linux/drivers/i2c/busses/i2c-riic.c
<<
>>
Prefs
   1/*
   2 * Renesas RIIC driver
   3 *
   4 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com>
   5 * Copyright (C) 2013 Renesas Solutions Corp.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms of the GNU General Public License version 2 as published by
   9 * the Free Software Foundation.
  10 */
  11
  12/*
  13 * This i2c core has a lot of interrupts, namely 8. We use their chaining as
  14 * some kind of state machine.
  15 *
  16 * 1) The main xfer routine kicks off a transmission by putting the start bit
  17 * (or repeated start) on the bus and enabling the transmit interrupt (TIE)
  18 * since we need to send the slave address + RW bit in every case.
  19 *
  20 * 2) TIE sends slave address + RW bit and selects how to continue.
  21 *
  22 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we
  23 * are done, we switch over to the transmission done interrupt (TEIE) and mark
  24 * the message as completed (includes sending STOP) there.
  25 *
  26 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is
  27 * needed to start clocking, then we keep receiving until we are done. Note
  28 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by
  29 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a
  30 * message to create the final NACK as sketched in the datasheet. This caused
  31 * some subtle races (when byte n was processed and byte n+1 was already
  32 * waiting), though, and I started with the safe approach.
  33 *
  34 * 4) If we got a NACK somewhere, we flag the error and stop the transmission
  35 * via NAKIE.
  36 *
  37 * Also check the comments in the interrupt routines for some gory details.
  38 */
  39
  40#include <linux/clk.h>
  41#include <linux/completion.h>
  42#include <linux/err.h>
  43#include <linux/i2c.h>
  44#include <linux/interrupt.h>
  45#include <linux/io.h>
  46#include <linux/module.h>
  47#include <linux/of.h>
  48#include <linux/platform_device.h>
  49
  50#define RIIC_ICCR1      0x00
  51#define RIIC_ICCR2      0x04
  52#define RIIC_ICMR1      0x08
  53#define RIIC_ICMR3      0x10
  54#define RIIC_ICSER      0x18
  55#define RIIC_ICIER      0x1c
  56#define RIIC_ICSR2      0x24
  57#define RIIC_ICBRL      0x34
  58#define RIIC_ICBRH      0x38
  59#define RIIC_ICDRT      0x3c
  60#define RIIC_ICDRR      0x40
  61
  62#define ICCR1_ICE       0x80
  63#define ICCR1_IICRST    0x40
  64#define ICCR1_SOWP      0x10
  65
  66#define ICCR2_BBSY      0x80
  67#define ICCR2_SP        0x08
  68#define ICCR2_RS        0x04
  69#define ICCR2_ST        0x02
  70
  71#define ICMR1_CKS_MASK  0x70
  72#define ICMR1_BCWP      0x08
  73#define ICMR1_CKS(_x)   ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP)
  74
  75#define ICMR3_RDRFS     0x20
  76#define ICMR3_ACKWP     0x10
  77#define ICMR3_ACKBT     0x08
  78
  79#define ICIER_TIE       0x80
  80#define ICIER_TEIE      0x40
  81#define ICIER_RIE       0x20
  82#define ICIER_NAKIE     0x10
  83#define ICIER_SPIE      0x08
  84
  85#define ICSR2_NACKF     0x10
  86
  87/* ICBRx (@ PCLK 33MHz) */
  88#define ICBR_RESERVED   0xe0 /* Should be 1 on writes */
  89#define ICBRL_SP100K    (19 | ICBR_RESERVED)
  90#define ICBRH_SP100K    (16 | ICBR_RESERVED)
  91#define ICBRL_SP400K    (21 | ICBR_RESERVED)
  92#define ICBRH_SP400K    (9 | ICBR_RESERVED)
  93
  94#define RIIC_INIT_MSG   -1
  95
  96struct riic_dev {
  97        void __iomem *base;
  98        u8 *buf;
  99        struct i2c_msg *msg;
 100        int bytes_left;
 101        int err;
 102        int is_last;
 103        struct completion msg_done;
 104        struct i2c_adapter adapter;
 105        struct clk *clk;
 106};
 107
 108struct riic_irq_desc {
 109        int res_num;
 110        irq_handler_t isr;
 111        char *name;
 112};
 113
 114static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg)
 115{
 116        writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg);
 117}
 118
 119static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
 120{
 121        struct riic_dev *riic = i2c_get_adapdata(adap);
 122        unsigned long time_left;
 123        int i, ret;
 124        u8 start_bit;
 125
 126        ret = clk_prepare_enable(riic->clk);
 127        if (ret)
 128                return ret;
 129
 130        if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) {
 131                riic->err = -EBUSY;
 132                goto out;
 133        }
 134
 135        reinit_completion(&riic->msg_done);
 136        riic->err = 0;
 137
 138        writeb(0, riic->base + RIIC_ICSR2);
 139
 140        for (i = 0, start_bit = ICCR2_ST; i < num; i++) {
 141                riic->bytes_left = RIIC_INIT_MSG;
 142                riic->buf = msgs[i].buf;
 143                riic->msg = &msgs[i];
 144                riic->is_last = (i == num - 1);
 145
 146                writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER);
 147
 148                writeb(start_bit, riic->base + RIIC_ICCR2);
 149
 150                time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout);
 151                if (time_left == 0)
 152                        riic->err = -ETIMEDOUT;
 153
