE(SDEW, 0x15040d00);
7655        I915_WRITE(CSIEW0, 0x007f0000);
7656        I915_WRITE(CSIEW1, 0x1e220004);
7657        I915_WRITE(CSIEW2, 0x04000004);
7658
7659        for (i = 0; i < 5; i++)
7660                I915_WRITE(PEW(i), 0);
7661        for (i = 0; i < 3; i++)
7662                I915_WRITE(DEW(i), 0);
7663
7664        /* Program P-state weights to account for frequency power adjustment */
7665        for (i = 0; i < 16; i++) {
7666                u32 pxvidfreq = I915_READ(PXVFREQ(i));
7667                unsigned long freq = intel_pxfreq(pxvidfreq);
7668                unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7669                        PXVFREQ_PX_SHIFT;
7670                unsigned long val;
7671
7672                val = vid * vid;
7673                val *= (freq / 1000);
7674                val *= 255;
7675                val /= (127*127*900);
7676                if (val > 0xff)
7677                        DRM_ERROR("bad pxval: %ld\n", val);
7678                pxw[i] = val;
7679        }
7680        /* Render standby states get 0 weight */
7681        pxw[14] = 0;
7682        pxw[15] = 0;
7683
7684        for (i = 0; i < 4; i++) {
7685                u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7686                        (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7687                I915_WRITE(PXW(i), val);
7688        }
7689
7690        /* Adjust magic regs to magic values (more experimental results) */
7691        I915_WRITE(OGW0, 0);
7692        I915_WRITE(OGW1, 0);
7693        I915_WRITE(EG0, 0x00007f00);
7694        I915_WRITE(EG1, 0x0000000e);
7695        I915_WRITE(EG2, 0x000e0000);
7696        I915_WRITE(EG3, 0x68000300);
7697        I915_WRITE(EG4, 0x42000000);
7698        I915_WRITE(EG5, 0x00140031);
7699        I915_WRITE(EG6, 0);
7700        I915_WRITE(EG7, 0);
7701
7702        for (i = 0; i < 8; i++)
7703                I915_WRITE(PXWL(i), 0);
7704
7705        /* Enable PMON + select events */
7706        I915_WRITE(ECR, 0x80000019);
7707
7708        lcfuse = I915_READ(LCFUSE02);
7709
7710        dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7711}
7712
7713void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7714{
7715        /*
7716         * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7717         * requirement.
7718         */
7719        if (!i915.enable_rc6) {
7720                DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7721                intel_runtime_pm_get(dev_priv);
7722        }
7723
7724        mutex_lock(&dev_priv->drm.struct_mutex);
7725        mutex_lock(&dev_priv->rps.hw_lock);
7726
7727        /* Initialize RPS limits (for userspace) */
7728        if (IS_CHERRYVIEW(dev_priv))
7729                cherryview_init_gt_powersave(dev_priv);
7730        else if (IS_VALLEYVIEW(dev_priv))
7731                valleyview_init_gt_powersave(dev_priv);
7732        else if (INTEL_GEN(dev_priv) >= 6)
7733                gen6_init_rps_frequencies(dev_priv);
7734
7735        /* Derive initial user preferences/limits from the hardware limits */
7736        dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
7737        dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
7738
7739        dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
7740        dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
7741
7742        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7743                dev_priv->rps.min_freq_softlimit =
7744                        max_t(int,
7745                              dev_priv->rps.efficient_freq,
7746                              intel_freq_opcode(dev_priv, 450));
7747
7748        /* After setting max-softlimit, find the overclock max freq */
7749        if (IS_GEN6(dev_priv) ||
7750            IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
7751                u32 params = 0;
7752
7753                sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
7754                if (params & BIT(31)) { /* OC supported */
7755                        DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7756                                         (dev_priv->rps.max_freq & 0xff) * 50,
7757                                         (params & 0xff) * 50);
7758                        dev_priv->rps.max_freq = params & 0xff;
7759                }
7760        }
7761
7762        /* Finally allow us to boost to max by default */
7763        dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
7764
7765        mutex_unlock(&dev_priv->rps.hw_lock);
7766        mutex_unlock(&dev_priv->drm.struct_mutex);
7767
7768        intel_autoenable_gt_powersave(dev_priv);
7769}
7770
7771void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7772{
7773        if (IS_VALLEYVIEW(dev_priv))
7774                valleyview_cleanup_gt_powersave(dev_priv);
7775
7776        if (!i915.enable_rc6)
7777                intel_runtime_pm_put(dev_priv);
7778}
7779
7780/**
7781 * intel_suspend_gt_powersave - suspend PM work and helper threads
7782 * @dev_priv: i915 device
7783 *
7784 * We don't want to disable RC6 or other features here, we just want
7785 * to make sure any work we've queued has finished and won't bother
7786 * us while we're suspended.
7787 */
7788void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7789{
7790        if (INTEL_GEN(dev_priv) < 6)
7791                return;
7792
7793        if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
7794                intel_runtime_pm_put(dev_priv);
7795
7796        /* gen6_rps_idle() will be called later to disable interrupts */
7797}
7798
7799void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7800{
7801        dev_priv->rps.enabled = true; /* force disabling */
7802        intel_disable_gt_powersave(dev_priv);
7803
7804        gen6_reset_rps_interrupts(dev_priv);
7805}
7806
7807void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7808{
7809        if (!READ_ONCE(dev_priv->rps.enabled))
7810                return;
7811
7812        mutex_lock(&dev_priv->rps.hw_lock);
7813
7814        if (INTEL_GEN(dev_priv) >= 9) {
7815                gen9_disable_rc6(dev_priv);
7816                gen9_disable_rps(dev_priv);
7817        } else if (IS_CHERRYVIEW(dev_priv)) {
7818                cherryview_disable_rps(dev_priv);
7819        } else if (IS_VALLEYVIEW(dev_priv)) {
7820                valleyview_disable_rps(dev_priv);
7821        } else if (INTEL_GEN(dev_priv) >= 6) {
7822                gen6_disable_rps(dev_priv);
7823        }  else if (IS_IRONLAKE_M(dev_priv)) {
7824                ironlake_disable_drps(dev_priv);
7825        }
7826
7827        dev_priv->rps.enabled = false;
7828        mutex_unlock(&dev_priv->rps.hw_lock);
7829}
7830
7831void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7832{
7833        /* We shouldn't be disabling as we submit, so this should be less
7834         * racy than it appears!
