linux/drivers/mtd/ubi/wl.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
  19 */
  20
  21/*
  22 * UBI wear-leveling sub-system.
  23 *
  24 * This sub-system is responsible for wear-leveling. It works in terms of
  25 * physical eraseblocks and erase counters and knows nothing about logical
  26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
  28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  30 *
  31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
  33 *
  34 * When physical eraseblocks are returned to the WL sub-system by means of the
  35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  36 * done asynchronously in context of the per-UBI device background thread,
  37 * which is also managed by the WL sub-system.
  38 *
  39 * The wear-leveling is ensured by means of moving the contents of used
  40 * physical eraseblocks with low erase counter to free physical eraseblocks
  41 * with high erase counter.
  42 *
  43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  44 * bad.
  45 *
  46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  47 * in a physical eraseblock, it has to be moved. Technically this is the same
  48 * as moving it for wear-leveling reasons.
  49 *
  50 * As it was said, for the UBI sub-system all physical eraseblocks are either
  51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
  54 *
  55 * When the WL sub-system returns a physical eraseblock, the physical
  56 * eraseblock is protected from being moved for some "time". For this reason,
  57 * the physical eraseblock is not directly moved from the @wl->free tree to the
  58 * @wl->used tree. There is a protection queue in between where this
  59 * physical eraseblock is temporarily stored (@wl->pq).
  60 *
  61 * All this protection stuff is needed because:
  62 *  o we don't want to move physical eraseblocks just after we have given them
  63 *    to the user; instead, we first want to let users fill them up with data;
  64 *
  65 *  o there is a chance that the user will put the physical eraseblock very
  66 *    soon, so it makes sense not to move it for some time, but wait.
  67 *
  68 * Physical eraseblocks stay protected only for limited time. But the "time" is
  69 * measured in erase cycles in this case. This is implemented with help of the
  70 * protection queue. Eraseblocks are put to the tail of this queue when they
  71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  72 * head of the queue on each erase operation (for any eraseblock). So the
  73 * length of the queue defines how may (global) erase cycles PEBs are protected.
  74 *
  75 * To put it differently, each physical eraseblock has 2 main states: free and
  76 * used. The former state corresponds to the @wl->free tree. The latter state
  77 * is split up on several sub-states:
  78 * o the WL movement is allowed (@wl->used tree);
  79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  80 *   erroneous - e.g., there was a read error;
  81 * o the WL movement is temporarily prohibited (@wl->pq queue);
  82 * o scrubbing is needed (@wl->scrub tree).
  83 *
  84 * Depending on the sub-state, wear-leveling entries of the used physical
  85 * eraseblocks may be kept in one of those structures.
  86 *
  87 * Note, in this implementation, we keep a small in-RAM object for each physical
  88 * eraseblock. This is surely not a scalable solution. But it appears to be good
  89 * enough for moderately large flashes and it is simple. In future, one may
  90 * re-work this sub-system and make it more scalable.
  91 *
  92 * At the moment this sub-system does not utilize the sequence number, which
  93 * was introduced relatively recently. But it would be wise to do this because
  94 * the sequence number of a logical eraseblock characterizes how old is it. For
  95 * example, when we move a PEB with low erase counter, and we need to pick the
  96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  97 * pick target PEB with an average EC if our PEB is not very "old". This is a
  98 * room for future re-works of the WL sub-system.
  99 */
 100
 101#include <linux/slab.h>
 102#include <linux/crc32.h>
 103#include <linux/freezer.h>
 104#include <linux/kthread.h>
 105#include "ubi.h"
 106#include "wl.h"
 107
 108/* Number of physical eraseblocks reserved for wear-leveling purposes */
 109#define WL_RESERVED_PEBS 1
 110
 111/*
 112 * Maximum difference between two erase counters. If this threshold is
 113 * exceeded, the WL sub-system starts moving data from used physical
 114 * eraseblocks with low erase counter to free physical eraseblocks with high
 115 * erase counter.
 116 */
 117#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 118
 119/*
 120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
 121 * physical eraseblock to move to. The simplest way would be just to pick the
 122 * one with the highest erase counter. But in certain workloads this could lead
 123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 124 * situation when the picked physical eraseblock is constantly erased after the
 125 * data is written to it. So, we have a constant which limits the highest erase
 126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 127 * does not pick eraseblocks with erase counter greater than the lowest erase
 128 * counter plus %WL_FREE_MAX_DIFF.
 129 */
 130#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 131
 132/*
 133 * Maximum number of consecutive background thread failures which is enough to
 134 * switch to read-only mode.
 135 */
 136#define WL_MAX_FAILURES 32
 137
 138static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
 139static int self_check_in_wl_tree(const struct ubi_device *ubi,
 140                                 struct ubi_wl_entry *e, struct rb_root *root);
 141static int self_check_in_pq(const struct ubi_device *ubi,
 142                            struct ubi_wl_entry *e);
 143
 144/**
 145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 146 * @e: the wear-leveling entry to add
 147 * @root: the root of the tree
 148 *
 149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 150 * the @ubi->used and @ubi->free RB-trees.
 151 */
 152static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 153{
 154        struct rb_node **p, *parent = NULL;
 155
 156        p = &root->rb_node;
 157        while (*p) {
 158                struct ubi_wl_entry *e1;
 159
 160                parent = *p;
 161                e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 162
 163                if (e->ec < e1->ec)
 164                        p = &(*p)->rb_left;
 165                else if (e->ec > e1->ec)
 166                        p = &(*p)->rb_right;
 167                else {
 168                        ubi_assert(e->pnum != e1->pnum);
 169                        if (e->pnum < e1->pnum)
 170                                p = &(*p)->rb_left;
 171                        else
 172                                p = &(*p)->rb_right;
 173                }
 174        }
 175
 176        rb_link_node(&e->u.rb, parent, p);
 177        rb_insert_color(&e->u.rb, root);
 178}
 179
 180/**
 181 * wl_tree_destroy - destroy a wear-leveling entry.
 182 * @ubi: UBI device description object
 183 * @e: the wear-leveling entry to add
 184 *
 185 * This function destroys a wear leveling entry and removes
 186 * the reference from the lookup table.
 187 */
 188static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
 189{
 190        ubi->lookuptbl[e->pnum] = NULL;
 191        kmem_cache_free(ubi_wl_entry_slab, e);
 192}
 193
 194/**
 195 * do_work - do one pending work.
 196 * @ubi: UBI device description object
 197 *
 198 * This function returns zero in case of success and a negative error code in
 199 * case of failure.
 200 */
 201static int do_work(struct ubi_device *ubi)
 202{
 203        int err;
 204        struct ubi_work *wrk;
 205
 206        cond_resched();
 207
 208        /*
 209         * @ubi->work_sem is used to synchronize with the workers. Workers take
 210         * it in read mode, so many of them may be doing works at a time. But
 211         * the queue flush code has to be sure the whole queue of works is
 212         * done, and it takes the mutex in write mode.
 213         */
 214        down_read(&ubi->work_sem);
 215        spin_lock(&ubi->wl_lock);
 216        if (list_empty(&ubi->works)) {
 217                spin_unlock(&ubi->wl_lock);
 218                up_read(&ubi->work_sem);
 219                return 0;
 220        }
 221
 222        wrk = list_entry(ubi->works.next, struct ubi_work, list);
 223        list_del(&wrk->list);
 224        ubi->works_count -= 1;
 225        ubi_assert(ubi->works_count >= 0);
 226        spin_unlock(&ubi->wl_lock);
 227
 228        /*
 229         * Call the worker function. Do not touch the work structure
 230         * after this call as it will have been freed or reused by that
 231         * time by the worker function.
