linux/drivers/net/ethernet/3com/3c59x.c
<<
>>
Prefs
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3        Written 1996-1999 by Donald Becker.
   4
   5        This software may be used and distributed according to the terms
   6        of the GNU General Public License, incorporated herein by reference.
   7
   8        This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9        Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10        and the EtherLink XL 3c900 and 3c905 cards.
  11
  12        Problem reports and questions should be directed to
  13        vortex@scyld.com
  14
  15        The author may be reached as becker@scyld.com, or C/O
  16        Scyld Computing Corporation
  17        410 Severn Ave., Suite 210
  18        Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME        "3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE    16
  39#define RX_RING_SIZE    32
  40#define PKT_BUF_SZ              1536                    /* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>                    /* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <linux/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] =
 106        DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132                                Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211        PCI_USES_MASTER=4,
 212};
 213
 214enum {  IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215        EEPROM_8BIT=0x10,       /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216        HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217        INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218        EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219        EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222        CH_3C590 = 0,
 223        CH_3C592,
 224        CH_3C597,
 225        CH_3C595_1,
 226        CH_3C595_2,
 227
 228        CH_3C595_3,
 229        CH_3C900_1,
 230        CH_3C900_2,
 231        CH_3C900_3,
 232        CH_3C900_4,
 233
 234        CH_3C900_5,
 235        CH_3C900B_FL,
 236        CH_3C905_1,
 237        CH_3C905_2,
 238        CH_3C905B_TX,
 239        CH_3C905B_1,
 240
 241        CH_3C905B_2,
 242        CH_3C905B_FX,
 243        CH_3C905C,
 244        CH_3C9202,
 245        CH_3C980,
 246        CH_3C9805,
 247
 248        CH_3CSOHO100_TX,
 249        CH_3C555,
 250        CH_3C556,
 251        CH_3C556B,
 252        CH_3C575,
 253
 254        CH_3C575_1,
 255        CH_3CCFE575,
 256        CH_3CCFE575CT,
 257        CH_3CCFE656,
 258        CH_3CCFEM656,
 259
 260        CH_3CCFEM656_1,
 261        CH_3C450,
 262        CH_3C920,
 263        CH_3C982A,
 264        CH_3C982B,
 265
 266        CH_905BT4,
 267        CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276        const char *name;
 277        int flags;
 278        int drv_flags;
 279        int io_size;
 280} vortex_info_tbl[] = {
 281        {"3c590 Vortex 10Mbps",
 282         PCI_USES_MASTER, IS_VORTEX, 32, },
 283        {"3c592 EISA 10Mbps Demon/Vortex",                                      /* AKPM: from Don's 3c59x_cb.c 0.49H */
 284         PCI_USES_MASTER, IS_VORTEX, 32, },
 285        {"3c597 EISA Fast Demon/Vortex",                                        /* AKPM: from Don's 3c59x_cb.c 0.49H */
 286         PCI_USES_MASTER, IS_VORTEX, 32, },
 287        {"3c595 Vortex 100baseTx",
 288         PCI_USES_MASTER, IS_VORTEX, 32, },
 289        {"3c595 Vortex 100baseT4",
 290         PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292        {"3c595 Vortex 100base-MII",
 293         PCI_USES_MASTER, IS_VORTEX, 32, },
 294        {"3c900 Boomerang 10baseT",
 295         PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296        {"3c900 Boomerang 10Mbps Combo",
 297         PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298        {"3c900 Cyclone 10Mbps TPO",                                            /* AKPM: from Don's 0.99M */
 299         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300        {"3c900 Cyclone 10Mbps Combo",
 301         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303        {"3c900 Cyclone 10Mbps TPC",                                            /* AKPM: from Don's 0.99M */
 304         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305        {"3c900B-FL Cyclone 10base-FL",
 306         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307        {"3c905 Boomerang 100baseTx",
 308         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309        {"3c905 Boomerang 100baseT4",
 310         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311        {"3C905B-TX Fast Etherlink XL PCI",
 312         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313        {"3c905B Cyclone 100baseTx",
 314         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316        {"3c905B Cyclone 10/100/BNC",
 317         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318        {"3c905B-FX Cyclone 100baseFx",
 319         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320        {"3c905C Tornado",
 321        PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322        {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323         PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324        {"3c980 Cyclone",
 325         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327        {"3c980C Python-T",
 328         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329        {"3cSOHO100-TX Hurricane",
 330         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331        {"3c555 Laptop Hurricane",
 332         PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333        {"3c556 Laptop Tornado",
 334         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335                                                                        HAS_HWCKSM, 128, },
 336        {"3c556B Laptop Hurricane",
 337         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338                                        WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340        {"3c575 [Megahertz] 10/100 LAN  CardBus",
 341        PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342        {"3c575 Boomerang CardBus",
 343         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344        {"3CCFE575BT Cyclone CardBus",
 345         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347        {"3CCFE575CT Tornado CardBus",
 348         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349                                                                        MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350        {"3CCFE656 Cyclone CardBus",
 351         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354        {"3CCFEM656B Cyclone+Winmodem CardBus",
 355         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357        {"3CXFEM656C Tornado+Winmodem CardBus",                 /* From pcmcia-cs-3.1.5 */
 358         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359                                                                        MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360        {"3c450 HomePNA Tornado",                                               /* AKPM: from Don's 0.99Q */
 361         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362        {"3c920 Tornado",
 363         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364        {"3c982 Hydra Dual Port A",
 365         PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367        {"3c982 Hydra Dual Port B",
 368         PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369        {"3c905B-T4",
 370         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371        {"3c920B-EMB-WNM Tornado",
 372         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374        {NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static const struct pci_device_id vortex_pci_tbl[] = {
 379        { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380        { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381        { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382        { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383        { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385        { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386        { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387        { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388        { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389        { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391        { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392        { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393        { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394        { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395        { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396        { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398        { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399        { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400        { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401        { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402        { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403        { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405        { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406        { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407        { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408        { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409        { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411        { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412        { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413        { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414        { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415        { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417        { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418        { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419        { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420        { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421        { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423        { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424        { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426        {0,}                                            /* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448        TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449        RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450        UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451        DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452        RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453        FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454        SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455        SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456        StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457        StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461        RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465        IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466        TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467        IntReq = 0x0040, StatsFull = 0x0080,
 468        DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469        DMAInProgress = 1<<11,                  /* DMA controller is still busy.*/
 470        CmdInProgress = 1<<12,                  /* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476        TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477        RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478        TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481        Wn0EepromCmd = 10,              /* Window 0: EEPROM command register. */
 482        Wn0EepromData = 12,             /* Window 0: EEPROM results register. */
 483        IntrStatus=0x0E,                /* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486        EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487        EEPROM_EWENB = 0x30,            /* Enable erasing/writing for 10 msec. */
 488        EEPROM_EWDIS = 0x00,            /* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492        PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493        EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494        NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495        DriverTune=13, Checksum=15};
 496
 497enum Window2 {                  /* Window 2. */
 498        Wn2_ResetOptions=12,
 499};
 500enum Window3 {                  /* Window 3: MAC/config bits. */
 501        Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)                                       \
 508        (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |   \
 509        (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)             BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)    BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)    BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)             BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)    BFEXT(v, 16, 2)
 516#define XCVR(v)                 BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)   BFEXT(v, 24, 1)
 518
 519enum Window4 {          /* Window 4: Xcvr/media bits. */
 520        Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523        Media_SQE = 0x0008,             /* Enable SQE error counting for AUI. */
 524        Media_10TP = 0x00C0,    /* Enable link beat and jabber for 10baseT. */
 525        Media_Lnk = 0x0080,             /* Enable just link beat for 100TX/100FX. */
 526        Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {                                  /* Window 7: Bus Master control. */
 529        Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530        Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534        PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535        TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG       0x80000000                      /* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE     0x00010000                      /* This packet has been downloaded */
 543struct boom_rx_desc {
 544        __le32 next;                                    /* Last entry points to 0.   */
 545        __le32 status;
 546        __le32 addr;                                    /* Up to 63 addr/len pairs possible. */
 547        __le32 length;                                  /* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551        RxDComplete=0x00008000, RxDError=0x4000,
 552        /* See boomerang_rx() for actual error bits */
 553        IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554        IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564        __le32 next;                                    /* Last entry points to 0.   */
 565        __le32 status;                                  /* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567        struct {
 568                __le32 addr;
 569                __le32 length;
 570        } frag[1+MAX_SKB_FRAGS];
 571#else
 572                __le32 addr;
 573                __le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579        CRCDisable=0x2000, TxDComplete=0x8000,
 580        AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581        TxIntrUploaded=0x80000000,              /* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588        unsigned long tx_deferred;
 589        unsigned long tx_max_collisions;
 590        unsigned long tx_multiple_collisions;
 591        unsigned long tx_single_collisions;
 592        unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596        /* The Rx and Tx rings should be quad-word-aligned. */
 597        struct boom_rx_desc* rx_ring;
 598        struct boom_tx_desc* tx_ring;
 599        dma_addr_t rx_ring_dma;
 600        dma_addr_t tx_ring_dma;
 601        /* The addresses of transmit- and receive-in-place skbuffs. */
 602        struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603        struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604        unsigned int cur_rx, cur_tx;            /* The next free ring entry */
 605        unsigned int dirty_rx, dirty_tx;        /* The ring entries to be free()ed. */
 606        struct vortex_extra_stats xstats;       /* NIC-specific extra stats */
 607        struct sk_buff *tx_skb;                         /* Packet being eaten by bus master ctrl.  */
 608        dma_addr_t tx_skb_dma;                          /* Allocated DMA address for bus master ctrl DMA.   */
 609
 610        /* PCI configuration space information. */
 611        struct device *gendev;
 612        void __iomem *ioaddr;                   /* IO address space */
 613        void __iomem *cb_fn_base;               /* CardBus function status addr space. */
 614
 615        /* Some values here only for performance evaluation and path-coverage */
 616        int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617        int card_idx;
 618
 619        /* The remainder are related to chip state, mostly media selection. */
 620        struct timer_list timer;                        /* Media selection timer. */
 621        struct timer_list rx_oom_timer;         /* Rx skb allocation retry timer */
 622        int options;                                            /* User-settable misc. driver options. */
 623        unsigned int media_override:4,          /* Passed-in media type. */
 624                default_media:4,                                /* Read from the EEPROM/Wn3_Config. */
 625                full_duplex:1, autoselect:1,
 626                bus_master:1,                                   /* Vortex can only do a fragment bus-m. */
 627                full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 628                flow_ctrl:1,                                    /* Use 802.3x flow control (PAUSE only) */
 629                partner_flow_ctrl:1,                    /* Partner supports flow control */
 630                has_nway:1,
 631                enable_wol:1,                                   /* Wake-on-LAN is enabled */
 632                pm_state_valid:1,                               /* pci_dev->saved_config_space has sane contents */
 633                open:1,
 634                medialock:1,
 635                large_frames:1,                 /* accept large frames */
 636                handling_irq:1;                 /* private in_irq indicator */
 637        /* {get|set}_wol operations are already serialized by rtnl.
 638         * no additional locking is required for the enable_wol and acpi_set_WOL()
 639         */
 640        int drv_flags;
 641        u16 status_enable;
 642        u16 intr_enable;
 643        u16 available_media;                            /* From Wn3_Options. */
 644        u16 capabilities, info1, info2;         /* Various, from EEPROM. */
 645        u16 advertising;                                        /* NWay media advertisement */
 646        unsigned char phys[2];                          /* MII device addresses. */
 647        u16 deferred;                                           /* Resend these interrupts when we
 648                                                                                 * bale from the ISR */
 649        u16 io_size;                                            /* Size of PCI region (for release_region) */
 650
 651        /* Serialises access to hardware other than MII and variables below.
 652         * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 653        spinlock_t lock;
 654
 655        spinlock_t mii_lock;            /* Serialises access to MII */
 656        struct mii_if_info mii;         /* MII lib hooks/info */
 657        spinlock_t window_lock;         /* Serialises access to windowed regs */
 658        int window;                     /* Register window */
 659};
 660
 661static void window_set(struct vortex_private *vp, int window)
 662{
 663        if (window != vp->window) {
 664                iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 665                vp->window = window;
 666        }
 667}
 668
 669#define DEFINE_WINDOW_IO(size)                                          \
 670static u ## size                                                        \
 671window_read ## size(struct vortex_private *vp, int window, int addr)    \
 672{                                                                       \
 673        unsigned long flags;                                            \
 674        u ## size ret;                                                  \
 675        spin_lock_irqsave(&vp->window_lock, flags);                     \
 676        window_set(vp, window);                                         \
 677        ret = ioread ## size(vp->ioaddr + addr);                        \
 678        spin_unlock_irqrestore(&vp->window_lock, flags);                \
 679        return ret;                                                     \
 680}                                                                       \
 681static void                                                             \
 682window_write ## size(struct vortex_private *vp, u ## size value,        \
 683                     int window, int addr)                              \
 684{                                                                       \
 685        unsigned long flags;                                            \
 686        spin_lock_irqsave(&vp->window_lock, flags);                     \
 687        window_set(vp, window);                                         \
 688        iowrite ## size(value, vp->ioaddr + addr);                      \
 689        spin_unlock_irqrestore(&vp->window_lock, flags);                \
 690}
 691DEFINE_WINDOW_IO(8)
 692DEFINE_WINDOW_IO(16)
 693DEFINE_WINDOW_IO(32)
 694
 695#ifdef CONFIG_PCI
 696#define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
 697#else
 698#define DEVICE_PCI(dev) NULL
 699#endif
 700
 701#define VORTEX_PCI(vp)                                                  \
 702        ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 703
 704#ifdef CONFIG_EISA
 705#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 706#else
 707#define DEVICE_EISA(dev) NULL
 708#endif
 709
 710#define VORTEX_EISA(vp)                                                 \
 711        ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 712
 713/* The action to take with a media selection timer tick.