 154                if (riic->err)
 155                        break;
 156
 157                start_bit = ICCR2_RS;
 158        }
 159
 160 out:
 161        clk_disable_unprepare(riic->clk);
 162
 163        return riic->err ?: num;
 164}
 165
 166static irqreturn_t riic_tdre_isr(int irq, void *data)
 167{
 168        struct riic_dev *riic = data;
 169        u8 val;
 170
 171        if (!riic->bytes_left)
 172                return IRQ_NONE;
 173
 174        if (riic->bytes_left == RIIC_INIT_MSG) {
 175                val = !!(riic->msg->flags & I2C_M_RD);
 176                if (val)
 177                        /* On read, switch over to receive interrupt */
 178                        riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER);
 179                else
 180                        /* On write, initialize length */
 181                        riic->bytes_left = riic->msg->len;
 182
 183                val |= (riic->msg->addr << 1);
 184        } else {
 185                val = *riic->buf;
 186                riic->buf++;
 187                riic->bytes_left--;
 188        }
 189
 190        /*
 191         * Switch to transmission ended interrupt when done. Do check here
 192         * after bytes_left was initialized to support SMBUS_QUICK (new msg has
 193         * 0 length then)
 194         */
 195        if (riic->bytes_left == 0)
 196                riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER);
 197
 198        /*
 199         * This acks the TIE interrupt. We get another TIE immediately if our
 200         * value could be moved to the shadow shift register right away. So
 201         * this must be after updates to ICIER (where we want to disable TIE)!
 202         */
 203        writeb(val, riic->base + RIIC_ICDRT);
 204
 205        return IRQ_HANDLED;
 206}
 207
 208static irqreturn_t riic_tend_isr(int irq, void *data)
 209{
 210        struct riic_dev *riic = data;
 211
 212        if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) {
 213                /* We got a NACKIE */
 214                readb(riic->base + RIIC_ICDRR); /* dummy read */
 215                riic->err = -ENXIO;
 216        } else if (riic->bytes_left) {
 217                return IRQ_NONE;
 218        }
 219
 220        if (riic->is_last || riic->err) {
 221                riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER);
 222                writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
 223        } else {
 224                /* Transfer is complete, but do not send STOP */
 225                riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER);
 226                complete(&riic->msg_done);
 227        }
 228
 229        return IRQ_HANDLED;
 230}
 231
 232static irqreturn_t riic_rdrf_isr(int irq, void *data)
 233{
 234        struct riic_dev *riic = data;
 235
 236        if (!riic->bytes_left)
 237                return IRQ_NONE;
 238
 239        if (riic->bytes_left == RIIC_INIT_MSG) {
 240                riic->bytes_left = riic->msg->len;
 241                readb(riic->base + RIIC_ICDRR); /* dummy read */
 242                return IRQ_HANDLED;
 243        }
 244
 245        if (riic->bytes_left == 1) {
 246                /* STOP must come before we set ACKBT! */
 247                if (riic->is_last) {
 248                        riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER);
 249                        writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
 250                }
 251
 252                riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3);
 253
 254        } else {
 255                riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3);
 256        }
 257
 258        /* Reading acks the RIE interrupt */
 259        *riic->buf = readb(riic->base + RIIC_ICDRR);
 260        riic->buf++;
 261        riic->bytes_left--;
 262
 263        return IRQ_HANDLED;
 264}
 265
 266static irqreturn_t riic_stop_isr(int irq, void *data)
 267{
 268        struct riic_dev *riic = data;
 269
 270        /* read back registers to confirm writes have fully propagated */
 271        writeb(0, riic->base + RIIC_ICSR2);
 272        readb(riic->base + RIIC_ICSR2);
 273        writeb(0, riic->base + RIIC_ICIER);
 274        readb(riic->base + RIIC_ICIER);
 275
 276        complete(&riic->msg_done);
 277
 278        return IRQ_HANDLED;
 279}
 280
 281static u32 riic_func(struct i2c_adapter *adap)
 282{
 283        return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
 284}
 285
 286static const struct i2c_algorithm riic_algo = {
 287        .master_xfer    = riic_xfer,
 288        .functionality  = riic_func,
 289};
 290
 291static int riic_init_hw(struct riic_dev *riic, u32 spd)
 292{
 293        int ret;
 294        unsigned long rate;
 295
 296        ret = clk_prepare_enable(riic->clk);
 297        if (ret)
 298                return ret;
 299
 300        /*
 301         * TODO: Implement formula to calculate the timing values depending on
 302         * variable parent clock rate and arbitrary bus speed
 303         */
 304        rate = clk_get_rate(riic->clk);
 305        if (rate != 33325000) {
 306                dev_err(&riic->adapter.dev,
