linux/drivers/nvme/host/fc.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of version 2 of the GNU General Public License as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful.
   9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
  10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
  11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
  12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
  13 * See the GNU General Public License for more details, a copy of which
  14 * can be found in the file COPYING included with this package
  15 *
  16 */
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18#include <linux/module.h>
  19#include <linux/parser.h>
  20#include <uapi/scsi/fc/fc_fs.h>
  21#include <uapi/scsi/fc/fc_els.h>
  22#include <linux/delay.h>
  23
  24#include "nvme.h"
  25#include "fabrics.h"
  26#include <linux/nvme-fc-driver.h>
  27#include <linux/nvme-fc.h>
  28
  29
  30/* *************************** Data Structures/Defines ****************** */
  31
  32
  33/*
  34 * We handle AEN commands ourselves and don't even let the
  35 * block layer know about them.
  36 */
  37#define NVME_FC_NR_AEN_COMMANDS 1
  38#define NVME_FC_AQ_BLKMQ_DEPTH  \
  39        (NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
  40#define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
  41
  42enum nvme_fc_queue_flags {
  43        NVME_FC_Q_CONNECTED = (1 << 0),
  44};
  45
  46#define NVMEFC_QUEUE_DELAY      3               /* ms units */
  47
  48struct nvme_fc_queue {
  49        struct nvme_fc_ctrl     *ctrl;
  50        struct device           *dev;
  51        struct blk_mq_hw_ctx    *hctx;
  52        void                    *lldd_handle;
  53        int                     queue_size;
  54        size_t                  cmnd_capsule_len;
  55        u32                     qnum;
  56        u32                     rqcnt;
  57        u32                     seqno;
  58
  59        u64                     connection_id;
  60        atomic_t                csn;
  61
  62        unsigned long           flags;
  63} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
  64
  65enum nvme_fcop_flags {
  66        FCOP_FLAGS_TERMIO       = (1 << 0),
  67        FCOP_FLAGS_RELEASED     = (1 << 1),
  68        FCOP_FLAGS_COMPLETE     = (1 << 2),
  69        FCOP_FLAGS_AEN          = (1 << 3),
  70};
  71
  72struct nvmefc_ls_req_op {
  73        struct nvmefc_ls_req    ls_req;
  74
  75        struct nvme_fc_rport    *rport;
  76        struct nvme_fc_queue    *queue;
  77        struct request          *rq;
  78        u32                     flags;
  79
  80        int                     ls_error;
  81        struct completion       ls_done;
  82        struct list_head        lsreq_list;     /* rport->ls_req_list */
  83        bool                    req_queued;
  84};
  85
  86enum nvme_fcpop_state {
  87        FCPOP_STATE_UNINIT      = 0,
  88        FCPOP_STATE_IDLE        = 1,
  89        FCPOP_STATE_ACTIVE      = 2,
  90        FCPOP_STATE_ABORTED     = 3,
  91        FCPOP_STATE_COMPLETE    = 4,
  92};
  93
  94struct nvme_fc_fcp_op {
  95        struct nvme_request     nreq;           /*
  96                                                 * nvme/host/core.c
  97                                                 * requires this to be
  98                                                 * the 1st element in the
  99                                                 * private structure
 100                                                 * associated with the
 101                                                 * request.
 102                                                 */
 103        struct nvmefc_fcp_req   fcp_req;
 104
 105        struct nvme_fc_ctrl     *ctrl;
 106        struct nvme_fc_queue    *queue;
 107        struct request          *rq;
 108
 109        atomic_t                state;
 110        u32                     flags;
 111        u32                     rqno;
 112        u32                     nents;
 113
 114        struct nvme_fc_cmd_iu   cmd_iu;
 115        struct nvme_fc_ersp_iu  rsp_iu;
 116};
 117
 118struct nvme_fc_lport {
 119        struct nvme_fc_local_port       localport;
 120
 121        struct ida                      endp_cnt;
 122        struct list_head                port_list;      /* nvme_fc_port_list */
 123        struct list_head                endp_list;
 124        struct device                   *dev;   /* physical device for dma */
 125        struct nvme_fc_port_template    *ops;
 126        struct kref                     ref;
 127} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 128
 129struct nvme_fc_rport {
 130        struct nvme_fc_remote_port      remoteport;
 131
 132        struct list_head                endp_list; /* for lport->endp_list */
 133        struct list_head                ctrl_list;
 134        struct list_head                ls_req_list;
 135        struct device                   *dev;   /* physical device for dma */
 136        struct nvme_fc_lport            *lport;
 137        spinlock_t                      lock;
 138        struct kref                     ref;
 139} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 140
 141enum nvme_fcctrl_flags {
 142        FCCTRL_TERMIO           = (1 << 0),
 143};
 144
 145struct nvme_fc_ctrl {
 146        spinlock_t              lock;
 147        struct nvme_fc_queue    *queues;
 148        struct device           *dev;
 149        struct nvme_fc_lport    *lport;
 150        struct nvme_fc_rport    *rport;
 151        u32                     cnum;
 152
 153        u64                     association_id;
 154
 155        struct list_head        ctrl_list;      /* rport->ctrl_list */
 156
 157        struct blk_mq_tag_set   admin_tag_set;
 158        struct blk_mq_tag_set   tag_set;
 159
 160        struct work_struct      delete_work;
 161        struct delayed_work     connect_work;
 162
 163        struct kref             ref;
 164        u32                     flags;
 165        u32                     iocnt;
 166        wait_queue_head_t       ioabort_wait;
 167
 168        struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
 169
 170        struct nvme_ctrl        ctrl;
 171};
 172
 173static inline struct nvme_fc_ctrl *
 174to_fc_ctrl(struct nvme_ctrl *ctrl)
 175{
 176        return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
 177}
 178
 179static inline struct nvme_fc_lport *
 180localport_to_lport(struct nvme_fc_local_port *portptr)
 181{
 182        return container_of(portptr, struct nvme_fc_lport, localport);
 183}
 184
 185static inline struct nvme_fc_rport *
 186remoteport_to_rport(struct nvme_fc_remote_port *portptr)
 187{
 188        return container_of(portptr, struct nvme_fc_rport, remoteport);
 189}
 190
 191static inline struct nvmefc_ls_req_op *
 192ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
 193{
 194        return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
 195}
 196
 197static inline struct nvme_fc_fcp_op *
 198fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
 199{
 200        return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
 201}
 202
 203
 204
 205/* *************************** Globals **************************** */
 206
 207
 208static DEFINE_SPINLOCK(nvme_fc_lock);
 209
 210static LIST_HEAD(nvme_fc_lport_list);
 211static DEFINE_IDA(nvme_fc_local_port_cnt);
 212static DEFINE_IDA(nvme_fc_ctrl_cnt);
 213
 214
 215
 216
 217/* *********************** FC-NVME Port Management ************************ */
 218
 219static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
 220static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
 221                        struct nvme_fc_queue *, unsigned int);
 222
 223static void
 224nvme_fc_free_lport(struct kref *ref)
 225{
 226        struct nvme_fc_lport *lport =
 227                container_of(ref, struct nvme_fc_lport, ref);
 228        unsigned long flags;
 229
 230        WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
 231        WARN_ON(!list_empty(&lport->endp_list));
 232
 233        /* remove from transport list */
 234        spin_lock_irqsave(&nvme_fc_lock, flags);
 235        list_del(&lport->port_list);
 236        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 237
 238        /* let the LLDD know we've finished tearing it down */
 239        lport->ops->localport_delete(&lport->localport);
 240
 241        ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
 242        ida_destroy(&lport->endp_cnt);
 243
 244        put_device(lport->dev);
 245
 246        kfree(lport);
 247}
 248
 249static void
 250nvme_fc_lport_put(struct nvme_fc_lport *lport)
 251{
 252        kref_put(&lport->ref, nvme_fc_free_lport);
 253}
 254
 255static int
 256nvme_fc_lport_get(struct nvme_fc_lport *lport)
 257{
 258        return kref_get_unless_zero(&lport->ref);
 259}
 260
 261
 262static struct nvme_fc_lport *
 263nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo)
 264{
 265        struct nvme_fc_lport *lport;
 266        unsigned long flags;
 267
 268        spin_lock_irqsave(&nvme_fc_lock, flags);
 269
 270        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
 271                if (lport->localport.node_name != pinfo->node_name ||
 272                    lport->localport.port_name != pinfo->port_name)
 273                        continue;
 274
 275                if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
 276                        lport = ERR_PTR(-EEXIST);
 277                        goto out_done;
 278                }
 279
 280                if (!nvme_fc_lport_get(lport)) {
 281                        /*
 282                         * fails if ref cnt already 0. If so,
 283                         * act as if lport already deleted
 284                         */
 285                        lport = NULL;
 286                        goto out_done;
 287                }
 288
 289                /* resume the lport */
 290
 291                lport->localport.port_role = pinfo->port_role;
 292                lport->localport.port_id = pinfo->port_id;
 293                lport->localport.port_state = FC_OBJSTATE_ONLINE;
 294
 295                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 296
 297                return lport;
 298        }
 299
 300        lport = NULL;
 301
 302out_done:
 303        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 304
 305        return lport;
 306}
 307
 308/**
 309 * nvme_fc_register_localport - transport entry point called by an
 310 *                              LLDD to register the existence of a NVME
 311 *                              host FC port.
 312 * @pinfo:     pointer to information about the port to be registered
 313 * @template:  LLDD entrypoints and operational parameters for the port
 314 * @dev:       physical hardware device node port corresponds to. Will be
 315 *             used for DMA mappings
 316 * @lport_p:   pointer to a local port pointer. Upon success, the routine
 317 *             will allocate a nvme_fc_local_port structure and place its
 318 *             address in the local port pointer. Upon failure, local port
 319 *             pointer will be set to 0.
 320 *
 321 * Returns:
 322 * a completion status. Must be 0 upon success; a negative errno
 323 * (ex: -ENXIO) upon failure.
 324 */
 325int
 326nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
 327                        struct nvme_fc_port_template *template,
 328                        struct device *dev,
 329                        struct nvme_fc_local_port **portptr)
 330{
 331        struct nvme_fc_lport *newrec;
 332        unsigned long flags;
 333        int ret, idx;
 334
 335        if (!template->localport_delete || !template->remoteport_delete ||
 336            !template->ls_req || !template->fcp_io ||
 337            !template->ls_abort || !template->fcp_abort ||
 338            !template->max_hw_queues || !template->max_sgl_segments ||
 339            !template->max_dif_sgl_segments || !template->dma_boundary) {
 340                ret = -EINVAL;
 341                goto out_reghost_failed;
 342        }
 343
 344        /*
 345         * look to see if there is already a localport that had been
 346         * deregistered and in the process of waiting for all the
 347         * references to fully be removed.  If the references haven't
 348         * expired, we can simply re-enable the localport. Remoteports
 349         * and controller reconnections should resume naturally.