 714   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 715 */
 716enum xcvr_types {
 717        XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 718        XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 719};
 720
 721static const struct media_table {
 722        char *name;
 723        unsigned int media_bits:16,             /* Bits to set in Wn4_Media register. */
 724                mask:8,                                         /* The transceiver-present bit in Wn3_Config.*/
 725                next:8;                                         /* The media type to try next. */
 726        int wait;                                               /* Time before we check media status. */
 727} media_tbl[] = {
 728  {     "10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 729  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 730  { "undefined", 0,                     0x80, XCVR_10baseT, 10000},
 731  { "10base2",   0,                     0x10, XCVR_AUI,         (1*HZ)/10},
 732  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 733  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,             (14*HZ)/10},
 734  { "MII",               0,                     0x41, XCVR_10baseT, 3*HZ },
 735  { "undefined", 0,                     0x01, XCVR_10baseT, 10000},
 736  { "Autonegotiate", 0,         0x41, XCVR_10baseT, 3*HZ},
 737  { "MII-External",      0,             0x41, XCVR_10baseT, 3*HZ },
 738  { "Default",   0,                     0xFF, XCVR_10baseT, 10000},
 739};
 740
 741static struct {
 742        const char str[ETH_GSTRING_LEN];
 743} ethtool_stats_keys[] = {
 744        { "tx_deferred" },
 745        { "tx_max_collisions" },
 746        { "tx_multiple_collisions" },
 747        { "tx_single_collisions" },
 748        { "rx_bad_ssd" },
 749};
 750
 751/* number of ETHTOOL_GSTATS u64's */
 752#define VORTEX_NUM_STATS    5
 753
 754static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 755                                   int chip_idx, int card_idx);
 756static int vortex_up(struct net_device *dev);
 757static void vortex_down(struct net_device *dev, int final);
 758static int vortex_open(struct net_device *dev);
 759static void mdio_sync(struct vortex_private *vp, int bits);
 760static int mdio_read(struct net_device *dev, int phy_id, int location);
 761static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 762static void vortex_timer(unsigned long arg);
 763static void rx_oom_timer(unsigned long arg);
 764static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 765                                     struct net_device *dev);
 766static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 767                                        struct net_device *dev);
 768static int vortex_rx(struct net_device *dev);
 769static int boomerang_rx(struct net_device *dev);
 770static irqreturn_t vortex_interrupt(int irq, void *dev_id);
 771static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
 772static int vortex_close(struct net_device *dev);
 773static void dump_tx_ring(struct net_device *dev);
 774static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 775static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 776static void set_rx_mode(struct net_device *dev);
 777#ifdef CONFIG_PCI
 778static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 779#endif
 780static void vortex_tx_timeout(struct net_device *dev);
 781static void acpi_set_WOL(struct net_device *dev);
 782static const struct ethtool_ops vortex_ethtool_ops;
 783static void set_8021q_mode(struct net_device *dev, int enable);
 784
 785/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 786/* Option count limit only -- unlimited interfaces are supported. */
 787#define MAX_UNITS 8
 788static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 789static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 790static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 794static int global_options = -1;
 795static int global_full_duplex = -1;
 796static int global_enable_wol = -1;
 797static int global_use_mmio = -1;
 798
 799/* Variables to work-around the Compaq PCI BIOS32 problem. */
 800static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 801static struct net_device *compaq_net_device;
 802
 803static int vortex_cards_found;
 804
 805module_param(debug, int, 0);
 806module_param(global_options, int, 0);
 807module_param_array(options, int, NULL, 0);
 808module_param(global_full_duplex, int, 0);
 809module_param_array(full_duplex, int, NULL, 0);
 810module_param_array(hw_checksums, int, NULL, 0);
 811module_param_array(flow_ctrl, int, NULL, 0);
 812module_param(global_enable_wol, int, 0);
 813module_param_array(enable_wol, int, NULL, 0);
 814module_param(rx_copybreak, int, 0);
 815module_param(max_interrupt_work, int, 0);
 816module_param_hw(compaq_ioaddr, int, ioport, 0);
 817module_param_hw(compaq_irq, int, irq, 0);
 818module_param(compaq_device_id, int, 0);
 819module_param(watchdog, int, 0);
 820module_param(global_use_mmio, int, 0);
 821module_param_array(use_mmio, int, NULL, 0);
 822MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 823MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 824MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 825MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 826MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 827MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 828MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 829MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 830MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 831MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 832MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 833MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 834MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 836MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 837MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 838MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 839
 840#ifdef CONFIG_NET_POLL_CONTROLLER
 841static void poll_vortex(struct net_device *dev)
 842{
 843        struct vortex_private *vp = netdev_priv(dev);
 844        unsigned long flags;
 845        local_irq_save(flags);
 846        (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
 847        local_irq_restore(flags);
 848}
 849#endif
 850
 851#ifdef CONFIG_PM
 852
 853static int vortex_suspend(struct device *dev)
 854{
 855        struct pci_dev *pdev = to_pci_dev(dev);
 856        struct net_device *ndev = pci_get_drvdata(pdev);
 857
 858        if (!ndev || !netif_running(ndev))
 859                return 0;
 860
 861        netif_device_detach(ndev);
 862        vortex_down(ndev, 1);
 863
 864        return 0;
 865}
 866
 867static int vortex_resume(struct device *dev)
 868{
 869        struct pci_dev *pdev = to_pci_dev(dev);
 870        struct net_device *ndev = pci_get_drvdata(pdev);
 871        int err;
 872
 873        if (!ndev || !netif_running(ndev))
 874                return 0;
 875
 876        err = vortex_up(ndev);
 877        if (err)
 878                return err;
 879
 880        netif_device_attach(ndev);
 881
 882        return 0;
 883}
 884
 885static const struct dev_pm_ops vortex_pm_ops = {
 886        .suspend = vortex_suspend,
 887        .resume = vortex_resume,
 888        .freeze = vortex_suspend,
 889        .thaw = vortex_resume,
 890        .poweroff = vortex_suspend,
 891        .restore = vortex_resume,
 892};
 893
 894#define VORTEX_PM_OPS (&vortex_pm_ops)
 895
 896#else /* !CONFIG_PM */
 897
 898#define VORTEX_PM_OPS NULL
 899
 900#endif /* !CONFIG_PM */
 901
 902#ifdef CONFIG_EISA
 903static const struct eisa_device_id vortex_eisa_ids[] = {
 904        { "TCM5920", CH_3C592 },
 905        { "TCM5970", CH_3C597 },
 906        { "" }
 907};
 908MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 909
 910static int vortex_eisa_probe(struct device *device)
 911{
 912        void __iomem *ioaddr;
 913        struct eisa_device *edev;
 914
 915        edev = to_eisa_device(device);
 916
 917        if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 918                return -EBUSY;
 919
 920        ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 921
 922        if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 923                                          edev->id.driver_data, vortex_cards_found)) {
 924                release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 925                return -ENODEV;
 926        }
 927
 928        vortex_cards_found++;
 929
 930        return 0;
 931}
 932
 933static int vortex_eisa_remove(struct device *device)
 934{
 935        struct eisa_device *edev;
 936        struct net_device *dev;
 937        struct vortex_private *vp;
 938        void __iomem *ioaddr;
 939
 940        edev = to_eisa_device(device);
 941        dev = eisa_get_drvdata(edev);
 942
 943        if (!dev) {
 944                pr_err("vortex_eisa_remove called for Compaq device!\n");
 945                BUG();
 946        }
 947
 948        vp = netdev_priv(dev);
 949        ioaddr = vp->ioaddr;
 950
 951        unregister_netdev(dev);
 952        iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 953        release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 954
 955        free_netdev(dev);
 956        return 0;
 957}
 958
 959static struct eisa_driver vortex_eisa_driver = {
 960        .id_table = vortex_eisa_ids,
 961        .driver   = {
 962                .name    = "3c59x",
 963                .probe   = vortex_eisa_probe,
 964                .remove  = vortex_eisa_remove
 965        }
 966};
 967
 968#endif /* CONFIG_EISA */
 969
 970/* returns count found (>= 0), or negative on error */
 971static int __init vortex_eisa_init(void)
 972{
 973        int eisa_found = 0;
 974        int orig_cards_found = vortex_cards_found;
 975
 976#ifdef CONFIG_EISA
 977        int err;
 978
 979        err = eisa_driver_register (&vortex_eisa_driver);
 980        if (!err) {
 981                /*
 982                 * Because of the way EISA bus is probed, we cannot assume
 983                 * any device have been found when we exit from
 984                 * eisa_driver_register (the bus root driver may not be
 985                 * initialized yet). So we blindly assume something was
 986                 * found, and let the sysfs magic happened...
 987                 */
 988                eisa_found = 1;
 989        }
 990#endif
 991
 992        /* Special code to work-around the Compaq PCI BIOS32 problem. */
 993        if (compaq_ioaddr) {
 994                vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 995                              compaq_irq, compaq_device_id, vortex_cards_found++);
 996        }
 997
 998        return vortex_cards_found - orig_cards_found + eisa_found;
 999}
1000
1001/* returns count (>= 0), or negative on error */
1002static int vortex_init_one(struct pci_dev *pdev,
1003                           const struct pci_device_id *ent)
1004{
1005        int rc, unit, pci_bar;
1006        struct vortex_chip_info *vci;
1007        void __iomem *ioaddr;
1008
1009        /* wake up and enable device */
1010        rc = pci_enable_device(pdev);
1011        if (rc < 0)
1012                goto out;
1013
1014        rc = pci_request_regions(pdev, DRV_NAME);
1015        if (rc < 0)
1016                goto out_disable;
1017
1018        unit = vortex_cards_found;
1019
1020        if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021                /* Determine the default if the user didn't override us */
1022                vci = &vortex_info_tbl[ent->driver_data];
1023                pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024        } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025                pci_bar = use_mmio[unit] ? 1 : 0;
1026        else
1027                pci_bar = global_use_mmio ? 1 : 0;
1028
1029        ioaddr = pci_iomap(pdev, pci_bar, 0);
1030        if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031                ioaddr = pci_iomap(pdev, 0, 0);
1032        if (!ioaddr) {
1033                rc = -ENOMEM;
1034                goto out_release;
1035        }
1036
1037        rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038                           ent->driver_data, unit);
1039        if (rc < 0)
1040                goto out_iounmap;
1041
1042        vortex_cards_found++;
1043        goto out;
1044
1045out_iounmap:
1046        pci_iounmap(pdev, ioaddr);
1047out_release:
1048        pci_release_regions(pdev);
1049out_disable:
1050        pci_disable_device(pdev);
1051out:
1052        return rc;
1053}
1054
1055static const struct net_device_ops boomrang_netdev_ops = {
1056        .ndo_open               = vortex_open,
1057        .ndo_stop               = vortex_close,
1058        .ndo_start_xmit         = boomerang_start_xmit,
1059        .ndo_tx_timeout         = vortex_tx_timeout,
1060        .ndo_get_stats          = vortex_get_stats,
1061#ifdef CONFIG_PCI
1062        .ndo_do_ioctl           = vortex_ioctl,
1063#endif
1064        .ndo_set_rx_mode        = set_rx_mode,
1065        .ndo_set_mac_address    = eth_mac_addr,
1066        .ndo_validate_addr      = eth_validate_addr,
1067#ifdef CONFIG_NET_POLL_CONTROLLER
1068        .ndo_poll_controller    = poll_vortex,
1069#endif
1070};
1071
1072static const struct net_device_ops vortex_netdev_ops = {
1073        .ndo_open               = vortex_open,
1074        .ndo_stop               = vortex_close,
1075        .ndo_start_xmit         = vortex_start_xmit,
1076        .ndo_tx_timeout         = vortex_tx_timeout,
1077        .ndo_get_stats          = vortex_get_stats,
1078#ifdef CONFIG_PCI
1079        .ndo_do_ioctl           = vortex_ioctl,
1080#endif
1081        .ndo_set_rx_mode        = set_rx_mode,
1082        .ndo_set_mac_address    = eth_mac_addr,
1083        .ndo_validate_addr      = eth_validate_addr,
1084#ifdef CONFIG_NET_POLL_CONTROLLER
1085        .ndo_poll_controller    = poll_vortex,
1086#endif
1087};
1088
1089/*
1090 * Start up the PCI/EISA device which is described by *gendev.
