linux/drivers/media/i2c/cx25840/cx25840-ir.c
<<
>>
Prefs
   1/*
   2 *  Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
   3 *
   4 *  Integrated Consumer Infrared Controller
   5 *
   6 *  Copyright (C) 2010  Andy Walls <awalls@md.metrocast.net>
   7 *
   8 *  This program is free software; you can redistribute it and/or
   9 *  modify it under the terms of the GNU General Public License
  10 *  as published by the Free Software Foundation; either version 2
  11 *  of the License, or (at your option) any later version.
  12 *
  13 *  This program is distributed in the hope that it will be useful,
  14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 *  GNU General Public License for more details.
  17 */
  18
  19#include <linux/slab.h>
  20#include <linux/kfifo.h>
  21#include <linux/module.h>
  22#include <media/drv-intf/cx25840.h>
  23#include <media/rc-core.h>
  24
  25#include "cx25840-core.h"
  26
  27static unsigned int ir_debug;
  28module_param(ir_debug, int, 0644);
  29MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
  30
  31#define CX25840_IR_REG_BASE     0x200
  32
  33#define CX25840_IR_CNTRL_REG    0x200
  34#define CNTRL_WIN_3_3   0x00000000
  35#define CNTRL_WIN_4_3   0x00000001
  36#define CNTRL_WIN_3_4   0x00000002
  37#define CNTRL_WIN_4_4   0x00000003
  38#define CNTRL_WIN       0x00000003
  39#define CNTRL_EDG_NONE  0x00000000
  40#define CNTRL_EDG_FALL  0x00000004
  41#define CNTRL_EDG_RISE  0x00000008
  42#define CNTRL_EDG_BOTH  0x0000000C
  43#define CNTRL_EDG       0x0000000C
  44#define CNTRL_DMD       0x00000010
  45#define CNTRL_MOD       0x00000020
  46#define CNTRL_RFE       0x00000040
  47#define CNTRL_TFE       0x00000080
  48#define CNTRL_RXE       0x00000100
  49#define CNTRL_TXE       0x00000200
  50#define CNTRL_RIC       0x00000400
  51#define CNTRL_TIC       0x00000800
  52#define CNTRL_CPL       0x00001000
  53#define CNTRL_LBM       0x00002000
  54#define CNTRL_R         0x00004000
  55
  56#define CX25840_IR_TXCLK_REG    0x204
  57#define TXCLK_TCD       0x0000FFFF
  58
  59#define CX25840_IR_RXCLK_REG    0x208
  60#define RXCLK_RCD       0x0000FFFF
  61
  62#define CX25840_IR_CDUTY_REG    0x20C
  63#define CDUTY_CDC       0x0000000F
  64
  65#define CX25840_IR_STATS_REG    0x210
  66#define STATS_RTO       0x00000001
  67#define STATS_ROR       0x00000002
  68#define STATS_RBY       0x00000004
  69#define STATS_TBY       0x00000008
  70#define STATS_RSR       0x00000010
  71#define STATS_TSR       0x00000020
  72
  73#define CX25840_IR_IRQEN_REG    0x214
  74#define IRQEN_RTE       0x00000001
  75#define IRQEN_ROE       0x00000002
  76#define IRQEN_RSE       0x00000010
  77#define IRQEN_TSE       0x00000020
  78#define IRQEN_MSK       0x00000033
  79
  80#define CX25840_IR_FILTR_REG    0x218
  81#define FILTR_LPF       0x0000FFFF
  82
  83#define CX25840_IR_FIFO_REG     0x23C
  84#define FIFO_RXTX       0x0000FFFF
  85#define FIFO_RXTX_LVL   0x00010000
  86#define FIFO_RXTX_RTO   0x0001FFFF
  87#define FIFO_RX_NDV     0x00020000
  88#define FIFO_RX_DEPTH   8
  89#define FIFO_TX_DEPTH   8
  90
  91#define CX25840_VIDCLK_FREQ     108000000 /* 108 MHz, BT.656 */
  92#define CX25840_IR_REFCLK_FREQ  (CX25840_VIDCLK_FREQ / 2)
  93
  94/*
  95 * We use this union internally for convenience, but callers to tx_write
  96 * and rx_read will be expecting records of type struct ir_raw_event.
  97 * Always ensure the size of this union is dictated by struct ir_raw_event.