7835         */
7836        if (READ_ONCE(dev_priv->rps.enabled))
7837                return;
7838
7839        /* Powersaving is controlled by the host when inside a VM */
7840        if (intel_vgpu_active(dev_priv))
7841                return;
7842
7843        mutex_lock(&dev_priv->rps.hw_lock);
7844
7845        if (IS_CHERRYVIEW(dev_priv)) {
7846                cherryview_enable_rps(dev_priv);
7847        } else if (IS_VALLEYVIEW(dev_priv)) {
7848                valleyview_enable_rps(dev_priv);
7849        } else if (INTEL_GEN(dev_priv) >= 9) {
7850                gen9_enable_rc6(dev_priv);
7851                gen9_enable_rps(dev_priv);
7852                if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv))
7853                        gen6_update_ring_freq(dev_priv);
7854        } else if (IS_BROADWELL(dev_priv)) {
7855                gen8_enable_rps(dev_priv);
7856                gen6_update_ring_freq(dev_priv);
7857        } else if (INTEL_GEN(dev_priv) >= 6) {
7858                gen6_enable_rps(dev_priv);
7859                gen6_update_ring_freq(dev_priv);
7860        } else if (IS_IRONLAKE_M(dev_priv)) {
7861                ironlake_enable_drps(dev_priv);
7862                intel_init_emon(dev_priv);
7863        }
7864
7865        WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
7866        WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
7867
7868        WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
7869        WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
7870
7871        dev_priv->rps.enabled = true;
7872        mutex_unlock(&dev_priv->rps.hw_lock);
7873}
7874
7875static void __intel_autoenable_gt_powersave(struct work_struct *work)
7876{
7877        struct drm_i915_private *dev_priv =
7878                container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
7879        struct intel_engine_cs *rcs;
7880        struct drm_i915_gem_request *req;
7881
7882        if (READ_ONCE(dev_priv->rps.enabled))
7883                goto out;
7884
7885        rcs = dev_priv->engine[RCS];
7886        if (rcs->last_retired_context)
7887                goto out;
7888
7889        if (!rcs->init_context)
7890                goto out;
7891
7892        mutex_lock(&dev_priv->drm.struct_mutex);
7893
7894        req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
7895        if (IS_ERR(req))
7896                goto unlock;
7897
7898        if (!i915.enable_execlists && i915_switch_context(req) == 0)
7899                rcs->init_context(req);
7900
7901        /* Mark the device busy, calling intel_enable_gt_powersave() */
7902        i915_add_request(req);
7903
7904unlock:
7905        mutex_unlock(&dev_priv->drm.struct_mutex);
7906out:
7907        intel_runtime_pm_put(dev_priv);
7908}
7909
7910void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
7911{
7912        if (READ_ONCE(dev_priv->rps.enabled))
7913                return;
7914
7915        if (IS_IRONLAKE_M(dev_priv)) {
7916                ironlake_enable_drps(dev_priv);
7917                intel_init_emon(dev_priv);
7918        } else if (INTEL_INFO(dev_priv)->gen >= 6) {
7919                /*
7920                 * PCU communication is slow and this doesn't need to be
7921                 * done at any specific time, so do this out of our fast path
7922                 * to make resume and init faster.
7923                 *
7924                 * We depend on the HW RC6 power context save/restore
7925                 * mechanism when entering D3 through runtime PM suspend. So
7926                 * disable RPM until RPS/RC6 is properly setup. We can only
7927                 * get here via the driver load/system resume/runtime resume
7928                 * paths, so the _noresume version is enough (and in case of
7929                 * runtime resume it's necessary).
7930                 */
7931                if (queue_delayed_work(dev_priv->wq,
7932                                       &dev_priv->rps.autoenable_work,
7933                                       round_jiffies_up_relative(HZ)))
7934                        intel_runtime_pm_get_noresume(dev_priv);
7935        }
7936}
7937
7938static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7939{
7940        /*
7941         * On Ibex Peak and Cougar Point, we need to disable clock
7942         * gating for the panel power sequencer or it will fail to
7943         * start up when no ports are active.
7944         */
7945        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7946}
7947
7948static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7949{
7950        enum pipe pipe;
7951
7952        for_each_pipe(dev_priv, pipe) {
7953                I915_WRITE(DSPCNTR(pipe),
7954                           I915_READ(DSPCNTR(pipe)) |
7955                           DISPPLANE_TRICKLE_FEED_DISABLE);
7956
7957                I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
7958                POSTING_READ(DSPSURF(pipe));
7959        }
7960}
7961
7962static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7963{
7964        I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
7965        I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
7966        I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
7967
7968        /*
7969         * Don't touch WM1S_LP_EN here.
7970         * Doing so could cause underruns.
7971         */
7972}
7973
7974static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7975{
7976        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7977
7978        /*
7979         * Required for FBC
7980         * WaFbcDisableDpfcClockGating:ilk
7981         */
7982        dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7983                   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7984                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7985
7986        I915_WRITE(PCH_3DCGDIS0,
7987                   MARIUNIT_CLOCK_GATE_DISABLE |
7988                   SVSMUNIT_CLOCK_GATE_DISABLE);
7989        I915_WRITE(PCH_3DCGDIS1,
7990                   VFMUNIT_CLOCK_GATE_DISABLE);
7991
7992        /*
7993         * According to the spec the following bits should be set in
7994         * order to enable memory self-refresh
7995         * The bit 22/21 of 0x42004
7996         * The bit 5 of 0x42020
7997         * The bit 15 of 0x45000
7998         */
7999        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8000                   (I915_READ(ILK_DISPLAY_CHICKEN2) |
8001                    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8002        dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8003        I915_WRITE(DISP_ARB_CTL,
8004                   (I915_READ(DISP_ARB_CTL) |
8005                    DISP_FBC_WM_DIS));
8006
8007        ilk_init_lp_watermarks(dev_priv);
8008
8009        /*
8010         * Based on the document from hardware guys the following bits
8011         * should be set unconditionally in order to enable FBC.
8012         * The bit 22 of 0x42000
8013         * The bit 22 of 0x42004
8014         * The bit 7,8,9 of 0x42020.