1091 * Return 0 on success.
1092 *
1093 * NOTE: pdev can be NULL, for the case of a Compaq device
1094 */
1095static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1096                         int chip_idx, int card_idx)
1097{
1098        struct vortex_private *vp;
1099        int option;
1100        unsigned int eeprom[0x40], checksum = 0;                /* EEPROM contents */
1101        int i, step;
1102        struct net_device *dev;
1103        static int printed_version;
1104        int retval, print_info;
1105        struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1106        const char *print_name = "3c59x";
1107        struct pci_dev *pdev = NULL;
1108        struct eisa_device *edev = NULL;
1109
1110        if (!printed_version) {
1111                pr_info("%s", version);
1112                printed_version = 1;
1113        }
1114
1115        if (gendev) {
1116                if ((pdev = DEVICE_PCI(gendev))) {
1117                        print_name = pci_name(pdev);
1118                }
1119
1120                if ((edev = DEVICE_EISA(gendev))) {
1121                        print_name = dev_name(&edev->dev);
1122                }
1123        }
1124
1125        dev = alloc_etherdev(sizeof(*vp));
1126        retval = -ENOMEM;
1127        if (!dev)
1128                goto out;
1129
1130        SET_NETDEV_DEV(dev, gendev);
1131        vp = netdev_priv(dev);
1132
1133        option = global_options;
1134
1135        /* The lower four bits are the media type. */
1136        if (dev->mem_start) {
1137                /*
1138                 * The 'options' param is passed in as the third arg to the
1139                 * LILO 'ether=' argument for non-modular use
1140                 */
1141                option = dev->mem_start;
1142        }
1143        else if (card_idx < MAX_UNITS) {
1144                if (options[card_idx] >= 0)
1145                        option = options[card_idx];
1146        }
1147
1148        if (option > 0) {
1149                if (option & 0x8000)
1150                        vortex_debug = 7;
1151                if (option & 0x4000)
1152                        vortex_debug = 2;
1153                if (option & 0x0400)
1154                        vp->enable_wol = 1;
1155        }
1156
1157        print_info = (vortex_debug > 1);
1158        if (print_info)
1159                pr_info("See Documentation/networking/vortex.txt\n");
1160
1161        pr_info("%s: 3Com %s %s at %p.\n",
1162               print_name,
1163               pdev ? "PCI" : "EISA",
1164               vci->name,
1165               ioaddr);
1166
1167        dev->base_addr = (unsigned long)ioaddr;
1168        dev->irq = irq;
1169        dev->mtu = mtu;
1170        vp->ioaddr = ioaddr;
1171        vp->large_frames = mtu > 1500;
1172        vp->drv_flags = vci->drv_flags;
1173        vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1174        vp->io_size = vci->io_size;
1175        vp->card_idx = card_idx;
1176        vp->window = -1;
1177
1178        /* module list only for Compaq device */
1179        if (gendev == NULL) {
1180                compaq_net_device = dev;
1181        }
1182
1183        /* PCI-only startup logic */
1184        if (pdev) {
1185                /* enable bus-mastering if necessary */
1186                if (vci->flags & PCI_USES_MASTER)
1187                        pci_set_master(pdev);
1188
1189                if (vci->drv_flags & IS_VORTEX) {
1190                        u8 pci_latency;
1191                        u8 new_latency = 248;
1192
1193                        /* Check the PCI latency value.  On the 3c590 series the latency timer
1194                           must be set to the maximum value to avoid data corruption that occurs
1195                           when the timer expires during a transfer.  This bug exists the Vortex
1196                           chip only. */
1197                        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1198                        if (pci_latency < new_latency) {
1199                                pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1200                                        print_name, pci_latency, new_latency);
1201                                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1202                        }
1203                }
1204        }
1205
1206        spin_lock_init(&vp->lock);
1207        spin_lock_init(&vp->mii_lock);
1208        spin_lock_init(&vp->window_lock);
1209        vp->gendev = gendev;
1210        vp->mii.dev = dev;
1211        vp->mii.mdio_read = mdio_read;
1212        vp->mii.mdio_write = mdio_write;
1213        vp->mii.phy_id_mask = 0x1f;
1214        vp->mii.reg_num_mask = 0x1f;
1215
1216        /* Makes sure rings are at least 16 byte aligned. */
1217        vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1218                                           + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1219                                           &vp->rx_ring_dma);
1220        retval = -ENOMEM;
1221        if (!vp->rx_ring)
1222                goto free_device;
1223
1224        vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1225        vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1226
1227        /* if we are a PCI driver, we store info in pdev->driver_data
1228         * instead of a module list */
1229        if (pdev)
1230                pci_set_drvdata(pdev, dev);
1231        if (edev)
1232                eisa_set_drvdata(edev, dev);
1233
1234        vp->media_override = 7;
1235        if (option >= 0) {
1236                vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1237                if (vp->media_override != 7)
1238                        vp->medialock = 1;
1239                vp->full_duplex = (option & 0x200) ? 1 : 0;
1240                vp->bus_master = (option & 16) ? 1 : 0;
1241        }
1242
1243        if (global_full_duplex > 0)
1244                vp->full_duplex = 1;
1245        if (global_enable_wol > 0)
1246                vp->enable_wol = 1;
1247
1248        if (card_idx < MAX_UNITS) {
1249                if (full_duplex[card_idx] > 0)
1250                        vp->full_duplex = 1;
1251                if (flow_ctrl[card_idx] > 0)
1252                        vp->flow_ctrl = 1;
1253                if (enable_wol[card_idx] > 0)
1254                        vp->enable_wol = 1;
1255        }
1256
1257        vp->mii.force_media = vp->full_duplex;
1258        vp->options = option;
1259        /* Read the station address from the EEPROM. */
1260        {
1261                int base;
1262
1263                if (vci->drv_flags & EEPROM_8BIT)
1264                        base = 0x230;
1265                else if (vci->drv_flags & EEPROM_OFFSET)
1266                        base = EEPROM_Read + 0x30;
1267                else
1268                        base = EEPROM_Read;
1269
1270                for (i = 0; i < 0x40; i++) {
1271                        int timer;
1272                        window_write16(vp, base + i, 0, Wn0EepromCmd);
1273                        /* Pause for at least 162 us. for the read to take place. */
1274                        for (timer = 10; timer >= 0; timer--) {
1275                                udelay(162);
1276                                if ((window_read16(vp, 0, Wn0EepromCmd) &
1277                                     0x8000) == 0)
1278                                        break;
1279                        }
1280                        eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1281                }
1282        }
1283        for (i = 0; i < 0x18; i++)
1284                checksum ^= eeprom[i];
1285        checksum = (checksum ^ (checksum >> 8)) & 0xff;
1286        if (checksum != 0x00) {         /* Grrr, needless incompatible change 3Com. */
1287                while (i < 0x21)
1288                        checksum ^= eeprom[i++];
1289                checksum = (checksum ^ (checksum >> 8)) & 0xff;
1290        }
1291        if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1292                pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1293        for (i = 0; i < 3; i++)
1294                ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1295        if (print_info)
1296                pr_cont(" %pM", dev->dev_addr);
1297        /* Unfortunately an all zero eeprom passes the checksum and this
1298           gets found in the wild in failure cases. Crypto is hard 8) */
1299        if (!is_valid_ether_addr(dev->dev_addr)) {
1300                retval = -EINVAL;
1301                pr_err("*** EEPROM MAC address is invalid.\n");
1302                goto free_ring; /* With every pack */
1303        }
1304        for (i = 0; i < 6; i++)
1305                window_write8(vp, dev->dev_addr[i], 2, i);
1306
1307        if (print_info)
1308                pr_cont(", IRQ %d\n", dev->irq);
1309        /* Tell them about an invalid IRQ. */
1310        if (dev->irq <= 0 || dev->irq >= nr_irqs)
1311                pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1312                        dev->irq);
1313
1314        step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1315        if (print_info) {
1316                pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1317                        eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1318                        step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1319        }
1320
1321
1322        if (pdev && vci->drv_flags & HAS_CB_FNS) {
1323                unsigned short n;
1324
1325                vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1326                if (!vp->cb_fn_base) {
1327                        retval = -ENOMEM;
1328                        goto free_ring;
1329                }
1330
1331                if (print_info) {
1332                        pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1333                                print_name,
1334                                (unsigned long long)pci_resource_start(pdev, 2),
1335                                vp->cb_fn_base);
1336                }
1337
1338                n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1339                if (vp->drv_flags & INVERT_LED_PWR)
1340                        n |= 0x10;
1341                if (vp->drv_flags & INVERT_MII_PWR)
1342                        n |= 0x4000;
1343                window_write16(vp, n, 2, Wn2_ResetOptions);
1344                if (vp->drv_flags & WNO_XCVR_PWR) {
1345                        window_write16(vp, 0x0800, 0, 0);
1346                }
1347        }
1348
1349        /* Extract our information from the EEPROM data. */
1350        vp->info1 = eeprom[13];
1351        vp->info2 = eeprom[15];
1352        vp->capabilities = eeprom[16];
1353
1354        if (vp->info1 & 0x8000) {
1355                vp->full_duplex = 1;
1356                if (print_info)
1357                        pr_info("Full duplex capable\n");
1358        }
1359
1360        {
1361                static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1362                unsigned int config;
1363                vp->available_media = window_read16(vp, 3, Wn3_Options);
1364                if ((vp->available_media & 0xff) == 0)          /* Broken 3c916 */
1365                        vp->available_media = 0x40;
1366                config = window_read32(vp, 3, Wn3_Config);
1367                if (print_info) {
1368                        pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1369                                config, window_read16(vp, 3, Wn3_Options));
1370                        pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1371                                   8 << RAM_SIZE(config),
1372                                   RAM_WIDTH(config) ? "word" : "byte",
1373                                   ram_split[RAM_SPLIT(config)],
1374                                   AUTOSELECT(config) ? "autoselect/" : "",
1375                                   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1376                                   media_tbl[XCVR(config)].name);
1377                }
1378                vp->default_media = XCVR(config);
1379                if (vp->default_media == XCVR_NWAY)
1380                        vp->has_nway = 1;
1381                vp->autoselect = AUTOSELECT(config);
1382        }
1383
1384        if (vp->media_override != 7) {
1385                pr_info("%s:  Media override to transceiver type %d (%s).\n",
1386                                print_name, vp->media_override,
1387                                media_tbl[vp->media_override].name);
1388                dev->if_port = vp->media_override;
1389        } else
1390                dev->if_port = vp->default_media;
1391
1392        if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1393                dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1394                int phy, phy_idx = 0;
1395                mii_preamble_required++;
1396                if (vp->drv_flags & EXTRA_PREAMBLE)
1397                        mii_preamble_required++;
1398                mdio_sync(vp, 32);
1399                mdio_read(dev, 24, MII_BMSR);
1400                for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1401                        int mii_status, phyx;
1402
1403                        /*
1404                         * For the 3c905CX we look at index 24 first, because it bogusly
1405                         * reports an external PHY at all indices
1406                         */
1407                        if (phy == 0)
1408                                phyx = 24;
1409                        else if (phy <= 24)
1410                                phyx = phy - 1;
1411                        else
1412                                phyx = phy;
1413                        mii_status = mdio_read(dev, phyx, MII_BMSR);
1414                        if (mii_status  &&  mii_status != 0xffff) {
1415                                vp->phys[phy_idx++] = phyx;
1416                                if (print_info) {
1417                                        pr_info("  MII transceiver found at address %d, status %4x.\n",
1418                                                phyx, mii_status);
1419                                }
1420                                if ((mii_status & 0x0040) == 0)
1421                                        mii_preamble_required++;
1422                        }
1423                }
1424                mii_preamble_required--;
1425                if (phy_idx == 0) {
1426                        pr_warn("  ***WARNING*** No MII transceivers found!\n");
1427                        vp->phys[0] = 24;
1428                } else {
1429                        vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1430                        if (vp->full_duplex) {
1431                                /* Only advertise the FD media types. */
1432                                vp->advertising &= ~0x02A0;
1433                                mdio_write(dev, vp->phys[0], 4, vp->advertising);
1434                        }
1435                }
1436                vp->mii.phy_id = vp->phys[0];
1437        }
1438
1439        if (vp->capabilities & CapBusMaster) {
1440                vp->full_bus_master_tx = 1;
1441                if (print_info) {
1442                        pr_info("  Enabling bus-master transmits and %s receives.\n",
1443                        (vp->info2 & 1) ? "early" : "whole-frame" );
1444                }
1445                vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1446                vp->bus_master = 0;             /* AKPM: vortex only */
1447        }
1448
1449        /* The 3c59x-specific entries in the device structure. */
1450        if (vp->full_bus_master_tx) {
1451                dev->netdev_ops = &boomrang_netdev_ops;
1452                /* Actually, it still should work with iommu. */
1453                if (card_idx < MAX_UNITS &&
1454                    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1455                                hw_checksums[card_idx] == 1)) {
1456                        dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1457                }
1458        } else
1459                dev->netdev_ops =  &vortex_netdev_ops;
1460
1461        if (print_info) {
1462                pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1463                                print_name,
1464                                (dev->features & NETIF_F_SG) ? "en":"dis",
1465                                (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1466        }
1467
1468        dev->ethtool_ops = &vortex_ethtool_ops;
1469        dev->watchdog_timeo = (watchdog * HZ) / 1000;
1470
1471        if (pdev) {
1472                vp->pm_state_valid = 1;
1473                pci_save_state(pdev);
1474                acpi_set_WOL(dev);
1475        }
1476        retval = register_netdev(dev);
1477        if (retval == 0)
1478                return 0;
1479
1480free_ring:
1481        pci_free_consistent(pdev,
1482                                                sizeof(struct boom_rx_desc) * RX_RING_SIZE
1483                                                        + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1484                                                vp->rx_ring,
1485                                                vp->rx_ring_dma);
1486free_device:
1487        free_netdev(dev);
1488        pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1489out:
1490        return retval;
1491}
1492
1493static void
