linux/drivers/nvme/host/rdma.c
<<
>>
Prefs
   1/*
   2 * NVMe over Fabrics RDMA host code.
   3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/err.h>
  19#include <linux/string.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/blk-mq-rdma.h>
  23#include <linux/types.h>
  24#include <linux/list.h>
  25#include <linux/mutex.h>
  26#include <linux/scatterlist.h>
  27#include <linux/nvme.h>
  28#include <asm/unaligned.h>
  29
  30#include <rdma/ib_verbs.h>
  31#include <rdma/rdma_cm.h>
  32#include <linux/nvme-rdma.h>
  33
  34#include "nvme.h"
  35#include "fabrics.h"
  36
  37
  38#define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
  39
  40#define NVME_RDMA_MAX_SEGMENTS          256
  41
  42#define NVME_RDMA_MAX_INLINE_SEGMENTS   1
  43
  44/*
  45 * We handle AEN commands ourselves and don't even let the
  46 * block layer know about them.
  47 */
  48#define NVME_RDMA_NR_AEN_COMMANDS      1
  49#define NVME_RDMA_AQ_BLKMQ_DEPTH       \
  50        (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
  51
  52struct nvme_rdma_device {
  53        struct ib_device       *dev;
  54        struct ib_pd           *pd;
  55        struct kref             ref;
  56        struct list_head        entry;
  57};
  58
  59struct nvme_rdma_qe {
  60        struct ib_cqe           cqe;
  61        void                    *data;
  62        u64                     dma;
  63};
  64
  65struct nvme_rdma_queue;
  66struct nvme_rdma_request {
  67        struct nvme_request     req;
  68        struct ib_mr            *mr;
  69        struct nvme_rdma_qe     sqe;
  70        struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  71        u32                     num_sge;
  72        int                     nents;
  73        bool                    inline_data;
  74        struct ib_reg_wr        reg_wr;
  75        struct ib_cqe           reg_cqe;
  76        struct nvme_rdma_queue  *queue;
  77        struct sg_table         sg_table;
  78        struct scatterlist      first_sgl[];
  79};
  80
  81enum nvme_rdma_queue_flags {
  82        NVME_RDMA_Q_LIVE                = 0,
  83        NVME_RDMA_Q_DELETING            = 1,
  84};
  85
  86struct nvme_rdma_queue {
  87        struct nvme_rdma_qe     *rsp_ring;
  88        atomic_t                sig_count;
  89        int                     queue_size;
  90        size_t                  cmnd_capsule_len;
  91        struct nvme_rdma_ctrl   *ctrl;
  92        struct nvme_rdma_device *device;
  93        struct ib_cq            *ib_cq;
  94        struct ib_qp            *qp;
  95
  96        unsigned long           flags;
  97        struct rdma_cm_id       *cm_id;
  98        int                     cm_error;
  99        struct completion       cm_done;
 100};
 101
 102struct nvme_rdma_ctrl {
 103        /* read only in the hot path */
 104        struct nvme_rdma_queue  *queues;
 105
 106        /* other member variables */
 107        struct blk_mq_tag_set   tag_set;
 108        struct work_struct      delete_work;
 109        struct work_struct      err_work;
 110
 111        struct nvme_rdma_qe     async_event_sqe;
 112
 113        struct delayed_work     reconnect_work;
 114
 115        struct list_head        list;
 116
 117        struct blk_mq_tag_set   admin_tag_set;
 118        struct nvme_rdma_device *device;
 119
 120        u32                     max_fr_pages;
 121
 122        struct sockaddr_storage addr;
 123        struct sockaddr_storage src_addr;
 124
 125        struct nvme_ctrl        ctrl;
 126};
 127
 128static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
 129{
 130        return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
 131}
 132
 133static LIST_HEAD(device_list);
 134static DEFINE_MUTEX(device_list_mutex);
 135
 136static LIST_HEAD(nvme_rdma_ctrl_list);
 137static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
 138
 139/*
 140 * Disabling this option makes small I/O goes faster, but is fundamentally
 141 * unsafe.  With it turned off we will have to register a global rkey that
 142 * allows read and write access to all physical memory.