 350         */
 351        newrec = nvme_fc_attach_to_unreg_lport(pinfo);
 352
 353        /* found an lport, but something about its state is bad */
 354        if (IS_ERR(newrec)) {
 355                ret = PTR_ERR(newrec);
 356                goto out_reghost_failed;
 357
 358        /* found existing lport, which was resumed */
 359        } else if (newrec) {
 360                *portptr = &newrec->localport;
 361                return 0;
 362        }
 363
 364        /* nothing found - allocate a new localport struct */
 365
 366        newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
 367                         GFP_KERNEL);
 368        if (!newrec) {
 369                ret = -ENOMEM;
 370                goto out_reghost_failed;
 371        }
 372
 373        idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
 374        if (idx < 0) {
 375                ret = -ENOSPC;
 376                goto out_fail_kfree;
 377        }
 378
 379        if (!get_device(dev) && dev) {
 380                ret = -ENODEV;
 381                goto out_ida_put;
 382        }
 383
 384        INIT_LIST_HEAD(&newrec->port_list);
 385        INIT_LIST_HEAD(&newrec->endp_list);
 386        kref_init(&newrec->ref);
 387        newrec->ops = template;
 388        newrec->dev = dev;
 389        ida_init(&newrec->endp_cnt);
 390        newrec->localport.private = &newrec[1];
 391        newrec->localport.node_name = pinfo->node_name;
 392        newrec->localport.port_name = pinfo->port_name;
 393        newrec->localport.port_role = pinfo->port_role;
 394        newrec->localport.port_id = pinfo->port_id;
 395        newrec->localport.port_state = FC_OBJSTATE_ONLINE;
 396        newrec->localport.port_num = idx;
 397
 398        spin_lock_irqsave(&nvme_fc_lock, flags);
 399        list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
 400        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 401
 402        if (dev)
 403                dma_set_seg_boundary(dev, template->dma_boundary);
 404
 405        *portptr = &newrec->localport;
 406        return 0;
 407
 408out_ida_put:
 409        ida_simple_remove(&nvme_fc_local_port_cnt, idx);
 410out_fail_kfree:
 411        kfree(newrec);
 412out_reghost_failed:
 413        *portptr = NULL;
 414
 415        return ret;
 416}
 417EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
 418
 419/**
 420 * nvme_fc_unregister_localport - transport entry point called by an
 421 *                              LLDD to deregister/remove a previously
 422 *                              registered a NVME host FC port.
 423 * @localport: pointer to the (registered) local port that is to be
 424 *             deregistered.
 425 *
 426 * Returns:
 427 * a completion status. Must be 0 upon success; a negative errno
 428 * (ex: -ENXIO) upon failure.
 429 */
 430int
 431nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
 432{
 433        struct nvme_fc_lport *lport = localport_to_lport(portptr);
 434        unsigned long flags;
 435
 436        if (!portptr)
 437                return -EINVAL;
 438
 439        spin_lock_irqsave(&nvme_fc_lock, flags);
 440
 441        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 442                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 443                return -EINVAL;
 444        }
 445        portptr->port_state = FC_OBJSTATE_DELETED;
 446
 447        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 448
 449        nvme_fc_lport_put(lport);
 450
 451        return 0;
 452}
 453EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
 454
 455/**
 456 * nvme_fc_register_remoteport - transport entry point called by an
 457 *                              LLDD to register the existence of a NVME
 458 *                              subsystem FC port on its fabric.
 459 * @localport: pointer to the (registered) local port that the remote
 460 *             subsystem port is connected to.
 461 * @pinfo:     pointer to information about the port to be registered
 462 * @rport_p:   pointer to a remote port pointer. Upon success, the routine
 463 *             will allocate a nvme_fc_remote_port structure and place its
 464 *             address in the remote port pointer. Upon failure, remote port
 465 *             pointer will be set to 0.
 466 *
 467 * Returns:
 468 * a completion status. Must be 0 upon success; a negative errno
 469 * (ex: -ENXIO) upon failure.
 470 */
 471int
 472nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
 473                                struct nvme_fc_port_info *pinfo,
 474                                struct nvme_fc_remote_port **portptr)
 475{
 476        struct nvme_fc_lport *lport = localport_to_lport(localport);
 477        struct nvme_fc_rport *newrec;
 478        unsigned long flags;
 479        int ret, idx;
 480
 481        newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
 482                         GFP_KERNEL);
 483        if (!newrec) {
 484                ret = -ENOMEM;
 485                goto out_reghost_failed;
 486        }
 487
 488        if (!nvme_fc_lport_get(lport)) {
 489                ret = -ESHUTDOWN;
 490                goto out_kfree_rport;
 491        }
 492
 493        idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
 494        if (idx < 0) {
 495                ret = -ENOSPC;
 496                goto out_lport_put;
 497        }
 498
 499        INIT_LIST_HEAD(&newrec->endp_list);
 500        INIT_LIST_HEAD(&newrec->ctrl_list);
 501        INIT_LIST_HEAD(&newrec->ls_req_list);
 502        kref_init(&newrec->ref);
 503        spin_lock_init(&newrec->lock);
 504        newrec->remoteport.localport = &lport->localport;
 505        newrec->dev = lport->dev;
 506        newrec->lport = lport;
 507        newrec->remoteport.private = &newrec[1];
 508        newrec->remoteport.port_role = pinfo->port_role;
 509        newrec->remoteport.node_name = pinfo->node_name;
 510        newrec->remoteport.port_name = pinfo->port_name;
 511        newrec->remoteport.port_id = pinfo->port_id;
 512        newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
 513        newrec->remoteport.port_num = idx;
 514
 515        spin_lock_irqsave(&nvme_fc_lock, flags);
 516        list_add_tail(&newrec->endp_list, &lport->endp_list);
 517        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 518
 519        *portptr = &newrec->remoteport;
 520        return 0;
 521
 522out_lport_put:
 523        nvme_fc_lport_put(lport);
 524out_kfree_rport:
 525        kfree(newrec);
 526out_reghost_failed:
 527        *portptr = NULL;
 528        return ret;
 529}
 530EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
 531
 532static void
 533nvme_fc_free_rport(struct kref *ref)
 534{
 535        struct nvme_fc_rport *rport =
 536                container_of(ref, struct nvme_fc_rport, ref);
 537        struct nvme_fc_lport *lport =
 538                        localport_to_lport(rport->remoteport.localport);
 539        unsigned long flags;
 540
 541        WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
 542        WARN_ON(!list_empty(&rport->ctrl_list));
 543
 544        /* remove from lport list */
 545        spin_lock_irqsave(&nvme_fc_lock, flags);
 546        list_del(&rport->endp_list);
 547        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 548
 549        /* let the LLDD know we've finished tearing it down */
 550        lport->ops->remoteport_delete(&rport->remoteport);
 551
 552        ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
 553
 554        kfree(rport);
 555
 556        nvme_fc_lport_put(lport);
 557}
 558
 559static void
 560nvme_fc_rport_put(struct nvme_fc_rport *rport)
 561{
 562        kref_put(&rport->ref, nvme_fc_free_rport);
 563}
 564
 565static int
 566nvme_fc_rport_get(struct nvme_fc_rport *rport)
 567{
 568        return kref_get_unless_zero(&rport->ref);
 569}
 570
 571static int
 572nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
 573{
 574        struct nvmefc_ls_req_op *lsop;
 575        unsigned long flags;
 576
 577restart:
 578        spin_lock_irqsave(&rport->lock, flags);
 579
 580        list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
 581                if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
 582                        lsop->flags |= FCOP_FLAGS_TERMIO;
 583                        spin_unlock_irqrestore(&rport->lock, flags);
 584                        rport->lport->ops->ls_abort(&rport->lport->localport,
 585                                                &rport->remoteport,
 586                                                &lsop->ls_req);
 587                        goto restart;
 588                }
 589        }
 590        spin_unlock_irqrestore(&rport->lock, flags);
 591
 592        return 0;
 593}
 594
 595/**
 596 * nvme_fc_unregister_remoteport - transport entry point called by an
 597 *                              LLDD to deregister/remove a previously
 598 *                              registered a NVME subsystem FC port.
 599 * @remoteport: pointer to the (registered) remote port that is to be
 600 *              deregistered.
 601 *
 602 * Returns:
 603 * a completion status. Must be 0 upon success; a negative errno
 604 * (ex: -ENXIO) upon failure.
 605 */
 606int
 607nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
 608{
 609        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 610        struct nvme_fc_ctrl *ctrl;
 611        unsigned long flags;
 612
 613        if (!portptr)
 614                return -EINVAL;
 615
 616        spin_lock_irqsave(&rport->lock, flags);
 617
 618        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 619                spin_unlock_irqrestore(&rport->lock, flags);
 620                return -EINVAL;
 621        }
 622        portptr->port_state = FC_OBJSTATE_DELETED;
 623
 624        /* tear down all associations to the remote port */
 625        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
 626                __nvme_fc_del_ctrl(ctrl);
 627
 628        spin_unlock_irqrestore(&rport->lock, flags);
 629
 630        nvme_fc_abort_lsops(rport);
 631
 632        nvme_fc_rport_put(rport);
 633        return 0;
 634}
 635EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
 636
 637
 638/* *********************** FC-NVME DMA Handling **************************** */
 639
 640/*
 641 * The fcloop device passes in a NULL device pointer. Real LLD's will
 642 * pass in a valid device pointer. If NULL is passed to the dma mapping
 643 * routines, depending on the platform, it may or may not succeed, and
 644 * may crash.
 645 *
 646 * As such:
 647 * Wrapper all the dma routines and check the dev pointer.
 648 *
 649 * If simple mappings (return just a dma address, we'll noop them,
 650 * returning a dma address of 0.
 651 *
 652 * On more complex mappings (dma_map_sg), a pseudo routine fills
 653 * in the scatter list, setting all dma addresses to 0.