1494issue_and_wait(struct net_device *dev, int cmd)
1495{
1496        struct vortex_private *vp = netdev_priv(dev);
1497        void __iomem *ioaddr = vp->ioaddr;
1498        int i;
1499
1500        iowrite16(cmd, ioaddr + EL3_CMD);
1501        for (i = 0; i < 2000; i++) {
1502                if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1503                        return;
1504        }
1505
1506        /* OK, that didn't work.  Do it the slow way.  One second */
1507        for (i = 0; i < 100000; i++) {
1508                if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1509                        if (vortex_debug > 1)
1510                                pr_info("%s: command 0x%04x took %d usecs\n",
1511                                           dev->name, cmd, i * 10);
1512                        return;
1513                }
1514                udelay(10);
1515        }
1516        pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1517                           dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1518}
1519
1520static void
1521vortex_set_duplex(struct net_device *dev)
1522{
1523        struct vortex_private *vp = netdev_priv(dev);
1524
1525        pr_info("%s:  setting %s-duplex.\n",
1526                dev->name, (vp->full_duplex) ? "full" : "half");
1527
1528        /* Set the full-duplex bit. */
1529        window_write16(vp,
1530                       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1531                       (vp->large_frames ? 0x40 : 0) |
1532                       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1533                        0x100 : 0),
1534                       3, Wn3_MAC_Ctrl);
1535}
1536
1537static void vortex_check_media(struct net_device *dev, unsigned int init)
1538{
1539        struct vortex_private *vp = netdev_priv(dev);
1540        unsigned int ok_to_print = 0;
1541
1542        if (vortex_debug > 3)
1543                ok_to_print = 1;
1544
1545        if (mii_check_media(&vp->mii, ok_to_print, init)) {
1546                vp->full_duplex = vp->mii.full_duplex;
1547                vortex_set_duplex(dev);
1548        } else if (init) {
1549                vortex_set_duplex(dev);
1550        }
1551}
1552
1553static int
1554vortex_up(struct net_device *dev)
1555{
1556        struct vortex_private *vp = netdev_priv(dev);
1557        void __iomem *ioaddr = vp->ioaddr;
1558        unsigned int config;
1559        int i, mii_reg1, mii_reg5, err = 0;
1560
1561        if (VORTEX_PCI(vp)) {
1562                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);    /* Go active */
1563                if (vp->pm_state_valid)
1564                        pci_restore_state(VORTEX_PCI(vp));
1565                err = pci_enable_device(VORTEX_PCI(vp));
1566                if (err) {
1567                        pr_warn("%s: Could not enable device\n", dev->name);
1568                        goto err_out;
1569                }
1570        }
1571
1572        /* Before initializing select the active media port. */
1573        config = window_read32(vp, 3, Wn3_Config);
1574
1575        if (vp->media_override != 7) {
1576                pr_info("%s: Media override to transceiver %d (%s).\n",
1577                           dev->name, vp->media_override,
1578                           media_tbl[vp->media_override].name);
1579                dev->if_port = vp->media_override;
1580        } else if (vp->autoselect) {
1581                if (vp->has_nway) {
1582                        if (vortex_debug > 1)
1583                                pr_info("%s: using NWAY device table, not %d\n",
1584                                                                dev->name, dev->if_port);
1585                        dev->if_port = XCVR_NWAY;
1586                } else {
1587                        /* Find first available media type, starting with 100baseTx. */
1588                        dev->if_port = XCVR_100baseTx;
1589                        while (! (vp->available_media & media_tbl[dev->if_port].mask))
1590                                dev->if_port = media_tbl[dev->if_port].next;
1591                        if (vortex_debug > 1)
1592                                pr_info("%s: first available media type: %s\n",
1593                                        dev->name, media_tbl[dev->if_port].name);
1594                }
1595        } else {
1596                dev->if_port = vp->default_media;
1597                if (vortex_debug > 1)
1598                        pr_info("%s: using default media %s\n",
1599                                dev->name, media_tbl[dev->if_port].name);
1600        }
1601
1602        setup_timer(&vp->timer, vortex_timer, (unsigned long)dev);
1603        mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1604        setup_timer(&vp->rx_oom_timer, rx_oom_timer, (unsigned long)dev);
1605
1606        if (vortex_debug > 1)
1607                pr_debug("%s: Initial media type %s.\n",
1608                           dev->name, media_tbl[dev->if_port].name);
1609
1610        vp->full_duplex = vp->mii.force_media;
1611        config = BFINS(config, dev->if_port, 20, 4);
1612        if (vortex_debug > 6)
1613                pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1614        window_write32(vp, config, 3, Wn3_Config);
1615
1616        if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1617                mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1618                mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1619                vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1620                vp->mii.full_duplex = vp->full_duplex;
1621
1622                vortex_check_media(dev, 1);
1623        }
1624        else
1625                vortex_set_duplex(dev);
1626
1627        issue_and_wait(dev, TxReset);
1628        /*
1629         * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1630         */
1631        issue_and_wait(dev, RxReset|0x04);
1632
1633
1634        iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1635
1636        if (vortex_debug > 1) {
1637                pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1638                           dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1639        }
1640
1641        /* Set the station address and mask in window 2 each time opened. */
1642        for (i = 0; i < 6; i++)
1643                window_write8(vp, dev->dev_addr[i], 2, i);
1644        for (; i < 12; i+=2)
1645                window_write16(vp, 0, 2, i);
1646
1647        if (vp->cb_fn_base) {
1648                unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1649                if (vp->drv_flags & INVERT_LED_PWR)
1650                        n |= 0x10;
1651                if (vp->drv_flags & INVERT_MII_PWR)
1652                        n |= 0x4000;
1653                window_write16(vp, n, 2, Wn2_ResetOptions);
1654        }
1655
1656        if (dev->if_port == XCVR_10base2)
1657                /* Start the thinnet transceiver. We should really wait 50ms...*/
1658                iowrite16(StartCoax, ioaddr + EL3_CMD);
1659        if (dev->if_port != XCVR_NWAY) {
1660                window_write16(vp,
1661                               (window_read16(vp, 4, Wn4_Media) &
1662                                ~(Media_10TP|Media_SQE)) |
1663                               media_tbl[dev->if_port].media_bits,
1664                               4, Wn4_Media);
1665        }
1666
1667        /* Switch to the stats window, and clear all stats by reading. */
1668        iowrite16(StatsDisable, ioaddr + EL3_CMD);
1669        for (i = 0; i < 10; i++)
1670                window_read8(vp, 6, i);
1671        window_read16(vp, 6, 10);
1672        window_read16(vp, 6, 12);
1673        /* New: On the Vortex we must also clear the BadSSD counter. */
1674        window_read8(vp, 4, 12);
1675        /* ..and on the Boomerang we enable the extra statistics bits. */
1676        window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1677
1678        if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1679                vp->cur_rx = vp->dirty_rx = 0;
1680                /* Initialize the RxEarly register as recommended. */
1681                iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1682                iowrite32(0x0020, ioaddr + PktStatus);
1683                iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1684        }
1685        if (vp->full_bus_master_tx) {           /* Boomerang bus master Tx. */
1686                vp->cur_tx = vp->dirty_tx = 0;
1687                if (vp->drv_flags & IS_BOOMERANG)
1688                        iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1689                /* Clear the Rx, Tx rings. */
1690                for (i = 0; i < RX_RING_SIZE; i++)      /* AKPM: this is done in vortex_open, too */
1691                        vp->rx_ring[i].status = 0;
1692                for (i = 0; i < TX_RING_SIZE; i++)
1693                        vp->tx_skbuff[i] = NULL;
1694                iowrite32(0, ioaddr + DownListPtr);
1695        }
1696        /* Set receiver mode: presumably accept b-case and phys addr only. */
1697        set_rx_mode(dev);
1698        /* enable 802.1q tagged frames */
1699        set_8021q_mode(dev, 1);
1700        iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1701
1702        iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1703        iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1704        /* Allow status bits to be seen. */
1705        vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1706                (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1707                (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1708                (vp->bus_master ? DMADone : 0);
1709        vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1710                (vp->full_bus_master_rx ? 0 : RxComplete) |
1711                StatsFull | HostError | TxComplete | IntReq
1712                | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1713        iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1714        /* Ack all pending events, and set active indicator mask. */
1715        iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1716                 ioaddr + EL3_CMD);
1717        iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1718        if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
1719                iowrite32(0x8000, vp->cb_fn_base + 4);
1720        netif_start_queue (dev);
1721        netdev_reset_queue(dev);
1722err_out:
1723        return err;
1724}
1725
1726static int
1727vortex_open(struct net_device *dev)
1728{
1729        struct vortex_private *vp = netdev_priv(dev);
1730        int i;
1731        int retval;
1732
1733        /* Use the now-standard shared IRQ implementation. */
1734        if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1735                                boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1736                pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1737                goto err;
1738        }
1739
1740        if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1741                if (vortex_debug > 2)
1742                        pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1743                for (i = 0; i < RX_RING_SIZE; i++) {
1744                        struct sk_buff *skb;
1745                        vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1746                        vp->rx_ring[i].status = 0;      /* Clear complete bit. */
1747                        vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1748
1749                        skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1750                                                 GFP_KERNEL);
1751                        vp->rx_skbuff[i] = skb;
1752                        if (skb == NULL)
1753                                break;                  /* Bad news!  */
1754
1755                        skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1756                        vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1757                }
1758                if (i != RX_RING_SIZE) {
1759                        pr_emerg("%s: no memory for rx ring\n", dev->name);
1760                        retval = -ENOMEM;
1761                        goto err_free_skb;
1762                }
1763                /* Wrap the ring. */
1764                vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1765        }
1766
1767        retval = vortex_up(dev);
1768        if (!retval)
1769                goto out;
1770
1771err_free_skb:
1772        for (i = 0; i < RX_RING_SIZE; i++) {
1773                if (vp->rx_skbuff[i]) {
1774                        dev_kfree_skb(vp->rx_skbuff[i]);
1775                        vp->rx_skbuff[i] = NULL;
1776                }
1777        }
1778        free_irq(dev->irq, dev);
1779err:
1780        if (vortex_debug > 1)
1781                pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1782out:
1783        return retval;
1784}
1785
1786static void
1787vortex_timer(unsigned long data)
1788{
1789        struct net_device *dev = (struct net_device *)data;
1790        struct vortex_private *vp = netdev_priv(dev);
1791        void __iomem *ioaddr = vp->ioaddr;
1792        int next_tick = 60*HZ;
1793        int ok = 0;
1794        int media_status;
1795
1796        if (vortex_debug > 2) {
1797                pr_debug("%s: Media selection timer tick happened, %s.\n",
1798                           dev->name, media_tbl[dev->if_port].name);
1799                pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1800        }
1801
1802        media_status = window_read16(vp, 4, Wn4_Media);
1803        switch (dev->if_port) {
1804        case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1805                if (media_status & Media_LnkBeat) {
1806                        netif_carrier_on(dev);
1807                        ok = 1;
1808                        if (vortex_debug > 1)
1809                                pr_debug("%s: Media %s has link beat, %x.\n",
1810                                           dev->name, media_tbl[dev->if_port].name, media_status);
1811                } else {
1812                        netif_carrier_off(dev);
1813                        if (vortex_debug > 1) {
1814                                pr_debug("%s: Media %s has no link beat, %x.\n",
1815                                           dev->name, media_tbl[dev->if_port].name, media_status);
1816                        }
1817                }
1818                break;
1819        case XCVR_MII: case XCVR_NWAY:
1820                {
1821                        ok = 1;
1822                        vortex_check_media(dev, 0);
1823                }
1824                break;
1825          default:                                      /* Other media types handled by Tx timeouts. */
1826                if (vortex_debug > 1)
1827                  pr_debug("%s: Media %s has no indication, %x.\n",
1828                                 dev->name, media_tbl[dev->if_port].name, media_status);
1829                ok = 1;
1830        }
1831
1832        if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1833                next_tick = 5*HZ;
1834
1835        if (vp->medialock)
1836                goto leave_media_alone;
1837
1838        if (!ok) {
1839                unsigned int config;
1840
1841                spin_lock_irq(&vp->lock);
1842
1843                do {
1844                        dev->if_port = media_tbl[dev->if_port].next;
1845                } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1846                if (dev->if_port == XCVR_Default) { /* Go back to default. */
1847                  dev->if_port = vp->default_media;
1848                  if (vortex_debug > 1)
1849                        pr_debug("%s: Media selection failing, using default %s port.\n",
1850                                   dev->name, media_tbl[dev->if_port].name);
1851                } else {
1852                        if (vortex_debug > 1)
1853                                pr_debug("%s: Media selection failed, now trying %s port.\n",
1854                                           dev->name, media_tbl[dev->if_port].name);
1855                        next_tick = media_tbl[dev->if_port].wait;
1856                }
1857                window_write16(vp,
1858                               (media_status & ~(Media_10TP|Media_SQE)) |
1859                               media_tbl[dev->if_port].media_bits,
1860                               4, Wn4_Media);
1861
1862                config = window_read32(vp, 3, Wn3_Config);
1863                config = BFINS(config, dev->if_port, 20, 4);
1864                window_write32(vp, config, 3, Wn3_Config);
1865
1866                iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1867                         ioaddr + EL3_CMD);
1868                if (vortex_debug > 1)
1869                        pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1870                /* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1871
1872                spin_unlock_irq(&vp->lock);
1873        }
1874
1875leave_media_alone:
1876        if (vortex_debug > 2)
1877          pr_debug("%s: Media selection timer finished, %s.\n",
1878                         dev->name, media_tbl[dev->if_port].name);
1879
1880        mod_timer(&vp->timer, RUN_AT(next_tick));
1881        if (vp->deferred)
1882                iowrite16(FakeIntr, ioaddr + EL3_CMD);
1883}
1884
1885static void vortex_tx_timeout(struct net_device *dev)