 143 */
 144static bool register_always = true;
 145module_param(register_always, bool, 0444);
 146MODULE_PARM_DESC(register_always,
 147         "Use memory registration even for contiguous memory regions");
 148
 149static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
 150                struct rdma_cm_event *event);
 151static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
 152
 153static const struct blk_mq_ops nvme_rdma_mq_ops;
 154static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
 155
 156/* XXX: really should move to a generic header sooner or later.. */
 157static inline void put_unaligned_le24(u32 val, u8 *p)
 158{
 159        *p++ = val;
 160        *p++ = val >> 8;
 161        *p++ = val >> 16;
 162}
 163
 164static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
 165{
 166        return queue - queue->ctrl->queues;
 167}
 168
 169static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
 170{
 171        return queue->cmnd_capsule_len - sizeof(struct nvme_command);
 172}
 173
 174static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 175                size_t capsule_size, enum dma_data_direction dir)
 176{
 177        ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
 178        kfree(qe->data);
 179}
 180
 181static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 182                size_t capsule_size, enum dma_data_direction dir)
 183{
 184        qe->data = kzalloc(capsule_size, GFP_KERNEL);
 185        if (!qe->data)
 186                return -ENOMEM;
 187
 188        qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
 189        if (ib_dma_mapping_error(ibdev, qe->dma)) {
 190                kfree(qe->data);
 191                return -ENOMEM;
 192        }
 193
 194        return 0;
 195}
 196
 197static void nvme_rdma_free_ring(struct ib_device *ibdev,
 198                struct nvme_rdma_qe *ring, size_t ib_queue_size,
 199                size_t capsule_size, enum dma_data_direction dir)
 200{
 201        int i;
 202
 203        for (i = 0; i < ib_queue_size; i++)
 204                nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
 205        kfree(ring);
 206}
 207
 208static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
 209                size_t ib_queue_size, size_t capsule_size,
 210                enum dma_data_direction dir)
 211{
 212        struct nvme_rdma_qe *ring;
 213        int i;
 214
 215        ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
 216        if (!ring)
 217                return NULL;
 218
 219        for (i = 0; i < ib_queue_size; i++) {
 220                if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
 221                        goto out_free_ring;
 222        }
 223
 224        return ring;
 225
 226out_free_ring:
 227        nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
 228        return NULL;
 229}
 230
 231static void nvme_rdma_qp_event(struct ib_event *event, void *context)
 232{
 233        pr_debug("QP event %s (%d)\n",
 234                 ib_event_msg(event->event), event->event);
 235
 236}
 237
 238static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
 239{
 240        wait_for_completion_interruptible_timeout(&queue->cm_done,
 241                        msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
 242        return queue->cm_error;
 243}
 244
 245static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
 246{
 247        struct nvme_rdma_device *dev = queue->device;
 248        struct ib_qp_init_attr init_attr;
 249        int ret;
 250
 251        memset(&init_attr, 0, sizeof(init_attr));
 252        init_attr.event_handler = nvme_rdma_qp_event;
 253        /* +1 for drain */
 254        init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
 255        /* +1 for drain */
 256        init_attr.cap.max_recv_wr = queue->queue_size + 1;
 257        init_attr.cap.max_recv_sge = 1;
 258        init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
 259        init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
 260        init_attr.qp_type = IB_QPT_RC;
 261        init_attr.send_cq = queue->ib_cq;
 262        init_attr.recv_cq = queue->ib_cq;
 263
 264        ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
 265
 266        queue->qp = queue->cm_id->qp;
 267        return ret;
 268}
 269
 270static int nvme_rdma_reinit_request(void *data, struct request *rq)
 271{
 272        struct nvme_rdma_ctrl *ctrl = data;
 273        struct nvme_rdma_device *dev = ctrl->device;
 274        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 275        int ret = 0;
 276
 277        ib_dereg_mr(req->mr);
 278
 279        req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
 280                        ctrl->max_fr_pages);
 281        if (IS_ERR(req->mr)) {
 282                ret = PTR_ERR(req->mr);
 283                req->mr = NULL;
 284                goto out;
 285        }
 286
 287        req->mr->need_inval = false;
 288
 289out:
 290        return ret;
 291}
 292
 293static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
 294                struct request *rq, unsigned int hctx_idx)
 295{
 296        struct nvme_rdma_ctrl *ctrl = set->driver_data;
 297        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 298        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
 299        struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
 300        struct nvme_rdma_device *dev = queue->device;
 301