 232         */
 233        err = wrk->func(ubi, wrk, 0);
 234        if (err)
 235                ubi_err(ubi, "work failed with error code %d", err);
 236        up_read(&ubi->work_sem);
 237
 238        return err;
 239}
 240
 241/**
 242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 243 * @e: the wear-leveling entry to check
 244 * @root: the root of the tree
 245 *
 246 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 247 * is not.
 248 */
 249static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 250{
 251        struct rb_node *p;
 252
 253        p = root->rb_node;
 254        while (p) {
 255                struct ubi_wl_entry *e1;
 256
 257                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 258
 259                if (e->pnum == e1->pnum) {
 260                        ubi_assert(e == e1);
 261                        return 1;
 262                }
 263
 264                if (e->ec < e1->ec)
 265                        p = p->rb_left;
 266                else if (e->ec > e1->ec)
 267                        p = p->rb_right;
 268                else {
 269                        ubi_assert(e->pnum != e1->pnum);
 270                        if (e->pnum < e1->pnum)
 271                                p = p->rb_left;
 272                        else
 273                                p = p->rb_right;
 274                }
 275        }
 276
 277        return 0;
 278}
 279
 280/**
 281 * prot_queue_add - add physical eraseblock to the protection queue.
 282 * @ubi: UBI device description object
 283 * @e: the physical eraseblock to add
 284 *
 285 * This function adds @e to the tail of the protection queue @ubi->pq, where
 286 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 287 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 288 * be locked.
 289 */
 290static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 291{
 292        int pq_tail = ubi->pq_head - 1;
 293
 294        if (pq_tail < 0)
 295                pq_tail = UBI_PROT_QUEUE_LEN - 1;
 296        ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 297        list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 298        dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 299}
 300
 301/**
 302 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 303 * @ubi: UBI device description object
 304 * @root: the RB-tree where to look for
 305 * @diff: maximum possible difference from the smallest erase counter
 306 *
 307 * This function looks for a wear leveling entry with erase counter closest to
 308 * min + @diff, where min is the smallest erase counter.
 309 */
 310static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
 311                                          struct rb_root *root, int diff)
 312{
 313        struct rb_node *p;
 314        struct ubi_wl_entry *e, *prev_e = NULL;
 315        int max;
 316
 317        e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 318        max = e->ec + diff;
 319
 320        p = root->rb_node;
 321        while (p) {
 322                struct ubi_wl_entry *e1;
 323
 324                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 325                if (e1->ec >= max)
 326                        p = p->rb_left;
 327                else {
 328                        p = p->rb_right;
 329                        prev_e = e;
 330                        e = e1;
 331                }
 332        }
 333
 334        /* If no fastmap has been written and this WL entry can be used
 335         * as anchor PEB, hold it back and return the second best WL entry
 336         * such that fastmap can use the anchor PEB later. */
 337        if (prev_e && !ubi->fm_disabled &&
 338            !ubi->fm && e->pnum < UBI_FM_MAX_START)
 339                return prev_e;
 340
 341        return e;
 342}
 343
 344/**
 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
 346 * @ubi: UBI device description object
 347 * @root: the RB-tree where to look for
 348 *
 349 * This function looks for a wear leveling entry with medium erase counter,
 350 * but not greater or equivalent than the lowest erase counter plus
 351 * %WL_FREE_MAX_DIFF/2.
 352 */
 353static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
 354                                               struct rb_root *root)
 355{
 356        struct ubi_wl_entry *e, *first, *last;
 357
 358        first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 359        last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
 360
 361        if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
 362                e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
 363
 364                /* If no fastmap has been written and this WL entry can be used
 365                 * as anchor PEB, hold it back and return the second best
 366                 * WL entry such that fastmap can use the anchor PEB later. */
 367                e = may_reserve_for_fm(ubi, e, root);
 368        } else
 369                e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
 370
 371        return e;
 372}
 373
 374/**
 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
 376 * refill_wl_user_pool().
 377 * @ubi: UBI device description object
 378 *
 379 * This function returns a a wear leveling entry in case of success and
 380 * NULL in case of failure.
 381 */
 382static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
 383{
 384        struct ubi_wl_entry *e;
 385
 386        e = find_mean_wl_entry(ubi, &ubi->free);
 387        if (!e) {
 388                ubi_err(ubi, "no free eraseblocks");
 389                return NULL;
 390        }
 391
 392        self_check_in_wl_tree(ubi, e, &ubi->free);
 393
 394        /*
 395         * Move the physical eraseblock to the protection queue where it will
 396         * be protected from being moved for some time.
 397         */
 398        rb_erase(&e->u.rb, &ubi->free);
 399        ubi->free_count--;
 400        dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 401
 402        return e;
 403}
 404
 405/**
 406 * prot_queue_del - remove a physical eraseblock from the protection queue.
 407 * @ubi: UBI device description object
 408 * @pnum: the physical eraseblock to remove
 409 *
 410 * This function deletes PEB @pnum from the protection queue and returns zero
 411 * in case of success and %-ENODEV if the PEB was not found.
 412 */
 413static int prot_queue_del(struct ubi_device *ubi, int pnum)
 414{
 415        struct ubi_wl_entry *e;
 416
 417        e = ubi->lookuptbl[pnum];
 418        if (!e)
 419                return -ENODEV;
 420
 421        if (self_check_in_pq(ubi, e))
 422                return -ENODEV;
 423
 424        list_del(&e->u.list);
 425        dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 426        return 0;
 427}
 428
 429/**
 430 * sync_erase - synchronously erase a physical eraseblock.
 431 * @ubi: UBI device description object
 432 * @e: the the physical eraseblock to erase
 433 * @torture: if the physical eraseblock has to be tortured
 434 *
 435 * This function returns zero in case of success and a negative error code in
 436 * case of failure.
 437 */
 438static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 439                      int torture)
 440{
 441        int err;
 442        struct ubi_ec_hdr *ec_hdr;
 443        unsigned long long ec = e->ec;
 444
 445        dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 446
 447        err = self_check_ec(ubi, e->pnum, e->ec);
 448        if (err)
 449                return -EINVAL;
 450
 451        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 452        if (!ec_hdr)
 453                return -ENOMEM;
 454
 455        err = ubi_io_sync_erase(ubi, e->pnum, torture);
 456        if (err < 0)
 457                goto out_free;
 458
 459        ec += err;
 460        if (ec > UBI_MAX_ERASECOUNTER) {
 461                /*
 462                 * Erase counter overflow. Upgrade UBI and use 64-bit
 463                 * erase counters internally.
 464                 */
 465                ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
 466                        e->pnum, ec);
 467                err = -EINVAL;
 468                goto out_free;
 469        }
 470
 471        dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 472
 473        ec_hdr->ec = cpu_to_be64(ec);
 474
 475        err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 476        if (err)
 477                goto out_free;
 478
 479        e->ec = ec;
 480        spin_lock(&ubi->wl_lock);
 481        if (e->ec > ubi->max_ec)
 482                ubi->max_ec = e->ec;
 483        spin_unlock(&ubi->wl_lock);
 484
 485out_free:
 486        kfree(ec_hdr);
 487        return err;
 488}
 489
 490/**
 491 * serve_prot_queue - check if it is time to stop protecting PEBs.
 492 * @ubi: UBI device description object
 493 *
 494 * This function is called after each erase operation and removes PEBs from the
 495 * tail of the protection queue. These PEBs have been protected for long enough
 496 * and should be moved to the used tree.
 497 */
 498static void serve_prot_queue(struct ubi_device *ubi)
 499{
 500        struct ubi_wl_entry *e, *tmp;
 501        int count;
 502
 503        /*
 504         * There may be several protected physical eraseblock to remove,
 505         * process them all.