8015         */
8016        if (IS_IRONLAKE_M(dev_priv)) {
8017                /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8018                I915_WRITE(ILK_DISPLAY_CHICKEN1,
8019                           I915_READ(ILK_DISPLAY_CHICKEN1) |
8020                           ILK_FBCQ_DIS);
8021                I915_WRITE(ILK_DISPLAY_CHICKEN2,
8022                           I915_READ(ILK_DISPLAY_CHICKEN2) |
8023                           ILK_DPARB_GATE);
8024        }
8025
8026        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8027
8028        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8029                   I915_READ(ILK_DISPLAY_CHICKEN2) |
8030                   ILK_ELPIN_409_SELECT);
8031        I915_WRITE(_3D_CHICKEN2,
8032                   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8033                   _3D_CHICKEN2_WM_READ_PIPELINED);
8034
8035        /* WaDisableRenderCachePipelinedFlush:ilk */
8036        I915_WRITE(CACHE_MODE_0,
8037                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8038
8039        /* WaDisable_RenderCache_OperationalFlush:ilk */
8040        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8041
8042        g4x_disable_trickle_feed(dev_priv);
8043
8044        ibx_init_clock_gating(dev_priv);
8045}
8046
8047static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8048{
8049        int pipe;
8050        uint32_t val;
8051
8052        /*
8053         * On Ibex Peak and Cougar Point, we need to disable clock
8054         * gating for the panel power sequencer or it will fail to
8055         * start up when no ports are active.
8056         */
8057        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8058                   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8059                   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8060        I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8061                   DPLS_EDP_PPS_FIX_DIS);
8062        /* The below fixes the weird display corruption, a few pixels shifted
8063         * downward, on (only) LVDS of some HP laptops with IVY.
8064         */
8065        for_each_pipe(dev_priv, pipe) {
8066                val = I915_READ(TRANS_CHICKEN2(pipe));
8067                val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8068                val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8069                if (dev_priv->vbt.fdi_rx_polarity_inverted)
8070                        val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8071                val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8072                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8073                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8074                I915_WRITE(TRANS_CHICKEN2(pipe), val);
8075        }
8076        /* WADP0ClockGatingDisable */
8077        for_each_pipe(dev_priv, pipe) {
8078                I915_WRITE(TRANS_CHICKEN1(pipe),
8079                           TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8080        }
8081}
8082
8083static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8084{
8085        uint32_t tmp;
8086
8087        tmp = I915_READ(MCH_SSKPD);
8088        if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8089                DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8090                              tmp);
8091}
8092
8093static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8094{
8095        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8096
8097        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8098
8099        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8100                   I915_READ(ILK_DISPLAY_CHICKEN2) |
8101                   ILK_ELPIN_409_SELECT);
8102
8103        /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8104        I915_WRITE(_3D_CHICKEN,
8105                   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8106
8107        /* WaDisable_RenderCache_OperationalFlush:snb */
8108        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8109
8110        /*
8111         * BSpec recoomends 8x4 when MSAA is used,
8112         * however in practice 16x4 seems fastest.
8113         *
8114         * Note that PS/WM thread counts depend on the WIZ hashing
8115         * disable bit, which we don't touch here, but it's good
8116         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8117         */
8118        I915_WRITE(GEN6_GT_MODE,
8119                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8120
8121        ilk_init_lp_watermarks(dev_priv);
8122
8123        I915_WRITE(CACHE_MODE_0,
8124                   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8125
8126        I915_WRITE(GEN6_UCGCTL1,
8127                   I915_READ(GEN6_UCGCTL1) |
8128                   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8129                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8130
8131        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8132         * gating disable must be set.  Failure to set it results in
8133         * flickering pixels due to Z write ordering failures after
8134         * some amount of runtime in the Mesa "fire" demo, and Unigine
8135         * Sanctuary and Tropics, and apparently anything else with
8136         * alpha test or pixel discard.
8137         *
8138         * According to the spec, bit 11 (RCCUNIT) must also be set,
8139         * but we didn't debug actual testcases to find it out.
8140         *
8141         * WaDisableRCCUnitClockGating:snb
8142         * WaDisableRCPBUnitClockGating:snb
8143         */
8144        I915_WRITE(GEN6_UCGCTL2,
8145                   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8146                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8147
8148        /* WaStripsFansDisableFastClipPerformanceFix:snb */
8149        I915_WRITE(_3D_CHICKEN3,
8150                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8151
8152        /*
8153         * Bspec says:
8154         * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8155         * 3DSTATE_SF number of SF output attributes is more than 16."
8156         */
8157        I915_WRITE(_3D_CHICKEN3,
8158                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8159
8160        /*
8161         * According to the spec the following bits should be
8162         * set in order to enable memory self-refresh and fbc:
8163         * The bit21 and bit22 of 0x42000
8164         * The bit21 and bit22 of 0x42004
8165         * The bit5 and bit7 of 0x42020
8166         * The bit14 of 0x70180
8167         * The bit14 of 0x71180
8168         *
8169         * WaFbcAsynchFlipDisableFbcQueue:snb
8170         */
8171        I915_WRITE(ILK_DISPLAY_CHICKEN1,
8172                   I915_READ(ILK_DISPLAY_CHICKEN1) |
8173                   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8174        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8175                   I915_READ(ILK_DISPLAY_CHICKEN2) |
8176                   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8177        I915_WRITE(ILK_DSPCLK_GATE_D,
8178                   I915_READ(ILK_DSPCLK_GATE_D) |
8179                   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8180                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8181
8182        g4x_disable_trickle_feed(dev_priv);
8183
8184        cpt_init_clock_gating(dev_priv);
8185
8186        gen6_check_mch_setup(dev_priv);
8187}
8188
8189static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8190{
8191        uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8192
8193        /*
8194         * WaVSThreadDispatchOverride:ivb,vlv
8195         *
8196         * This actually overrides the dispatch
8197         * mode for all thread types.
8198         */
8199        reg &= ~GEN7_FF_SCHED_MASK;
8200        reg |= GEN7_FF_TS_SCHED_HW;
8201        reg |= GEN7_FF_VS_SCHED_HW;
8202        reg |= GEN7_FF_DS_SCHED_HW;
8203
8204        I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8205}
8206
8207static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8208{
8209        /*
8210         * TODO: this bit should only be enabled when really needed, then
8211         * disabled when not needed anymore in order to save power.