  98 */
  99union cx25840_ir_fifo_rec {
 100        u32 hw_fifo_data;
 101        struct ir_raw_event ir_core_data;
 102};
 103
 104#define CX25840_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
 105#define CX25840_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
 106
 107struct cx25840_ir_state {
 108        struct i2c_client *c;
 109
 110        struct v4l2_subdev_ir_parameters rx_params;
 111        struct mutex rx_params_lock; /* protects Rx parameter settings cache */
 112        atomic_t rxclk_divider;
 113        atomic_t rx_invert;
 114
 115        struct kfifo rx_kfifo;
 116        spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
 117
 118        struct v4l2_subdev_ir_parameters tx_params;
 119        struct mutex tx_params_lock; /* protects Tx parameter settings cache */
 120        atomic_t txclk_divider;
 121};
 122
 123static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
 124{
 125        struct cx25840_state *state = to_state(sd);
 126        return state ? state->ir_state : NULL;
 127}
 128
 129
 130/*
 131 * Rx and Tx Clock Divider register computations
 132 *
 133 * Note the largest clock divider value of 0xffff corresponds to:
 134 *      (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
 135 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 136 */
 137static inline u16 count_to_clock_divider(unsigned int d)
 138{
 139        if (d > RXCLK_RCD + 1)
 140                d = RXCLK_RCD;
 141        else if (d < 2)
 142                d = 1;
 143        else
 144                d--;
 145        return (u16) d;
 146}
 147
 148static inline u16 ns_to_clock_divider(unsigned int ns)
 149{
 150        return count_to_clock_divider(
 151                DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
 152}
 153
 154static inline unsigned int clock_divider_to_ns(unsigned int divider)
 155{
 156        /* Period of the Rx or Tx clock in ns */
 157        return DIV_ROUND_CLOSEST((divider + 1) * 1000,
 158                                 CX25840_IR_REFCLK_FREQ / 1000000);
 159}
 160
 161static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
 162{
 163        return count_to_clock_divider(
 164                          DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
 165}
 166
 167static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
 168{
 169        return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
 170}
 171
 172static inline u16 freq_to_clock_divider(unsigned int freq,
 173                                        unsigned int rollovers)
 174{
 175        return count_to_clock_divider(
 176                   DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
 177}
 178
 179static inline unsigned int clock_divider_to_freq(unsigned int divider,
 180                                                 unsigned int rollovers)
 181{
 182        return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
 183                                 (divider + 1) * rollovers);
 184}
 185
 186/*
 187 * Low Pass Filter register calculations
 188 *
 189 * Note the largest count value of 0xffff corresponds to:
 190 *      0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
 191 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 192 */
 193static inline u16 count_to_lpf_count(unsigned int d)
 194{
 195        if (d > FILTR_LPF)
 196                d = FILTR_LPF;
 197        else if (d < 4)
 198                d = 0;
 199        return (u16) d;
 200}
 201
 202static inline u16 ns_to_lpf_count(unsigned int ns)
 203{
 204        return count_to_lpf_count(
 205                DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
 206}
 207
 208static inline unsigned int lpf_count_to_ns(unsigned int count)
 209{
 210        /* Duration of the Low Pass Filter rejection window in ns */
 211        return DIV_ROUND_CLOSEST(count * 1000,
 212                                 CX25840_IR_REFCLK_FREQ / 1000000);
 213}
 214
 215static inline unsigned int lpf_count_to_us(unsigned int count)
 216{
 217        /* Duration of the Low Pass Filter rejection window in us */
 218        return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
 219}
 220
 221/*
 222 * FIFO register pulse width count computations
 223 */
 224static u32 clock_divider_to_resolution(u16 divider)
 225{
 226        /*
 227         * Resolution is the duration of 1 tick of the readable portion of
 228         * of the pulse width counter as read from the FIFO.  The two lsb's are
 229         * not readable, hence the << 2.  This function returns ns.
 230         */
 231        return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
 232                                 CX25840_IR_REFCLK_FREQ / 1000000);
 233}
 234
 235static u64 pulse_width_count_to_ns(u16 count, u16 divider)
 236{
 237        u64 n;
 238        u32 rem;
 239
 240        /*
 241         * The 2 lsb's of the pulse width timer count are not readable, hence
 242         * the (count << 2) | 0x3
 243         */
 244        n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
 245        rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
 246        if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
 247                n++;
 248        return n;
 249}
 250
 251#if 0
 252/* Keep as we will need this for Transmit functionality */
 253static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
 254{
 255        u64 n;
 256        u32 d;
 257        u32 rem;
 258
 259        /*
 260         * The 2 lsb's of the pulse width timer count are not accessible, hence
 261         * the (1 << 2)
 262         */
 263        n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
 264        d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
 265        rem = do_div(n, d);
 266        if (rem >= d / 2)
 267                n++;
 268
 269        if (n > FIFO_RXTX)
 270                n = FIFO_RXTX;
 271        else if (n == 0)
 272                n = 1;
 273        return (u16) n;
 274}
 275
 276#endif
 277static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
 278{
 279        u64 n;
 280        u32 rem;
 281
 282        /*
 283         * The 2 lsb's of the pulse width timer count are not readable, hence
 284         * the (count << 2) | 0x3
 285         */
 286        n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
 287        rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
 288        if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
 289                n++;
 290        return (unsigned int) n;
 291}
 292
 293/*
 294 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
 295 *
 296 * The total pulse clock count is an 18 bit pulse width timer count as the most
 297 * significant part and (up to) 16 bit clock divider count as a modulus.
 298 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
 299 * width timer count's least significant bit.