 506         */
 507repeat:
 508        count = 0;
 509        spin_lock(&ubi->wl_lock);
 510        list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 511                dbg_wl("PEB %d EC %d protection over, move to used tree",
 512                        e->pnum, e->ec);
 513
 514                list_del(&e->u.list);
 515                wl_tree_add(e, &ubi->used);
 516                if (count++ > 32) {
 517                        /*
 518                         * Let's be nice and avoid holding the spinlock for
 519                         * too long.
 520                         */
 521                        spin_unlock(&ubi->wl_lock);
 522                        cond_resched();
 523                        goto repeat;
 524                }
 525        }
 526
 527        ubi->pq_head += 1;
 528        if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 529                ubi->pq_head = 0;
 530        ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 531        spin_unlock(&ubi->wl_lock);
 532}
 533
 534/**
 535 * __schedule_ubi_work - schedule a work.
 536 * @ubi: UBI device description object
 537 * @wrk: the work to schedule
 538 *
 539 * This function adds a work defined by @wrk to the tail of the pending works
 540 * list. Can only be used if ubi->work_sem is already held in read mode!
 541 */
 542static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 543{
 544        spin_lock(&ubi->wl_lock);
 545        list_add_tail(&wrk->list, &ubi->works);
 546        ubi_assert(ubi->works_count >= 0);
 547        ubi->works_count += 1;
 548        if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 549                wake_up_process(ubi->bgt_thread);
 550        spin_unlock(&ubi->wl_lock);
 551}
 552
 553/**
 554 * schedule_ubi_work - schedule a work.
 555 * @ubi: UBI device description object
 556 * @wrk: the work to schedule
 557 *
 558 * This function adds a work defined by @wrk to the tail of the pending works
 559 * list.
 560 */
 561static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 562{
 563        down_read(&ubi->work_sem);
 564        __schedule_ubi_work(ubi, wrk);
 565        up_read(&ubi->work_sem);
 566}
 567
 568static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 569                        int shutdown);
 570
 571/**
 572 * schedule_erase - schedule an erase work.
 573 * @ubi: UBI device description object
 574 * @e: the WL entry of the physical eraseblock to erase
 575 * @vol_id: the volume ID that last used this PEB
 576 * @lnum: the last used logical eraseblock number for the PEB
 577 * @torture: if the physical eraseblock has to be tortured
 578 *
 579 * This function returns zero in case of success and a %-ENOMEM in case of
 580 * failure.
 581 */
 582static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 583                          int vol_id, int lnum, int torture, bool nested)
 584{
 585        struct ubi_work *wl_wrk;
 586
 587        ubi_assert(e);
 588
 589        dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 590               e->pnum, e->ec, torture);
 591
 592        wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 593        if (!wl_wrk)
 594                return -ENOMEM;
 595
 596        wl_wrk->func = &erase_worker;
 597        wl_wrk->e = e;
 598        wl_wrk->vol_id = vol_id;
 599        wl_wrk->lnum = lnum;
 600        wl_wrk->torture = torture;
 601
 602        if (nested)
 603                __schedule_ubi_work(ubi, wl_wrk);
 604        else
 605                schedule_ubi_work(ubi, wl_wrk);
 606        return 0;
 607}
 608
 609static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
 610/**
 611 * do_sync_erase - run the erase worker synchronously.
 612 * @ubi: UBI device description object
 613 * @e: the WL entry of the physical eraseblock to erase
 614 * @vol_id: the volume ID that last used this PEB
 615 * @lnum: the last used logical eraseblock number for the PEB
 616 * @torture: if the physical eraseblock has to be tortured
 617 *
 618 */
 619static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 620                         int vol_id, int lnum, int torture)
 621{
 622        struct ubi_work wl_wrk;
 623
 624        dbg_wl("sync erase of PEB %i", e->pnum);
 625
 626        wl_wrk.e = e;
 627        wl_wrk.vol_id = vol_id;
 628        wl_wrk.lnum = lnum;
 629        wl_wrk.torture = torture;
 630
 631        return __erase_worker(ubi, &wl_wrk);
 632}
 633
 634static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
 635/**
 636 * wear_leveling_worker - wear-leveling worker function.
 637 * @ubi: UBI device description object
 638 * @wrk: the work object
 639 * @shutdown: non-zero if the worker has to free memory and exit
 640 * because the WL-subsystem is shutting down
 641 *
 642 * This function copies a more worn out physical eraseblock to a less worn out
 643 * one. Returns zero in case of success and a negative error code in case of
 644 * failure.
 645 */
 646static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 647                                int shutdown)
 648{
 649        int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
 650        int erase = 0, keep = 0, vol_id = -1, lnum = -1;
 651#ifdef CONFIG_MTD_UBI_FASTMAP
 652        int anchor = wrk->anchor;
 653#endif
 654        struct ubi_wl_entry *e1, *e2;
 655        struct ubi_vid_io_buf *vidb;
 656        struct ubi_vid_hdr *vid_hdr;
 657        int dst_leb_clean = 0;
 658
 659        kfree(wrk);
 660        if (shutdown)
 661                return 0;
 662
 663        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 664        if (!vidb)
 665                return -ENOMEM;
 666
 667        vid_hdr = ubi_get_vid_hdr(vidb);
 668
 669        down_read(&ubi->fm_eba_sem);
 670        mutex_lock(&ubi->move_mutex);
 671        spin_lock(&ubi->wl_lock);
 672        ubi_assert(!ubi->move_from && !ubi->move_to);
 673        ubi_assert(!ubi->move_to_put);
 674
 675        if (!ubi->free.rb_node ||
 676            (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
 677                /*
 678                 * No free physical eraseblocks? Well, they must be waiting in
 679                 * the queue to be erased. Cancel movement - it will be
 680                 * triggered again when a free physical eraseblock appears.
 681                 *
 682                 * No used physical eraseblocks? They must be temporarily
 683                 * protected from being moved. They will be moved to the
 684                 * @ubi->used tree later and the wear-leveling will be
 685                 * triggered again.
 686                 */
 687                dbg_wl("cancel WL, a list is empty: free %d, used %d",
 688                       !ubi->free.rb_node, !ubi->used.rb_node);
 689                goto out_cancel;
 690        }
 691
 692#ifdef CONFIG_MTD_UBI_FASTMAP
 693        /* Check whether we need to produce an anchor PEB */
 694        if (!anchor)
 695                anchor = !anchor_pebs_avalible(&ubi->free);
 696
 697        if (anchor) {
 698                e1 = find_anchor_wl_entry(&ubi->used);
 699                if (!e1)
 700                        goto out_cancel;
 701                e2 = get_peb_for_wl(ubi);
 702                if (!e2)
 703                        goto out_cancel;
 704
 705                self_check_in_wl_tree(ubi, e1, &ubi->used);
 706                rb_erase(&e1->u.rb, &ubi->used);
 707                dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
 708        } else if (!ubi->scrub.rb_node) {
 709#else
 710        if (!ubi->scrub.rb_node) {
 711#endif
 712                /*
 713                 * Now pick the least worn-out used physical eraseblock and a
 714                 * highly worn-out free physical eraseblock. If the erase
 715                 * counters differ much enough, start wear-leveling.