1886{
1887        struct vortex_private *vp = netdev_priv(dev);
1888        void __iomem *ioaddr = vp->ioaddr;
1889
1890        pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1891                   dev->name, ioread8(ioaddr + TxStatus),
1892                   ioread16(ioaddr + EL3_STATUS));
1893        pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1894                        window_read16(vp, 4, Wn4_NetDiag),
1895                        window_read16(vp, 4, Wn4_Media),
1896                        ioread32(ioaddr + PktStatus),
1897                        window_read16(vp, 4, Wn4_FIFODiag));
1898        /* Slight code bloat to be user friendly. */
1899        if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1900                pr_err("%s: Transmitter encountered 16 collisions --"
1901                           " network cable problem?\n", dev->name);
1902        if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1903                pr_err("%s: Interrupt posted but not delivered --"
1904                           " IRQ blocked by another device?\n", dev->name);
1905                /* Bad idea here.. but we might as well handle a few events. */
1906                {
1907                        /*
1908                         * Block interrupts because vortex_interrupt does a bare spin_lock()
1909                         */
1910                        unsigned long flags;
1911                        local_irq_save(flags);
1912                        if (vp->full_bus_master_tx)
1913                                boomerang_interrupt(dev->irq, dev);
1914                        else
1915                                vortex_interrupt(dev->irq, dev);
1916                        local_irq_restore(flags);
1917                }
1918        }
1919
1920        if (vortex_debug > 0)
1921                dump_tx_ring(dev);
1922
1923        issue_and_wait(dev, TxReset);
1924
1925        dev->stats.tx_errors++;
1926        if (vp->full_bus_master_tx) {
1927                pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1928                if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1929                        iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1930                                 ioaddr + DownListPtr);
1931                if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1932                        netif_wake_queue (dev);
1933                        netdev_reset_queue (dev);
1934                }
1935                if (vp->drv_flags & IS_BOOMERANG)
1936                        iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1937                iowrite16(DownUnstall, ioaddr + EL3_CMD);
1938        } else {
1939                dev->stats.tx_dropped++;
1940                netif_wake_queue(dev);
1941                netdev_reset_queue(dev);
1942        }
1943        /* Issue Tx Enable */
1944        iowrite16(TxEnable, ioaddr + EL3_CMD);
1945        netif_trans_update(dev); /* prevent tx timeout */
1946}
1947
1948/*
1949 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1950 * the cache impact.
1951 */
1952static void
1953vortex_error(struct net_device *dev, int status)
1954{
1955        struct vortex_private *vp = netdev_priv(dev);
1956        void __iomem *ioaddr = vp->ioaddr;
1957        int do_tx_reset = 0, reset_mask = 0;
1958        unsigned char tx_status = 0;
1959
1960        if (vortex_debug > 2) {
1961                pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1962        }
1963
1964        if (status & TxComplete) {                      /* Really "TxError" for us. */
1965                tx_status = ioread8(ioaddr + TxStatus);
1966                /* Presumably a tx-timeout. We must merely re-enable. */
1967                if (vortex_debug > 2 ||
1968                    (tx_status != 0x88 && vortex_debug > 0)) {
1969                        pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1970                                   dev->name, tx_status);
1971                        if (tx_status == 0x82) {
1972                                pr_err("Probably a duplex mismatch.  See "
1973                                                "Documentation/networking/vortex.txt\n");
1974                        }
1975                        dump_tx_ring(dev);
1976                }
1977                if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1978                if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1979                if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1980                iowrite8(0, ioaddr + TxStatus);
1981                if (tx_status & 0x30) {                 /* txJabber or txUnderrun */
1982                        do_tx_reset = 1;
1983                } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {      /* maxCollisions */
1984                        do_tx_reset = 1;
1985                        reset_mask = 0x0108;            /* Reset interface logic, but not download logic */
1986                } else {                                /* Merely re-enable the transmitter. */
1987                        iowrite16(TxEnable, ioaddr + EL3_CMD);
1988                }
1989        }
1990
1991        if (status & RxEarly)                           /* Rx early is unused. */
1992                iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1993
1994        if (status & StatsFull) {                       /* Empty statistics. */
1995                static int DoneDidThat;
1996                if (vortex_debug > 4)
1997                        pr_debug("%s: Updating stats.\n", dev->name);
1998                update_stats(ioaddr, dev);
1999                /* HACK: Disable statistics as an interrupt source. */
2000                /* This occurs when we have the wrong media type! */
2001                if (DoneDidThat == 0  &&
2002                        ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2003                        pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
2004                                dev->name);
2005                        iowrite16(SetIntrEnb |
2006                                  (window_read16(vp, 5, 10) & ~StatsFull),
2007                                  ioaddr + EL3_CMD);
2008                        vp->intr_enable &= ~StatsFull;
2009                        DoneDidThat++;
2010                }
2011        }
2012        if (status & IntReq) {          /* Restore all interrupt sources.  */
2013                iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2014                iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2015        }
2016        if (status & HostError) {
2017                u16 fifo_diag;
2018                fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2019                pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2020                           dev->name, fifo_diag);
2021                /* Adapter failure requires Tx/Rx reset and reinit. */
2022                if (vp->full_bus_master_tx) {
2023                        int bus_status = ioread32(ioaddr + PktStatus);
2024                        /* 0x80000000 PCI master abort. */
2025                        /* 0x40000000 PCI target abort. */
2026                        if (vortex_debug)
2027                                pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2028
2029                        /* In this case, blow the card away */
2030                        /* Must not enter D3 or we can't legally issue the reset! */
2031                        vortex_down(dev, 0);
2032                        issue_and_wait(dev, TotalReset | 0xff);
2033                        vortex_up(dev);         /* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2034                } else if (fifo_diag & 0x0400)
2035                        do_tx_reset = 1;
2036                if (fifo_diag & 0x3000) {
2037                        /* Reset Rx fifo and upload logic */
2038                        issue_and_wait(dev, RxReset|0x07);
2039                        /* Set the Rx filter to the current state. */
2040                        set_rx_mode(dev);
2041                        /* enable 802.1q VLAN tagged frames */
2042                        set_8021q_mode(dev, 1);
2043                        iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2044                        iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2045                }
2046        }
2047
2048        if (do_tx_reset) {
2049                issue_and_wait(dev, TxReset|reset_mask);
2050                iowrite16(TxEnable, ioaddr + EL3_CMD);
2051                if (!vp->full_bus_master_tx)
2052                        netif_wake_queue(dev);
2053        }
2054}
2055
2056static netdev_tx_t
2057vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2058{
2059        struct vortex_private *vp = netdev_priv(dev);
2060        void __iomem *ioaddr = vp->ioaddr;
2061        int skblen = skb->len;
2062
2063        /* Put out the doubleword header... */
2064        iowrite32(skb->len, ioaddr + TX_FIFO);
2065        if (vp->bus_master) {
2066                /* Set the bus-master controller to transfer the packet. */
2067                int len = (skb->len + 3) & ~3;
2068                vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2069                                                PCI_DMA_TODEVICE);
2070                spin_lock_irq(&vp->window_lock);
2071                window_set(vp, 7);
2072                iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2073                iowrite16(len, ioaddr + Wn7_MasterLen);
2074                spin_unlock_irq(&vp->window_lock);
2075                vp->tx_skb = skb;
2076                skb_tx_timestamp(skb);
2077                iowrite16(StartDMADown, ioaddr + EL3_CMD);
2078                /* netif_wake_queue() will be called at the DMADone interrupt. */
2079        } else {
2080                /* ... and the packet rounded to a doubleword. */
2081                skb_tx_timestamp(skb);
2082                iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2083                dev_consume_skb_any (skb);
2084                if (ioread16(ioaddr + TxFree) > 1536) {
2085                        netif_start_queue (dev);        /* AKPM: redundant? */
2086                } else {
2087                        /* Interrupt us when the FIFO has room for max-sized packet. */
2088                        netif_stop_queue(dev);
2089                        iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2090                }
2091        }
2092
2093        netdev_sent_queue(dev, skblen);
2094
2095        /* Clear the Tx status stack. */
2096        {
2097                int tx_status;
2098                int i = 32;
2099
2100                while (--i > 0  &&      (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2101                        if (tx_status & 0x3C) {         /* A Tx-disabling error occurred.  */
2102                                if (vortex_debug > 2)
2103                                  pr_debug("%s: Tx error, status %2.2x.\n",
2104                                                 dev->name, tx_status);
2105                                if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2106                                if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2107                                if (tx_status & 0x30) {
2108                                        issue_and_wait(dev, TxReset);
2109                                }
2110                                iowrite16(TxEnable, ioaddr + EL3_CMD);
2111                        }
2112                        iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2113                }
2114        }
2115        return NETDEV_TX_OK;
2116}
2117
2118static netdev_tx_t
2119boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2120{
2121        struct vortex_private *vp = netdev_priv(dev);
2122        void __iomem *ioaddr = vp->ioaddr;
2123        /* Calculate the next Tx descriptor entry. */
2124        int entry = vp->cur_tx % TX_RING_SIZE;
2125        int skblen = skb->len;
2126        struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2127        unsigned long flags;
2128        dma_addr_t dma_addr;
2129
2130        if (vortex_debug > 6) {
2131                pr_debug("boomerang_start_xmit()\n");
2132                pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2133                           dev->name, vp->cur_tx);
2134        }
2135
2136        /*
2137         * We can't allow a recursion from our interrupt handler back into the
2138         * tx routine, as they take the same spin lock, and that causes
2139         * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2140         * a bit
2141         */
2142        if (vp->handling_irq)
2143                return NETDEV_TX_BUSY;
2144
2145        if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2146                if (vortex_debug > 0)
2147                        pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2148                                dev->name);
2149                netif_stop_queue(dev);
2150                return NETDEV_TX_BUSY;
2151        }
2152
2153        vp->tx_skbuff[entry] = skb;
2154
2155        vp->tx_ring[entry].next = 0;
2156#if DO_ZEROCOPY
2157        if (skb->ip_summed != CHECKSUM_PARTIAL)
2158                        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2159        else
2160                        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2161
2162        if (!skb_shinfo(skb)->nr_frags) {
2163                dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len,
2164                                          PCI_DMA_TODEVICE);
2165                if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2166                        goto out_dma_err;
2167
2168                vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2169                vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2170        } else {
2171                int i;
2172
2173                dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data,
2174                                          skb_headlen(skb), PCI_DMA_TODEVICE);
2175                if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2176                        goto out_dma_err;
2177
2178                vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2179                vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2180
2181                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2182                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2183
2184                        dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag,
2185                                                    0,
2186                                                    frag->size,
2187                                                    DMA_TO_DEVICE);
2188                        if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) {
2189                                for(i = i-1; i >= 0; i--)
2190                                        dma_unmap_page(&VORTEX_PCI(vp)->dev,
2191                                                       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2192                                                       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2193                                                       DMA_TO_DEVICE);
2194
2195                                pci_unmap_single(VORTEX_PCI(vp),
2196                                                 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2197                                                 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2198                                                 PCI_DMA_TODEVICE);
2199
2200                                goto out_dma_err;
2201                        }
2202
2203                        vp->tx_ring[entry].frag[i+1].addr =
2204                                                cpu_to_le32(dma_addr);
2205
2206                        if (i == skb_shinfo(skb)->nr_frags-1)
2207                                        vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2208                        else
2209                                        vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2210                }
2211        }
2212#else
2213        dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE);
2214        if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2215                goto out_dma_err;
2216        vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2217        vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2218        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2219#endif
2220
2221        spin_lock_irqsave(&vp->lock, flags);
2222        /* Wait for the stall to complete. */
2223        issue_and_wait(dev, DownStall);
2224        prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2225        if (ioread32(ioaddr + DownListPtr) == 0) {
2226                iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2227                vp->queued_packet++;
2228        }
2229
2230        vp->cur_tx++;
2231        netdev_sent_queue(dev, skblen);
2232
2233        if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2234                netif_stop_queue (dev);
2235        } else {                                        /* Clear previous interrupt enable. */
2236#if defined(tx_interrupt_mitigation)
2237                /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2238                 * were selected, this would corrupt DN_COMPLETE. No?