 654 */
 655
 656static inline dma_addr_t
 657fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 658                enum dma_data_direction dir)
 659{
 660        return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 661}
 662
 663static inline int
 664fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 665{
 666        return dev ? dma_mapping_error(dev, dma_addr) : 0;
 667}
 668
 669static inline void
 670fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 671        enum dma_data_direction dir)
 672{
 673        if (dev)
 674                dma_unmap_single(dev, addr, size, dir);
 675}
 676
 677static inline void
 678fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 679                enum dma_data_direction dir)
 680{
 681        if (dev)
 682                dma_sync_single_for_cpu(dev, addr, size, dir);
 683}
 684
 685static inline void
 686fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 687                enum dma_data_direction dir)
 688{
 689        if (dev)
 690                dma_sync_single_for_device(dev, addr, size, dir);
 691}
 692
 693/* pseudo dma_map_sg call */
 694static int
 695fc_map_sg(struct scatterlist *sg, int nents)
 696{
 697        struct scatterlist *s;
 698        int i;
 699
 700        WARN_ON(nents == 0 || sg[0].length == 0);
 701
 702        for_each_sg(sg, s, nents, i) {
 703                s->dma_address = 0L;
 704#ifdef CONFIG_NEED_SG_DMA_LENGTH
 705                s->dma_length = s->length;
 706#endif
 707        }
 708        return nents;
 709}
 710
 711static inline int
 712fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 713                enum dma_data_direction dir)
 714{
 715        return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
 716}
 717
 718static inline void
 719fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 720                enum dma_data_direction dir)
 721{
 722        if (dev)
 723                dma_unmap_sg(dev, sg, nents, dir);
 724}
 725
 726
 727/* *********************** FC-NVME LS Handling **************************** */
 728
 729static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
 730static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
 731
 732
 733static void
 734__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
 735{
 736        struct nvme_fc_rport *rport = lsop->rport;
 737        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
 738        unsigned long flags;
 739
 740        spin_lock_irqsave(&rport->lock, flags);
 741
 742        if (!lsop->req_queued) {
 743                spin_unlock_irqrestore(&rport->lock, flags);
 744                return;
 745        }
 746
 747        list_del(&lsop->lsreq_list);
 748
 749        lsop->req_queued = false;
 750
 751        spin_unlock_irqrestore(&rport->lock, flags);
 752
 753        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
 754                                  (lsreq->rqstlen + lsreq->rsplen),
 755                                  DMA_BIDIRECTIONAL);
 756
 757        nvme_fc_rport_put(rport);
 758}
 759
 760static int
 761__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
 762                struct nvmefc_ls_req_op *lsop,
 763                void (*done)(struct nvmefc_ls_req *req, int status))
 764{
 765        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
 766        unsigned long flags;
 767        int ret = 0;
 768
 769        if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
 770                return -ECONNREFUSED;
 771
 772        if (!nvme_fc_rport_get(rport))
 773                return -ESHUTDOWN;
 774
 775        lsreq->done = done;
 776        lsop->rport = rport;
 777        lsop->req_queued = false;
 778        INIT_LIST_HEAD(&lsop->lsreq_list);
 779        init_completion(&lsop->ls_done);
 780
 781        lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
 782                                  lsreq->rqstlen + lsreq->rsplen,
 783                                  DMA_BIDIRECTIONAL);
 784        if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
 785                ret = -EFAULT;
 786                goto out_putrport;
 787        }
 788        lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
 789
 790        spin_lock_irqsave(&rport->lock, flags);
 791
 792        list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
 793
 794        lsop->req_queued = true;
 795
 796        spin_unlock_irqrestore(&rport->lock, flags);
 797
 798        ret = rport->lport->ops->ls_req(&rport->lport->localport,
 799                                        &rport->remoteport, lsreq);
 800        if (ret)
 801                goto out_unlink;
 802
 803        return 0;
 804
 805out_unlink:
 806        lsop->ls_error = ret;
 807        spin_lock_irqsave(&rport->lock, flags);
 808        lsop->req_queued = false;
 809        list_del(&lsop->lsreq_list);
 810        spin_unlock_irqrestore(&rport->lock, flags);
 811        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
 812                                  (lsreq->rqstlen + lsreq->rsplen),
 813                                  DMA_BIDIRECTIONAL);
 814out_putrport:
 815        nvme_fc_rport_put(rport);
 816
 817        return ret;
 818}
 819
 820static void
 821nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
 822{
 823        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
 824
 825        lsop->ls_error = status;
 826        complete(&lsop->ls_done);
 827}
 828
 829static int
 830nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
 831{
 832        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
 833        struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
 834        int ret;
 835
 836        ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
 837
 838        if (!ret) {
 839                /*
 840                 * No timeout/not interruptible as we need the struct
 841                 * to exist until the lldd calls us back. Thus mandate
 842                 * wait until driver calls back. lldd responsible for
 843                 * the timeout action
 844                 */
 845                wait_for_completion(&lsop->ls_done);
 846
 847                __nvme_fc_finish_ls_req(lsop);
 848
 849                ret = lsop->ls_error;
 850        }
 851
 852        if (ret)
 853                return ret;
 854
 855        /* ACC or RJT payload ? */
 856        if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
 857                return -ENXIO;
 858
 859        return 0;
 860}
 861
 862static int
 863nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
 864                struct nvmefc_ls_req_op *lsop,
 865                void (*done)(struct nvmefc_ls_req *req, int status))
 866{
 867        /* don't wait for completion */
 868
 869        return __nvme_fc_send_ls_req(rport, lsop, done);
 870}
 871
 872/* Validation Error indexes into the string table below */
 873enum {
 874        VERR_NO_ERROR           = 0,
 875        VERR_LSACC              = 1,
 876        VERR_LSDESC_RQST        = 2,
 877        VERR_LSDESC_RQST_LEN    = 3,
 878        VERR_ASSOC_ID           = 4,
 879        VERR_ASSOC_ID_LEN       = 5,
 880        VERR_CONN_ID            = 6,
 881        VERR_CONN_ID_LEN        = 7,
 882        VERR_CR_ASSOC           = 8,
 883        VERR_CR_ASSOC_ACC_LEN   = 9,
 884        VERR_CR_CONN            = 10,
 885        VERR_CR_CONN_ACC_LEN    = 11,
 886        VERR_DISCONN            = 12,
 887        VERR_DISCONN_ACC_LEN    = 13,
 888};
 889
 890static char *validation_errors[] = {
 891        "OK",
 892        "Not LS_ACC",
 893        "Not LSDESC_RQST",
 894        "Bad LSDESC_RQST Length",
 895        "Not Association ID",
 896        "Bad Association ID Length",
 897        "Not Connection ID",
 898        "Bad Connection ID Length",
 899        "Not CR_ASSOC Rqst",
 900        "Bad CR_ASSOC ACC Length",
 901        "Not CR_CONN Rqst",
 902        "Bad CR_CONN ACC Length",
 903        "Not Disconnect Rqst",
 904        "Bad Disconnect ACC Length",
 905};
 906
 907static int
 908nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
 909        struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
 910{
 911        struct nvmefc_ls_req_op *lsop;
 912        struct nvmefc_ls_req *lsreq;
 913        struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
 914        struct fcnvme_ls_cr_assoc_acc *assoc_acc;
 915        int ret, fcret = 0;
 916
 917        lsop = kzalloc((sizeof(*lsop) +
 918                         ctrl->lport->ops->lsrqst_priv_sz +
 919                         sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
 920        if (!lsop) {
 921                ret = -ENOMEM;
 922                goto out_no_memory;
 923        }
 924        lsreq = &lsop->ls_req;
 925
 926        lsreq->private = (void *)&lsop[1];
 927        assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
 928                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
 929        assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
 930
 931        assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
 932        assoc_rqst->desc_list_len =
 933                        cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
 934
 935        assoc_rqst->assoc_cmd.desc_tag =
 936                        cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
 937        assoc_rqst->assoc_cmd.desc_len =
 938                        fcnvme_lsdesc_len(
 939                                sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
 940
 941        assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
 942        assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
 943        /* Linux supports only Dynamic controllers */
 944        assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
 945        uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
 946        strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
 947                min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
 948        strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
 949                min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
 950
 951        lsop->queue = queue;
 952        lsreq->rqstaddr = assoc_rqst;
 953        lsreq->rqstlen = sizeof(*assoc_rqst);
 954        lsreq->rspaddr = assoc_acc;
 955        lsreq->rsplen = sizeof(*assoc_acc);
 956        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
 957
 958        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
 959        if (ret)
 960                goto out_free_buffer;
 961
 962        /* process connect LS completion */
 963
 964        /* validate the ACC response */
 965        if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
 966                fcret = VERR_LSACC;
 967        else if (assoc_acc->hdr.desc_list_len !=
 968                        fcnvme_lsdesc_len(
 969                                sizeof(struct fcnvme_ls_cr_assoc_acc)))
 970                fcret = VERR_CR_ASSOC_ACC_LEN;
 971        else if (assoc_acc->hdr.rqst.desc_tag !=
 972                        cpu_to_be32(FCNVME_LSDESC_RQST))
 973                fcret = VERR_LSDESC_RQST;
 974        else if (assoc_acc->hdr.rqst.desc_len !=
 975                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
 976                fcret = VERR_LSDESC_RQST_LEN;
 977        else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
 978                fcret = VERR_CR_ASSOC;
 979        else if (assoc_acc->associd.desc_tag !=
 980                        cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
 981                fcret = VERR_ASSOC_ID;
 982        else if (assoc_acc->associd.desc_len !=
 983                        fcnvme_lsdesc_len(
 984                                sizeof(struct fcnvme_lsdesc_assoc_id)))
 985                fcret = VERR_ASSOC_ID_LEN;
 986        else if (assoc_acc->connectid.desc_tag !=
 987                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
 988                fcret = VERR_CONN_ID;
 989        else if (assoc_acc->connectid.desc_len !=
 990                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
 991                fcret = VERR_CONN_ID_LEN;
 992
 993        if (fcret) {
 994                ret = -EBADF;
 995                dev_err(ctrl->dev,
 996                        "q %d connect failed: %s\n",
 997                        queue->qnum, validation_errors[fcret]);
 998        } else {
 999                ctrl->association_id =
1000                        be64_to_cpu(assoc_acc->associd.association_id);
1001                queue->connection_id =
1002                        be64_to_cpu(assoc_acc->connectid.connection_id);
1003                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1004        }
1005
1006out_free_buffer:
1007        kfree(lsop);
1008out_no_memory:
1009        if (ret)
1010                dev_err(ctrl->dev,
1011                        "queue %d connect admin queue failed (%d).\n",
1012                        queue->qnum, ret);
1013        return ret;
1014}
1015
1016static int
1017nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1018                        u16 qsize, u16 ersp_ratio)
1019{
1020        struct nvmefc_ls_req_op *lsop;
1021        struct nvmefc_ls_req *lsreq;
1022        struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1023        struct fcnvme_ls_cr_conn_acc *conn_acc;
1024        int ret, fcret = 0;
1025
1026        lsop = kzalloc((sizeof(*lsop) +
1027                         ctrl->lport->ops->lsrqst_priv_sz +
1028                         sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1029        if (!lsop) {
1030                ret = -ENOMEM;
1031                goto out_no_memory;
1032        }
1033        lsreq = &lsop->ls_req;
1034
1035        lsreq->private = (void *)&lsop[1];
1036        conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1037                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1038        conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1039
1040        conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1041        conn_rqst->desc_list_len = cpu_to_be32(
1042                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1043                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1044
1045        conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1046        conn_rqst->associd.desc_len =
1047                        fcnvme_lsdesc_len(
1048                                sizeof(struct fcnvme_lsdesc_assoc_id));
1049        conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1050        conn_rqst->connect_cmd.desc_tag =
1051                        cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1052        conn_rqst->connect_cmd.desc_len =
1053                        fcnvme_lsdesc_len(
1054                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1055        conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1056        conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1057        conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1058
1059        lsop->queue = queue;
1060        lsreq->rqstaddr = conn_rqst;
1061        lsreq->rqstlen = sizeof(*conn_rqst);
1062        lsreq->rspaddr = conn_acc;
1063        lsreq->rsplen = sizeof(*conn_acc);
1064        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1065
1066        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1067        if (ret)
1068                goto out_free_buffer;
1069
1070        /* process connect LS completion */
1071
1072        /* validate the ACC response */
1073        if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1074                fcret = VERR_LSACC;
1075        else if (conn_acc->hdr.desc_list_len !=
1076                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1077                fcret = VERR_CR_CONN_ACC_LEN;
1078        else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1079                fcret = VERR_LSDESC_RQST;
1080        else if (conn_acc->hdr.rqst.desc_len !=
1081                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1082                fcret = VERR_LSDESC_RQST_LEN;
1083        else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1084                fcret = VERR_CR_CONN;
1085        else if (conn_acc->connectid.desc_tag !=
1086                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1087                fcret = VERR_CONN_ID;
1088        else if (conn_acc->connectid.desc_len !=
1089                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1090                fcret = VERR_CONN_ID_LEN;
1091
1092        if (fcret) {
1093                ret = -EBADF;
1094                dev_err(ctrl->dev,
1095                        "q %d connect failed: %s\n",
1096                        queue->qnum, validation_errors[fcret]);
1097        } else {
1098                queue->connection_id =
1099                        be64_to_cpu(conn_acc->connectid.connection_id);
1100                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1101        }
1102
1103out_free_buffer:
1104        kfree(lsop);
1105out_no_memory:
1106        if (ret)
1107                dev_err(ctrl->dev,
1108                        "queue %d connect command failed (%d).\n",
1109                        queue->qnum, ret);
1110        return ret;
1111}
1112
1113static void
1114nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1115{
1116        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1117
1118        __nvme_fc_finish_ls_req(lsop);
1119
1120        /* fc-nvme iniator doesn't care about success or failure of cmd */
1121
1122        kfree(lsop);
1123}
1124
1125/*
1126 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1127 * the FC-NVME Association.  Terminating the association also
1128 * terminates the FC-NVME connections (per queue, both admin and io
1129 * queues) that are part of the association. E.g. things are torn
1130 * down, and the related FC-NVME Association ID and Connection IDs
1131 * become invalid.