 302        if (req->mr)
 303                ib_dereg_mr(req->mr);
 304
 305        nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
 306                        DMA_TO_DEVICE);
 307}
 308
 309static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
 310                struct request *rq, unsigned int hctx_idx,
 311                unsigned int numa_node)
 312{
 313        struct nvme_rdma_ctrl *ctrl = set->driver_data;
 314        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 315        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
 316        struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
 317        struct nvme_rdma_device *dev = queue->device;
 318        struct ib_device *ibdev = dev->dev;
 319        int ret;
 320
 321        ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
 322                        DMA_TO_DEVICE);
 323        if (ret)
 324                return ret;
 325
 326        req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
 327                        ctrl->max_fr_pages);
 328        if (IS_ERR(req->mr)) {
 329                ret = PTR_ERR(req->mr);
 330                goto out_free_qe;
 331        }
 332
 333        req->queue = queue;
 334
 335        return 0;
 336
 337out_free_qe:
 338        nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
 339                        DMA_TO_DEVICE);
 340        return -ENOMEM;
 341}
 342
 343static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 344                unsigned int hctx_idx)
 345{
 346        struct nvme_rdma_ctrl *ctrl = data;
 347        struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
 348
 349        BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
 350
 351        hctx->driver_data = queue;
 352        return 0;
 353}
 354
 355static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 356                unsigned int hctx_idx)
 357{
 358        struct nvme_rdma_ctrl *ctrl = data;
 359        struct nvme_rdma_queue *queue = &ctrl->queues[0];
 360
 361        BUG_ON(hctx_idx != 0);
 362
 363        hctx->driver_data = queue;
 364        return 0;
 365}
 366
 367static void nvme_rdma_free_dev(struct kref *ref)
 368{
 369        struct nvme_rdma_device *ndev =
 370                container_of(ref, struct nvme_rdma_device, ref);
 371
 372        mutex_lock(&device_list_mutex);
 373        list_del(&ndev->entry);
 374        mutex_unlock(&device_list_mutex);
 375
 376        ib_dealloc_pd(ndev->pd);
 377        kfree(ndev);
 378}
 379
 380static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
 381{
 382        kref_put(&dev->ref, nvme_rdma_free_dev);
 383}
 384
 385static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
 386{
 387        return kref_get_unless_zero(&dev->ref);
 388}
 389
 390static struct nvme_rdma_device *
 391nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
 392{
 393        struct nvme_rdma_device *ndev;
 394
 395        mutex_lock(&device_list_mutex);
 396        list_for_each_entry(ndev, &device_list, entry) {
 397                if (ndev->dev->node_guid == cm_id->device->node_guid &&
 398                    nvme_rdma_dev_get(ndev))
 399                        goto out_unlock;
 400        }
 401
 402        ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
 403        if (!ndev)
 404                goto out_err;
 405
 406        ndev->dev = cm_id->device;
 407        kref_init(&ndev->ref);
 408
 409        ndev->pd = ib_alloc_pd(ndev->dev,
 410                register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
 411        if (IS_ERR(ndev->pd))
 412                goto out_free_dev;
 413
 414        if (!(ndev->dev->attrs.device_cap_flags &
 415              IB_DEVICE_MEM_MGT_EXTENSIONS)) {
 416                dev_err(&ndev->dev->dev,
 417                        "Memory registrations not supported.\n");
 418                goto out_free_pd;
 419        }
 420
 421        list_add(&ndev->entry, &device_list);
 422out_unlock:
 423        mutex_unlock(&device_list_mutex);
 424        return ndev;
 425
 426out_free_pd:
 427        ib_dealloc_pd(ndev->pd);
 428out_free_dev:
 429        kfree(ndev);
 430out_err:
 431        mutex_unlock(&device_list_mutex);
 432        return NULL;
 433}
 434
 435static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
 436{
 437        struct nvme_rdma_device *dev;
 438        struct ib_device *ibdev;
 439
 440        dev = queue->device;
 441        ibdev = dev->dev;
 442        rdma_destroy_qp(queue->cm_id);
 443        ib_free_cq(queue->ib_cq);
 444
 445        nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
 446                        sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 447
 448        nvme_rdma_dev_put(dev);
 449}
 450
 451static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
 452{
 453        struct ib_device *ibdev;
 454        const int send_wr_factor = 3;                   /* MR, SEND, INV */
 455        const int cq_factor = send_wr_factor + 1;       /* + RECV */
 456        int comp_vector, idx = nvme_rdma_queue_idx(queue);
 457        int ret;
 458
 459        queue->device = nvme_rdma_find_get_device(queue->cm_id);
 460        if (!queue->device) {
 461                dev_err(queue->cm_id->device->dev.parent,
 462                        "no client data found!\n");
 463                return -ECONNREFUSED;
 464        }
 465        ibdev = queue->device->dev;
 466
 467        /*
 468         * Spread I/O queues completion vectors according their queue index.