8212         */
8213        if (HAS_PCH_LPT_LP(dev_priv))
8214                I915_WRITE(SOUTH_DSPCLK_GATE_D,
8215                           I915_READ(SOUTH_DSPCLK_GATE_D) |
8216                           PCH_LP_PARTITION_LEVEL_DISABLE);
8217
8218        /* WADPOClockGatingDisable:hsw */
8219        I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8220                   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8221                   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8222}
8223
8224static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8225{
8226        if (HAS_PCH_LPT_LP(dev_priv)) {
8227                uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8228
8229                val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8230                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8231        }
8232}
8233
8234static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8235                                   int general_prio_credits,
8236                                   int high_prio_credits)
8237{
8238        u32 misccpctl;
8239        u32 val;
8240
8241        /* WaTempDisableDOPClkGating:bdw */
8242        misccpctl = I915_READ(GEN7_MISCCPCTL);
8243        I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8244
8245        val = I915_READ(GEN8_L3SQCREG1);
8246        val &= ~L3_PRIO_CREDITS_MASK;
8247        val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8248        val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8249        I915_WRITE(GEN8_L3SQCREG1, val);
8250
8251        /*
8252         * Wait at least 100 clocks before re-enabling clock gating.
8253         * See the definition of L3SQCREG1 in BSpec.
8254         */
8255        POSTING_READ(GEN8_L3SQCREG1);
8256        udelay(1);
8257        I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8258}
8259
8260static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
8261{
8262        gen9_init_clock_gating(dev_priv);
8263
8264        /* WaDisableSDEUnitClockGating:kbl */
8265        if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8266                I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8267                           GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8268
8269        /* WaDisableGamClockGating:kbl */
8270        if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8271                I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8272                           GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8273
8274        /* WaFbcNukeOnHostModify:kbl,cfl */
8275        I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8276                   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8277}
8278
8279static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
8280{
8281        gen9_init_clock_gating(dev_priv);
8282
8283        /* WAC6entrylatency:skl */
8284        I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8285                   FBC_LLC_FULLY_OPEN);
8286
8287        /* WaFbcNukeOnHostModify:skl */
8288        I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8289                   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8290}
8291
8292static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
8293{
8294        enum pipe pipe;
8295
8296        ilk_init_lp_watermarks(dev_priv);
8297
8298        /* WaSwitchSolVfFArbitrationPriority:bdw */
8299        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8300
8301        /* WaPsrDPAMaskVBlankInSRD:bdw */
8302        I915_WRITE(CHICKEN_PAR1_1,
8303                   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8304
8305        /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8306        for_each_pipe(dev_priv, pipe) {
8307                I915_WRITE(CHICKEN_PIPESL_1(pipe),
8308                           I915_READ(CHICKEN_PIPESL_1(pipe)) |
8309                           BDW_DPRS_MASK_VBLANK_SRD);
8310        }
8311
8312        /* WaVSRefCountFullforceMissDisable:bdw */
8313        /* WaDSRefCountFullforceMissDisable:bdw */
8314        I915_WRITE(GEN7_FF_THREAD_MODE,
8315                   I915_READ(GEN7_FF_THREAD_MODE) &
8316                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8317
8318        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8319                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8320
8321        /* WaDisableSDEUnitClockGating:bdw */
8322        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8323                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8324
8325        /* WaProgramL3SqcReg1Default:bdw */
8326        gen8_set_l3sqc_credits(dev_priv, 30, 2);
8327
8328        /*
8329         * WaGttCachingOffByDefault:bdw
8330         * GTT cache may not work with big pages, so if those
8331         * are ever enabled GTT cache may need to be disabled.
8332         */
8333        I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8334
8335        /* WaKVMNotificationOnConfigChange:bdw */
8336        I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8337                   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8338
8339        lpt_init_clock_gating(dev_priv);
8340
8341        /* WaDisableDopClockGating:bdw
8342         *
8343         * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8344         * clock gating.
8345         */
8346        I915_WRITE(GEN6_UCGCTL1,
8347                   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8348}
8349
8350static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
8351{
8352        ilk_init_lp_watermarks(dev_priv);
8353
8354        /* L3 caching of data atomics doesn't work -- disable it. */
8355        I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8356        I915_WRITE(HSW_ROW_CHICKEN3,
8357                   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8358
8359        /* This is required by WaCatErrorRejectionIssue:hsw */
8360        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8361                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8362                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8363
8364        /* WaVSRefCountFullforceMissDisable:hsw */
8365        I915_WRITE(GEN7_FF_THREAD_MODE,
8366                   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8367
8368        /* WaDisable_RenderCache_OperationalFlush:hsw */
8369        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8370
8371        /* enable HiZ Raw Stall Optimization */
8372        I915_WRITE(CACHE_MODE_0_GEN7,
8373                   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8374
8375        /* WaDisable4x2SubspanOptimization:hsw */
8376        I915_WRITE(CACHE_MODE_1,
8377                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8378
8379        /*
8380         * BSpec recommends 8x4 when MSAA is used,
8381         * however in practice 16x4 seems fastest.
8382         *
8383         * Note that PS/WM thread counts depend on the WIZ hashing
8384         * disable bit, which we don't touch here, but it's good
8385         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8386         */
8387        I915_WRITE(GEN7_GT_MODE,
8388                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8389
8390        /* WaSampleCChickenBitEnable:hsw */
8391        I915_WRITE(HALF_SLICE_CHICKEN3,
8392                   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8393
8394        /* WaSwitchSolVfFArbitrationPriority:hsw */
8395        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8396
8397        /* WaRsPkgCStateDisplayPMReq:hsw */
8398        I915_WRITE(CHICKEN_PAR1_1,
8399                   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
8400
8401        lpt_init_clock_gating(dev_priv);
8402}
8403
8404static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
8405{
8406        uint32_t snpcr;
8407
8408        ilk_init_lp_watermarks(dev_priv);
8409
8410        I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8411
8412        /* WaDisableEarlyCull:ivb */
8413        I915_WRITE(_3D_CHICKEN3,
8414                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8415
8416        /* WaDisableBackToBackFlipFix:ivb */
8417        I915_WRITE(IVB_CHICKEN3,
8418                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8419                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
8420
8421        /* WaDisablePSDDualDispatchEnable:ivb */
8422        if (IS_IVB_GT1(dev_priv))
8423                I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8424                           _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8425
8426        /* WaDisable_RenderCache_OperationalFlush:ivb */
8427        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8428
8429        /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8430        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8431                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8432
8433        /* WaApplyL3ControlAndL3ChickenMode:ivb */
8434        I915_WRITE(GEN7_L3CNTLREG1,
8435                        GEN7_WA_FOR_GEN7_L3_CONTROL);
8436        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8437                   GEN7_WA_L3_CHICKEN_MODE);
8438        if (IS_IVB_GT1(dev_priv))
8439                I915_WRITE(GEN7_ROW_CHICKEN2,
8440                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8441        else {
8442                /* must write both registers */
8443                I915_WRITE(GEN7_ROW_CHICKEN2,
8444                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8445                I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8446                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8447        }
8448
8449        /* WaForceL3Serialization:ivb */
8450        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8451                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8452
8453        /*
8454         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8455         * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8456         */
8457        I915_WRITE(GEN6_UCGCTL2,
8458                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8459
8460        /* This is required by WaCatErrorRejectionIssue:ivb */
8461        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8462                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8463                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8464
8465        g4x_disable_trickle_feed(dev_priv);
8466
8467        gen7_setup_fixed_func_scheduler(dev_priv);
8468
8469        if (0) { /* causes HiZ corruption on ivb:gt1 */
8470                /* enable HiZ Raw Stall Optimization */
8471                I915_WRITE(CACHE_MODE_0_GEN7,
8472                           _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8473        }
8474
8475        /* WaDisable4x2SubspanOptimization:ivb */
8476        I915_WRITE(CACHE_MODE_1,
8477                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8478
8479        /*
8480         * BSpec recommends 8x4 when MSAA is used,
8481         * however in practice 16x4 seems fastest.