1132 *
1133 * The behavior of the fc-nvme initiator is such that it's
1134 * understanding of the association and connections will implicitly
1135 * be torn down. The action is implicit as it may be due to a loss of
1136 * connectivity with the fc-nvme target, so you may never get a
1137 * response even if you tried.  As such, the action of this routine
1138 * is to asynchronously send the LS, ignore any results of the LS, and
1139 * continue on with terminating the association. If the fc-nvme target
1140 * is present and receives the LS, it too can tear down.
1141 */
1142static void
1143nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1144{
1145        struct fcnvme_ls_disconnect_rqst *discon_rqst;
1146        struct fcnvme_ls_disconnect_acc *discon_acc;
1147        struct nvmefc_ls_req_op *lsop;
1148        struct nvmefc_ls_req *lsreq;
1149        int ret;
1150
1151        lsop = kzalloc((sizeof(*lsop) +
1152                         ctrl->lport->ops->lsrqst_priv_sz +
1153                         sizeof(*discon_rqst) + sizeof(*discon_acc)),
1154                        GFP_KERNEL);
1155        if (!lsop)
1156                /* couldn't sent it... too bad */
1157                return;
1158
1159        lsreq = &lsop->ls_req;
1160
1161        lsreq->private = (void *)&lsop[1];
1162        discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1163                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1164        discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1165
1166        discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1167        discon_rqst->desc_list_len = cpu_to_be32(
1168                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1169                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1170
1171        discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1172        discon_rqst->associd.desc_len =
1173                        fcnvme_lsdesc_len(
1174                                sizeof(struct fcnvme_lsdesc_assoc_id));
1175
1176        discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1177
1178        discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1179                                                FCNVME_LSDESC_DISCONN_CMD);
1180        discon_rqst->discon_cmd.desc_len =
1181                        fcnvme_lsdesc_len(
1182                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1183        discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1184        discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1185
1186        lsreq->rqstaddr = discon_rqst;
1187        lsreq->rqstlen = sizeof(*discon_rqst);
1188        lsreq->rspaddr = discon_acc;
1189        lsreq->rsplen = sizeof(*discon_acc);
1190        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1191
1192        ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1193                                nvme_fc_disconnect_assoc_done);
1194        if (ret)
1195                kfree(lsop);
1196
1197        /* only meaningful part to terminating the association */
1198        ctrl->association_id = 0;
1199}
1200
1201
1202/* *********************** NVME Ctrl Routines **************************** */
1203
1204static void __nvme_fc_final_op_cleanup(struct request *rq);
1205static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1206
1207static int
1208nvme_fc_reinit_request(void *data, struct request *rq)
1209{
1210        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1211        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1212
1213        memset(cmdiu, 0, sizeof(*cmdiu));
1214        cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1215        cmdiu->fc_id = NVME_CMD_FC_ID;
1216        cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1217        memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1218
1219        return 0;
1220}
1221
1222static void
1223__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1224                struct nvme_fc_fcp_op *op)
1225{
1226        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1227                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1228        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1229                                sizeof(op->cmd_iu), DMA_TO_DEVICE);
1230
1231        atomic_set(&op->state, FCPOP_STATE_UNINIT);
1232}
1233
1234static void
1235nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1236                unsigned int hctx_idx)
1237{
1238        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1239
1240        return __nvme_fc_exit_request(set->driver_data, op);
1241}
1242
1243static int
1244__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1245{
1246        int state;
1247
1248        state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1249        if (state != FCPOP_STATE_ACTIVE) {
1250                atomic_set(&op->state, state);
1251                return -ECANCELED;
1252        }
1253
1254        ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1255                                        &ctrl->rport->remoteport,
1256                                        op->queue->lldd_handle,
1257                                        &op->fcp_req);
1258
1259        return 0;
1260}
1261
1262static void
1263nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1264{
1265        struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1266        unsigned long flags;
1267        int i, ret;
1268
1269        for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1270                if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1271                        continue;
1272
1273                spin_lock_irqsave(&ctrl->lock, flags);
1274                if (ctrl->flags & FCCTRL_TERMIO) {
1275                        ctrl->iocnt++;
1276                        aen_op->flags |= FCOP_FLAGS_TERMIO;
1277                }
1278                spin_unlock_irqrestore(&ctrl->lock, flags);
1279
1280                ret = __nvme_fc_abort_op(ctrl, aen_op);
1281                if (ret) {
1282                        /*
1283                         * if __nvme_fc_abort_op failed the io wasn't
1284                         * active. Thus this call path is running in
1285                         * parallel to the io complete. Treat as non-error.
1286                         */
1287
1288                        /* back out the flags/counters */
1289                        spin_lock_irqsave(&ctrl->lock, flags);
1290                        if (ctrl->flags & FCCTRL_TERMIO)
1291                                ctrl->iocnt--;
1292                        aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1293                        spin_unlock_irqrestore(&ctrl->lock, flags);
1294                        return;
1295                }
1296        }
1297}
1298
1299static inline int
1300__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1301                struct nvme_fc_fcp_op *op)
1302{
1303        unsigned long flags;
1304        bool complete_rq = false;
1305
1306        spin_lock_irqsave(&ctrl->lock, flags);
1307        if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1308                if (ctrl->flags & FCCTRL_TERMIO) {
1309                        if (!--ctrl->iocnt)
1310                                wake_up(&ctrl->ioabort_wait);
1311                }
1312        }
1313        if (op->flags & FCOP_FLAGS_RELEASED)
1314                complete_rq = true;
1315        else
1316                op->flags |= FCOP_FLAGS_COMPLETE;
1317        spin_unlock_irqrestore(&ctrl->lock, flags);
1318
1319        return complete_rq;
1320}
1321
1322static void
1323nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1324{
1325        struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1326        struct request *rq = op->rq;
1327        struct nvmefc_fcp_req *freq = &op->fcp_req;
1328        struct nvme_fc_ctrl *ctrl = op->ctrl;
1329        struct nvme_fc_queue *queue = op->queue;
1330        struct nvme_completion *cqe = &op->rsp_iu.cqe;
1331        struct nvme_command *sqe = &op->cmd_iu.sqe;
1332        __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1333        union nvme_result result;
1334        bool complete_rq, terminate_assoc = true;
1335
1336        /*
1337         * WARNING:
1338         * The current linux implementation of a nvme controller
1339         * allocates a single tag set for all io queues and sizes
1340         * the io queues to fully hold all possible tags. Thus, the
1341         * implementation does not reference or care about the sqhd
1342         * value as it never needs to use the sqhd/sqtail pointers
1343         * for submission pacing.
1344         *
1345         * This affects the FC-NVME implementation in two ways:
1346         * 1) As the value doesn't matter, we don't need to waste
1347         *    cycles extracting it from ERSPs and stamping it in the
1348         *    cases where the transport fabricates CQEs on successful
1349         *    completions.
1350         * 2) The FC-NVME implementation requires that delivery of
1351         *    ERSP completions are to go back to the nvme layer in order
1352         *    relative to the rsn, such that the sqhd value will always
1353         *    be "in order" for the nvme layer. As the nvme layer in
1354         *    linux doesn't care about sqhd, there's no need to return
1355         *    them in order.
1356         *
1357         * Additionally:
1358         * As the core nvme layer in linux currently does not look at
1359         * every field in the cqe - in cases where the FC transport must
1360         * fabricate a CQE, the following fields will not be set as they
1361         * are not referenced:
1362         *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1363         *
1364         * Failure or error of an individual i/o, in a transport
1365         * detected fashion unrelated to the nvme completion status,
1366         * potentially cause the initiator and target sides to get out
1367         * of sync on SQ head/tail (aka outstanding io count allowed).
1368         * Per FC-NVME spec, failure of an individual command requires
1369         * the connection to be terminated, which in turn requires the
1370         * association to be terminated.
1371         */
1372
1373        fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1374                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1375
1376        if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1377                status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1378        else if (freq->status)
1379                status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1380
1381        /*
1382         * For the linux implementation, if we have an unsuccesful
1383         * status, they blk-mq layer can typically be called with the
1384         * non-zero status and the content of the cqe isn't important.
1385         */
1386        if (status)
1387                goto done;
1388
1389        /*
1390         * command completed successfully relative to the wire
1391         * protocol. However, validate anything received and
1392         * extract the status and result from the cqe (create it
1393         * where necessary).
1394         */
1395
1396        switch (freq->rcv_rsplen) {
1397
1398        case 0:
1399        case NVME_FC_SIZEOF_ZEROS_RSP:
1400                /*
1401                 * No response payload or 12 bytes of payload (which
1402                 * should all be zeros) are considered successful and
1403                 * no payload in the CQE by the transport.
1404                 */
1405                if (freq->transferred_length !=
1406                        be32_to_cpu(op->cmd_iu.data_len)) {
1407                        status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1408                        goto done;
1409                }
1410                result.u64 = 0;
1411                break;
1412
1413        case sizeof(struct nvme_fc_ersp_iu):
1414                /*
1415                 * The ERSP IU contains a full completion with CQE.
1416                 * Validate ERSP IU and look at cqe.