 300 */
 301static u64 ns_to_pulse_clocks(u32 ns)
 302{
 303        u64 clocks;
 304        u32 rem;
 305        clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
 306        rem = do_div(clocks, 1000);                         /* /1000 = cycles */
 307        if (rem >= 1000 / 2)
 308                clocks++;
 309        return clocks;
 310}
 311
 312static u16 pulse_clocks_to_clock_divider(u64 count)
 313{
 314        do_div(count, (FIFO_RXTX << 2) | 0x3);
 315
 316        /* net result needs to be rounded down and decremented by 1 */
 317        if (count > RXCLK_RCD + 1)
 318                count = RXCLK_RCD;
 319        else if (count < 2)
 320                count = 1;
 321        else
 322                count--;
 323        return (u16) count;
 324}
 325
 326/*
 327 * IR Control Register helpers
 328 */
 329enum tx_fifo_watermark {
 330        TX_FIFO_HALF_EMPTY = 0,
 331        TX_FIFO_EMPTY      = CNTRL_TIC,
 332};
 333
 334enum rx_fifo_watermark {
 335        RX_FIFO_HALF_FULL = 0,
 336        RX_FIFO_NOT_EMPTY = CNTRL_RIC,
 337};
 338
 339static inline void control_tx_irq_watermark(struct i2c_client *c,
 340                                            enum tx_fifo_watermark level)
 341{
 342        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
 343}
 344
 345static inline void control_rx_irq_watermark(struct i2c_client *c,
 346                                            enum rx_fifo_watermark level)
 347{
 348        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
 349}
 350
 351static inline void control_tx_enable(struct i2c_client *c, bool enable)
 352{
 353        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
 354                        enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
 355}
 356
 357static inline void control_rx_enable(struct i2c_client *c, bool enable)
 358{
 359        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
 360                        enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
 361}
 362
 363static inline void control_tx_modulation_enable(struct i2c_client *c,
 364                                                bool enable)
 365{
 366        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
 367                        enable ? CNTRL_MOD : 0);
 368}
 369
 370static inline void control_rx_demodulation_enable(struct i2c_client *c,
 371                                                  bool enable)
 372{
 373        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
 374                        enable ? CNTRL_DMD : 0);
 375}
 376
 377static inline void control_rx_s_edge_detection(struct i2c_client *c,
 378                                               u32 edge_types)
 379{
 380        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
 381                        edge_types & CNTRL_EDG_BOTH);
 382}
 383
 384static void control_rx_s_carrier_window(struct i2c_client *c,
 385                                        unsigned int carrier,
 386                                        unsigned int *carrier_range_low,
 387                                        unsigned int *carrier_range_high)
 388{
 389        u32 v;
 390        unsigned int c16 = carrier * 16;
 391
 392        if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
 393                v = CNTRL_WIN_3_4;
 394                *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
 395        } else {
 396                v = CNTRL_WIN_3_3;
 397                *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
 398        }
 399
 400        if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
 401                v |= CNTRL_WIN_4_3;
 402                *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
 403        } else {
 404                v |= CNTRL_WIN_3_3;
 405                *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
 406        }
 407        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
 408}
 409
 410static inline void control_tx_polarity_invert(struct i2c_client *c,
 411                                              bool invert)
 412{
 413        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
 414                        invert ? CNTRL_CPL : 0);
 415}
 416
 417/*
 418 * IR Rx & Tx Clock Register helpers
 419 */
 420static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
 421                                       unsigned int freq,
 422                                       u16 *divider)
 423{
 424        *divider = carrier_freq_to_clock_divider(freq);
 425        cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
 426        return clock_divider_to_carrier_freq(*divider);
 427}
 428
 429static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
 430                                       unsigned int freq,
 431                                       u16 *divider)
 432{
 433        *divider = carrier_freq_to_clock_divider(freq);
 434        cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
 435        return clock_divider_to_carrier_freq(*divider);
 436}
 437
 438static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
 439                                      u16 *divider)
 440{
 441        u64 pulse_clocks;
 442
 443        if (ns > IR_MAX_DURATION)
 444                ns = IR_MAX_DURATION;
 445        pulse_clocks = ns_to_pulse_clocks(ns);
 446        *divider = pulse_clocks_to_clock_divider(pulse_clocks);
 447        cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
 448        return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
 449}
 450
 451static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
 452                                      u16 *divider)
 453{
 454        u64 pulse_clocks;
 455
 456        if (ns > IR_MAX_DURATION)
 457                ns = IR_MAX_DURATION;
 458        pulse_clocks = ns_to_pulse_clocks(ns);
 459        *divider = pulse_clocks_to_clock_divider(pulse_clocks);
 460        cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
 461        return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
 462}
 463
 464/*
 465 * IR Tx Carrier Duty Cycle register helpers
 466 */
 467static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
 468                                          unsigned int duty_cycle)
 469{
 470        u32 n;
 471        n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
 472        if (n != 0)
 473                n--;
 474        if (n > 15)
 475                n = 15;
 476        cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
 477        return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
 478}
 479
 480/*
 481 * IR Filter Register helpers
 482 */
 483static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
 484{
 485        u32 count = ns_to_lpf_count(min_width_ns);
 486        cx25840_write4(c, CX25840_IR_FILTR_REG, count);
 487        return lpf_count_to_ns(count);
 488}
 489
 490/*
 491 * IR IRQ Enable Register helpers
 492 */
 493static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
 494{