8482         *
8483         * Note that PS/WM thread counts depend on the WIZ hashing
8484         * disable bit, which we don't touch here, but it's good
8485         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8486         */
8487        I915_WRITE(GEN7_GT_MODE,
8488                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8489
8490        snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8491        snpcr &= ~GEN6_MBC_SNPCR_MASK;
8492        snpcr |= GEN6_MBC_SNPCR_MED;
8493        I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8494
8495        if (!HAS_PCH_NOP(dev_priv))
8496                cpt_init_clock_gating(dev_priv);
8497
8498        gen6_check_mch_setup(dev_priv);
8499}
8500
8501static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
8502{
8503        /* WaDisableEarlyCull:vlv */
8504        I915_WRITE(_3D_CHICKEN3,
8505                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8506
8507        /* WaDisableBackToBackFlipFix:vlv */
8508        I915_WRITE(IVB_CHICKEN3,
8509                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8510                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
8511
8512        /* WaPsdDispatchEnable:vlv */
8513        /* WaDisablePSDDualDispatchEnable:vlv */
8514        I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8515                   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8516                                      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8517
8518        /* WaDisable_RenderCache_OperationalFlush:vlv */
8519        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8520
8521        /* WaForceL3Serialization:vlv */
8522        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8523                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8524
8525        /* WaDisableDopClockGating:vlv */
8526        I915_WRITE(GEN7_ROW_CHICKEN2,
8527                   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8528
8529        /* This is required by WaCatErrorRejectionIssue:vlv */
8530        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8531                   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8532                   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8533
8534        gen7_setup_fixed_func_scheduler(dev_priv);
8535
8536        /*
8537         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8538         * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8539         */
8540        I915_WRITE(GEN6_UCGCTL2,
8541                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8542
8543        /* WaDisableL3Bank2xClockGate:vlv
8544         * Disabling L3 clock gating- MMIO 940c[25] = 1
8545         * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
8546        I915_WRITE(GEN7_UCGCTL4,
8547                   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8548
8549        /*
8550         * BSpec says this must be set, even though
8551         * WaDisable4x2SubspanOptimization isn't listed for VLV.
8552         */
8553        I915_WRITE(CACHE_MODE_1,
8554                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8555
8556        /*
8557         * BSpec recommends 8x4 when MSAA is used,
8558         * however in practice 16x4 seems fastest.
8559         *
8560         * Note that PS/WM thread counts depend on the WIZ hashing
8561         * disable bit, which we don't touch here, but it's good
8562         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8563         */
8564        I915_WRITE(GEN7_GT_MODE,
8565                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8566
8567        /*
8568         * WaIncreaseL3CreditsForVLVB0:vlv
8569         * This is the hardware default actually.
8570         */
8571        I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
8572
8573        /*
8574         * WaDisableVLVClockGating_VBIIssue:vlv
8575         * Disable clock gating on th GCFG unit to prevent a delay
8576         * in the reporting of vblank events.
8577         */
8578        I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8579}
8580
8581static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
8582{
8583        /* WaVSRefCountFullforceMissDisable:chv */
8584        /* WaDSRefCountFullforceMissDisable:chv */
8585        I915_WRITE(GEN7_FF_THREAD_MODE,
8586                   I915_READ(GEN7_FF_THREAD_MODE) &
8587                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8588
8589        /* WaDisableSemaphoreAndSyncFlipWait:chv */
8590        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8591                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8592
8593        /* WaDisableCSUnitClockGating:chv */
8594        I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8595                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8596
8597        /* WaDisableSDEUnitClockGating:chv */
8598        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8599                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8600
8601        /*
8602         * WaProgramL3SqcReg1Default:chv
8603         * See gfxspecs/Related Documents/Performance Guide/
8604         * LSQC Setting Recommendations.
8605         */
8606        gen8_set_l3sqc_credits(dev_priv, 38, 2);
8607
8608        /*
8609         * GTT cache may not work with big pages, so if those
8610         * are ever enabled GTT cache may need to be disabled.