1417                 */
1418                if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1419                                        (freq->rcv_rsplen / 4) ||
1420                             be32_to_cpu(op->rsp_iu.xfrd_len) !=
1421                                        freq->transferred_length ||
1422                             op->rsp_iu.status_code ||
1423                             sqe->common.command_id != cqe->command_id)) {
1424                        status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1425                        goto done;
1426                }
1427                result = cqe->result;
1428                status = cqe->status;
1429                break;
1430
1431        default:
1432                status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1433                goto done;
1434        }
1435
1436        terminate_assoc = false;
1437
1438done:
1439        if (op->flags & FCOP_FLAGS_AEN) {
1440                nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1441                complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1442                atomic_set(&op->state, FCPOP_STATE_IDLE);
1443                op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1444                nvme_fc_ctrl_put(ctrl);
1445                goto check_error;
1446        }
1447
1448        complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1449        if (!complete_rq) {
1450                if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1451                        status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1452                        if (blk_queue_dying(rq->q))
1453                                status |= cpu_to_le16(NVME_SC_DNR << 1);
1454                }
1455                nvme_end_request(rq, status, result);
1456        } else
1457                __nvme_fc_final_op_cleanup(rq);
1458
1459check_error:
1460        if (terminate_assoc)
1461                nvme_fc_error_recovery(ctrl, "transport detected io error");
1462}
1463
1464static int
1465__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1466                struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1467                struct request *rq, u32 rqno)
1468{
1469        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1470        int ret = 0;
1471
1472        memset(op, 0, sizeof(*op));
1473        op->fcp_req.cmdaddr = &op->cmd_iu;
1474        op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1475        op->fcp_req.rspaddr = &op->rsp_iu;
1476        op->fcp_req.rsplen = sizeof(op->rsp_iu);
1477        op->fcp_req.done = nvme_fc_fcpio_done;
1478        op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1479        op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1480        op->ctrl = ctrl;
1481        op->queue = queue;
1482        op->rq = rq;
1483        op->rqno = rqno;
1484
1485        cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1486        cmdiu->fc_id = NVME_CMD_FC_ID;
1487        cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1488
1489        op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1490                                &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1491        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1492                dev_err(ctrl->dev,
1493                        "FCP Op failed - cmdiu dma mapping failed.\n");
1494                ret = EFAULT;
1495                goto out_on_error;
1496        }
1497
1498        op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1499                                &op->rsp_iu, sizeof(op->rsp_iu),
1500                                DMA_FROM_DEVICE);
1501        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1502                dev_err(ctrl->dev,
1503                        "FCP Op failed - rspiu dma mapping failed.\n");
1504                ret = EFAULT;
1505        }
1506
1507        atomic_set(&op->state, FCPOP_STATE_IDLE);
1508out_on_error:
1509        return ret;
1510}
1511
1512static int
1513nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1514                unsigned int hctx_idx, unsigned int numa_node)
1515{
1516        struct nvme_fc_ctrl *ctrl = set->driver_data;
1517        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1518        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1519        struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1520
1521        return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1522}
1523
1524static int
1525nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1526{
1527        struct nvme_fc_fcp_op *aen_op;
1528        struct nvme_fc_cmd_iu *cmdiu;
1529        struct nvme_command *sqe;
1530        void *private;
1531        int i, ret;
1532
1533        aen_op = ctrl->aen_ops;
1534        for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1535                private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1536                                                GFP_KERNEL);
1537                if (!private)
1538                        return -ENOMEM;
1539
1540                cmdiu = &aen_op->cmd_iu;
1541                sqe = &cmdiu->sqe;
1542                ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1543                                aen_op, (struct request *)NULL,
1544                                (AEN_CMDID_BASE + i));
1545                if (ret) {
1546                        kfree(private);
1547                        return ret;
1548                }
1549
1550                aen_op->flags = FCOP_FLAGS_AEN;
1551                aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1552                aen_op->fcp_req.private = private;
1553
1554                memset(sqe, 0, sizeof(*sqe));
1555                sqe->common.opcode = nvme_admin_async_event;
1556                /* Note: core layer may overwrite the sqe.command_id value */
1557                sqe->common.command_id = AEN_CMDID_BASE + i;
1558        }
1559        return 0;
1560}
1561
1562static void
1563nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1564{
1565        struct nvme_fc_fcp_op *aen_op;
1566        int i;
1567
1568        aen_op = ctrl->aen_ops;
1569        for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1570                if (!aen_op->fcp_req.private)
1571                        continue;
1572
1573                __nvme_fc_exit_request(ctrl, aen_op);
1574
1575                kfree(aen_op->fcp_req.private);
1576                aen_op->fcp_req.private = NULL;
1577        }
1578}
1579
1580static inline void
1581__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1582                unsigned int qidx)
1583{
1584        struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1585
1586        hctx->driver_data = queue;
1587        queue->hctx = hctx;
1588}
1589
1590static int
1591nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1592                unsigned int hctx_idx)
1593{
1594        struct nvme_fc_ctrl *ctrl = data;
1595
1596        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1597
1598        return 0;
1599}
1600
1601static int
1602nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1603                unsigned int hctx_idx)
1604{
1605        struct nvme_fc_ctrl *ctrl = data;
1606
1607        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1608
1609        return 0;
1610}
1611
1612static void
1613nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1614{
1615        struct nvme_fc_queue *queue;
1616
1617        queue = &ctrl->queues[idx];
1618        memset(queue, 0, sizeof(*queue));
1619        queue->ctrl = ctrl;
1620        queue->qnum = idx;
1621        atomic_set(&queue->csn, 1);
1622        queue->dev = ctrl->dev;
1623
1624        if (idx > 0)
1625                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1626        else
1627                queue->cmnd_capsule_len = sizeof(struct nvme_command);
1628
1629        queue->queue_size = queue_size;
1630
1631        /*
1632         * Considered whether we should allocate buffers for all SQEs
1633         * and CQEs and dma map them - mapping their respective entries
1634         * into the request structures (kernel vm addr and dma address)
1635         * thus the driver could use the buffers/mappings directly.
1636         * It only makes sense if the LLDD would use them for its
1637         * messaging api. It's very unlikely most adapter api's would use
1638         * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1639         * structures were used instead.
1640         */
1641}
1642
1643/*
1644 * This routine terminates a queue at the transport level.
1645 * The transport has already ensured that all outstanding ios on
1646 * the queue have been terminated.
1647 * The transport will send a Disconnect LS request to terminate
1648 * the queue's connection. Termination of the admin queue will also
1649 * terminate the association at the target.
1650 */
1651static void
1652nvme_fc_free_queue(struct nvme_fc_queue *queue)
1653{
1654        if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1655                return;
1656
1657        /*
1658         * Current implementation never disconnects a single queue.
1659         * It always terminates a whole association. So there is never
1660         * a disconnect(queue) LS sent to the target.
1661         */
1662
1663        queue->connection_id = 0;
1664        clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1665}
1666
1667static void
1668__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1669        struct nvme_fc_queue *queue, unsigned int qidx)
1670{
1671        if (ctrl->lport->ops->delete_queue)
1672                ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1673                                queue->lldd_handle);
1674        queue->lldd_handle = NULL;
1675}
1676
1677static void
1678nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1679{
1680        int i;
1681
1682        for (i = 1; i < ctrl->ctrl.queue_count; i++)
1683                nvme_fc_free_queue(&ctrl->queues[i]);
1684}
1685
1686static int
1687__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1688        struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1689{
1690        int ret = 0;
1691
1692        queue->lldd_handle = NULL;
1693        if (ctrl->lport->ops->create_queue)
1694                ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1695                                qidx, qsize, &queue->lldd_handle);
1696
1697        return ret;
1698}
1699
1700static void
1701nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1702{
1703        struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1704        int i;
1705
1706        for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1707                __nvme_fc_delete_hw_queue(ctrl, queue, i);
1708}
1709
1710static int
1711nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1712{
1713        struct nvme_fc_queue *queue = &ctrl->queues[1];
1714        int i, ret;
1715
1716        for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1717                ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1718                if (ret)
1719                        goto delete_queues;
1720        }
1721
1722        return 0;
1723
1724delete_queues:
1725        for (; i >= 0; i--)
1726                __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1727        return ret;
1728}
1729
1730static int
1731nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1732{
1733        int i, ret = 0;
1734
1735        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1736                ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1737                                        (qsize / 5));
1738                if (ret)
1739                        break;
1740                ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1741                if (ret)
1742                        break;
1743        }
1744
1745        return ret;
1746}
1747
1748static void
1749nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1750{
1751        int i;
1752
1753        for (i = 1; i < ctrl->ctrl.queue_count; i++)
1754                nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1755}
1756
1757static void
1758nvme_fc_ctrl_free(struct kref *ref)
1759{
1760        struct nvme_fc_ctrl *ctrl =
1761                container_of(ref, struct nvme_fc_ctrl, ref);
1762        unsigned long flags;
1763
1764        if (ctrl->ctrl.tagset) {
1765                blk_cleanup_queue(ctrl->ctrl.connect_q);
1766                blk_mq_free_tag_set(&ctrl->tag_set);
1767        }
1768
1769        /* remove from rport list */
1770        spin_lock_irqsave(&ctrl->rport->lock, flags);
1771        list_del(&ctrl->ctrl_list);
1772        spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1773
1774        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1775        blk_cleanup_queue(ctrl->ctrl.admin_q);
1776        blk_mq_free_tag_set(&ctrl->admin_tag_set);
1777
1778        kfree(ctrl->queues);
1779
1780        put_device(ctrl->dev);
1781        nvme_fc_rport_put(ctrl->rport);
1782
1783        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1784        if (ctrl->ctrl.opts)
1785                nvmf_free_options(ctrl->ctrl.opts);
1786        kfree(ctrl);
1787}
1788
1789static void
1790nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1791{
1792        kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1793}
1794
1795static int
1796nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1797{
1798        return kref_get_unless_zero(&ctrl->ref);
1799}
1800
1801/*
1802 * All accesses from nvme core layer done - can now free the
1803 * controller. Called after last nvme_put_ctrl() call
1804 */
1805static void
1806nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1807{
1808        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1809
1810        WARN_ON(nctrl != &ctrl->ctrl);
1811
1812        nvme_fc_ctrl_put(ctrl);
1813}
1814
1815static void
1816nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1817{
1818        /* only proceed if in LIVE state - e.g. on first error */
1819        if (ctrl->ctrl.state != NVME_CTRL_LIVE)
1820                return;
1821
1822        dev_warn(ctrl->ctrl.device,
1823                "NVME-FC{%d}: transport association error detected: %s\n",
1824                ctrl->cnum, errmsg);
1825        dev_warn(ctrl->ctrl.device,
1826                "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1827
1828        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1829                dev_err(ctrl->ctrl.device,
1830                        "NVME-FC{%d}: error_recovery: Couldn't change state "
1831                        "to RECONNECTING\n", ctrl->cnum);
1832                return;
1833        }
1834
1835        nvme_reset_ctrl(&ctrl->ctrl);
1836}
1837
1838static enum blk_eh_timer_return
1839nvme_fc_timeout(struct request *rq, bool reserved)
1840{
1841        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1842        struct nvme_fc_ctrl *ctrl = op->ctrl;
1843        int ret;
1844
1845        if (reserved)
1846                return BLK_EH_RESET_TIMER;
1847
1848        ret = __nvme_fc_abort_op(ctrl, op);
1849        if (ret)
1850                /* io wasn't active to abort consider it done */
1851                return BLK_EH_HANDLED;
1852
1853        /*
1854         * we can't individually ABTS an io without affecting the queue,
1855         * thus killing the queue, adn thus the association.
1856         * So resolve by performing a controller reset, which will stop
1857         * the host/io stack, terminate the association on the link,
1858         * and recreate an association on the link.
1859         */
1860        nvme_fc_error_recovery(ctrl, "io timeout error");
1861
1862        return BLK_EH_HANDLED;
1863}
1864
1865static int
1866nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1867                struct nvme_fc_fcp_op *op)
1868{
1869        struct nvmefc_fcp_req *freq = &op->fcp_req;
1870        enum dma_data_direction dir;
1871        int ret;
1872
1873        freq->sg_cnt = 0;
1874
1875        if (!blk_rq_payload_bytes(rq))
1876                return 0;
1877
1878        freq->sg_table.sgl = freq->first_sgl;
1879        ret = sg_alloc_table_chained(&freq->sg_table,
1880                        blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1881        if (ret)
1882                return -ENOMEM;
1883
1884        op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1885        WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1886        dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1887        freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1888                                op->nents, dir);
1889        if (unlikely(freq->sg_cnt <= 0)) {
1890                sg_free_table_chained(&freq->sg_table, true);
1891                freq->sg_cnt = 0;
1892                return -EFAULT;
1893        }
1894
1895        /*
1896         * TODO: blk_integrity_rq(rq)  for DIF
1897         */
1898        return 0;
1899}
1900
1901static void
1902nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1903                struct nvme_fc_fcp_op *op)
1904{
1905        struct nvmefc_fcp_req *freq = &op->fcp_req;
1906
1907        if (!freq->sg_cnt)
1908                return;
1909
1910        fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1911                                ((rq_data_dir(rq) == WRITE) ?
1912                                        DMA_TO_DEVICE : DMA_FROM_DEVICE));
1913
1914        nvme_cleanup_cmd(rq);
1915
1916        sg_free_table_chained(&freq->sg_table, true);
1917
1918        freq->sg_cnt = 0;
1919}
1920
1921/*
1922 * In FC, the queue is a logical thing. At transport connect, the target
1923 * creates its "queue" and returns a handle that is to be given to the
1924 * target whenever it posts something to the corresponding SQ.  When an
1925 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1926 * command contained within the SQE, an io, and assigns a FC exchange
1927 * to it. The SQE and the associated SQ handle are sent in the initial
1928 * CMD IU sents on the exchange. All transfers relative to the io occur
1929 * as part of the exchange.  The CQE is the last thing for the io,
1930 * which is transferred (explicitly or implicitly) with the RSP IU
1931 * sent on the exchange. After the CQE is received, the FC exchange is
1932 * terminaed and the Exchange may be used on a different io.
1933 *
1934 * The transport to LLDD api has the transport making a request for a
1935 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1936 * resource and transfers the command. The LLDD will then process all
1937 * steps to complete the io. Upon completion, the transport done routine
1938 * is called.