 716                 */
 717                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 718                e2 = get_peb_for_wl(ubi);
 719                if (!e2)
 720                        goto out_cancel;
 721
 722                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 723                        dbg_wl("no WL needed: min used EC %d, max free EC %d",
 724                               e1->ec, e2->ec);
 725
 726                        /* Give the unused PEB back */
 727                        wl_tree_add(e2, &ubi->free);
 728                        ubi->free_count++;
 729                        goto out_cancel;
 730                }
 731                self_check_in_wl_tree(ubi, e1, &ubi->used);
 732                rb_erase(&e1->u.rb, &ubi->used);
 733                dbg_wl("move PEB %d EC %d to PEB %d EC %d",
 734                       e1->pnum, e1->ec, e2->pnum, e2->ec);
 735        } else {
 736                /* Perform scrubbing */
 737                scrubbing = 1;
 738                e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
 739                e2 = get_peb_for_wl(ubi);
 740                if (!e2)
 741                        goto out_cancel;
 742
 743                self_check_in_wl_tree(ubi, e1, &ubi->scrub);
 744                rb_erase(&e1->u.rb, &ubi->scrub);
 745                dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
 746        }
 747
 748        ubi->move_from = e1;
 749        ubi->move_to = e2;
 750        spin_unlock(&ubi->wl_lock);
 751
 752        /*
 753         * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
 754         * We so far do not know which logical eraseblock our physical
 755         * eraseblock (@e1) belongs to. We have to read the volume identifier
 756         * header first.
 757         *
 758         * Note, we are protected from this PEB being unmapped and erased. The
 759         * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
 760         * which is being moved was unmapped.
 761         */
 762
 763        err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
 764        if (err && err != UBI_IO_BITFLIPS) {
 765                dst_leb_clean = 1;
 766                if (err == UBI_IO_FF) {
 767                        /*
 768                         * We are trying to move PEB without a VID header. UBI
 769                         * always write VID headers shortly after the PEB was
 770                         * given, so we have a situation when it has not yet
 771                         * had a chance to write it, because it was preempted.
 772                         * So add this PEB to the protection queue so far,
 773                         * because presumably more data will be written there
 774                         * (including the missing VID header), and then we'll
 775                         * move it.
 776                         */
 777                        dbg_wl("PEB %d has no VID header", e1->pnum);
 778                        protect = 1;
 779                        goto out_not_moved;
 780                } else if (err == UBI_IO_FF_BITFLIPS) {
 781                        /*
 782                         * The same situation as %UBI_IO_FF, but bit-flips were
 783                         * detected. It is better to schedule this PEB for
 784                         * scrubbing.
 785                         */
 786                        dbg_wl("PEB %d has no VID header but has bit-flips",
 787                               e1->pnum);
 788                        scrubbing = 1;
 789                        goto out_not_moved;
 790                } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
 791                        /*
 792                         * While a full scan would detect interrupted erasures
 793                         * at attach time we can face them here when attached from
 794                         * Fastmap.
 795                         */
 796                        dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
 797                               e1->pnum);
 798                        erase = 1;
 799                        goto out_not_moved;
 800                }
 801
 802                ubi_err(ubi, "error %d while reading VID header from PEB %d",
 803                        err, e1->pnum);
 804                goto out_error;
 805        }
 806
 807        vol_id = be32_to_cpu(vid_hdr->vol_id);
 808        lnum = be32_to_cpu(vid_hdr->lnum);
 809
 810        err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
 811        if (err) {
 812                if (err == MOVE_CANCEL_RACE) {
 813                        /*
 814                         * The LEB has not been moved because the volume is
 815                         * being deleted or the PEB has been put meanwhile. We
 816                         * should prevent this PEB from being selected for
 817                         * wear-leveling movement again, so put it to the
 818                         * protection queue.
 819                         */
 820                        protect = 1;
 821                        dst_leb_clean = 1;
 822                        goto out_not_moved;
 823                }
 824                if (err == MOVE_RETRY) {
 825                        scrubbing = 1;
 826                        dst_leb_clean = 1;
 827                        goto out_not_moved;
 828                }
 829                if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
 830                    err == MOVE_TARGET_RD_ERR) {
 831                        /*
 832                         * Target PEB had bit-flips or write error - torture it.
 833                         */
 834                        torture = 1;
 835                        keep = 1;
 836                        goto out_not_moved;
 837                }
 838
 839                if (err == MOVE_SOURCE_RD_ERR) {
 840                        /*
 841                         * An error happened while reading the source PEB. Do
 842                         * not switch to R/O mode in this case, and give the
 843                         * upper layers a possibility to recover from this,
 844                         * e.g. by unmapping corresponding LEB. Instead, just
 845                         * put this PEB to the @ubi->erroneous list to prevent
 846                         * UBI from trying to move it over and over again.
 847                         */
 848                        if (ubi->erroneous_peb_count > ubi->max_erroneous) {
 849                                ubi_err(ubi, "too many erroneous eraseblocks (%d)",
 850                                        ubi->erroneous_peb_count);
 851                                goto out_error;
 852                        }
 853                        dst_leb_clean = 1;
 854                        erroneous = 1;
 855                        goto out_not_moved;
 856                }
 857
 858                if (err < 0)
 859                        goto out_error;
 860
 861                ubi_assert(0);
 862        }
 863
 864        /* The PEB has been successfully moved */
 865        if (scrubbing)
 866                ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
 867                        e1->pnum, vol_id, lnum, e2->pnum);
 868        ubi_free_vid_buf(vidb);
 869
 870        spin_lock(&ubi->wl_lock);
 871        if (!ubi->move_to_put) {
 872                wl_tree_add(e2, &ubi->used);
 873                e2 = NULL;
 874        }
 875        ubi->move_from = ubi->move_to = NULL;
 876        ubi->move_to_put = ubi->wl_scheduled = 0;
 877        spin_unlock(&ubi->wl_lock);
 878
 879        err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
 880        if (err) {
 881                if (e2)
 882                        wl_entry_destroy(ubi, e2);
 883                goto out_ro;
 884        }
 885
 886        if (e2) {
 887                /*
 888                 * Well, the target PEB was put meanwhile, schedule it for
 889                 * erasure.
 890                 */
 891                dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
 892                       e2->pnum, vol_id, lnum);
 893                err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
 894                if (err)
 895                        goto out_ro;
 896        }
 897
 898        dbg_wl("done");
 899        mutex_unlock(&ubi->move_mutex);
 900        up_read(&ubi->fm_eba_sem);
 901        return 0;
 902
 903        /*
 904         * For some reasons the LEB was not moved, might be an error, might be
 905         * something else. @e1 was not changed, so return it back. @e2 might
 906         * have been changed, schedule it for erasure.
 907         */
 908out_not_moved:
 909        if (vol_id != -1)
 910                dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
 911                       e1->pnum, vol_id, lnum, e2->pnum, err);
 912        else
 913                dbg_wl("cancel moving PEB %d to PEB %d (%d)",
 914                       e1->pnum, e2->pnum, err);
 915        spin_lock(&ubi->wl_lock);
 916        if (protect)
 917                prot_queue_add(ubi, e1);
 918        else if (erroneous) {
 919                wl_tree_add(e1, &ubi->erroneous);
 920                ubi->erroneous_peb_count += 1;
 921        } else if (scrubbing)
 922                wl_tree_add(e1, &ubi->scrub);
 923        else if (keep)
 924                wl_tree_add(e1, &ubi->used);
 925        if (dst_leb_clean) {
 926                wl_tree_add(e2, &ubi->free);
 927                ubi->free_count++;
 928        }
 929
 930        ubi_assert(!ubi->move_to_put);
 931        ubi->move_from = ubi->move_to = NULL;
 932        ubi->wl_scheduled = 0;
 933        spin_unlock(&ubi->wl_lock);
 934
 935        ubi_free_vid_buf(vidb);
 936        if (dst_leb_clean) {
 937                ensure_wear_leveling(ubi, 1);
 938        } else {
 939                err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
 940                if (err)
 941                        goto out_ro;
 942        }
 943
 944        if (erase) {
 945                err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
 946                if (err)
 947                        goto out_ro;
 948        }
 949
 950        mutex_unlock(&ubi->move_mutex);
 951        up_read(&ubi->fm_eba_sem);
 952        return 0;
 953
 954out_error:
 955        if (vol_id != -1)
 956                ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
 957                        err, e1->pnum, e2->pnum);
 958        else
 959                ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
 960                        err, e1->pnum, vol_id, lnum, e2->pnum);
 961        spin_lock(&ubi->wl_lock);
 962        ubi->move_from = ubi->move_to = NULL;
 963        ubi->move_to_put = ubi->wl_scheduled = 0;
 964        spin_unlock(&ubi->wl_lock);
 965
 966        ubi_free_vid_buf(vidb);
 967        wl_entry_destroy(ubi, e1);
 968        wl_entry_destroy(ubi, e2);
 969
 970out_ro:
 971        ubi_ro_mode(ubi);
 972        mutex_unlock(&ubi->move_mutex);
 973        up_read(&ubi->fm_eba_sem);
 974        ubi_assert(err != 0);
 975        return err < 0 ? err : -EIO;
 976
 977out_cancel:
 978        ubi->wl_scheduled = 0;
 979        spin_unlock(&ubi->wl_lock);
 980        mutex_unlock(&ubi->move_mutex);
 981        up_read(&ubi->fm_eba_sem);
 982        ubi_free_vid_buf(vidb);
 983        return 0;
 984}
 985
 986/**
 987 * ensure_wear_leveling - schedule wear-leveling if it is needed.