8611         */
8612        I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8613}
8614
8615static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8616{
8617        uint32_t dspclk_gate;
8618
8619        I915_WRITE(RENCLK_GATE_D1, 0);
8620        I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8621                   GS_UNIT_CLOCK_GATE_DISABLE |
8622                   CL_UNIT_CLOCK_GATE_DISABLE);
8623        I915_WRITE(RAMCLK_GATE_D, 0);
8624        dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8625                OVRUNIT_CLOCK_GATE_DISABLE |
8626                OVCUNIT_CLOCK_GATE_DISABLE;
8627        if (IS_GM45(dev_priv))
8628                dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8629        I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8630
8631        /* WaDisableRenderCachePipelinedFlush */
8632        I915_WRITE(CACHE_MODE_0,
8633                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8634
8635        /* WaDisable_RenderCache_OperationalFlush:g4x */
8636        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8637
8638        g4x_disable_trickle_feed(dev_priv);
8639}
8640
8641static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
8642{
8643        I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8644        I915_WRITE(RENCLK_GATE_D2, 0);
8645        I915_WRITE(DSPCLK_GATE_D, 0);
8646        I915_WRITE(RAMCLK_GATE_D, 0);
8647        I915_WRITE16(DEUC, 0);
8648        I915_WRITE(MI_ARB_STATE,
8649                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8650
8651        /* WaDisable_RenderCache_OperationalFlush:gen4 */
8652        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8653}
8654
8655static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
8656{
8657        I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8658                   I965_RCC_CLOCK_GATE_DISABLE |
8659                   I965_RCPB_CLOCK_GATE_DISABLE |
8660                   I965_ISC_CLOCK_GATE_DISABLE |
8661                   I965_FBC_CLOCK_GATE_DISABLE);
8662        I915_WRITE(RENCLK_GATE_D2, 0);
8663        I915_WRITE(MI_ARB_STATE,
8664                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8665
8666        /* WaDisable_RenderCache_OperationalFlush:gen4 */
8667        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8668}
8669
8670static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8671{
8672        u32 dstate = I915_READ(D_STATE);
8673
8674        dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8675                DSTATE_DOT_CLOCK_GATING;
8676        I915_WRITE(D_STATE, dstate);
8677
8678        if (IS_PINEVIEW(dev_priv))
8679                I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8680
8681        /* IIR "flip pending" means done if this bit is set */
8682        I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8683
8684        /* interrupts should cause a wake up from C3 */
8685        I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8686
8687        /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
8688        I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8689
8690        I915_WRITE(MI_ARB_STATE,
8691                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8692}
8693
8694static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8695{
8696        I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8697
8698        /* interrupts should cause a wake up from C3 */
8699        I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
8700                   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8701
8702        I915_WRITE(MEM_MODE,
8703                   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8704}
8705
8706static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8707{
8708        I915_WRITE(MEM_MODE,
8709                   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
8710                   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8711}
8712
8713void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8714{
8715        dev_priv->display.init_clock_gating(dev_priv);
8716}
8717
8718void intel_suspend_hw(struct drm_i915_private *dev_priv)
8719{
8720        if (HAS_PCH_LPT(dev_priv))
8721                lpt_suspend_hw(dev_priv);
8722}
8723
8724static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8725{
8726        DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
8727}
8728
8729/**
8730 * intel_init_clock_gating_hooks - setup the clock gating hooks
8731 * @dev_priv: device private
8732 *
8733 * Setup the hooks that configure which clocks of a given platform can be
8734 * gated and also apply various GT and display specific workarounds for these
8735 * platforms. Note that some GT specific workarounds are applied separately
8736 * when GPU contexts or batchbuffers start their execution.
8737 */
8738void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
8739{
8740        if (IS_SKYLAKE(dev_priv))
8741                dev_priv->display.init_clock_gating = skylake_init_clock_gating;
8742        else if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
8743                dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
8744        else if (IS_BROXTON(dev_priv))
8745                dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8746        else if (IS_GEMINILAKE(dev_priv))
8747                dev_priv->display.init_clock_gating = glk_init_clock_gating;
8748        else if (IS_BROADWELL(dev_priv))
8749                dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
8750        else if (IS_CHERRYVIEW(dev_priv))
8751                dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
8752        else if (IS_HASWELL(dev_priv))
8753                dev_priv->display.init_clock_gating = haswell_init_clock_gating;
8754        else if (IS_IVYBRIDGE(dev_priv))
8755                dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8756        else if (IS_VALLEYVIEW(dev_priv))
8757                dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
8758        else if (IS_GEN6(dev_priv))
8759                dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8760        else if (IS_GEN5(dev_priv))
8761                dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8762        else if (IS_G4X(dev_priv))
8763                dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8764        else if (IS_I965GM(dev_priv))
8765                dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8766        else if (IS_I965G(dev_priv))
8767                dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8768        else if (IS_GEN3(dev_priv))
8769                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8770        else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
8771                dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8772        else if (IS_GEN2(dev_priv))
8773                dev_priv->display.init_clock_gating = i830_init_clock_gating;
8774        else {
8775                MISSING_CASE(INTEL_DEVID(dev_priv));
8776                dev_priv->display.init_clock_gating = nop_init_clock_gating;
8777        }
8778}
8779
8780/* Set up chip specific power management-related functions */
8781void intel_init_pm(struct drm_i915_private *dev_priv)
8782{
8783        intel_fbc_init(dev_priv);
8784
8785        /* For cxsr */
8786        if (IS_PINEVIEW(dev_priv))
8787                i915_pineview_get_mem_freq(dev_priv);
8788        else if (IS_GEN5(dev_priv))
8789                i915_ironlake_get_mem_freq(dev_priv);
8790
8791        /* For FIFO watermark updates */
8792        if (INTEL_GEN(dev_priv) >= 9) {
8793                skl_setup_wm_latency(dev_priv);
8794                dev_priv->display.initial_watermarks = skl_initial_wm;
8795                dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8796                dev_priv->display.compute_global_watermarks = skl_compute_wm;
8797        } else if (HAS_PCH_SPLIT(dev_priv)) {
8798                ilk_setup_wm_latency(dev_priv);
8799
8800                if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8801                     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8802                    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8803                     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8804                        dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8805                        dev_priv->display.compute_intermediate_wm =
8806                                ilk_compute_intermediate_wm;
8807                        dev_priv->display.initial_watermarks =
8808                                ilk_initial_watermarks;
8809                        dev_priv->display.optimize_watermarks =
8810                                ilk_optimize_watermarks;
8811                } else {
8812                        DRM_DEBUG_KMS("Failed to read display plane latency. "
8813                                      "Disable CxSR\n");
8814                }
8815        } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8816                vlv_setup_wm_latency(dev_priv);
8817                dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8818                dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8819                dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8820                dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8821                dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8822        } else if (IS_G4X(dev_priv)) {