1939 *
1940 * So - while the operation is outstanding to the LLDD, there is a link
1941 * level FC exchange resource that is also outstanding. This must be
1942 * considered in all cleanup operations.
1943 */
1944static blk_status_t
1945nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1946        struct nvme_fc_fcp_op *op, u32 data_len,
1947        enum nvmefc_fcp_datadir io_dir)
1948{
1949        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1950        struct nvme_command *sqe = &cmdiu->sqe;
1951        u32 csn;
1952        int ret;
1953
1954        /*
1955         * before attempting to send the io, check to see if we believe
1956         * the target device is present
1957         */
1958        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1959                goto busy;
1960
1961        if (!nvme_fc_ctrl_get(ctrl))
1962                return BLK_STS_IOERR;
1963
1964        /* format the FC-NVME CMD IU and fcp_req */
1965        cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1966        csn = atomic_inc_return(&queue->csn);
1967        cmdiu->csn = cpu_to_be32(csn);
1968        cmdiu->data_len = cpu_to_be32(data_len);
1969        switch (io_dir) {
1970        case NVMEFC_FCP_WRITE:
1971                cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1972                break;
1973        case NVMEFC_FCP_READ:
1974                cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1975                break;
1976        case NVMEFC_FCP_NODATA:
1977                cmdiu->flags = 0;
1978                break;
1979        }
1980        op->fcp_req.payload_length = data_len;
1981        op->fcp_req.io_dir = io_dir;
1982        op->fcp_req.transferred_length = 0;
1983        op->fcp_req.rcv_rsplen = 0;
1984        op->fcp_req.status = NVME_SC_SUCCESS;
1985        op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1986
1987        /*
1988         * validate per fabric rules, set fields mandated by fabric spec
1989         * as well as those by FC-NVME spec.
1990         */
1991        WARN_ON_ONCE(sqe->common.metadata);
1992        sqe->common.flags |= NVME_CMD_SGL_METABUF;
1993
1994        /*
1995         * format SQE DPTR field per FC-NVME rules:
1996         *    type=0x5     Transport SGL Data Block Descriptor
1997         *    subtype=0xA  Transport-specific value
1998         *    address=0
1999         *    length=length of the data series
2000         */
2001        sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2002                                        NVME_SGL_FMT_TRANSPORT_A;
2003        sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2004        sqe->rw.dptr.sgl.addr = 0;
2005
2006        if (!(op->flags & FCOP_FLAGS_AEN)) {
2007                ret = nvme_fc_map_data(ctrl, op->rq, op);
2008                if (ret < 0) {
2009                        nvme_cleanup_cmd(op->rq);
2010                        nvme_fc_ctrl_put(ctrl);
2011                        if (ret == -ENOMEM || ret == -EAGAIN)
2012                                return BLK_STS_RESOURCE;
2013                        return BLK_STS_IOERR;
2014                }
2015        }
2016
2017        fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2018                                  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2019
2020        atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2021
2022        if (!(op->flags & FCOP_FLAGS_AEN))
2023                blk_mq_start_request(op->rq);
2024
2025        ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2026                                        &ctrl->rport->remoteport,
2027                                        queue->lldd_handle, &op->fcp_req);
2028
2029        if (ret) {
2030                if (!(op->flags & FCOP_FLAGS_AEN))
2031                        nvme_fc_unmap_data(ctrl, op->rq, op);
2032
2033                nvme_fc_ctrl_put(ctrl);
2034
2035                if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2036                                ret != -EBUSY)
2037                        return BLK_STS_IOERR;
2038
2039                goto busy;
2040        }
2041
2042        return BLK_STS_OK;
2043
2044busy:
2045        if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
2046                blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
2047
2048        return BLK_STS_RESOURCE;
2049}
2050
2051static blk_status_t
2052nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2053                        const struct blk_mq_queue_data *bd)
2054{
2055        struct nvme_ns *ns = hctx->queue->queuedata;
2056        struct nvme_fc_queue *queue = hctx->driver_data;
2057        struct nvme_fc_ctrl *ctrl = queue->ctrl;
2058        struct request *rq = bd->rq;
2059        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2060        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2061        struct nvme_command *sqe = &cmdiu->sqe;
2062        enum nvmefc_fcp_datadir io_dir;
2063        u32 data_len;
2064        blk_status_t ret;
2065
2066        ret = nvme_setup_cmd(ns, rq, sqe);
2067        if (ret)
2068                return ret;
2069
2070        data_len = blk_rq_payload_bytes(rq);
2071        if (data_len)
2072                io_dir = ((rq_data_dir(rq) == WRITE) ?
2073                                        NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2074        else
2075                io_dir = NVMEFC_FCP_NODATA;
2076
2077        return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2078}
2079
2080static struct blk_mq_tags *
2081nvme_fc_tagset(struct nvme_fc_queue *queue)
2082{
2083        if (queue->qnum == 0)
2084                return queue->ctrl->admin_tag_set.tags[queue->qnum];
2085
2086        return queue->ctrl->tag_set.tags[queue->qnum - 1];
2087}
2088
2089static int
2090nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2091
2092{
2093        struct nvme_fc_queue *queue = hctx->driver_data;
2094        struct nvme_fc_ctrl *ctrl = queue->ctrl;
2095        struct request *req;
2096        struct nvme_fc_fcp_op *op;
2097
2098        req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2099        if (!req)
2100                return 0;
2101
2102        op = blk_mq_rq_to_pdu(req);
2103
2104        if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2105                 (ctrl->lport->ops->poll_queue))
2106                ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2107                                                 queue->lldd_handle);
2108
2109        return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2110}
2111
2112static void
2113nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2114{
2115        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2116        struct nvme_fc_fcp_op *aen_op;
2117        unsigned long flags;
2118        bool terminating = false;
2119        blk_status_t ret;
2120
2121        if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2122                return;
2123
2124        spin_lock_irqsave(&ctrl->lock, flags);
2125        if (ctrl->flags & FCCTRL_TERMIO)
2126                terminating = true;
2127        spin_unlock_irqrestore(&ctrl->lock, flags);
2128
2129        if (terminating)
2130                return;
2131
2132        aen_op = &ctrl->aen_ops[aer_idx];
2133
2134        ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2135                                        NVMEFC_FCP_NODATA);
2136        if (ret)
2137                dev_err(ctrl->ctrl.device,
2138                        "failed async event work [%d]\n", aer_idx);
2139}
2140
2141static void
2142__nvme_fc_final_op_cleanup(struct request *rq)
2143{
2144        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2145        struct nvme_fc_ctrl *ctrl = op->ctrl;
2146
2147        atomic_set(&op->state, FCPOP_STATE_IDLE);
2148        op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2149                        FCOP_FLAGS_COMPLETE);
2150
2151        nvme_fc_unmap_data(ctrl, rq, op);
2152        nvme_complete_rq(rq);
2153        nvme_fc_ctrl_put(ctrl);
2154
2155}
2156
2157static void
2158nvme_fc_complete_rq(struct request *rq)
2159{
2160        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2161        struct nvme_fc_ctrl *ctrl = op->ctrl;
2162        unsigned long flags;
2163        bool completed = false;
2164
2165        /*
2166         * the core layer, on controller resets after calling
2167         * nvme_shutdown_ctrl(), calls complete_rq without our
2168         * calling blk_mq_complete_request(), thus there may still
2169         * be live i/o outstanding with the LLDD. Means transport has
2170         * to track complete calls vs fcpio_done calls to know what
2171         * path to take on completes and dones.
2172         */
2173        spin_lock_irqsave(&ctrl->lock, flags);
2174        if (op->flags & FCOP_FLAGS_COMPLETE)
2175                completed = true;
2176        else
2177                op->flags |= FCOP_FLAGS_RELEASED;
2178        spin_unlock_irqrestore(&ctrl->lock, flags);
2179
2180        if (completed)
2181                __nvme_fc_final_op_cleanup(rq);
2182}
2183
2184/*
2185 * This routine is used by the transport when it needs to find active
2186 * io on a queue that is to be terminated. The transport uses
2187 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2188 * this routine to kill them on a 1 by 1 basis.
2189 *
2190 * As FC allocates FC exchange for each io, the transport must contact
2191 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2192 * After terminating the exchange the LLDD will call the transport's
2193 * normal io done path for the request, but it will have an aborted
2194 * status. The done path will return the io request back to the block
2195 * layer with an error status.
2196 */
2197static void
2198nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2199{
2200        struct nvme_ctrl *nctrl = data;
2201        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2202        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2203        unsigned long flags;
2204        int status;
2205
2206        if (!blk_mq_request_started(req))
2207                return;
2208
2209        spin_lock_irqsave(&ctrl->lock, flags);
2210        if (ctrl->flags & FCCTRL_TERMIO) {
2211                ctrl->iocnt++;
2212                op->flags |= FCOP_FLAGS_TERMIO;
2213        }
2214        spin_unlock_irqrestore(&ctrl->lock, flags);
2215
2216        status = __nvme_fc_abort_op(ctrl, op);
2217        if (status) {
2218                /*
2219                 * if __nvme_fc_abort_op failed the io wasn't
2220                 * active. Thus this call path is running in
2221                 * parallel to the io complete. Treat as non-error.
2222                 */
2223
2224                /* back out the flags/counters */
2225                spin_lock_irqsave(&ctrl->lock, flags);
2226                if (ctrl->flags & FCCTRL_TERMIO)
2227                        ctrl->iocnt--;
2228                op->flags &= ~FCOP_FLAGS_TERMIO;
2229                spin_unlock_irqrestore(&ctrl->lock, flags);
2230                return;
2231        }
2232}
2233
2234
2235static const struct blk_mq_ops nvme_fc_mq_ops = {
2236        .queue_rq       = nvme_fc_queue_rq,
2237        .complete       = nvme_fc_complete_rq,
2238        .init_request   = nvme_fc_init_request,
2239        .exit_request   = nvme_fc_exit_request,
2240        .init_hctx      = nvme_fc_init_hctx,
2241        .poll           = nvme_fc_poll,
2242        .timeout        = nvme_fc_timeout,
2243};
2244
2245static int
2246nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2247{
2248        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2249        unsigned int nr_io_queues;
2250        int ret;
2251
2252        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2253                                ctrl->lport->ops->max_hw_queues);
2254        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2255        if (ret) {
2256                dev_info(ctrl->ctrl.device,
2257                        "set_queue_count failed: %d\n", ret);
2258                return ret;
2259        }
2260
2261        ctrl->ctrl.queue_count = nr_io_queues + 1;
2262        if (!nr_io_queues)
2263                return 0;
2264
2265        nvme_fc_init_io_queues(ctrl);
2266
2267        memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2268        ctrl->tag_set.ops = &nvme_fc_mq_ops;
2269        ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2270        ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2271        ctrl->tag_set.numa_node = NUMA_NO_NODE;
2272        ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2273        ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2274                                        (SG_CHUNK_SIZE *
2275                                                sizeof(struct scatterlist)) +
2276                                        ctrl->lport->ops->fcprqst_priv_sz;
2277        ctrl->tag_set.driver_data = ctrl;
2278        ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2279        ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2280
2281        ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2282        if (ret)
2283                return ret;
2284
2285        ctrl->ctrl.tagset = &ctrl->tag_set;
2286
2287        ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2288        if (IS_ERR(ctrl->ctrl.connect_q)) {
2289                ret = PTR_ERR(ctrl->ctrl.connect_q);
2290                goto out_free_tag_set;
2291        }
2292
2293        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2294        if (ret)
2295                goto out_cleanup_blk_queue;
2296
2297        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2298        if (ret)
2299                goto out_delete_hw_queues;
2300
2301        return 0;
2302
2303out_delete_hw_queues:
2304        nvme_fc_delete_hw_io_queues(ctrl);
2305out_cleanup_blk_queue:
2306        blk_cleanup_queue(ctrl->ctrl.connect_q);
2307out_free_tag_set:
2308        blk_mq_free_tag_set(&ctrl->tag_set);
2309        nvme_fc_free_io_queues(ctrl);
2310
2311        /* force put free routine to ignore io queues */
2312        ctrl->ctrl.tagset = NULL;
2313
2314        return ret;
2315}
2316
2317static int
2318nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2319{
2320        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2321        unsigned int nr_io_queues;
2322        int ret;
2323
2324        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2325                                ctrl->lport->ops->max_hw_queues);
2326        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2327        if (ret) {
2328                dev_info(ctrl->ctrl.device,
2329                        "set_queue_count failed: %d\n", ret);
2330                return ret;
2331        }
2332
2333        ctrl->ctrl.queue_count = nr_io_queues + 1;
2334        /* check for io queues existing */
2335        if (ctrl->ctrl.queue_count == 1)
2336                return 0;
2337
2338        nvme_fc_init_io_queues(ctrl);
2339
2340        ret = blk_mq_reinit_tagset(&ctrl->tag_set, nvme_fc_reinit_request);
2341        if (ret)
2342                goto out_free_io_queues;
2343
2344        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2345        if (ret)
2346                goto out_free_io_queues;
2347
2348        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2349        if (ret)
2350                goto out_delete_hw_queues;
2351
2352        blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2353
2354        return 0;
2355
2356out_delete_hw_queues:
2357        nvme_fc_delete_hw_io_queues(ctrl);
2358out_free_io_queues:
2359        nvme_fc_free_io_queues(ctrl);
2360        return ret;
2361}
2362
2363/*
2364 * This routine restarts the controller on the host side, and
2365 * on the link side, recreates the controller association.