 495        struct cx25840_state *state = to_state(sd);
 496
 497        if (is_cx23885(state) || is_cx23887(state))
 498                mask ^= IRQEN_MSK;
 499        mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
 500        cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
 501                        ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
 502}
 503
 504static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
 505{
 506        struct cx25840_state *state = to_state(sd);
 507
 508        if (is_cx23885(state) || is_cx23887(state))
 509                mask ^= IRQEN_MSK;
 510        mask &= IRQEN_TSE;
 511        cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
 512}
 513
 514/*
 515 * V4L2 Subdevice IR Ops
 516 */
 517int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
 518{
 519        struct cx25840_state *state = to_state(sd);
 520        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 521        struct i2c_client *c = NULL;
 522        unsigned long flags;
 523
 524        union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
 525        unsigned int i, j, k;
 526        u32 events, v;
 527        int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
 528        u32 cntrl, irqen, stats;
 529
 530        *handled = false;
 531        if (ir_state == NULL)
 532                return -ENODEV;
 533
 534        c = ir_state->c;
 535
 536        /* Only support the IR controller for the CX2388[57] AV Core for now */
 537        if (!(is_cx23885(state) || is_cx23887(state)))
 538                return -ENODEV;
 539
 540        cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
 541        irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
 542        if (is_cx23885(state) || is_cx23887(state))
 543                irqen ^= IRQEN_MSK;
 544        stats = cx25840_read4(c, CX25840_IR_STATS_REG);
 545
 546        tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
 547        rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
 548        rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
 549        ror = stats & STATS_ROR; /* Rx FIFO Over Run */
 550
 551        tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
 552        rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
 553        rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
 554        roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
 555
 556        v4l2_dbg(2, ir_debug, sd, "IR IRQ Status:  %s %s %s %s %s %s\n",
 557                 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
 558                 rto ? "rto" : "   ", ror ? "ror" : "   ",
 559                 stats & STATS_TBY ? "tby" : "   ",
 560                 stats & STATS_RBY ? "rby" : "   ");
 561
 562        v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
 563                 tse ? "tse" : "   ", rse ? "rse" : "   ",
 564                 rte ? "rte" : "   ", roe ? "roe" : "   ");
 565
 566        /*
 567         * Transmitter interrupt service
 568         */
 569        if (tse && tsr) {
 570                /*
 571                 * TODO:
 572                 * Check the watermark threshold setting
 573                 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
 574                 * Push the data to the hardware FIFO.
 575                 * If there was nothing more to send in the tx_kfifo, disable
 576                 *      the TSR IRQ and notify the v4l2_device.
 577                 * If there was something in the tx_kfifo, check the tx_kfifo
 578                 *      level and notify the v4l2_device, if it is low.
 579                 */
 580                /* For now, inhibit TSR interrupt until Tx is implemented */
 581                irqenable_tx(sd, 0);
 582                events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
 583                v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
 584                *handled = true;
 585        }
 586
 587        /*
 588         * Receiver interrupt service
 589         */
 590        kror = 0;
 591        if ((rse && rsr) || (rte && rto)) {
 592                /*
 593                 * Receive data on RSR to clear the STATS_RSR.
 594                 * Receive data on RTO, since we may not have yet hit the RSR
 595                 * watermark when we receive the RTO.
 596                 */
 597                for (i = 0, v = FIFO_RX_NDV;
 598                     (v & FIFO_RX_NDV) && !kror; i = 0) {
 599                        for (j = 0;
 600                             (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
 601                                v = cx25840_read4(c, CX25840_IR_FIFO_REG);
 602                                rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
 603                                i++;
 604                        }
 605                        if (i == 0)
 606                                break;
 607                        j = i * sizeof(union cx25840_ir_fifo_rec);
 608                        k = kfifo_in_locked(&ir_state->rx_kfifo,
 609                                            (unsigned char *) rx_data, j,
 610                                            &ir_state->rx_kfifo_lock);
 611                        if (k != j)
 612                                kror++; /* rx_kfifo over run */
 613                }
 614                *handled = true;
 615        }
 616
 617        events = 0;
 618        v = 0;
 619        if (kror) {
 620                events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
 621                v4l2_err(sd, "IR receiver software FIFO overrun\n");
 622        }
 623        if (roe && ror) {
 624                /*
 625                 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
 626                 * the Rx FIFO Over Run status (STATS_ROR)
 627                 */
 628                v |= CNTRL_RFE;
 629                events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
 630                v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
 631        }
 632        if (rte && rto) {
 633                /*
 634                 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
 635                 * the Rx Pulse Width Timer Time Out (STATS_RTO)
 636                 */
 637                v |= CNTRL_RXE;
 638                events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
 639        }
 640        if (v) {
 641                /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
 642                cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
 643                cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
 644                *handled = true;
 645        }
 646        spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
 647        if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
 648                events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
 649        spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
 650
 651        if (events)
 652                v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