 988 * @ubi: UBI device description object
 989 * @nested: set to non-zero if this function is called from UBI worker
 990 *
 991 * This function checks if it is time to start wear-leveling and schedules it
 992 * if yes. This function returns zero in case of success and a negative error
 993 * code in case of failure.
 994 */
 995static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
 996{
 997        int err = 0;
 998        struct ubi_wl_entry *e1;
 999        struct ubi_wl_entry *e2;
1000        struct ubi_work *wrk;
1001
1002        spin_lock(&ubi->wl_lock);
1003        if (ubi->wl_scheduled)
1004                /* Wear-leveling is already in the work queue */
1005                goto out_unlock;
1006
1007        /*
1008         * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1009         * the WL worker has to be scheduled anyway.
1010         */
1011        if (!ubi->scrub.rb_node) {
1012                if (!ubi->used.rb_node || !ubi->free.rb_node)
1013                        /* No physical eraseblocks - no deal */
1014                        goto out_unlock;
1015
1016                /*
1017                 * We schedule wear-leveling only if the difference between the
1018                 * lowest erase counter of used physical eraseblocks and a high
1019                 * erase counter of free physical eraseblocks is greater than
1020                 * %UBI_WL_THRESHOLD.
1021                 */
1022                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1023                e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1024
1025                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1026                        goto out_unlock;
1027                dbg_wl("schedule wear-leveling");
1028        } else
1029                dbg_wl("schedule scrubbing");
1030
1031        ubi->wl_scheduled = 1;
1032        spin_unlock(&ubi->wl_lock);
1033
1034        wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1035        if (!wrk) {
1036                err = -ENOMEM;
1037                goto out_cancel;
1038        }
1039
1040        wrk->anchor = 0;
1041        wrk->func = &wear_leveling_worker;
1042        if (nested)
1043                __schedule_ubi_work(ubi, wrk);
1044        else
1045                schedule_ubi_work(ubi, wrk);
1046        return err;
1047
1048out_cancel:
1049        spin_lock(&ubi->wl_lock);
1050        ubi->wl_scheduled = 0;
1051out_unlock:
1052        spin_unlock(&ubi->wl_lock);
1053        return err;
1054}
1055
1056/**
1057 * __erase_worker - physical eraseblock erase worker function.
1058 * @ubi: UBI device description object
1059 * @wl_wrk: the work object
1060 * @shutdown: non-zero if the worker has to free memory and exit
1061 * because the WL sub-system is shutting down
1062 *
1063 * This function erases a physical eraseblock and perform torture testing if
1064 * needed. It also takes care about marking the physical eraseblock bad if
1065 * needed. Returns zero in case of success and a negative error code in case of
1066 * failure.
1067 */
1068static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1069{
1070        struct ubi_wl_entry *e = wl_wrk->e;
1071        int pnum = e->pnum;
1072        int vol_id = wl_wrk->vol_id;
1073        int lnum = wl_wrk->lnum;
1074        int err, available_consumed = 0;
1075
1076        dbg_wl("erase PEB %d EC %d LEB %d:%d",
1077               pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1078
1079        err = sync_erase(ubi, e, wl_wrk->torture);
1080        if (!err) {
1081                spin_lock(&ubi->wl_lock);
1082                wl_tree_add(e, &ubi->free);
1083                ubi->free_count++;
1084                spin_unlock(&ubi->wl_lock);
1085
1086                /*
1087                 * One more erase operation has happened, take care about
1088                 * protected physical eraseblocks.
1089                 */
1090                serve_prot_queue(ubi);
1091
1092                /* And take care about wear-leveling */
1093                err = ensure_wear_leveling(ubi, 1);
1094                return err;
1095        }
1096
1097        ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1098
1099        if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1100            err == -EBUSY) {
1101                int err1;
1102
1103                /* Re-schedule the LEB for erasure */
1104                err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1105                if (err1) {
1106                        wl_entry_destroy(ubi, e);
1107                        err = err1;
1108                        goto out_ro;
1109                }
1110                return err;
1111        }
1112
1113        wl_entry_destroy(ubi, e);
1114        if (err != -EIO)
1115                /*
1116                 * If this is not %-EIO, we have no idea what to do. Scheduling
1117                 * this physical eraseblock for erasure again would cause
1118                 * errors again and again. Well, lets switch to R/O mode.
1119                 */
1120                goto out_ro;
1121
1122        /* It is %-EIO, the PEB went bad */
1123
1124        if (!ubi->bad_allowed) {
1125                ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1126                goto out_ro;
1127        }
1128
1129        spin_lock(&ubi->volumes_lock);
1130        if (ubi->beb_rsvd_pebs == 0) {
1131                if (ubi->avail_pebs == 0) {
1132                        spin_unlock(&ubi->volumes_lock);
1133                        ubi_err(ubi, "no reserved/available physical eraseblocks");
1134                        goto out_ro;
1135                }
1136                ubi->avail_pebs -= 1;
1137                available_consumed = 1;
1138        }
1139        spin_unlock(&ubi->volumes_lock);
1140
1141        ubi_msg(ubi, "mark PEB %d as bad", pnum);
1142        err = ubi_io_mark_bad(ubi, pnum);
1143        if (err)
1144                goto out_ro;
1145
1146        spin_lock(&ubi->volumes_lock);
1147        if (ubi->beb_rsvd_pebs > 0) {
1148                if (available_consumed) {
1149                        /*
1150                         * The amount of reserved PEBs increased since we last
1151                         * checked.
1152                         */
1153                        ubi->avail_pebs += 1;
1154                        available_consumed = 0;
1155                }
1156                ubi->beb_rsvd_pebs -= 1;
1157        }
1158        ubi->bad_peb_count += 1;
1159        ubi->good_peb_count -= 1;
1160        ubi_calculate_reserved(ubi);
1161        if (available_consumed)
1162                ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1163        else if (ubi->beb_rsvd_pebs)
1164                ubi_msg(ubi, "%d PEBs left in the reserve",
1165                        ubi->beb_rsvd_pebs);
1166        else
1167                ubi_warn(ubi, "last PEB from the reserve was used");
1168        spin_unlock(&ubi->volumes_lock);
1169
1170        return err;
1171
1172out_ro:
1173        if (available_consumed) {
1174                spin_lock(&ubi->volumes_lock);
1175                ubi->avail_pebs += 1;
1176                spin_unlock(&ubi->volumes_lock);
1177        }
1178        ubi_ro_mode(ubi);
1179        return err;
1180}
1181
1182static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1183                          int shutdown)
1184{
1185        int ret;
1186
1187        if (shutdown) {
1188                struct ubi_wl_entry *e = wl_wrk->e;
1189
1190                dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1191                kfree(wl_wrk);
1192                wl_entry_destroy(ubi, e);
1193                return 0;
1194        }
1195
1196        ret = __erase_worker(ubi, wl_wrk);
1197        kfree(wl_wrk);
1198        return ret;
1199}
1200
1201/**
1202 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1203 * @ubi: UBI device description object
1204 * @vol_id: the volume ID that last used this PEB
1205 * @lnum: the last used logical eraseblock number for the PEB
1206 * @pnum: physical eraseblock to return
1207 * @torture: if this physical eraseblock has to be tortured
1208 *
1209 * This function is called to return physical eraseblock @pnum to the pool of
1210 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1211 * occurred to this @pnum and it has to be tested. This function returns zero
1212 * in case of success, and a negative error code in case of failure.