 469         * Admin queues can always go on completion vector 0.
 470         */
 471        comp_vector = idx == 0 ? idx : idx - 1;
 472
 473        /* +1 for ib_stop_cq */
 474        queue->ib_cq = ib_alloc_cq(ibdev, queue,
 475                                cq_factor * queue->queue_size + 1,
 476                                comp_vector, IB_POLL_SOFTIRQ);
 477        if (IS_ERR(queue->ib_cq)) {
 478                ret = PTR_ERR(queue->ib_cq);
 479                goto out_put_dev;
 480        }
 481
 482        ret = nvme_rdma_create_qp(queue, send_wr_factor);
 483        if (ret)
 484                goto out_destroy_ib_cq;
 485
 486        queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
 487                        sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 488        if (!queue->rsp_ring) {
 489                ret = -ENOMEM;
 490                goto out_destroy_qp;
 491        }
 492
 493        return 0;
 494
 495out_destroy_qp:
 496        ib_destroy_qp(queue->qp);
 497out_destroy_ib_cq:
 498        ib_free_cq(queue->ib_cq);
 499out_put_dev:
 500        nvme_rdma_dev_put(queue->device);
 501        return ret;
 502}
 503
 504static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
 505                int idx, size_t queue_size)
 506{
 507        struct nvme_rdma_queue *queue;
 508        struct sockaddr *src_addr = NULL;
 509        int ret;
 510
 511        queue = &ctrl->queues[idx];
 512        queue->ctrl = ctrl;
 513        init_completion(&queue->cm_done);
 514
 515        if (idx > 0)
 516                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
 517        else
 518                queue->cmnd_capsule_len = sizeof(struct nvme_command);
 519
 520        queue->queue_size = queue_size;
 521        atomic_set(&queue->sig_count, 0);
 522
 523        queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
 524                        RDMA_PS_TCP, IB_QPT_RC);
 525        if (IS_ERR(queue->cm_id)) {
 526                dev_info(ctrl->ctrl.device,
 527                        "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
 528                return PTR_ERR(queue->cm_id);
 529        }
 530
 531        if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
 532                src_addr = (struct sockaddr *)&ctrl->src_addr;
 533
 534        queue->cm_error = -ETIMEDOUT;
 535        ret = rdma_resolve_addr(queue->cm_id, src_addr,
 536                        (struct sockaddr *)&ctrl->addr,
 537                        NVME_RDMA_CONNECT_TIMEOUT_MS);
 538        if (ret) {
 539                dev_info(ctrl->ctrl.device,
 540                        "rdma_resolve_addr failed (%d).\n", ret);
 541                goto out_destroy_cm_id;
 542        }
 543
 544        ret = nvme_rdma_wait_for_cm(queue);
 545        if (ret) {
 546                dev_info(ctrl->ctrl.device,
 547                        "rdma_resolve_addr wait failed (%d).\n", ret);
 548                goto out_destroy_cm_id;
 549        }
 550
 551        clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
 552
 553        return 0;
 554
 555out_destroy_cm_id:
 556        rdma_destroy_id(queue->cm_id);
 557        return ret;
 558}
 559
 560static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
 561{
 562        if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
 563                return;
 564
 565        rdma_disconnect(queue->cm_id);
 566        ib_drain_qp(queue->qp);
 567}
 568
 569static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
 570{
 571        if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