2239                 */
2240                prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2241#endif
2242        }
2243        skb_tx_timestamp(skb);
2244        iowrite16(DownUnstall, ioaddr + EL3_CMD);
2245        spin_unlock_irqrestore(&vp->lock, flags);
2246out:
2247        return NETDEV_TX_OK;
2248out_dma_err:
2249        dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n");
2250        goto out;
2251}
2252
2253/* The interrupt handler does all of the Rx thread work and cleans up
2254   after the Tx thread. */
2255
2256/*
2257 * This is the ISR for the vortex series chips.
2258 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2259 */
2260
2261static irqreturn_t
2262vortex_interrupt(int irq, void *dev_id)
2263{
2264        struct net_device *dev = dev_id;
2265        struct vortex_private *vp = netdev_priv(dev);
2266        void __iomem *ioaddr;
2267        int status;
2268        int work_done = max_interrupt_work;
2269        int handled = 0;
2270        unsigned int bytes_compl = 0, pkts_compl = 0;
2271
2272        ioaddr = vp->ioaddr;
2273        spin_lock(&vp->lock);
2274
2275        status = ioread16(ioaddr + EL3_STATUS);
2276
2277        if (vortex_debug > 6)
2278                pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2279
2280        if ((status & IntLatch) == 0)
2281                goto handler_exit;              /* No interrupt: shared IRQs cause this */
2282        handled = 1;
2283
2284        if (status & IntReq) {
2285                status |= vp->deferred;
2286                vp->deferred = 0;
2287        }
2288
2289        if (status == 0xffff)           /* h/w no longer present (hotplug)? */
2290                goto handler_exit;
2291
2292        if (vortex_debug > 4)
2293                pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2294                           dev->name, status, ioread8(ioaddr + Timer));
2295
2296        spin_lock(&vp->window_lock);
2297        window_set(vp, 7);
2298
2299        do {
2300                if (vortex_debug > 5)
2301                                pr_debug("%s: In interrupt loop, status %4.4x.\n",
2302                                           dev->name, status);
2303                if (status & RxComplete)
2304                        vortex_rx(dev);
2305
2306                if (status & TxAvailable) {
2307                        if (vortex_debug > 5)
2308                                pr_debug("      TX room bit was handled.\n");
2309                        /* There's room in the FIFO for a full-sized packet. */
2310                        iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2311                        netif_wake_queue (dev);
2312                }
2313
2314                if (status & DMADone) {
2315                        if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2316                                iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2317                                pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2318                                pkts_compl++;
2319                                bytes_compl += vp->tx_skb->len;
2320                                dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2321                                if (ioread16(ioaddr + TxFree) > 1536) {
2322                                        /*
2323                                         * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2324                                         * insufficient FIFO room, the TxAvailable test will succeed and call
2325                                         * netif_wake_queue()
2326                                         */
2327                                        netif_wake_queue(dev);
2328                                } else { /* Interrupt when FIFO has room for max-sized packet. */
2329                                        iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2330                                        netif_stop_queue(dev);
2331                                }
2332                        }
2333                }
2334                /* Check for all uncommon interrupts at once. */
2335                if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2336                        if (status == 0xffff)
2337                                break;
2338                        if (status & RxEarly)
2339                                vortex_rx(dev);
2340                        spin_unlock(&vp->window_lock);
2341                        vortex_error(dev, status);
2342                        spin_lock(&vp->window_lock);
2343                        window_set(vp, 7);
2344                }
2345
2346                if (--work_done < 0) {
2347                        pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2348                                dev->name, status);
2349                        /* Disable all pending interrupts. */
2350                        do {
2351                                vp->deferred |= status;
2352                                iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2353                                         ioaddr + EL3_CMD);
2354                                iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2355                        } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2356                        /* The timer will reenable interrupts. */
2357                        mod_timer(&vp->timer, jiffies + 1*HZ);
2358                        break;
2359                }
2360                /* Acknowledge the IRQ. */
2361                iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2362        } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2363
2364        netdev_completed_queue(dev, pkts_compl, bytes_compl);
2365        spin_unlock(&vp->window_lock);
2366
2367        if (vortex_debug > 4)
2368                pr_debug("%s: exiting interrupt, status %4.4x.\n",
2369                           dev->name, status);
2370handler_exit:
2371        spin_unlock(&vp->lock);
2372        return IRQ_RETVAL(handled);
2373}
2374
2375/*
2376 * This is the ISR for the boomerang series chips.
2377 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2378 */
2379
2380static irqreturn_t
2381boomerang_interrupt(int irq, void *dev_id)
2382{
2383        struct net_device *dev = dev_id;
2384        struct vortex_private *vp = netdev_priv(dev);
2385        void __iomem *ioaddr;
2386        int status;
2387        int work_done = max_interrupt_work;
2388        int handled = 0;
2389        unsigned int bytes_compl = 0, pkts_compl = 0;
2390
2391        ioaddr = vp->ioaddr;
2392
2393
2394        /*
2395         * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2396         * and boomerang_start_xmit
2397         */
2398        spin_lock(&vp->lock);
2399        vp->handling_irq = 1;
2400
2401        status = ioread16(ioaddr + EL3_STATUS);
2402
2403        if (vortex_debug > 6)
2404                pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2405
2406        if ((status & IntLatch) == 0)
2407                goto handler_exit;              /* No interrupt: shared IRQs can cause this */
2408        handled = 1;
2409
2410        if (status == 0xffff) {         /* h/w no longer present (hotplug)? */
2411                if (vortex_debug > 1)
2412                        pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2413                goto handler_exit;
2414        }
2415
2416        if (status & IntReq) {
2417                status |= vp->deferred;
2418                vp->deferred = 0;
2419        }
2420
2421        if (vortex_debug > 4)
2422                pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2423                           dev->name, status, ioread8(ioaddr + Timer));
2424        do {
2425                if (vortex_debug > 5)
2426                                pr_debug("%s: In interrupt loop, status %4.4x.\n",
2427                                           dev->name, status);
2428                if (status & UpComplete) {
2429                        iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2430                        if (vortex_debug > 5)
2431                                pr_debug("boomerang_interrupt->boomerang_rx\n");
2432                        boomerang_rx(dev);
2433                }
2434
2435                if (status & DownComplete) {
2436                        unsigned int dirty_tx = vp->dirty_tx;
2437
2438                        iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2439                        while (vp->cur_tx - dirty_tx > 0) {
2440                                int entry = dirty_tx % TX_RING_SIZE;
2441#if 1   /* AKPM: the latter is faster, but cyclone-only */
2442                                if (ioread32(ioaddr + DownListPtr) ==
2443                                        vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2444                                        break;                  /* It still hasn't been processed. */
2445#else
2446                                if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2447                                        break;                  /* It still hasn't been processed. */
2448#endif
2449
2450                                if (vp->tx_skbuff[entry]) {
2451                                        struct sk_buff *skb = vp->tx_skbuff[entry];
2452#if DO_ZEROCOPY
2453                                        int i;
2454                                        pci_unmap_single(VORTEX_PCI(vp),
2455                                                        le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2456                                                        le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2457                                                        PCI_DMA_TODEVICE);
2458
2459                                        for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2460                                                        pci_unmap_page(VORTEX_PCI(vp),
2461                                                                                         le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2462                                                                                         le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2463                                                                                         PCI_DMA_TODEVICE);
2464#else
2465                                        pci_unmap_single(VORTEX_PCI(vp),
2466                                                le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2467#endif
2468                                        pkts_compl++;
2469                                        bytes_compl += skb->len;
2470                                        dev_kfree_skb_irq(skb);
2471                                        vp->tx_skbuff[entry] = NULL;
2472                                } else {
2473                                        pr_debug("boomerang_interrupt: no skb!\n");
2474                                }
2475                                /* dev->stats.tx_packets++;  Counted below. */
2476                                dirty_tx++;
2477                        }
2478                        vp->dirty_tx = dirty_tx;
2479                        if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2480                                if (vortex_debug > 6)
2481                                        pr_debug("boomerang_interrupt: wake queue\n");
2482                                netif_wake_queue (dev);
2483                        }
2484                }
2485
2486                /* Check for all uncommon interrupts at once. */
2487                if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2488                        vortex_error(dev, status);
2489
2490                if (--work_done < 0) {
2491                        pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2492                                dev->name, status);
2493                        /* Disable all pending interrupts. */
2494                        do {
2495                                vp->deferred |= status;
2496                                iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2497                                         ioaddr + EL3_CMD);
2498                                iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2499                        } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2500                        /* The timer will reenable interrupts. */
2501                        mod_timer(&vp->timer, jiffies + 1*HZ);
2502                        break;
2503                }
2504                /* Acknowledge the IRQ. */
2505                iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2506                if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
2507                        iowrite32(0x8000, vp->cb_fn_base + 4);
2508
2509        } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2510        netdev_completed_queue(dev, pkts_compl, bytes_compl);
2511
2512        if (vortex_debug > 4)
2513                pr_debug("%s: exiting interrupt, status %4.4x.\n",
2514                           dev->name, status);
2515handler_exit:
2516        vp->handling_irq = 0;
2517        spin_unlock(&vp->lock);
2518        return IRQ_RETVAL(handled);
2519}
2520
2521static int vortex_rx(struct net_device *dev)
2522{
2523        struct vortex_private *vp = netdev_priv(dev);
2524        void __iomem *ioaddr = vp->ioaddr;
2525        int i;
2526        short rx_status;
2527
2528        if (vortex_debug > 5)
2529                pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2530                           ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2531        while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2532                if (rx_status & 0x4000) { /* Error, update stats. */
2533                        unsigned char rx_error = ioread8(ioaddr + RxErrors);
2534                        if (vortex_debug > 2)
2535                                pr_debug(" Rx error: status %2.2x.\n", rx_error);
2536                        dev->stats.rx_errors++;
2537                        if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2538                        if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2539                        if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2540                        if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2541                        if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2542                } else {
2543                        /* The packet length: up to 4.5K!. */
2544                        int pkt_len = rx_status & 0x1fff;
2545                        struct sk_buff *skb;
2546
2547                        skb = netdev_alloc_skb(dev, pkt_len + 5);
2548                        if (vortex_debug > 4)
2549                                pr_debug("Receiving packet size %d status %4.4x.\n",
2550                                           pkt_len, rx_status);
2551                        if (skb != NULL) {
2552                                skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2553                                /* 'skb_put()' points to the start of sk_buff data area. */
2554                                if (vp->bus_master &&
2555                                        ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2556                                        dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2557                                                                           pkt_len, PCI_DMA_FROMDEVICE);
2558                                        iowrite32(dma, ioaddr + Wn7_MasterAddr);
2559                                        iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2560                                        iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2561                                        while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2562                                                ;
2563                                        pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2564                                } else {
2565                                        ioread32_rep(ioaddr + RX_FIFO,
2566                                                     skb_put(skb, pkt_len),
2567                                                     (pkt_len + 3) >> 2);
2568                                }
2569                                iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2570                                skb->protocol = eth_type_trans(skb, dev);
2571                                netif_rx(skb);
2572                                dev->stats.rx_packets++;
2573                                /* Wait a limited time to go to next packet. */
2574                                for (i = 200; i >= 0; i--)
2575                                        if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2576                                                break;
2577                                continue;
2578                        } else if (vortex_debug > 0)
2579                                pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2580                                        dev->name, pkt_len);
2581                        dev->stats.rx_dropped++;
2582                }
2583                issue_and_wait(dev, RxDiscard);
2584        }
2585
2586        return 0;
2587}
2588
2589static int
2590boomerang_rx(struct net_device *dev)
2591{
2592        struct vortex_private *vp = netdev_priv(dev);
2593        int entry = vp->cur_rx % RX_RING_SIZE;
2594        void __iomem *ioaddr = vp->ioaddr;
2595        int rx_status;
2596        int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2597
2598        if (vortex_debug > 5)
2599                pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2600
2601        while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2602                if (--rx_work_limit < 0)
2603                        break;
2604                if (rx_status & RxDError) { /* Error, update stats. */
2605                        unsigned char rx_error = rx_status >> 16;
2606                        if (vortex_debug > 2)
2607                                pr_debug(" Rx error: status %2.2x.\n", rx_error);
2608                        dev->stats.rx_errors++;
2609                        if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2610                        if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2611                        if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2612                        if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2613                        if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2614                } else {
2615                        /* The packet length: up to 4.5K!. */
2616                        int pkt_len = rx_status & 0x1fff;
2617                        struct sk_buff *skb;
2618                        dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2619
2620                        if (vortex_debug > 4)
2621                                pr_debug("Receiving packet size %d status %4.4x.\n",
2622                                           pkt_len, rx_status);
2623
2624                        /* Check if the packet is long enough to just accept without
2625                           copying to a properly sized skbuff. */
2626                        if (pkt_len < rx_copybreak &&
2627                            (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2628                                skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2629                                pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2630                                /* 'skb_put()' points to the start of sk_buff data area. */
2631                                skb_put_data(skb, vp->rx_skbuff[entry]->data,
2632                                             pkt_len);
2633                                pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2634                                vp->rx_copy++;
2635                        } else {
2636                                /* Pass up the skbuff already on the Rx ring. */
2637                                skb = vp->rx_skbuff[entry];
2638                                vp->rx_skbuff[entry] = NULL;
2639                                skb_put(skb, pkt_len);
2640                                pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2641                                vp->rx_nocopy++;
2642                        }
2643                        skb->protocol = eth_type_trans(skb, dev);
2644                        {                                       /* Use hardware checksum info. */
2645                                int csum_bits = rx_status & 0xee000000;
2646                                if (csum_bits &&
2647                                        (csum_bits == (IPChksumValid | TCPChksumValid) ||
2648                                         csum_bits == (IPChksumValid | UDPChksumValid))) {
2649                                        skb->ip_summed = CHECKSUM_UNNECESSARY;
2650                                        vp->rx_csumhits++;
2651                                }
2652                        }
2653                        netif_rx(skb);
2654                        dev->stats.rx_packets++;
2655                }
2656                entry = (++vp->cur_rx) % RX_RING_SIZE;
2657        }
2658        /* Refill the Rx ring buffers. */
2659        for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2660                struct sk_buff *skb;
2661                entry = vp->dirty_rx % RX_RING_SIZE;
2662                if (vp->rx_skbuff[entry] == NULL) {
2663                        skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2664                        if (skb == NULL) {
2665                                static unsigned long last_jif;
2666                                if (time_after(jiffies, last_jif + 10 * HZ)) {
2667                                        pr_warn("%s: memory shortage\n",
2668                                                dev->name);
2669                                        last_jif = jiffies;
2670                                }
2671                                if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2672                                        mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2673                                break;                  /* Bad news!  */
2674                        }
2675
2676                        vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2677                        vp->rx_skbuff[entry] = skb;
2678                }
2679                vp->rx_ring[entry].status = 0;  /* Clear complete bit. */
2680                iowrite16(UpUnstall, ioaddr + EL3_CMD);
2681        }
2682        return 0;
2683}
2684
2685/*
2686 * If we've hit a total OOM refilling the Rx ring we poll once a second
2687 * for some memory.  Otherwise there is no way to restart the rx process.