1213 */
1214int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1215                   int pnum, int torture)
1216{
1217        int err;
1218        struct ubi_wl_entry *e;
1219
1220        dbg_wl("PEB %d", pnum);
1221        ubi_assert(pnum >= 0);
1222        ubi_assert(pnum < ubi->peb_count);
1223
1224        down_read(&ubi->fm_protect);
1225
1226retry:
1227        spin_lock(&ubi->wl_lock);
1228        e = ubi->lookuptbl[pnum];
1229        if (e == ubi->move_from) {
1230                /*
1231                 * User is putting the physical eraseblock which was selected to
1232                 * be moved. It will be scheduled for erasure in the
1233                 * wear-leveling worker.
1234                 */
1235                dbg_wl("PEB %d is being moved, wait", pnum);
1236                spin_unlock(&ubi->wl_lock);
1237
1238                /* Wait for the WL worker by taking the @ubi->move_mutex */
1239                mutex_lock(&ubi->move_mutex);
1240                mutex_unlock(&ubi->move_mutex);
1241                goto retry;
1242        } else if (e == ubi->move_to) {
1243                /*
1244                 * User is putting the physical eraseblock which was selected
1245                 * as the target the data is moved to. It may happen if the EBA
1246                 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1247                 * but the WL sub-system has not put the PEB to the "used" tree
1248                 * yet, but it is about to do this. So we just set a flag which
1249                 * will tell the WL worker that the PEB is not needed anymore
1250                 * and should be scheduled for erasure.
1251                 */
1252                dbg_wl("PEB %d is the target of data moving", pnum);
1253                ubi_assert(!ubi->move_to_put);
1254                ubi->move_to_put = 1;
1255                spin_unlock(&ubi->wl_lock);
1256                up_read(&ubi->fm_protect);
1257                return 0;
1258        } else {
1259                if (in_wl_tree(e, &ubi->used)) {
1260                        self_check_in_wl_tree(ubi, e, &ubi->used);
1261                        rb_erase(&e->u.rb, &ubi->used);
1262                } else if (in_wl_tree(e, &ubi->scrub)) {
1263                        self_check_in_wl_tree(ubi, e, &ubi->scrub);
1264                        rb_erase(&e->u.rb, &ubi->scrub);
1265                } else if (in_wl_tree(e, &ubi->erroneous)) {
1266                        self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1267                        rb_erase(&e->u.rb, &ubi->erroneous);
1268                        ubi->erroneous_peb_count -= 1;
1269                        ubi_assert(ubi->erroneous_peb_count >= 0);
1270                        /* Erroneous PEBs should be tortured */
1271                        torture = 1;
1272                } else {
1273                        err = prot_queue_del(ubi, e->pnum);
1274                        if (err) {
1275                                ubi_err(ubi, "PEB %d not found", pnum);
1276                                ubi_ro_mode(ubi);
1277                                spin_unlock(&ubi->wl_lock);
1278                                up_read(&ubi->fm_protect);
1279                                return err;
1280                        }
1281                }
1282        }
1283        spin_unlock(&ubi->wl_lock);
1284
1285        err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1286        if (err) {
1287                spin_lock(&ubi->wl_lock);
1288                wl_tree_add(e, &ubi->used);
1289                spin_unlock(&ubi->wl_lock);
1290        }
1291
1292        up_read(&ubi->fm_protect);
1293        return err;
1294}
1295
1296/**
1297 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1298 * @ubi: UBI device description object
1299 * @pnum: the physical eraseblock to schedule
1300 *
1301 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1302 * needs scrubbing. This function schedules a physical eraseblock for
1303 * scrubbing which is done in background. This function returns zero in case of
1304 * success and a negative error code in case of failure.
1305 */
1306int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1307{
1308        struct ubi_wl_entry *e;
1309
1310        ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1311
1312retry:
1313        spin_lock(&ubi->wl_lock);
1314        e = ubi->lookuptbl[pnum];
1315        if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1316                                   in_wl_tree(e, &ubi->erroneous)) {
1317                spin_unlock(&ubi->wl_lock);
1318                return 0;
1319        }
1320
1321        if (e == ubi->move_to) {
1322                /*
1323                 * This physical eraseblock was used to move data to. The data
1324                 * was moved but the PEB was not yet inserted to the proper
1325                 * tree. We should just wait a little and let the WL worker
1326                 * proceed.
1327                 */
1328                spin_unlock(&ubi->wl_lock);
1329                dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1330                yield();
1331                goto retry;
1332        }
1333
1334        if (in_wl_tree(e, &ubi->used)) {
1335                self_check_in_wl_tree(ubi, e, &ubi->used);
1336                rb_erase(&e->u.rb, &ubi->used);
1337        } else {
1338                int err;
1339
1340                err = prot_queue_del(ubi, e->pnum);
1341                if (err) {
1342                        ubi_err(ubi, "PEB %d not found", pnum);
1343                        ubi_ro_mode(ubi);
1344                        spin_unlock(&ubi->wl_lock);
1345                        return err;
1346                }
1347        }
1348
1349        wl_tree_add(e, &ubi->scrub);
1350        spin_unlock(&ubi->wl_lock);
1351
1352        /*
1353         * Technically scrubbing is the same as wear-leveling, so it is done
1354         * by the WL worker.
1355         */
1356        return ensure_wear_leveling(ubi, 0);
1357}
1358
1359/**
1360 * ubi_wl_flush - flush all pending works.
1361 * @ubi: UBI device description object
1362 * @vol_id: the volume id to flush for
1363 * @lnum: the logical eraseblock number to flush for
1364 *
1365 * This function executes all pending works for a particular volume id /
1366 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1367 * acts as a wildcard for all of the corresponding volume numbers or logical
1368 * eraseblock numbers. It returns zero in case of success and a negative error
1369 * code in case of failure.
1370 */
1371int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1372{
1373        int err = 0;
1374        int found = 1;
1375
1376        /*
1377         * Erase while the pending works queue is not empty, but not more than
1378         * the number of currently pending works.
1379         */
1380        dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1381               vol_id, lnum, ubi->works_count);
1382
1383        while (found) {
1384                struct ubi_work *wrk, *tmp;
1385                found = 0;
1386
1387                down_read(&ubi->work_sem);
1388                spin_lock(&ubi->wl_lock);
1389                list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1390                        if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1391                            (lnum == UBI_ALL || wrk->lnum == lnum)) {
1392                                list_del(&wrk->list);
1393                                ubi->works_count -= 1;
1394                                ubi_assert(ubi->works_count >= 0);
1395                                spin_unlock(&ubi->wl_lock);
1396
1397                                err = wrk->func(ubi, wrk, 0);
1398                                if (err) {
1399                                        up_read(&ubi->work_sem);
1400                                        return err;
1401                                }
1402
1403                                spin_lock(&ubi->wl_lock);
1404                                found = 1;
1405                                break;
1406                        }
1407                }
1408                spin_unlock(&ubi->wl_lock);
1409                up_read(&ubi->work_sem);
1410        }
1411
1412        /*
1413         * Make sure all the works which have been done in parallel are
1414         * finished.