 653        return 0;
 654}
 655
 656/* Receiver */
 657static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
 658                              ssize_t *num)
 659{
 660        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 661        bool invert;
 662        u16 divider;
 663        unsigned int i, n;
 664        union cx25840_ir_fifo_rec *p;
 665        unsigned u, v, w;
 666
 667        if (ir_state == NULL)
 668                return -ENODEV;
 669
 670        invert = (bool) atomic_read(&ir_state->rx_invert);
 671        divider = (u16) atomic_read(&ir_state->rxclk_divider);
 672
 673        n = count / sizeof(union cx25840_ir_fifo_rec)
 674                * sizeof(union cx25840_ir_fifo_rec);
 675        if (n == 0) {
 676                *num = 0;
 677                return 0;
 678        }
 679
 680        n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
 681                             &ir_state->rx_kfifo_lock);
 682
 683        n /= sizeof(union cx25840_ir_fifo_rec);
 684        *num = n * sizeof(union cx25840_ir_fifo_rec);
 685
 686        for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
 687
 688                if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
 689                        /* Assume RTO was because of no IR light input */
 690                        u = 0;
 691                        w = 1;
 692                } else {
 693                        u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
 694                        if (invert)
 695                                u = u ? 0 : 1;
 696                        w = 0;
 697                }
 698
 699                v = (unsigned) pulse_width_count_to_ns(
 700                                  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
 701                if (v > IR_MAX_DURATION)
 702                        v = IR_MAX_DURATION;
 703
 704                init_ir_raw_event(&p->ir_core_data);
 705                p->ir_core_data.pulse = u;
 706                p->ir_core_data.duration = v;
 707                p->ir_core_data.timeout = w;
 708
 709                v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns  %s  %s\n",
 710                         v, u ? "mark" : "space", w ? "(timed out)" : "");
 711                if (w)
 712                        v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
 713        }
 714        return 0;
 715}
 716
 717static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
 718                                      struct v4l2_subdev_ir_parameters *p)
 719{
 720        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 721
 722        if (ir_state == NULL)
 723                return -ENODEV;
 724
 725        mutex_lock(&ir_state->rx_params_lock);
 726        memcpy(p, &ir_state->rx_params,
 727                                      sizeof(struct v4l2_subdev_ir_parameters));
 728        mutex_unlock(&ir_state->rx_params_lock);
 729        return 0;
 730}
 731
 732static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
 733{
 734        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 735        struct i2c_client *c;
 736
 737        if (ir_state == NULL)
 738                return -ENODEV;
 739
 740        c = ir_state->c;
 741        mutex_lock(&ir_state->rx_params_lock);
 742
 743        /* Disable or slow down all IR Rx circuits and counters */
 744        irqenable_rx(sd, 0);
 745        control_rx_enable(c, false);
 746        control_rx_demodulation_enable(c, false);
 747        control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
 748        filter_rx_s_min_width(c, 0);
 749        cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
 750
 751        ir_state->rx_params.shutdown = true;
 752
 753        mutex_unlock(&ir_state->rx_params_lock);
 754        return 0;
 755}
 756
 757static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
 758                                      struct v4l2_subdev_ir_parameters *p)
 759{
 760        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 761        struct i2c_client *c;
 762        struct v4l2_subdev_ir_parameters *o;
 763        u16 rxclk_divider;
 764
 765        if (ir_state == NULL)
 766                return -ENODEV;
 767
 768        if (p->shutdown)
 769                return cx25840_ir_rx_shutdown(sd);
 770
 771        if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
 772                return -ENOSYS;
 773
 774        c = ir_state->c;
 775        o = &ir_state->rx_params;
 776
 777        mutex_lock(&ir_state->rx_params_lock);
 778
 779        o->shutdown = p->shutdown;
 780
 781        p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
 782        o->mode = p->mode;
 783
 784        p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
 785        o->bytes_per_data_element = p->bytes_per_data_element;
 786
 787        /* Before we tweak the hardware, we have to disable the receiver */
 788        irqenable_rx(sd, 0);
 789        control_rx_enable(c, false);
 790
 791        control_rx_demodulation_enable(c, p->modulation);
 792        o->modulation = p->modulation;
 793
 794        if (p->modulation) {
 795                p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
 796                                                     &rxclk_divider);
 797
 798                o->carrier_freq = p->carrier_freq;
 799
 800                p->duty_cycle = 50;
 801                o->duty_cycle = p->duty_cycle;
 802
 803                control_rx_s_carrier_window(c, p->carrier_freq,
 804                                            &p->carrier_range_lower,
 805                                            &p->carrier_range_upper);
 806                o->carrier_range_lower = p->carrier_range_lower;
 807                o->carrier_range_upper = p->carrier_range_upper;
 808
 809                p->max_pulse_width =
 810                        (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
 811        } else {
 812                p->max_pulse_width =
 813                            rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
 814                                                       &rxclk_divider);
 815        }
 816        o->max_pulse_width = p->max_pulse_width;
 817        atomic_set(&ir_state->rxclk_divider, rxclk_divider);
 818
 819        p->noise_filter_min_width =
 820                            filter_rx_s_min_width(c, p->noise_filter_min_width);
 821        o->noise_filter_min_width = p->noise_filter_min_width;
 822
 823        p->resolution = clock_divider_to_resolution(rxclk_divider);
 824        o->resolution = p->resolution;
 825
 826        /* FIXME - make this dependent on resolution for better performance */
 827        control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
 828
 829        control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
 830
 831        o->invert_level = p->invert_level;
 832        atomic_set(&ir_state->rx_invert, p->invert_level);
 833
 834        o->interrupt_enable = p->interrupt_enable;