2688 */
2689static void
2690rx_oom_timer(unsigned long arg)
2691{
2692        struct net_device *dev = (struct net_device *)arg;
2693        struct vortex_private *vp = netdev_priv(dev);
2694
2695        spin_lock_irq(&vp->lock);
2696        if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)        /* This test is redundant, but makes me feel good */
2697                boomerang_rx(dev);
2698        if (vortex_debug > 1) {
2699                pr_debug("%s: rx_oom_timer %s\n", dev->name,
2700                        ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2701        }
2702        spin_unlock_irq(&vp->lock);
2703}
2704
2705static void
2706vortex_down(struct net_device *dev, int final_down)
2707{
2708        struct vortex_private *vp = netdev_priv(dev);
2709        void __iomem *ioaddr = vp->ioaddr;
2710
2711        netdev_reset_queue(dev);
2712        netif_stop_queue(dev);
2713
2714        del_timer_sync(&vp->rx_oom_timer);
2715        del_timer_sync(&vp->timer);
2716
2717        /* Turn off statistics ASAP.  We update dev->stats below. */
2718        iowrite16(StatsDisable, ioaddr + EL3_CMD);
2719
2720        /* Disable the receiver and transmitter. */
2721        iowrite16(RxDisable, ioaddr + EL3_CMD);
2722        iowrite16(TxDisable, ioaddr + EL3_CMD);
2723
2724        /* Disable receiving 802.1q tagged frames */
2725        set_8021q_mode(dev, 0);
2726
2727        if (dev->if_port == XCVR_10base2)
2728                /* Turn off thinnet power.  Green! */
2729                iowrite16(StopCoax, ioaddr + EL3_CMD);
2730
2731        iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2732
2733        update_stats(ioaddr, dev);
2734        if (vp->full_bus_master_rx)
2735                iowrite32(0, ioaddr + UpListPtr);
2736        if (vp->full_bus_master_tx)
2737                iowrite32(0, ioaddr + DownListPtr);
2738
2739        if (final_down && VORTEX_PCI(vp)) {
2740                vp->pm_state_valid = 1;
2741                pci_save_state(VORTEX_PCI(vp));
2742                acpi_set_WOL(dev);
2743        }
2744}
2745
2746static int
2747vortex_close(struct net_device *dev)
2748{
2749        struct vortex_private *vp = netdev_priv(dev);
2750        void __iomem *ioaddr = vp->ioaddr;
2751        int i;
2752
2753        if (netif_device_present(dev))
2754                vortex_down(dev, 1);
2755
2756        if (vortex_debug > 1) {
2757                pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2758                           dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2759                pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2760                           " tx_queued %d Rx pre-checksummed %d.\n",
2761                           dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2762        }
2763
2764#if DO_ZEROCOPY
2765        if (vp->rx_csumhits &&
2766            (vp->drv_flags & HAS_HWCKSM) == 0 &&
2767            (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2768                pr_warn("%s supports hardware checksums, and we're not using them!\n",
2769                        dev->name);
2770        }
2771#endif
2772
2773        free_irq(dev->irq, dev);
2774
2775        if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2776                for (i = 0; i < RX_RING_SIZE; i++)
2777                        if (vp->rx_skbuff[i]) {
2778                                pci_unmap_single(       VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2779                                                                        PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2780                                dev_kfree_skb(vp->rx_skbuff[i]);
2781                                vp->rx_skbuff[i] = NULL;
2782                        }
2783        }
2784        if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2785                for (i = 0; i < TX_RING_SIZE; i++) {
2786                        if (vp->tx_skbuff[i]) {
2787                                struct sk_buff *skb = vp->tx_skbuff[i];
2788#if DO_ZEROCOPY
2789                                int k;
2790
2791                                for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2792                                                pci_unmap_single(VORTEX_PCI(vp),
2793                                                                                 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2794                                                                                 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2795                                                                                 PCI_DMA_TODEVICE);
2796#else
2797                                pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2798#endif
2799                                dev_kfree_skb(skb);
2800                                vp->tx_skbuff[i] = NULL;
2801                        }
2802                }
2803        }
2804
2805        return 0;
2806}
2807
2808static void
2809dump_tx_ring(struct net_device *dev)
2810{
2811        if (vortex_debug > 0) {
2812        struct vortex_private *vp = netdev_priv(dev);
2813                void __iomem *ioaddr = vp->ioaddr;
2814
2815                if (vp->full_bus_master_tx) {
2816                        int i;
2817                        int stalled = ioread32(ioaddr + PktStatus) & 0x04;      /* Possible racy. But it's only debug stuff */
2818
2819                        pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2820                                        vp->full_bus_master_tx,
2821                                        vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2822                                        vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2823                        pr_err("  Transmit list %8.8x vs. %p.\n",
2824                                   ioread32(ioaddr + DownListPtr),
2825                                   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2826                        issue_and_wait(dev, DownStall);
2827                        for (i = 0; i < TX_RING_SIZE; i++) {
2828                                unsigned int length;
2829
2830#if DO_ZEROCOPY
2831                                length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2832#else
2833                                length = le32_to_cpu(vp->tx_ring[i].length);
2834#endif
2835                                pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2836                                           i, &vp->tx_ring[i], length,
2837                                           le32_to_cpu(vp->tx_ring[i].status));
2838                        }
2839                        if (!stalled)
2840                                iowrite16(DownUnstall, ioaddr + EL3_CMD);
2841                }
2842        }
2843}
2844
2845static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2846{
2847        struct vortex_private *vp = netdev_priv(dev);
2848        void __iomem *ioaddr = vp->ioaddr;
2849        unsigned long flags;
2850
2851        if (netif_device_present(dev)) {        /* AKPM: Used to be netif_running */
2852                spin_lock_irqsave (&vp->lock, flags);
2853                update_stats(ioaddr, dev);
2854                spin_unlock_irqrestore (&vp->lock, flags);
2855        }
2856        return &dev->stats;
2857}
2858
2859/*  Update statistics.
2860        Unlike with the EL3 we need not worry about interrupts changing
2861        the window setting from underneath us, but we must still guard
2862        against a race condition with a StatsUpdate interrupt updating the
2863        table.  This is done by checking that the ASM (!) code generated uses
2864        atomic updates with '+='.
2865        */
2866static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2867{
2868        struct vortex_private *vp = netdev_priv(dev);
2869
2870        /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2871        /* Switch to the stats window, and read everything. */
2872        dev->stats.tx_carrier_errors            += window_read8(vp, 6, 0);
2873        dev->stats.tx_heartbeat_errors          += window_read8(vp, 6, 1);
2874        dev->stats.tx_window_errors             += window_read8(vp, 6, 4);
2875        dev->stats.rx_fifo_errors               += window_read8(vp, 6, 5);
2876        dev->stats.tx_packets                   += window_read8(vp, 6, 6);
2877        dev->stats.tx_packets                   += (window_read8(vp, 6, 9) &
2878                                                    0x30) << 4;
2879        /* Rx packets   */                      window_read8(vp, 6, 7);   /* Must read to clear */
2880        /* Don't bother with register 9, an extension of registers 6&7.