2366 */
2367static int
2368nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2369{
2370        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2371        u32 segs;
2372        int ret;
2373        bool changed;
2374
2375        ++ctrl->ctrl.nr_reconnects;
2376
2377        /*
2378         * Create the admin queue
2379         */
2380
2381        nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2382
2383        ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2384                                NVME_FC_AQ_BLKMQ_DEPTH);
2385        if (ret)
2386                goto out_free_queue;
2387
2388        ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2389                                NVME_FC_AQ_BLKMQ_DEPTH,
2390                                (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2391        if (ret)
2392                goto out_delete_hw_queue;
2393
2394        if (ctrl->ctrl.state != NVME_CTRL_NEW)
2395                blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2396
2397        ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2398        if (ret)
2399                goto out_disconnect_admin_queue;
2400
2401        /*
2402         * Check controller capabilities
2403         *
2404         * todo:- add code to check if ctrl attributes changed from
2405         * prior connection values
2406         */
2407
2408        ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2409        if (ret) {
2410                dev_err(ctrl->ctrl.device,
2411                        "prop_get NVME_REG_CAP failed\n");
2412                goto out_disconnect_admin_queue;
2413        }
2414
2415        ctrl->ctrl.sqsize =
2416                min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2417
2418        ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2419        if (ret)
2420                goto out_disconnect_admin_queue;
2421
2422        segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2423                        ctrl->lport->ops->max_sgl_segments);
2424        ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2425
2426        ret = nvme_init_identify(&ctrl->ctrl);
2427        if (ret)
2428                goto out_disconnect_admin_queue;
2429
2430        /* sanity checks */
2431
2432        /* FC-NVME does not have other data in the capsule */
2433        if (ctrl->ctrl.icdoff) {
2434                dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2435                                ctrl->ctrl.icdoff);
2436                goto out_disconnect_admin_queue;
2437        }
2438
2439        /* FC-NVME supports normal SGL Data Block Descriptors */
2440
2441        if (opts->queue_size > ctrl->ctrl.maxcmd) {
2442                /* warn if maxcmd is lower than queue_size */
2443                dev_warn(ctrl->ctrl.device,
2444                        "queue_size %zu > ctrl maxcmd %u, reducing "
2445                        "to queue_size\n",
2446                        opts->queue_size, ctrl->ctrl.maxcmd);
2447                opts->queue_size = ctrl->ctrl.maxcmd;
2448        }
2449
2450        ret = nvme_fc_init_aen_ops(ctrl);
2451        if (ret)
2452                goto out_term_aen_ops;
2453
2454        /*
2455         * Create the io queues
2456         */
2457
2458        if (ctrl->ctrl.queue_count > 1) {
2459                if (ctrl->ctrl.state == NVME_CTRL_NEW)
2460                        ret = nvme_fc_create_io_queues(ctrl);
2461                else
2462                        ret = nvme_fc_reinit_io_queues(ctrl);
2463                if (ret)
2464                        goto out_term_aen_ops;
2465        }
2466
2467        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2468        WARN_ON_ONCE(!changed);
2469
2470        ctrl->ctrl.nr_reconnects = 0;
2471
2472        nvme_start_ctrl(&ctrl->ctrl);
2473
2474        return 0;       /* Success */
2475
2476out_term_aen_ops:
2477        nvme_fc_term_aen_ops(ctrl);
2478out_disconnect_admin_queue:
2479        /* send a Disconnect(association) LS to fc-nvme target */
2480        nvme_fc_xmt_disconnect_assoc(ctrl);
2481out_delete_hw_queue:
2482        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2483out_free_queue:
2484        nvme_fc_free_queue(&ctrl->queues[0]);
2485
2486        return ret;
2487}
2488
2489/*
2490 * This routine stops operation of the controller on the host side.
2491 * On the host os stack side: Admin and IO queues are stopped,
2492 *   outstanding ios on them terminated via FC ABTS.
2493 * On the link side: the association is terminated.
2494 */
2495static void
2496nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2497{
2498        unsigned long flags;
2499
2500        spin_lock_irqsave(&ctrl->lock, flags);
2501        ctrl->flags |= FCCTRL_TERMIO;
2502        ctrl->iocnt = 0;
2503        spin_unlock_irqrestore(&ctrl->lock, flags);
2504
2505        /*
2506         * If io queues are present, stop them and terminate all outstanding
2507         * ios on them. As FC allocates FC exchange for each io, the
2508         * transport must contact the LLDD to terminate the exchange,
2509         * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2510         * to tell us what io's are busy and invoke a transport routine
2511         * to kill them with the LLDD.  After terminating the exchange
2512         * the LLDD will call the transport's normal io done path, but it
2513         * will have an aborted status. The done path will return the
2514         * io requests back to the block layer as part of normal completions
2515         * (but with error status).
2516         */
2517        if (ctrl->ctrl.queue_count > 1) {
2518                nvme_stop_queues(&ctrl->ctrl);
2519                blk_mq_tagset_busy_iter(&ctrl->tag_set,
2520                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2521        }
2522
2523        /*
2524         * Other transports, which don't have link-level contexts bound
2525         * to sqe's, would try to gracefully shutdown the controller by
2526         * writing the registers for shutdown and polling (call
2527         * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2528         * just aborted and we will wait on those contexts, and given
2529         * there was no indication of how live the controlelr is on the
2530         * link, don't send more io to create more contexts for the
2531         * shutdown. Let the controller fail via keepalive failure if
2532         * its still present.
2533         */
2534
2535        /*
2536         * clean up the admin queue. Same thing as above.
2537         * use blk_mq_tagset_busy_itr() and the transport routine to
2538         * terminate the exchanges.
2539         */
2540        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2541        blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2542                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2543
2544        /* kill the aens as they are a separate path */
2545        nvme_fc_abort_aen_ops(ctrl);
2546
2547        /* wait for all io that had to be aborted */
2548        spin_lock_irq(&ctrl->lock);
2549        wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2550        ctrl->flags &= ~FCCTRL_TERMIO;
2551        spin_unlock_irq(&ctrl->lock);
2552
2553        nvme_fc_term_aen_ops(ctrl);
2554
2555        /*
2556         * send a Disconnect(association) LS to fc-nvme target
2557         * Note: could have been sent at top of process, but
2558         * cleaner on link traffic if after the aborts complete.
2559         * Note: if association doesn't exist, association_id will be 0
2560         */
2561        if (ctrl->association_id)
2562                nvme_fc_xmt_disconnect_assoc(ctrl);
2563
2564        if (ctrl->ctrl.tagset) {
2565                nvme_fc_delete_hw_io_queues(ctrl);
2566                nvme_fc_free_io_queues(ctrl);
2567        }
2568
2569        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2570        nvme_fc_free_queue(&ctrl->queues[0]);
2571}
2572
2573static void
2574nvme_fc_delete_ctrl_work(struct work_struct *work)
2575{
2576        struct nvme_fc_ctrl *ctrl =
2577                container_of(work, struct nvme_fc_ctrl, delete_work);
2578
2579        cancel_work_sync(&ctrl->ctrl.reset_work);
2580        cancel_delayed_work_sync(&ctrl->connect_work);
2581        nvme_stop_ctrl(&ctrl->ctrl);
2582        nvme_remove_namespaces(&ctrl->ctrl);
2583        /*
2584         * kill the association on the link side.  this will block
2585         * waiting for io to terminate
2586         */
2587        nvme_fc_delete_association(ctrl);
2588
2589        /*
2590         * tear down the controller
2591         * After the last reference on the nvme ctrl is removed,
2592         * the transport nvme_fc_nvme_ctrl_freed() callback will be
2593         * invoked. From there, the transport will tear down it's
2594         * logical queues and association.