8823                g4x_setup_wm_latency(dev_priv);
8824                dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
8825                dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
8826                dev_priv->display.initial_watermarks = g4x_initial_watermarks;
8827                dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8828        } else if (IS_PINEVIEW(dev_priv)) {
8829                if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8830                                            dev_priv->is_ddr3,
8831                                            dev_priv->fsb_freq,
8832                                            dev_priv->mem_freq)) {
8833                        DRM_INFO("failed to find known CxSR latency "
8834                                 "(found ddr%s fsb freq %d, mem freq %d), "
8835                                 "disabling CxSR\n",
8836                                 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8837                                 dev_priv->fsb_freq, dev_priv->mem_freq);
8838                        /* Disable CxSR and never update its watermark again */
8839                        intel_set_memory_cxsr(dev_priv, false);
8840                        dev_priv->display.update_wm = NULL;
8841                } else
8842                        dev_priv->display.update_wm = pineview_update_wm;
8843        } else if (IS_GEN4(dev_priv)) {
8844                dev_priv->display.update_wm = i965_update_wm;
8845        } else if (IS_GEN3(dev_priv)) {
8846                dev_priv->display.update_wm = i9xx_update_wm;
8847                dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8848        } else if (IS_GEN2(dev_priv)) {
8849                if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8850                        dev_priv->display.update_wm = i845_update_wm;
8851                        dev_priv->display.get_fifo_size = i845_get_fifo_size;
8852                } else {
8853                        dev_priv->display.update_wm = i9xx_update_wm;
8854                        dev_priv->display.get_fifo_size = i830_get_fifo_size;
8855                }
8856        } else {
8857                DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8858        }
8859}
8860
8861static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
8862{
8863        uint32_t flags =
8864                I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8865
8866        switch (flags) {
8867        case GEN6_PCODE_SUCCESS:
8868                return 0;
8869        case GEN6_PCODE_UNIMPLEMENTED_CMD:
8870                return -ENODEV;
8871        case GEN6_PCODE_ILLEGAL_CMD:
8872                return -ENXIO;
8873        case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8874        case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8875                return -EOVERFLOW;
8876        case GEN6_PCODE_TIMEOUT:
8877                return -ETIMEDOUT;
8878        default:
8879                MISSING_CASE(flags);
8880                return 0;
8881        }
8882}
8883
8884static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
8885{
8886        uint32_t flags =
8887                I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8888
8889        switch (flags) {
8890        case GEN6_PCODE_SUCCESS:
8891                return 0;
8892        case GEN6_PCODE_ILLEGAL_CMD:
8893                return -ENXIO;
8894        case GEN7_PCODE_TIMEOUT:
8895                return -ETIMEDOUT;
8896        case GEN7_PCODE_ILLEGAL_DATA:
8897                return -EINVAL;
8898        case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8899                return -EOVERFLOW;
8900        default:
8901                MISSING_CASE(flags);
8902                return 0;
8903        }
8904}
8905
8906int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
8907{
8908        int status;
8909
8910        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8911
8912        /* GEN6_PCODE_* are outside of the forcewake domain, we can
8913         * use te fw I915_READ variants to reduce the amount of work
8914         * required when reading/writing.
8915         */
8916
8917        if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8918                DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
8919                                 mbox, __builtin_return_address(0));
8920                return -EAGAIN;
8921        }
8922
8923        I915_WRITE_FW(GEN6_PCODE_DATA, *val);
8924        I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8925        I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8926
8927        if (__intel_wait_for_register_fw(dev_priv,
8928                                         GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8929                                         500, 0, NULL)) {
8930                DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
8931                          mbox, __builtin_return_address(0));
8932                return -ETIMEDOUT;
8933        }
8934
8935        *val = I915_READ_FW(GEN6_PCODE_DATA);
8936        I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8937
8938        if (INTEL_GEN(dev_priv) > 6)
8939                status = gen7_check_mailbox_status(dev_priv);
8940        else
8941                status = gen6_check_mailbox_status(dev_priv);
8942
8943        if (status) {
8944                DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
8945                                 mbox, __builtin_return_address(0), status);
8946                return status;
8947        }
8948
8949        return 0;
8950}
8951
8952int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8953                            u32 mbox, u32 val)
8954{
8955        int status;
8956
8957        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8958
8959        /* GEN6_PCODE_* are outside of the forcewake domain, we can
8960         * use te fw I915_READ variants to reduce the amount of work
8961         * required when reading/writing.
8962         */
8963
8964        if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8965                DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
8966                                 val, mbox, __builtin_return_address(0));
8967                return -EAGAIN;
8968        }
8969
8970        I915_WRITE_FW(GEN6_PCODE_DATA, val);
8971        I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8972        I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8973
8974        if (__intel_wait_for_register_fw(dev_priv,
8975                                         GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8976                                         500, 0, NULL)) {
8977                DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
8978                          val, mbox, __builtin_return_address(0));
8979                return -ETIMEDOUT;
8980        }
8981
8982        I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8983
8984        if (INTEL_GEN(dev_priv) > 6)
8985                status = gen7_check_mailbox_status(dev_priv);
8986        else
8987                status = gen6_check_mailbox_status(dev_priv);
8988
8989        if (status) {
8990                DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
8991                                 val, mbox, __builtin_return_address(0), status);
8992                return status;
8993        }
8994
8995        return 0;
8996}
8997
8998static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
8999                                  u32 request, u32 reply_mask, u32 reply,
9000                                  u32 *status)
9001{
9002        u32 val = request;
9003
9004        *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9005
9006        return *status || ((val & reply_mask) == reply);
9007}
9008
9009/**
9010 * skl_pcode_request - send PCODE request until acknowledgment
9011 * @dev_priv: device private
9012 * @mbox: PCODE mailbox ID the request is targeted for
9013 * @request: request ID
9014 * @reply_mask: mask used to check for request acknowledgment
9015 * @reply: value used to check for request acknowledgment
9016 * @timeout_base_ms: timeout for polling with preemption enabled
9017 *
9018 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9019 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9020 * The request is acknowledged once the PCODE reply dword equals @reply after
9021 * applying @reply_mask. Polling is first attempted with preemption enabled
9022 * for @timeout_base_ms and if this times out for another 50 ms with
9023 * preemption disabled.
9024 *
9025 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9026 * other error as reported by PCODE.
9027 */
9028int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9029                      u32 reply_mask, u32 reply, int timeout_base_ms)
9030{
9031        u32 status;
9032        int ret;
9033
9034        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
9035
9036#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9037                                   &status)
9038
9039        /*
9040         * Prime the PCODE by doing a request first. Normally it guarantees
9041         * that a subsequent request, at most @timeout_base_ms later, succeeds.
9042         * _wait_for() doesn't guarantee when its passed condition is evaluated
9043         * first, so send the first request explicitly.