2881           If we do use the 6&7 values the atomic update assumption above
2882           is invalid. */
2883        dev->stats.rx_bytes                     += window_read16(vp, 6, 10);
2884        dev->stats.tx_bytes                     += window_read16(vp, 6, 12);
2885        /* Extra stats for get_ethtool_stats() */
2886        vp->xstats.tx_multiple_collisions       += window_read8(vp, 6, 2);
2887        vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2888        vp->xstats.tx_deferred                  += window_read8(vp, 6, 8);
2889        vp->xstats.rx_bad_ssd                   += window_read8(vp, 4, 12);
2890
2891        dev->stats.collisions = vp->xstats.tx_multiple_collisions
2892                + vp->xstats.tx_single_collisions
2893                + vp->xstats.tx_max_collisions;
2894
2895        {
2896                u8 up = window_read8(vp, 4, 13);
2897                dev->stats.rx_bytes += (up & 0x0f) << 16;
2898                dev->stats.tx_bytes += (up & 0xf0) << 12;
2899        }
2900}
2901
2902static int vortex_nway_reset(struct net_device *dev)
2903{
2904        struct vortex_private *vp = netdev_priv(dev);
2905
2906        return mii_nway_restart(&vp->mii);
2907}
2908
2909static int vortex_get_link_ksettings(struct net_device *dev,
2910                                     struct ethtool_link_ksettings *cmd)
2911{
2912        struct vortex_private *vp = netdev_priv(dev);
2913
2914        mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2915
2916        return 0;
2917}
2918
2919static int vortex_set_link_ksettings(struct net_device *dev,
2920                                     const struct ethtool_link_ksettings *cmd)
2921{
2922        struct vortex_private *vp = netdev_priv(dev);
2923
2924        return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2925}
2926
2927static u32 vortex_get_msglevel(struct net_device *dev)
2928{
2929        return vortex_debug;
2930}
2931
2932static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2933{
2934        vortex_debug = dbg;
2935}
2936
2937static int vortex_get_sset_count(struct net_device *dev, int sset)
2938{
2939        switch (sset) {
2940        case ETH_SS_STATS:
2941                return VORTEX_NUM_STATS;
2942        default:
2943                return -EOPNOTSUPP;
2944        }
2945}
2946
2947static void vortex_get_ethtool_stats(struct net_device *dev,
2948        struct ethtool_stats *stats, u64 *data)
2949{
2950        struct vortex_private *vp = netdev_priv(dev);
2951        void __iomem *ioaddr = vp->ioaddr;
2952        unsigned long flags;
2953
2954        spin_lock_irqsave(&vp->lock, flags);
2955        update_stats(ioaddr, dev);
2956        spin_unlock_irqrestore(&vp->lock, flags);
2957
2958        data[0] = vp->xstats.tx_deferred;
2959        data[1] = vp->xstats.tx_max_collisions;
2960        data[2] = vp->xstats.tx_multiple_collisions;
2961        data[3] = vp->xstats.tx_single_collisions;
2962        data[4] = vp->xstats.rx_bad_ssd;
2963}
2964
2965
2966static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2967{
2968        switch (stringset) {
2969        case ETH_SS_STATS:
2970                memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2971                break;
2972        default:
2973                WARN_ON(1);
2974                break;
2975        }
2976}
2977
2978static void vortex_get_drvinfo(struct net_device *dev,
2979                                        struct ethtool_drvinfo *info)
2980{
2981        struct vortex_private *vp = netdev_priv(dev);
2982
2983        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2984        if (VORTEX_PCI(vp)) {
2985                strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2986                        sizeof(info->bus_info));
2987        } else {
2988                if (VORTEX_EISA(vp))
2989                        strlcpy(info->bus_info, dev_name(vp->gendev),
2990                                sizeof(info->bus_info));
2991                else
2992                        snprintf(info->bus_info, sizeof(info->bus_info),
2993                                "EISA 0x%lx %d", dev->base_addr, dev->irq);
2994        }
2995}
2996
2997static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2998{
2999        struct vortex_private *vp = netdev_priv(dev);
3000
3001        if (!VORTEX_PCI(vp))
3002                return;
3003
3004        wol->supported = WAKE_MAGIC;
3005
3006        wol->wolopts = 0;
3007        if (vp->enable_wol)
3008                wol->wolopts |= WAKE_MAGIC;
3009}
3010
3011static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3012{
3013        struct vortex_private *vp = netdev_priv(dev);
3014
3015        if (!VORTEX_PCI(vp))
3016                return -EOPNOTSUPP;
3017
3018        if (wol->wolopts & ~WAKE_MAGIC)
3019                return -EINVAL;
3020
3021        if (wol->wolopts & WAKE_MAGIC)
3022                vp->enable_wol = 1;
3023        else
3024                vp->enable_wol = 0;
3025        acpi_set_WOL(dev);
3026
3027        return 0;
3028}
3029
3030static const struct ethtool_ops vortex_ethtool_ops = {
3031        .get_drvinfo            = vortex_get_drvinfo,
3032        .get_strings            = vortex_get_strings,
3033        .get_msglevel           = vortex_get_msglevel,
3034        .set_msglevel           = vortex_set_msglevel,
3035        .get_ethtool_stats      = vortex_get_ethtool_stats,
3036        .get_sset_count         = vortex_get_sset_count,
3037        .get_link               = ethtool_op_get_link,
3038        .nway_reset             = vortex_nway_reset,
3039        .get_wol                = vortex_get_wol,
3040        .set_wol                = vortex_set_wol,
3041        .get_ts_info            = ethtool_op_get_ts_info,
3042        .get_link_ksettings     = vortex_get_link_ksettings,
3043        .set_link_ksettings     = vortex_set_link_ksettings,
3044};
3045
3046#ifdef CONFIG_PCI
3047/*
3048 *      Must power the device up to do MDIO operations
3049 */
3050static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3051{
3052        int err;
3053        struct vortex_private *vp = netdev_priv(dev);
3054        pci_power_t state = 0;
3055
3056        if(VORTEX_PCI(vp))
3057                state = VORTEX_PCI(vp)->current_state;
3058
3059        /* The kernel core really should have pci_get_power_state() */
3060
3061        if(state != 0)
3062                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3063        err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3064        if(state != 0)
3065                pci_set_power_state(VORTEX_PCI(vp), state);
3066
3067        return err;
3068}
3069#endif
3070
3071
3072/* Pre-Cyclone chips have no documented multicast filter, so the only
3073   multicast setting is to receive all multicast frames.  At least
3074   the chip has a very clean way to set the mode, unlike many others. */
3075static void set_rx_mode(struct net_device *dev)
3076{
3077        struct vortex_private *vp = netdev_priv(dev);
3078        void __iomem *ioaddr = vp->ioaddr;
3079        int new_mode;
3080
3081        if (dev->flags & IFF_PROMISC) {
3082                if (vortex_debug > 3)
3083                        pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3084                new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3085        } else  if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3086                new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3087        } else
3088                new_mode = SetRxFilter | RxStation | RxBroadcast;
3089
3090        iowrite16(new_mode, ioaddr + EL3_CMD);
3091}
3092
3093#if IS_ENABLED(CONFIG_VLAN_8021Q)
3094/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3095   Note that this must be done after each RxReset due to some backwards
3096   compatibility logic in the Cyclone and Tornado ASICs */
3097
3098/* The Ethernet Type used for 802.1q tagged frames */
3099#define VLAN_ETHER_TYPE 0x8100
3100
3101static void set_8021q_mode(struct net_device *dev, int enable)
3102{
3103        struct vortex_private *vp = netdev_priv(dev);
3104        int mac_ctrl;
3105
3106        if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3107                /* cyclone and tornado chipsets can recognize 802.1q
3108                 * tagged frames and treat them correctly */
3109
3110                int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3111                if (enable)
3112                        max_pkt_size += 4;      /* 802.1Q VLAN tag */
3113
3114                window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3115
3116                /* set VlanEtherType to let the hardware checksumming
3117                   treat tagged frames correctly */
3118                window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3119        } else {
3120                /* on older cards we have to enable large frames */
3121
3122                vp->large_frames = dev->mtu > 1500 || enable;
3123
3124                mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3125                if (vp->large_frames)
3126                        mac_ctrl |= 0x40;
3127                else
3128                        mac_ctrl &= ~0x40;
3129                window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3130        }
3131}
3132#else
3133
3134static void set_8021q_mode(struct net_device *dev, int enable)
3135{
3136}
3137
3138
3139#endif
3140
3141/* MII transceiver control section.
3142   Read and write the MII registers using software-generated serial
3143   MDIO protocol.  See the MII specifications or DP83840A data sheet
3144   for details. */
3145
3146/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3147   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3148   "overclocking" issues. */
3149static void mdio_delay(struct vortex_private *vp)
3150{
3151        window_read32(vp, 4, Wn4_PhysicalMgmt);
3152}
3153
3154#define MDIO_SHIFT_CLK  0x01
3155#define MDIO_DIR_WRITE  0x04
3156#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3157#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3158#define MDIO_DATA_READ  0x02
3159#define MDIO_ENB_IN             0x00
3160
3161/* Generate the preamble required for initial synchronization and
3162   a few older transceivers. */
3163static void mdio_sync(struct vortex_private *vp, int bits)
3164{
3165        /* Establish sync by sending at least 32 logic ones. */
3166        while (-- bits >= 0) {
3167                window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3168                mdio_delay(vp);
3169                window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3170                               4, Wn4_PhysicalMgmt);
3171                mdio_delay(vp);
3172        }
3173}
3174
3175static int mdio_read(struct net_device *dev, int phy_id, int location)
3176{
3177        int i;
3178        struct vortex_private *vp = netdev_priv(dev);
3179        int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3180        unsigned int retval = 0;
3181
3182        spin_lock_bh(&vp->mii_lock);
3183
3184        if (mii_preamble_required)
3185                mdio_sync(vp, 32);
3186
3187        /* Shift the read command bits out. */
3188        for (i = 14; i >= 0; i--) {
3189                int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3190                window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3191                mdio_delay(vp);
3192                window_write16(vp, dataval | MDIO_SHIFT_CLK,
3193                               4, Wn4_PhysicalMgmt);
3194                mdio_delay(vp);
3195        }
3196        /* Read the two transition, 16 data, and wire-idle bits. */
3197        for (i = 19; i > 0; i--) {
3198                window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3199                mdio_delay(vp);
3200                retval = (retval << 1) |
3201                        ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3202                          MDIO_DATA_READ) ? 1 : 0);
3203                window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3204                               4, Wn4_PhysicalMgmt);
3205                mdio_delay(vp);
3206        }
3207
3208        spin_unlock_bh(&vp->mii_lock);
3209
3210        return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3211}
3212
3213static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3214{
3215        struct vortex_private *vp = netdev_priv(dev);
3216        int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3217        int i;
3218
3219        spin_lock_bh(&vp->mii_lock);
3220
3221        if (mii_preamble_required)
3222                mdio_sync(vp, 32);
3223
3224        /* Shift the command bits out. */
3225        for (i = 31; i >= 0; i--) {
3226                int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3227                window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3228                mdio_delay(vp);
3229                window_write16(vp, dataval | MDIO_SHIFT_CLK,
3230                               4, Wn4_PhysicalMgmt);
3231                mdio_delay(vp);
3232        }
3233        /* Leave the interface idle. */
3234        for (i = 1; i >= 0; i--) {
3235                window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3236                mdio_delay(vp);
3237                window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3238                               4, Wn4_PhysicalMgmt);
3239                mdio_delay(vp);
3240        }
3241
3242        spin_unlock_bh(&vp->mii_lock);
3243}
3244
3245/* ACPI: Advanced Configuration and Power Interface. */
3246/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3247static void acpi_set_WOL(struct net_device *dev)
3248{
3249        struct vortex_private *vp = netdev_priv(dev);
3250        void __iomem *ioaddr = vp->ioaddr;
3251
3252        device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3253
3254        if (vp->enable_wol) {
3255                /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3256                window_write16(vp, 2, 7, 0x0c);
3257                /* The RxFilter must accept the WOL frames. */
3258                iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3259                iowrite16(RxEnable, ioaddr + EL3_CMD);
3260
3261                if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3262                        pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3263
3264                        vp->enable_wol = 0;
3265                        return;
3266                }
3267
3268                if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3269                        return;
3270
3271                /* Change the power state to D3; RxEnable doesn't take effect. */
3272                pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3273        }
3274}
3275
3276
3277static void vortex_remove_one(struct pci_dev *pdev)
3278{
3279        struct net_device *dev = pci_get_drvdata(pdev);
3280        struct vortex_private *vp;
3281
3282        if (!dev) {
3283                pr_err("vortex_remove_one called for Compaq device!\n");
3284                BUG();
3285        }
3286
3287        vp = netdev_priv(dev);
3288
3289        if (vp->cb_fn_base)
3290                pci_iounmap(pdev, vp->cb_fn_base);
3291
3292        unregister_netdev(dev);
3293
3294        pci_set_power_state(pdev, PCI_D0);      /* Go active */
3295        if (vp->pm_state_valid)
3296                pci_restore_state(pdev);
3297        pci_disable_device(pdev);
3298
3299        /* Should really use issue_and_wait() here */
3300        iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3301             vp->ioaddr + EL3_CMD);
3302
3303        pci_iounmap(pdev, vp->ioaddr);
3304
3305        pci_free_consistent(pdev,
3306                                                sizeof(struct boom_rx_desc) * RX_RING_SIZE
3307                                                        + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3308                                                vp->rx_ring,
3309                                                vp->rx_ring_dma);
3310
3311        pci_release_regions(pdev);
3312
3313        free_netdev(dev);
3314}
3315
3316
3317static struct pci_driver vortex_driver = {
3318        .name           = "3c59x",
3319        .probe          = vortex_init_one,
3320        .remove         = vortex_remove_one,
3321        .id_table       = vortex_pci_tbl,
3322        .driver.pm      = VORTEX_PM_OPS,
3323};
3324
3325
3326static int vortex_have_pci;
3327static int vortex_have_eisa;
3328
3329
3330static int __init vortex_init(void)
3331{
3332        int pci_rc, eisa_rc;
3333
3334        pci_rc = pci_register_driver(&vortex_driver);
3335        eisa_rc = vortex_eisa_init();
3336
3337        if (pci_rc == 0)
3338                vortex_have_pci = 1;
3339        if (eisa_rc > 0)
3340                vortex_have_eisa = 1;
3341
3342        return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3343}
3344
3345
3346static void __exit vortex_eisa_cleanup(void)
3347{
3348        void __iomem *ioaddr;
3349
3350#ifdef CONFIG_EISA
3351        /* Take care of the EISA devices */
3352        eisa_driver_unregister(&vortex_eisa_driver);
3353#endif
3354
3355        if (compaq_net_device) {
3356                ioaddr = ioport_map(compaq_net_device->base_addr,
3357                                    VORTEX_TOTAL_SIZE);
3358
3359                unregister_netdev(compaq_net_device);
3360                iowrite16(TotalReset, ioaddr + EL3_CMD);
3361                release_region(compaq_net_device->base_addr,
3362                               VORTEX_TOTAL_SIZE);
3363
3364                free_netdev(compaq_net_device);
3365        }
3366}
3367
3368
3369static void __exit vortex_cleanup(void)
3370{
3371        if (vortex_have_pci)
3372                pci_unregister_driver(&vortex_driver);
3373        if (vortex_have_eisa)
3374                vortex_eisa_cleanup();
3375}
3376
3377
3378module_init(vortex_init);
3379module_exit(vortex_cleanup);
3380