 835        o->enable = p->enable;
 836        if (p->enable) {
 837                unsigned long flags;
 838
 839                spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
 840                kfifo_reset(&ir_state->rx_kfifo);
 841                spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
 842                if (p->interrupt_enable)
 843                        irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
 844                control_rx_enable(c, p->enable);
 845        }
 846
 847        mutex_unlock(&ir_state->rx_params_lock);
 848        return 0;
 849}
 850
 851/* Transmitter */
 852static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
 853                               ssize_t *num)
 854{
 855        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 856
 857        if (ir_state == NULL)
 858                return -ENODEV;
 859
 860#if 0
 861        /*
 862         * FIXME - the code below is an incomplete and untested sketch of what
 863         * may need to be done.  The critical part is to get 4 (or 8) pulses
 864         * from the tx_kfifo, or converted from ns to the proper units from the
 865         * input, and push them off to the hardware Tx FIFO right away, if the
 866         * HW TX fifo needs service.  The rest can be pushed to the tx_kfifo in
 867         * a less critical timeframe.  Also watch out for overruning the
 868         * tx_kfifo - don't let it happen and let the caller know not all his
 869         * pulses were written.
 870         */
 871        u32 *ns_pulse = (u32 *) buf;
 872        unsigned int n;
 873        u32 fifo_pulse[FIFO_TX_DEPTH];
 874        u32 mark;
 875
 876        /* Compute how much we can fit in the tx kfifo */
 877        n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
 878        n = min(n, (unsigned int) count);
 879        n /= sizeof(u32);
 880
 881        /* FIXME - turn on Tx Fifo service interrupt
 882         * check hardware fifo level, and other stuff
 883         */
 884        for (i = 0; i < n; ) {
 885                for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
 886                        mark = ns_pulse[i] & LEVEL_MASK;
 887                        fifo_pulse[j] = ns_to_pulse_width_count(
 888                                         ns_pulse[i] &
 889                                               ~LEVEL_MASK,
 890                                         ir_state->txclk_divider);
 891                        if (mark)
 892                                fifo_pulse[j] &= FIFO_RXTX_LVL;
 893                        i++;
 894                }
 895                kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
 896                                                               j * sizeof(u32));
 897        }
 898        *num = n * sizeof(u32);
 899#else
 900        /* For now enable the Tx FIFO Service interrupt & pretend we did work */
 901        irqenable_tx(sd, IRQEN_TSE);
 902        *num = count;
 903#endif
 904        return 0;
 905}
 906
 907static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
 908                                      struct v4l2_subdev_ir_parameters *p)
 909{
 910        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 911
 912        if (ir_state == NULL)
 913                return -ENODEV;
 914
 915        mutex_lock(&ir_state->tx_params_lock);
 916        memcpy(p, &ir_state->tx_params,
 917                                      sizeof(struct v4l2_subdev_ir_parameters));
 918        mutex_unlock(&ir_state->tx_params_lock);
 919        return 0;
 920}
 921
 922static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
 923{
 924        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 925        struct i2c_client *c;
 926
 927        if (ir_state == NULL)
 928                return -ENODEV;
 929
 930        c = ir_state->c;
 931        mutex_lock(&ir_state->tx_params_lock);
 932
 933        /* Disable or slow down all IR Tx circuits and counters */
 934        irqenable_tx(sd, 0);
 935        control_tx_enable(c, false);
 936        control_tx_modulation_enable(c, false);
 937        cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
 938
 939        ir_state->tx_params.shutdown = true;
 940
 941        mutex_unlock(&ir_state->tx_params_lock);
 942        return 0;
 943}
 944
 945static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
 946                                      struct v4l2_subdev_ir_parameters *p)
 947{
 948        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 949        struct i2c_client *c;
 950        struct v4l2_subdev_ir_parameters *o;
 951        u16 txclk_divider;
 952
 953        if (ir_state == NULL)
 954                return -ENODEV;
 955
 956        if (p->shutdown)
 957                return cx25840_ir_tx_shutdown(sd);
 958
 959        if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
 960                return -ENOSYS;
 961
 962        c = ir_state->c;
 963        o = &ir_state->tx_params;
 964        mutex_lock(&ir_state->tx_params_lock);
 965
 966        o->shutdown = p->shutdown;
 967
 968        p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
 969        o->mode = p->mode;
 970
 971        p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
 972        o->bytes_per_data_element = p->bytes_per_data_element;
 973
 974        /* Before we tweak the hardware, we have to disable the transmitter */
 975        irqenable_tx(sd, 0);
 976        control_tx_enable(c, false);
 977
 978        control_tx_modulation_enable(c, p->modulation);
 979        o->modulation = p->modulation;
 980
 981        if (p->modulation) {
 982                p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
 983                                                     &txclk_divider);
 984                o->carrier_freq = p->carrier_freq;
 985
 986                p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
 987                o->duty_cycle = p->duty_cycle;
 988
 989                p->max_pulse_width =
 990                        (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
 991        } else {
 992                p->max_pulse_width =
 993                            txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
 994                                                       &txclk_divider);
 995        }
 996        o->max_pulse_width = p->max_pulse_width;
 997        atomic_set(&ir_state->txclk_divider, txclk_divider);
 998
 999        p->resolution = clock_divider_to_resolution(txclk_divider);
1000        o->resolution = p->resolution;
1001
1002        /* FIXME - make this dependent on resolution for better performance */
1003        control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
1004
1005        control_tx_polarity_invert(c, p->invert_carrier_sense);
1006        o->invert_carrier_sense = p->invert_carrier_sense;
1007
1008        /*
1009         * FIXME: we don't have hardware help for IO pin level inversion
1010         * here like we have on the CX23888.