 572                return;
 573
 574        if (nvme_rdma_queue_idx(queue) == 0) {
 575                nvme_rdma_free_qe(queue->device->dev,
 576                        &queue->ctrl->async_event_sqe,
 577                        sizeof(struct nvme_command), DMA_TO_DEVICE);
 578        }
 579
 580        nvme_rdma_destroy_queue_ib(queue);
 581        rdma_destroy_id(queue->cm_id);
 582}
 583
 584static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
 585{
 586        int i;
 587
 588        for (i = 1; i < ctrl->ctrl.queue_count; i++)
 589                nvme_rdma_free_queue(&ctrl->queues[i]);
 590}
 591
 592static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
 593{
 594        int i;
 595
 596        for (i = 1; i < ctrl->ctrl.queue_count; i++)
 597                nvme_rdma_stop_queue(&ctrl->queues[i]);
 598}
 599
 600static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
 601{
 602        int ret;
 603
 604        if (idx)
 605                ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
 606        else
 607                ret = nvmf_connect_admin_queue(&ctrl->ctrl);
 608
 609        if (!ret)
 610                set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
 611        else
 612                dev_info(ctrl->ctrl.device,
 613                        "failed to connect queue: %d ret=%d\n", idx, ret);
 614        return ret;
 615}
 616
 617static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
 618{
 619        int i, ret = 0;
 620
 621        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 622                ret = nvme_rdma_start_queue(ctrl, i);
 623                if (ret)
 624                        goto out_stop_queues;
 625        }
 626
 627        return 0;
 628
 629out_stop_queues:
 630        for (i--; i >= 1; i--)
 631                nvme_rdma_stop_queue(&ctrl->queues[i]);
 632        return ret;
 633}
 634
 635static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
 636{
 637        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
 638        struct ib_device *ibdev = ctrl->device->dev;
 639        unsigned int nr_io_queues;
 640        int i, ret;
 641
 642        nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
 643
 644        /*
 645         * we map queues according to the device irq vectors for
 646         * optimal locality so we don't need more queues than
 647         * completion vectors.
 648         */
 649        nr_io_queues = min_t(unsigned int, nr_io_queues,
 650                                ibdev->num_comp_vectors);
 651
 652        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
 653        if (ret)
 654                return ret;
 655
 656        ctrl->ctrl.queue_count = nr_io_queues + 1;
 657        if (ctrl->ctrl.queue_count < 2)
 658                return 0;
 659
 660        dev_info(ctrl->ctrl.device,
 661                "creating %d I/O queues.\n", nr_io_queues);
 662
 663        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 664                ret = nvme_rdma_alloc_queue(ctrl, i,
 665                                ctrl->ctrl.sqsize + 1);
 666                if (ret)
 667                        goto out_free_queues;
 668        }
 669
 670        return 0;
 671
 672out_free_queues:
 673        for (i--; i >= 1; i--)
 674                nvme_rdma_free_queue(&ctrl->queues[i]);
 675
 676        return ret;
 677}
 678
 679static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin)
 680{
 681        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 682        struct blk_mq_tag_set *set = admin ?