9044         */
9045        if (COND) {
9046                ret = 0;
9047                goto out;
9048        }
9049        ret = _wait_for(COND, timeout_base_ms * 1000, 10);
9050        if (!ret)
9051                goto out;
9052
9053        /*
9054         * The above can time out if the number of requests was low (2 in the
9055         * worst case) _and_ PCODE was busy for some reason even after a
9056         * (queued) request and @timeout_base_ms delay. As a workaround retry
9057         * the poll with preemption disabled to maximize the number of
9058         * requests. Increase the timeout from @timeout_base_ms to 50ms to
9059         * account for interrupts that could reduce the number of these
9060         * requests, and for any quirks of the PCODE firmware that delays
9061         * the request completion.
9062         */
9063        DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9064        WARN_ON_ONCE(timeout_base_ms > 3);
9065        preempt_disable();
9066        ret = wait_for_atomic(COND, 50);
9067        preempt_enable();
9068
9069out:
9070        return ret ? ret : status;
9071#undef COND
9072}
9073
9074static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9075{
9076        /*
9077         * N = val - 0xb7
9078         * Slow = Fast = GPLL ref * N
9079         */
9080        return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
9081}
9082
9083static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9084{
9085        return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
9086}
9087
9088static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9089{
9090        /*
9091         * N = val / 2
9092         * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9093         */
9094        return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
9095}
9096
9097static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9098{
9099        /* CHV needs even values */
9100        return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
9101}
9102
9103int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9104{
9105        if (INTEL_GEN(dev_priv) >= 9)
9106                return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9107                                         GEN9_FREQ_SCALER);
9108        else if (IS_CHERRYVIEW(dev_priv))
9109                return chv_gpu_freq(dev_priv, val);
9110        else if (IS_VALLEYVIEW(dev_priv))
9111                return byt_gpu_freq(dev_priv, val);
9112        else
9113                return val * GT_FREQUENCY_MULTIPLIER;
9114}
9115
9116int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9117{
9118        if (INTEL_GEN(dev_priv) >= 9)
9119                return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9120                                         GT_FREQUENCY_MULTIPLIER);
9121        else if (IS_CHERRYVIEW(dev_priv))
9122                return chv_freq_opcode(dev_priv, val);
9123        else if (IS_VALLEYVIEW(dev_priv))
9124                return byt_freq_opcode(dev_priv, val);
9125        else
9126                return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9127}
9128
9129struct request_boost {
9130        struct work_struct work;
9131        struct drm_i915_gem_request *req;
9132};
9133
9134static void __intel_rps_boost_work(struct work_struct *work)
9135{
9136        struct request_boost *boost = container_of(work, struct request_boost, work);
9137        struct drm_i915_gem_request *req = boost->req;
9138
9139        if (!i915_gem_request_completed(req))
9140                gen6_rps_boost(req, NULL);
9141
9142        i915_gem_request_put(req);
9143        kfree(boost);
9144}
9145
9146void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
9147{
9148        struct request_boost *boost;
9149
9150        if (req == NULL || INTEL_GEN(req->i915) < 6)
9151                return;
9152
9153        if (i915_gem_request_completed(req))
9154                return;
9155
9156        boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
9157        if (boost == NULL)
9158                return;
9159
9160        boost->req = i915_gem_request_get(req);
9161
9162        INIT_WORK(&boost->work, __intel_rps_boost_work);
9163        queue_work(req->i915->wq, &boost->work);
9164}
9165
9166void intel_pm_setup(struct drm_i915_private *dev_priv)
9167{
9168        mutex_init(&dev_priv->rps.hw_lock);
9169
9170        INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
9171                          __intel_autoenable_gt_powersave);
9172        atomic_set(&dev_priv->rps.num_waiters, 0);
9173
9174        dev_priv->pm.suspended = false;
9175        atomic_set(&dev_priv->pm.wakeref_count, 0);
9176}
9177
9178static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9179                             const i915_reg_t reg)
9180{
9181        u32 lower, upper, tmp;
9182        int loop = 2;
9183
9184        /* The register accessed do not need forcewake. We borrow
9185         * uncore lock to prevent concurrent access to range reg.
9186         */
9187        spin_lock_irq(&dev_priv->uncore.lock);
9188
9189        /* vlv and chv residency counters are 40 bits in width.
9190         * With a control bit, we can choose between upper or lower
9191         * 32bit window into this counter.
9192         *
9193         * Although we always use the counter in high-range mode elsewhere,
9194         * userspace may attempt to read the value before rc6 is initialised,
9195         * before we have set the default VLV_COUNTER_CONTROL value. So always
9196         * set the high bit to be safe.
9197         */
9198        I915_WRITE_FW(VLV_COUNTER_CONTROL,
9199                      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9200        upper = I915_READ_FW(reg);
9201        do {
9202                tmp = upper;
9203
9204                I915_WRITE_FW(VLV_COUNTER_CONTROL,
9205                              _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9206                lower = I915_READ_FW(reg);
9207
9208                I915_WRITE_FW(VLV_COUNTER_CONTROL,
9209                              _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9210                upper = I915_READ_FW(reg);
9211        } while (upper != tmp && --loop);
9212
9213        /* Everywhere else we always use VLV_COUNTER_CONTROL with the
9214         * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9215         * now.
9216         */
9217
9218        spin_unlock_irq(&dev_priv->uncore.lock);
9219
9220        return lower | (u64)upper << 8;
9221}
9222
9223u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9224                           const i915_reg_t reg)
9225{
9226        u64 time_hw, units, div;
9227
9228        if (!intel_enable_rc6())
9229                return 0;
9230
9231        intel_runtime_pm_get(dev_priv);
9232
9233        /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9234        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9235                units = 1000;
9236                div = dev_priv->czclk_freq;
9237
9238                time_hw = vlv_residency_raw(dev_priv, reg);
9239        } else if (IS_GEN9_LP(dev_priv)) {
9240                units = 1000;
9241                div = 1200;             /* 833.33ns */
9242
9243                time_hw = I915_READ(reg);
9244        } else {
9245                units = 128000; /* 1.28us */
9246                div = 100000;
9247
9248                time_hw = I915_READ(reg);
9249        }
9250
9251        intel_runtime_pm_put(dev_priv);
9252        return DIV_ROUND_UP_ULL(time_hw * units, div);
9253}
9254