1011         * Act on this with some mix of logical inversion of data levels,
1012         * carrier polarity, and carrier duty cycle.
1013         */
1014        o->invert_level = p->invert_level;
1015
1016        o->interrupt_enable = p->interrupt_enable;
1017        o->enable = p->enable;
1018        if (p->enable) {
1019                /* reset tx_fifo here */
1020                if (p->interrupt_enable)
1021                        irqenable_tx(sd, IRQEN_TSE);
1022                control_tx_enable(c, p->enable);
1023        }
1024
1025        mutex_unlock(&ir_state->tx_params_lock);
1026        return 0;
1027}
1028
1029
1030/*
1031 * V4L2 Subdevice Core Ops support
1032 */
1033int cx25840_ir_log_status(struct v4l2_subdev *sd)
1034{
1035        struct cx25840_state *state = to_state(sd);
1036        struct i2c_client *c = state->c;
1037        char *s;
1038        int i, j;
1039        u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
1040
1041        /* The CX23888 chip doesn't have an IR controller on the A/V core */
1042        if (is_cx23888(state))
1043                return 0;
1044
1045        cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
1046        txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
1047        rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
1048        cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
1049        stats = cx25840_read4(c, CX25840_IR_STATS_REG);
1050        irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
1051        if (is_cx23885(state) || is_cx23887(state))
1052                irqen ^= IRQEN_MSK;
1053        filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
1054
1055        v4l2_info(sd, "IR Receiver:\n");
1056        v4l2_info(sd, "\tEnabled:                           %s\n",
1057                  cntrl & CNTRL_RXE ? "yes" : "no");
1058        v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
1059                  cntrl & CNTRL_DMD ? "enabled" : "disabled");
1060        v4l2_info(sd, "\tFIFO:                              %s\n",
1061                  cntrl & CNTRL_RFE ? "enabled" : "disabled");
1062        switch (cntrl & CNTRL_EDG) {
1063        case CNTRL_EDG_NONE:
1064                s = "disabled";
1065                break;
1066        case CNTRL_EDG_FALL:
1067                s = "falling edge";
1068                break;
1069        case CNTRL_EDG_RISE:
1070                s = "rising edge";
1071                break;
1072        case CNTRL_EDG_BOTH:
1073                s = "rising & falling edges";
1074                break;
1075        default:
1076                s = "??? edge";
1077                break;
1078        }
1079        v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
1080        v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1081                  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1082        v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1083                  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1084        v4l2_info(sd, "\tLoopback mode:                     %s\n",
1085                  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1086        if (cntrl & CNTRL_DMD) {
1087                v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
1088                          clock_divider_to_carrier_freq(rxclk));
1089                switch (cntrl & CNTRL_WIN) {
1090                case CNTRL_WIN_3_3:
1091                        i = 3;
1092                        j = 3;
1093                        break;
1094                case CNTRL_WIN_4_3:
1095                        i = 4;
1096                        j = 3;
1097                        break;
1098                case CNTRL_WIN_3_4:
1099                        i = 3;
1100                        j = 4;
1101                        break;
1102                case CNTRL_WIN_4_4:
1103                        i = 4;
1104                        j = 4;
1105                        break;
1106                default:
1107                        i = 0;
1108                        j = 0;
1109                        break;
1110                }
1111                v4l2_info(sd, "\tNext carrier edge window:          16 clocks -%1d/+%1d, %u to %u Hz\n",
1112                          i, j,
1113                          clock_divider_to_freq(rxclk, 16 + j),
1114                          clock_divider_to_freq(rxclk, 16 - i));
1115        }
1116        v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1117                  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1118                  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1119        v4l2_info(sd, "\tLow pass filter:                   %s\n",
1120                  filtr ? "enabled" : "disabled");
1121        if (filtr)
1122                v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, %u ns\n",
1123                          lpf_count_to_us(filtr),
1124                          lpf_count_to_ns(filtr));
1125        v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1126                  stats & STATS_RTO ? "yes" : "no");
1127        v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1128                  irqen & IRQEN_RTE ? "enabled" : "disabled");
1129        v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1130                  stats & STATS_ROR ? "yes" : "no");
1131        v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1132                  irqen & IRQEN_ROE ? "enabled" : "disabled");
1133        v4l2_info(sd, "\tBusy:                              %s\n",
1134                  stats & STATS_RBY ? "yes" : "no");
1135        v4l2_info(sd, "\tFIFO service requested:            %s\n",