 307                        "invalid parent clk (%lu). Must be 33325000Hz\n", rate);
 308                clk_disable_unprepare(riic->clk);
 309                return -EINVAL;
 310        }
 311
 312        /* Changing the order of accessing IICRST and ICE may break things! */
 313        writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1);
 314        riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1);
 315
 316        switch (spd) {
 317        case 100000:
 318                writeb(ICMR1_CKS(3), riic->base + RIIC_ICMR1);
 319                writeb(ICBRH_SP100K, riic->base + RIIC_ICBRH);
 320                writeb(ICBRL_SP100K, riic->base + RIIC_ICBRL);
 321                break;
 322        case 400000:
 323                writeb(ICMR1_CKS(1), riic->base + RIIC_ICMR1);
 324                writeb(ICBRH_SP400K, riic->base + RIIC_ICBRH);
 325                writeb(ICBRL_SP400K, riic->base + RIIC_ICBRL);
 326                break;
 327        default:
 328                dev_err(&riic->adapter.dev,
 329                        "unsupported bus speed (%dHz). Use 100000 or 400000\n", spd);
 330                clk_disable_unprepare(riic->clk);
 331                return -EINVAL;
 332        }
 333
 334        writeb(0, riic->base + RIIC_ICSER);
 335        writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3);
 336
 337        riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1);
 338
 339        clk_disable_unprepare(riic->clk);
 340
 341        return 0;
 342}
 343
 344static struct riic_irq_desc riic_irqs[] = {
 345        { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" },
 346        { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" },
 347        { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" },
 348        { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" },
 349        { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" },
 350};
 351
 352static int riic_i2c_probe(struct platform_device *pdev)
 353{
 354        struct device_node *np = pdev->dev.of_node;
 355        struct riic_dev *riic;
 356        struct i2c_adapter *adap;
 357        struct resource *res;
 358        u32 bus_rate = 0;
 359        int i, ret;
 360
 361        riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL);
 362        if (!riic)
 363                return -ENOMEM;
 364
 365        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 366        riic->base = devm_ioremap_resource(&pdev->dev, res);
 367        if (IS_ERR(riic->base))
 368                return PTR_ERR(riic->base);
 369
 370        riic->clk = devm_clk_get(&pdev->dev, NULL);
 371        if (IS_ERR(riic->clk)) {
 372                dev_err(&pdev->dev, "missing controller clock");
 373                return PTR_ERR(riic->clk);
 374        }
 375
 376        for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) {
 377                res = platform_get_resource(pdev, IORESOURCE_IRQ, riic_irqs[i].res_num);
 378                if (!res)
 379                        return -ENODEV;
 380
 381                ret = devm_request_irq(&pdev->dev, res->start, riic_irqs[i].isr,
 382                                        0, riic_irqs[i].name, riic);
 383                if (ret) {
 384                        dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name);
 385                        return ret;
 386                }
 387        }
 388
 389        adap = &riic->adapter;
 390        i2c_set_adapdata(adap, riic);
 391        strlcpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name));
 392        adap->owner = THIS_MODULE;
 393        adap->algo = &riic_algo;
 394        adap->dev.parent = &pdev->dev;
 395        adap->dev.of_node = pdev->dev.of_node;
 396
 397        init_completion(&riic->msg_done);
 398
 399        of_property_read_u32(np, "clock-frequency", &bus_rate);
 400        ret = riic_init_hw(riic, bus_rate);
 401        if (ret)
 402                return ret;
 403
 404
 405        ret = i2c_add_adapter(adap);
 406        if (ret)
 407                return ret;
 408
 409        platform_set_drvdata(pdev, riic);
 410
 411        dev_info(&pdev->dev, "registered with %dHz bus speed\n", bus_rate);
 412        return 0;
 413}
 414
 415static int riic_i2c_remove(struct platform_device *pdev)
 416{
 417        struct riic_dev *riic = platform_get_drvdata(pdev);
 418
 419        writeb(0, riic->base + RIIC_ICIER);
 420        i2c_del_adapter(&riic->adapter);
 421
 422        return 0;
 423}
 424
 425static const struct of_device_id riic_i2c_dt_ids[] = {
 426        { .compatible = "renesas,riic-rz" },
 427        { /* Sentinel */ },
 428};
 429
 430static struct platform_driver riic_i2c_driver = {
 431        .probe          = riic_i2c_probe,
 432        .remove         = riic_i2c_remove,
 433        .driver         = {
 434                .name   = "i2c-riic",
 435                .of_match_table = riic_i2c_dt_ids,
 436        },
 437};
 438
 439module_platform_driver(riic_i2c_driver);
 440
 441MODULE_DESCRIPTION("Renesas RIIC adapter");
 442MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
 443MODULE_LICENSE("GPL v2");
 444MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids);
 445