1415         */
1416        down_write(&ubi->work_sem);
1417        up_write(&ubi->work_sem);
1418
1419        return err;
1420}
1421
1422/**
1423 * tree_destroy - destroy an RB-tree.
1424 * @ubi: UBI device description object
1425 * @root: the root of the tree to destroy
1426 */
1427static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1428{
1429        struct rb_node *rb;
1430        struct ubi_wl_entry *e;
1431
1432        rb = root->rb_node;
1433        while (rb) {
1434                if (rb->rb_left)
1435                        rb = rb->rb_left;
1436                else if (rb->rb_right)
1437                        rb = rb->rb_right;
1438                else {
1439                        e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1440
1441                        rb = rb_parent(rb);
1442                        if (rb) {
1443                                if (rb->rb_left == &e->u.rb)
1444                                        rb->rb_left = NULL;
1445                                else
1446                                        rb->rb_right = NULL;
1447                        }
1448
1449                        wl_entry_destroy(ubi, e);
1450                }
1451        }
1452}
1453
1454/**
1455 * ubi_thread - UBI background thread.
1456 * @u: the UBI device description object pointer
1457 */
1458int ubi_thread(void *u)
1459{
1460        int failures = 0;
1461        struct ubi_device *ubi = u;
1462
1463        ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1464                ubi->bgt_name, task_pid_nr(current));
1465
1466        set_freezable();
1467        for (;;) {
1468                int err;
1469
1470                if (kthread_should_stop())
1471                        break;
1472
1473                if (try_to_freeze())
1474                        continue;
1475
1476                spin_lock(&ubi->wl_lock);
1477                if (list_empty(&ubi->works) || ubi->ro_mode ||
1478                    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1479                        set_current_state(TASK_INTERRUPTIBLE);
1480                        spin_unlock(&ubi->wl_lock);
1481                        schedule();
1482                        continue;
1483                }
1484                spin_unlock(&ubi->wl_lock);
1485
1486                err = do_work(ubi);
1487                if (err) {
1488                        ubi_err(ubi, "%s: work failed with error code %d",
1489                                ubi->bgt_name, err);
1490                        if (failures++ > WL_MAX_FAILURES) {
1491                                /*
1492                                 * Too many failures, disable the thread and
1493                                 * switch to read-only mode.
1494                                 */
1495                                ubi_msg(ubi, "%s: %d consecutive failures",
1496                                        ubi->bgt_name, WL_MAX_FAILURES);
1497                                ubi_ro_mode(ubi);
1498                                ubi->thread_enabled = 0;
1499                                continue;
1500                        }
1501                } else
1502                        failures = 0;
1503
1504                cond_resched();
1505        }
1506
1507        dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1508        return 0;
1509}
1510
1511/**
1512 * shutdown_work - shutdown all pending works.
1513 * @ubi: UBI device description object
1514 */
1515static void shutdown_work(struct ubi_device *ubi)
1516{
1517#ifdef CONFIG_MTD_UBI_FASTMAP
1518        flush_work(&ubi->fm_work);
1519#endif
1520        while (!list_empty(&ubi->works)) {
1521                struct ubi_work *wrk;
1522
1523                wrk = list_entry(ubi->works.next, struct ubi_work, list);
1524                list_del(&wrk->list);
1525                wrk->func(ubi, wrk, 1);
1526                ubi->works_count -= 1;
1527                ubi_assert(ubi->works_count >= 0);
1528        }
1529}
1530
1531/**
1532 * ubi_wl_init - initialize the WL sub-system using attaching information.
1533 * @ubi: UBI device description object
1534 * @ai: attaching information
1535 *
1536 * This function returns zero in case of success, and a negative error code in
1537 * case of failure.
1538 */
1539int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1540{
1541        int err, i, reserved_pebs, found_pebs = 0;
1542        struct rb_node *rb1, *rb2;
1543        struct ubi_ainf_volume *av;
1544        struct ubi_ainf_peb *aeb, *tmp;
1545        struct ubi_wl_entry *e;
1546
1547        ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1548        spin_lock_init(&ubi->wl_lock);
1549        mutex_init(&ubi->move_mutex);
1550        init_rwsem(&ubi->work_sem);
1551        ubi->max_ec = ai->max_ec;
1552        INIT_LIST_HEAD(&ubi->works);
1553
1554        sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1555
1556        err = -ENOMEM;
1557        ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1558        if (!ubi->lookuptbl)
1559                return err;
1560
1561        for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1562                INIT_LIST_HEAD(&ubi->pq[i]);
1563        ubi->pq_head = 0;
1564
1565        ubi->free_count = 0;
1566        list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1567                cond_resched();
1568
1569                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1570                if (!e)
1571                        goto out_free;
1572
1573                e->pnum = aeb->pnum;
1574                e->ec = aeb->ec;
1575                ubi->lookuptbl[e->pnum] = e;
1576                if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false)) {
1577                        wl_entry_destroy(ubi, e);
1578                        goto out_free;
1579                }
1580
1581                found_pebs++;
1582        }
1583
1584        list_for_each_entry(aeb, &ai->free, u.list) {
1585                cond_resched();
1586
1587                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1588                if (!e)
1589                        goto out_free;
1590
1591                e->pnum = aeb->pnum;
1592                e->ec = aeb->ec;
1593                ubi_assert(e->ec >= 0);
1594
1595                wl_tree_add(e, &ubi->free);
1596                ubi->free_count++;
1597
1598                ubi->lookuptbl[e->pnum] = e;
1599
1600                found_pebs++;
1601        }
1602
1603        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1604                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1605                        cond_resched();
1606
1607                        e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1608                        if (!e)
1609                                goto out_free;
1610
1611                        e->pnum = aeb->pnum;
1612                        e->ec = aeb->ec;
1613                        ubi->lookuptbl[e->pnum] = e;
1614
1615                        if (!aeb->scrub) {
1616                                dbg_wl("add PEB %d EC %d to the used tree",
1617                                       e->pnum, e->ec);
1618                                wl_tree_add(e, &ubi->used);
1619                        } else {
1620                                dbg_wl("add PEB %d EC %d to the scrub tree",
1621                                       e->pnum, e->ec);
1622                                wl_tree_add(e, &ubi->scrub);
1623                        }
1624
1625                        found_pebs++;
1626                }
1627        }
1628
1629        list_for_each_entry(aeb, &ai->fastmap, u.list) {
1630                cond_resched();
1631
1632                e = ubi_find_fm_block(ubi, aeb->pnum);
1633
1634                if (e) {
1635                        ubi_assert(!ubi->lookuptbl[e->pnum]);
1636                        ubi->lookuptbl[e->pnum] = e;
1637                } else {
1638                        /*
1639                         * Usually old Fastmap PEBs are scheduled for erasure
1640                         * and we don't have to care about them but if we face
1641                         * an power cut before scheduling them we need to
1642                         * take care of them here.