2595         */
2596        nvme_uninit_ctrl(&ctrl->ctrl);
2597
2598        nvme_put_ctrl(&ctrl->ctrl);
2599}
2600
2601static bool
2602__nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2603{
2604        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2605                return true;
2606
2607        if (!queue_work(nvme_wq, &ctrl->delete_work))
2608                return true;
2609
2610        return false;
2611}
2612
2613static int
2614__nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2615{
2616        return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2617}
2618
2619/*
2620 * Request from nvme core layer to delete the controller
2621 */
2622static int
2623nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2624{
2625        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2626        int ret;
2627
2628        if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2629                return -EBUSY;
2630
2631        ret = __nvme_fc_del_ctrl(ctrl);
2632
2633        if (!ret)
2634                flush_workqueue(nvme_wq);
2635
2636        nvme_put_ctrl(&ctrl->ctrl);
2637
2638        return ret;
2639}
2640
2641static void
2642nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2643{
2644        /* If we are resetting/deleting then do nothing */
2645        if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2646                WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2647                        ctrl->ctrl.state == NVME_CTRL_LIVE);
2648                return;
2649        }
2650
2651        dev_info(ctrl->ctrl.device,
2652                "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2653                ctrl->cnum, status);
2654
2655        if (nvmf_should_reconnect(&ctrl->ctrl)) {
2656                dev_info(ctrl->ctrl.device,
2657                        "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2658                        ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2659                queue_delayed_work(nvme_wq, &ctrl->connect_work,
2660                                ctrl->ctrl.opts->reconnect_delay * HZ);
2661        } else {
2662                dev_warn(ctrl->ctrl.device,
2663                                "NVME-FC{%d}: Max reconnect attempts (%d) "
2664                                "reached. Removing controller\n",
2665                                ctrl->cnum, ctrl->ctrl.nr_reconnects);
2666                WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2667        }
2668}
2669
2670static void
2671nvme_fc_reset_ctrl_work(struct work_struct *work)
2672{
2673        struct nvme_fc_ctrl *ctrl =
2674                container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2675        int ret;
2676
2677        nvme_stop_ctrl(&ctrl->ctrl);
2678        /* will block will waiting for io to terminate */
2679        nvme_fc_delete_association(ctrl);
2680
2681        ret = nvme_fc_create_association(ctrl);
2682        if (ret)
2683                nvme_fc_reconnect_or_delete(ctrl, ret);
2684        else
2685                dev_info(ctrl->ctrl.device,
2686                        "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2687}
2688
2689static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2690        .name                   = "fc",
2691        .module                 = THIS_MODULE,
2692        .flags                  = NVME_F_FABRICS,
2693        .reg_read32             = nvmf_reg_read32,
2694        .reg_read64             = nvmf_reg_read64,
2695        .reg_write32            = nvmf_reg_write32,
2696        .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2697        .submit_async_event     = nvme_fc_submit_async_event,
2698        .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2699        .get_address            = nvmf_get_address,
2700};
2701
2702static void
2703nvme_fc_connect_ctrl_work(struct work_struct *work)
2704{
2705        int ret;
2706
2707        struct nvme_fc_ctrl *ctrl =
2708                        container_of(to_delayed_work(work),
2709                                struct nvme_fc_ctrl, connect_work);
2710
2711        ret = nvme_fc_create_association(ctrl);
2712        if (ret)
2713                nvme_fc_reconnect_or_delete(ctrl, ret);
2714        else
2715                dev_info(ctrl->ctrl.device,
2716                        "NVME-FC{%d}: controller reconnect complete\n",
2717                        ctrl->cnum);
2718}
2719
2720
2721static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2722        .queue_rq       = nvme_fc_queue_rq,
2723        .complete       = nvme_fc_complete_rq,
2724        .init_request   = nvme_fc_init_request,
2725        .exit_request   = nvme_fc_exit_request,
2726        .init_hctx      = nvme_fc_init_admin_hctx,
2727        .timeout        = nvme_fc_timeout,
2728};
2729
2730
2731static struct nvme_ctrl *
2732nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2733        struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2734{
2735        struct nvme_fc_ctrl *ctrl;
2736        unsigned long flags;
2737        int ret, idx, retry;
2738
2739        if (!(rport->remoteport.port_role &
2740            (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2741                ret = -EBADR;
2742                goto out_fail;
2743        }
2744
2745        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2746        if (!ctrl) {
2747                ret = -ENOMEM;
2748                goto out_fail;
2749        }
2750
2751        idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2752        if (idx < 0) {
2753                ret = -ENOSPC;
2754                goto out_free_ctrl;
2755        }
2756
2757        ctrl->ctrl.opts = opts;
2758        INIT_LIST_HEAD(&ctrl->ctrl_list);
2759        ctrl->lport = lport;
2760        ctrl->rport = rport;
2761        ctrl->dev = lport->dev;
2762        ctrl->cnum = idx;
2763        init_waitqueue_head(&ctrl->ioabort_wait);
2764
2765        get_device(ctrl->dev);
2766        kref_init(&ctrl->ref);
2767
2768        INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2769        INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
2770        INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2771        spin_lock_init(&ctrl->lock);
2772
2773        /* io queue count */
2774        ctrl->ctrl.queue_count = min_t(unsigned int,
2775                                opts->nr_io_queues,
2776                                lport->ops->max_hw_queues);
2777        ctrl->ctrl.queue_count++;       /* +1 for admin queue */
2778
2779        ctrl->ctrl.sqsize = opts->queue_size - 1;
2780        ctrl->ctrl.kato = opts->kato;
2781
2782        ret = -ENOMEM;
2783        ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
2784                                sizeof(struct nvme_fc_queue), GFP_KERNEL);
2785        if (!ctrl->queues)
2786                goto out_free_ida;
2787
2788        memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2789        ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2790        ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2791        ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2792        ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2793        ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2794                                        (SG_CHUNK_SIZE *
2795                                                sizeof(struct scatterlist)) +
2796                                        ctrl->lport->ops->fcprqst_priv_sz;
2797        ctrl->admin_tag_set.driver_data = ctrl;
2798        ctrl->admin_tag_set.nr_hw_queues = 1;
2799        ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2800
2801        ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2802        if (ret)
2803                goto out_free_queues;
2804        ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
2805
2806        ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2807        if (IS_ERR(ctrl->ctrl.admin_q)) {
2808                ret = PTR_ERR(ctrl->ctrl.admin_q);
2809                goto out_free_admin_tag_set;
2810        }
2811
2812        /*
2813         * Would have been nice to init io queues tag set as well.
2814         * However, we require interaction from the controller
2815         * for max io queue count before we can do so.
2816         * Defer this to the connect path.
2817         */
2818
2819        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2820        if (ret)
2821                goto out_cleanup_admin_q;
2822
2823        /* at this point, teardown path changes to ref counting on nvme ctrl */
2824
2825        spin_lock_irqsave(&rport->lock, flags);
2826        list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2827        spin_unlock_irqrestore(&rport->lock, flags);
2828
2829        /*
2830         * It's possible that transactions used to create the association
2831         * may fail. Examples: CreateAssociation LS or CreateIOConnection
2832         * LS gets dropped/corrupted/fails; or a frame gets dropped or a
2833         * command times out for one of the actions to init the controller
2834         * (Connect, Get/Set_Property, Set_Features, etc). Many of these
2835         * transport errors (frame drop, LS failure) inherently must kill
2836         * the association. The transport is coded so that any command used
2837         * to create the association (prior to a LIVE state transition
2838         * while NEW or RECONNECTING) will fail if it completes in error or
2839         * times out.
2840         *
2841         * As such: as the connect request was mostly likely due to a
2842         * udev event that discovered the remote port, meaning there is
2843         * not an admin or script there to restart if the connect
2844         * request fails, retry the initial connection creation up to
2845         * three times before giving up and declaring failure.
2846         */
2847        for (retry = 0; retry < 3; retry++) {
2848                ret = nvme_fc_create_association(ctrl);
2849                if (!ret)
2850                        break;
2851        }
2852
2853        if (ret) {
2854                /* couldn't schedule retry - fail out */
2855                dev_err(ctrl->ctrl.device,
2856                        "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
2857
2858                ctrl->ctrl.opts = NULL;
2859
2860                /* initiate nvme ctrl ref counting teardown */
2861                nvme_uninit_ctrl(&ctrl->ctrl);
2862                nvme_put_ctrl(&ctrl->ctrl);
2863
2864                /* Remove core ctrl ref. */
2865                nvme_put_ctrl(&ctrl->ctrl);
2866
2867                /* as we're past the point where we transition to the ref
2868                 * counting teardown path, if we return a bad pointer here,
2869                 * the calling routine, thinking it's prior to the
2870                 * transition, will do an rport put. Since the teardown
2871                 * path also does a rport put, we do an extra get here to
2872                 * so proper order/teardown happens.
2873                 */
2874                nvme_fc_rport_get(rport);
2875
2876                if (ret > 0)
2877                        ret = -EIO;
2878                return ERR_PTR(ret);
2879        }
2880
2881        kref_get(&ctrl->ctrl.kref);
2882
2883        dev_info(ctrl->ctrl.device,
2884                "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2885                ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2886
2887        return &ctrl->ctrl;
2888
2889out_cleanup_admin_q:
2890        blk_cleanup_queue(ctrl->ctrl.admin_q);
2891out_free_admin_tag_set:
2892        blk_mq_free_tag_set(&ctrl->admin_tag_set);
2893out_free_queues:
2894        kfree(ctrl->queues);
2895out_free_ida:
2896        put_device(ctrl->dev);
2897        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2898out_free_ctrl:
2899        kfree(ctrl);
2900out_fail:
2901        /* exit via here doesn't follow ctlr ref points */
2902        return ERR_PTR(ret);
2903}
2904
2905
2906struct nvmet_fc_traddr {
2907        u64     nn;
2908        u64     pn;
2909};
2910
2911static int
2912__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2913{
2914        u64 token64;
2915
2916        if (match_u64(sstr, &token64))
2917                return -EINVAL;
2918        *val = token64;
2919
2920        return 0;
2921}
2922
2923/*
2924 * This routine validates and extracts the WWN's from the TRADDR string.
2925 * As kernel parsers need the 0x to determine number base, universally
2926 * build string to parse with 0x prefix before parsing name strings.
2927 */
2928static int
2929nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2930{
2931        char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2932        substring_t wwn = { name, &name[sizeof(name)-1] };
2933        int nnoffset, pnoffset;
2934
2935        /* validate it string one of the 2 allowed formats */
2936        if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2937                        !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2938                        !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2939                                "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2940                nnoffset = NVME_FC_TRADDR_OXNNLEN;
2941                pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2942                                                NVME_FC_TRADDR_OXNNLEN;
2943        } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2944                        !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2945                        !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2946                                "pn-", NVME_FC_TRADDR_NNLEN))) {
2947                nnoffset = NVME_FC_TRADDR_NNLEN;
2948                pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2949        } else
2950                goto out_einval;
2951
2952        name[0] = '0';
2953        name[1] = 'x';
2954        name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2955
2956        memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2957        if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2958                goto out_einval;
2959
2960        memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2961        if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2962                goto out_einval;
2963
2964        return 0;
2965
2966out_einval:
2967        pr_warn("%s: bad traddr string\n", __func__);
2968        return -EINVAL;
2969}
2970
2971static struct nvme_ctrl *
2972nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2973{
2974        struct nvme_fc_lport *lport;
2975        struct nvme_fc_rport *rport;
2976        struct nvme_ctrl *ctrl;
2977        struct nvmet_fc_traddr laddr = { 0L, 0L };
2978        struct nvmet_fc_traddr raddr = { 0L, 0L };
2979        unsigned long flags;
2980        int ret;
2981
2982        ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
2983        if (ret || !raddr.nn || !raddr.pn)
2984                return ERR_PTR(-EINVAL);
2985
2986        ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
2987        if (ret || !laddr.nn || !laddr.pn)
2988                return ERR_PTR(-EINVAL);
2989
2990        /* find the host and remote ports to connect together */
2991        spin_lock_irqsave(&nvme_fc_lock, flags);
2992        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2993                if (lport->localport.node_name != laddr.nn ||
2994                    lport->localport.port_name != laddr.pn)
2995                        continue;
2996
2997                list_for_each_entry(rport, &lport->endp_list, endp_list) {
2998                        if (rport->remoteport.node_name != raddr.nn ||
2999                            rport->remoteport.port_name != raddr.pn)
3000                                continue;
3001
3002                        /* if fail to get reference fall through. Will error */
3003                        if (!nvme_fc_rport_get(rport))
3004                                break;
3005
3006                        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3007
3008                        ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3009                        if (IS_ERR(ctrl))
3010                                nvme_fc_rport_put(rport);
3011                        return ctrl;
3012                }
3013        }
3014        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3015
3016        return ERR_PTR(-ENOENT);
3017}
3018
3019
3020static struct nvmf_transport_ops nvme_fc_transport = {
3021        .name           = "fc",
3022        .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3023        .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3024        .create_ctrl    = nvme_fc_create_ctrl,
3025};
3026
3027static int __init nvme_fc_init_module(void)
3028{
3029        return nvmf_register_transport(&nvme_fc_transport);
3030}
3031
3032static void __exit nvme_fc_exit_module(void)
3033{
3034        /* sanity check - all lports should be removed */
3035        if (!list_empty(&nvme_fc_lport_list))
3036                pr_warn("%s: localport list not empty\n", __func__);
3037
3038        nvmf_unregister_transport(&nvme_fc_transport);
3039
3040        ida_destroy(&nvme_fc_local_port_cnt);
3041        ida_destroy(&nvme_fc_ctrl_cnt);
3042}
3043
3044module_init(nvme_fc_init_module);
3045module_exit(nvme_fc_exit_module);
3046
3047MODULE_LICENSE("GPL v2");
3048