1136                  stats & STATS_RSR ? "yes" : "no");
1137        v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1138                  irqen & IRQEN_RSE ? "enabled" : "disabled");
1139
1140        v4l2_info(sd, "IR Transmitter:\n");
1141        v4l2_info(sd, "\tEnabled:                           %s\n",
1142                  cntrl & CNTRL_TXE ? "yes" : "no");
1143        v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1144                  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1145        v4l2_info(sd, "\tFIFO:                              %s\n",
1146                  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1147        v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1148                  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1149        v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1150                  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1151                                    : "space:noburst mark:burst");
1152        if (cntrl & CNTRL_MOD) {
1153                v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1154                          clock_divider_to_carrier_freq(txclk));
1155                v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1156                          cduty + 1);
1157        }
1158        v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1159                  pulse_width_count_to_us(FIFO_RXTX, txclk),
1160                  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1161        v4l2_info(sd, "\tBusy:                              %s\n",
1162                  stats & STATS_TBY ? "yes" : "no");
1163        v4l2_info(sd, "\tFIFO service requested:            %s\n",
1164                  stats & STATS_TSR ? "yes" : "no");
1165        v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1166                  irqen & IRQEN_TSE ? "enabled" : "disabled");
1167
1168        return 0;
1169}
1170
1171
1172const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1173        .rx_read = cx25840_ir_rx_read,
1174        .rx_g_parameters = cx25840_ir_rx_g_parameters,
1175        .rx_s_parameters = cx25840_ir_rx_s_parameters,
1176
1177        .tx_write = cx25840_ir_tx_write,
1178        .tx_g_parameters = cx25840_ir_tx_g_parameters,
1179        .tx_s_parameters = cx25840_ir_tx_s_parameters,
1180};
1181
1182
1183static const struct v4l2_subdev_ir_parameters default_rx_params = {
1184        .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1185        .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1186
1187        .enable = false,
1188        .interrupt_enable = false,
1189        .shutdown = true,
1190
1191        .modulation = true,
1192        .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1193
1194        /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1195        /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1196        .noise_filter_min_width = 333333, /* ns */
1197        .carrier_range_lower = 35000,
1198        .carrier_range_upper = 37000,
1199        .invert_level = false,
1200};
1201
1202static const struct v4l2_subdev_ir_parameters default_tx_params = {
1203        .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1204        .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1205
1206        .enable = false,
1207        .interrupt_enable = false,
1208        .shutdown = true,
1209
1210        .modulation = true,
1211        .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1212        .duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1213        .invert_level = false,
1214        .invert_carrier_sense = false,
1215};
1216
1217int cx25840_ir_probe(struct v4l2_subdev *sd)
1218{
1219        struct cx25840_state *state = to_state(sd);
1220        struct cx25840_ir_state *ir_state;
1221        struct v4l2_subdev_ir_parameters default_params;
1222
1223        /* Only init the IR controller for the CX2388[57] AV Core for now */
1224        if (!(is_cx23885(state) || is_cx23887(state)))
1225                return 0;
1226
1227        ir_state = devm_kzalloc(&state->c->dev, sizeof(*ir_state), GFP_KERNEL);
1228        if (ir_state == NULL)
1229                return -ENOMEM;
1230
1231        spin_lock_init(&ir_state->rx_kfifo_lock);
1232        if (kfifo_alloc(&ir_state->rx_kfifo,
1233                        CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1234                return -ENOMEM;
1235
1236        ir_state->c = state->c;
1237        state->ir_state = ir_state;
1238
1239        /* Ensure no interrupts arrive yet */
1240        if (is_cx23885(state) || is_cx23887(state))
1241                cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1242        else
1243                cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1244
1245        mutex_init(&ir_state->rx_params_lock);
1246        default_params = default_rx_params;
1247        v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1248
1249        mutex_init(&ir_state->tx_params_lock);
1250        default_params = default_tx_params;
1251        v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1252
1253        return 0;
1254}
1255
1256int cx25840_ir_remove(struct v4l2_subdev *sd)
1257{
1258        struct cx25840_state *state = to_state(sd);
1259        struct cx25840_ir_state *ir_state = to_ir_state(sd);
1260
1261        if (ir_state == NULL)
1262                return -ENODEV;
1263
1264        cx25840_ir_rx_shutdown(sd);
1265        cx25840_ir_tx_shutdown(sd);
1266
1267        kfifo_free(&ir_state->rx_kfifo);
1268        state->ir_state = NULL;
1269        return 0;
1270}
1271