1643                         */
1644                        if (ubi->lookuptbl[aeb->pnum])
1645                                continue;
1646
1647                        e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1648                        if (!e)
1649                                goto out_free;
1650
1651                        e->pnum = aeb->pnum;
1652                        e->ec = aeb->ec;
1653                        ubi_assert(!ubi->lookuptbl[e->pnum]);
1654                        ubi->lookuptbl[e->pnum] = e;
1655                        if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false)) {
1656                                wl_entry_destroy(ubi, e);
1657                                goto out_free;
1658                        }
1659                }
1660
1661                found_pebs++;
1662        }
1663
1664        dbg_wl("found %i PEBs", found_pebs);
1665
1666        ubi_assert(ubi->good_peb_count == found_pebs);
1667
1668        reserved_pebs = WL_RESERVED_PEBS;
1669        ubi_fastmap_init(ubi, &reserved_pebs);
1670
1671        if (ubi->avail_pebs < reserved_pebs) {
1672                ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1673                        ubi->avail_pebs, reserved_pebs);
1674                if (ubi->corr_peb_count)
1675                        ubi_err(ubi, "%d PEBs are corrupted and not used",
1676                                ubi->corr_peb_count);
1677                err = -ENOSPC;
1678                goto out_free;
1679        }
1680        ubi->avail_pebs -= reserved_pebs;
1681        ubi->rsvd_pebs += reserved_pebs;
1682
1683        /* Schedule wear-leveling if needed */
1684        err = ensure_wear_leveling(ubi, 0);
1685        if (err)
1686                goto out_free;
1687
1688        return 0;
1689
1690out_free:
1691        shutdown_work(ubi);
1692        tree_destroy(ubi, &ubi->used);
1693        tree_destroy(ubi, &ubi->free);
1694        tree_destroy(ubi, &ubi->scrub);
1695        kfree(ubi->lookuptbl);
1696        return err;
1697}
1698
1699/**
1700 * protection_queue_destroy - destroy the protection queue.
1701 * @ubi: UBI device description object
1702 */
1703static void protection_queue_destroy(struct ubi_device *ubi)
1704{
1705        int i;
1706        struct ubi_wl_entry *e, *tmp;
1707
1708        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1709                list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1710                        list_del(&e->u.list);
1711                        wl_entry_destroy(ubi, e);
1712                }
1713        }
1714}
1715
1716/**
1717 * ubi_wl_close - close the wear-leveling sub-system.
1718 * @ubi: UBI device description object
1719 */
1720void ubi_wl_close(struct ubi_device *ubi)
1721{
1722        dbg_wl("close the WL sub-system");
1723        ubi_fastmap_close(ubi);
1724        shutdown_work(ubi);
1725        protection_queue_destroy(ubi);
1726        tree_destroy(ubi, &ubi->used);
1727        tree_destroy(ubi, &ubi->erroneous);
1728        tree_destroy(ubi, &ubi->free);
1729        tree_destroy(ubi, &ubi->scrub);
1730        kfree(ubi->lookuptbl);
1731}
1732
1733/**
1734 * self_check_ec - make sure that the erase counter of a PEB is correct.
1735 * @ubi: UBI device description object
1736 * @pnum: the physical eraseblock number to check
1737 * @ec: the erase counter to check
1738 *
1739 * This function returns zero if the erase counter of physical eraseblock @pnum
1740 * is equivalent to @ec, and a negative error code if not or if an error
1741 * occurred.
1742 */
1743static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1744{
1745        int err;
1746        long long read_ec;
1747        struct ubi_ec_hdr *ec_hdr;
1748
1749        if (!ubi_dbg_chk_gen(ubi))
1750                return 0;
1751
1752        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1753        if (!ec_hdr)
1754                return -ENOMEM;
1755
1756        err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1757        if (err && err != UBI_IO_BITFLIPS) {
1758                /* The header does not have to exist */
1759                err = 0;
1760                goto out_free;
1761        }
1762
1763        read_ec = be64_to_cpu(ec_hdr->ec);
1764        if (ec != read_ec && read_ec - ec > 1) {
1765                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1766                ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1767                dump_stack();
1768                err = 1;
1769        } else
1770                err = 0;
1771
1772out_free:
1773        kfree(ec_hdr);
1774        return err;
1775}
1776
1777/**
1778 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1779 * @ubi: UBI device description object
1780 * @e: the wear-leveling entry to check
1781 * @root: the root of the tree
1782 *
1783 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1784 * is not.
1785 */
1786static int self_check_in_wl_tree(const struct ubi_device *ubi,
1787                                 struct ubi_wl_entry *e, struct rb_root *root)
1788{
1789        if (!ubi_dbg_chk_gen(ubi))
1790                return 0;
1791
1792        if (in_wl_tree(e, root))
1793                return 0;
1794
1795        ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1796                e->pnum, e->ec, root);
1797        dump_stack();
1798        return -EINVAL;
1799}
1800
1801/**
1802 * self_check_in_pq - check if wear-leveling entry is in the protection
1803 *                        queue.
1804 * @ubi: UBI device description object
1805 * @e: the wear-leveling entry to check
1806 *
1807 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1808 */
1809static int self_check_in_pq(const struct ubi_device *ubi,
1810                            struct ubi_wl_entry *e)
1811{
1812        struct ubi_wl_entry *p;
1813        int i;
1814
1815        if (!ubi_dbg_chk_gen(ubi))
1816                return 0;
1817
1818        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1819                list_for_each_entry(p, &ubi->pq[i], u.list)
1820                        if (p == e)
1821                                return 0;
1822
1823        ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1824                e->pnum, e->ec);
1825        dump_stack();
1826        return -EINVAL;
1827}
1828#ifndef CONFIG_MTD_UBI_FASTMAP
1829static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1830{
1831        struct ubi_wl_entry *e;
1832
1833        e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1834        self_check_in_wl_tree(ubi, e, &ubi->free);
1835        ubi->free_count--;
1836        ubi_assert(ubi->free_count >= 0);
1837        rb_erase(&e->u.rb, &ubi->free);
1838
1839        return e;
1840}
1841
1842/**
1843 * produce_free_peb - produce a free physical eraseblock.
1844 * @ubi: UBI device description object
1845 *
1846 * This function tries to make a free PEB by means of synchronous execution of
1847 * pending works. This may be needed if, for example the background thread is
1848 * disabled. Returns zero in case of success and a negative error code in case
1849 * of failure.
1850 */
1851static int produce_free_peb(struct ubi_device *ubi)
1852{
1853        int err;
1854
1855        while (!ubi->free.rb_node && ubi->works_count) {
1856                spin_unlock(&ubi->wl_lock);
1857
1858                dbg_wl("do one work synchronously");
1859                err = do_work(ubi);
1860
1861                spin_lock(&ubi->wl_lock);
1862                if (err)
1863                        return err;
1864        }
1865
1866        return 0;
1867}
1868
1869/**
1870 * ubi_wl_get_peb - get a physical eraseblock.
1871 * @ubi: UBI device description object
1872 *
1873 * This function returns a physical eraseblock in case of success and a
1874 * negative error code in case of failure.
1875 * Returns with ubi->fm_eba_sem held in read mode!
1876 */
1877int ubi_wl_get_peb(struct ubi_device *ubi)
1878{
1879        int err;
1880        struct ubi_wl_entry *e;
1881
1882retry:
1883        down_read(&ubi->fm_eba_sem);
1884        spin_lock(&ubi->wl_lock);
1885        if (!ubi->free.rb_node) {
1886                if (ubi->works_count == 0) {
1887                        ubi_err(ubi, "no free eraseblocks");
1888                        ubi_assert(list_empty(&ubi->works));
1889                        spin_unlock(&ubi->wl_lock);
1890                        return -ENOSPC;
1891                }
1892
1893                err = produce_free_peb(ubi);
1894                if (err < 0) {
1895                        spin_unlock(&ubi->wl_lock);
1896                        return err;
1897                }
1898                spin_unlock(&ubi->wl_lock);
1899                up_read(&ubi->fm_eba_sem);
1900                goto retry;
1901
1902        }
1903        e = wl_get_wle(ubi);
1904        prot_queue_add(ubi, e);
1905        spin_unlock(&ubi->wl_lock);
1906
1907        err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1908                                    ubi->peb_size - ubi->vid_hdr_aloffset);
1909        if (err) {
1910                ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1911                return err;
1912        }
1913
1914        return e->pnum;
1915}
1916#else
1917#include "fastmap-wl.c"
1918#endif
1919