 683                        &ctrl->admin_tag_set : &ctrl->tag_set;
 684
 685        blk_mq_free_tag_set(set);
 686        nvme_rdma_dev_put(ctrl->device);
 687}
 688
 689static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
 690                bool admin)
 691{
 692        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 693        struct blk_mq_tag_set *set;
 694        int ret;
 695
 696        if (admin) {
 697                set = &ctrl->admin_tag_set;
 698                memset(set, 0, sizeof(*set));
 699                set->ops = &nvme_rdma_admin_mq_ops;
 700                set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
 701                set->reserved_tags = 2; /* connect + keep-alive */
 702                set->numa_node = NUMA_NO_NODE;
 703                set->cmd_size = sizeof(struct nvme_rdma_request) +
 704                        SG_CHUNK_SIZE * sizeof(struct scatterlist);
 705                set->driver_data = ctrl;
 706                set->nr_hw_queues = 1;
 707                set->timeout = ADMIN_TIMEOUT;
 708        } else {
 709                set = &ctrl->tag_set;
 710                memset(set, 0, sizeof(*set));
 711                set->ops = &nvme_rdma_mq_ops;
 712                set->queue_depth = nctrl->opts->queue_size;
 713                set->reserved_tags = 1; /* fabric connect */
 714                set->numa_node = NUMA_NO_NODE;
 715                set->flags = BLK_MQ_F_SHOULD_MERGE;
 716                set->cmd_size = sizeof(struct nvme_rdma_request) +
 717                        SG_CHUNK_SIZE * sizeof(struct scatterlist);
 718                set->driver_data = ctrl;
 719                set->nr_hw_queues = nctrl->queue_count - 1;
 720                set->timeout = NVME_IO_TIMEOUT;
 721        }
 722
 723        ret = blk_mq_alloc_tag_set(set);
 724        if (ret)
 725                goto out;
 726
 727        /*
 728         * We need a reference on the device as long as the tag_set is alive,
 729         * as the MRs in the request structures need a valid ib_device.
 730         */
 731        ret = nvme_rdma_dev_get(ctrl->device);
 732        if (!ret) {
 733                ret = -EINVAL;
 734                goto out_free_tagset;
 735        }
 736
 737        return set;
 738
 739out_free_tagset:
 740        blk_mq_free_tag_set(set);
 741out:
 742        return ERR_PTR(ret);
 743}
 744
 745static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
 746                bool remove)
 747{
 748        nvme_rdma_stop_queue(&ctrl->queues[0]);
 749        if (remove) {
 750                blk_cleanup_queue(ctrl->ctrl.admin_q);
 751                nvme_rdma_free_tagset(&ctrl->ctrl, true);
 752        }
 753        nvme_rdma_free_queue(&ctrl->queues[0]);
 754}
 755
 756static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
 757                bool new)
 758{
 759        int error;
 760
 761        error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
 762        if (error)
 763                return error;
 764
 765        ctrl->device = ctrl->queues[0].device;
 766
 767        ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
 768                ctrl->device->dev->attrs.max_fast_reg_page_list_len);
 769
 770        if (new) {
 771                ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
 772                if (IS_ERR(ctrl->ctrl.admin_tagset)) {
 773                        error = PTR_ERR(ctrl->ctrl.admin_tagset);
 774                        goto out_free_queue;
 775                }
 776
 777                ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
 778                if (IS_ERR(ctrl->ctrl.admin_q)) {
 779                        error = PTR_ERR(ctrl->ctrl.admin_q);
 780                        goto out_free_tagset;
 781                }
 782        } else {
 783                error = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
 784                                             nvme_rdma_reinit_request);
 785                if (error)
 786                        goto out_free_queue;
 787        }
 788
 789        error = nvme_rdma_start_queue(ctrl, 0);
 790        if (error)
 791                goto out_cleanup_queue;
 792
 793        error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
 794                        &ctrl->ctrl.cap);
 795        if (error) {
 796                dev_err(ctrl->ctrl.device,
 797                        "prop_get NVME_REG_CAP failed\n");
 798                goto out_cleanup_queue;
 799        }
 800
 801        ctrl->ctrl.sqsize =
 802                min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
 803
 804        error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
 805        if (error)
 806                goto out_cleanup_queue;
 807
 808        ctrl->ctrl.max_hw_sectors =
 809                (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
 810
 811        error = nvme_init_identify(&ctrl->ctrl);
 812        if (error)
 813                goto out_cleanup_queue;
 814
 815        error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
 816                        &ctrl->async_event_sqe, sizeof(struct nvme_command),
 817                        DMA_TO_DEVICE);
 818        if (error)
 819                goto out_cleanup_queue;
 820
 821        return 0;
 822
 823out_cleanup_queue:
 824        if (new)
 825                blk_cleanup_queue(ctrl->ctrl.admin_q);
 826out_free_tagset:
 827        if (new)
 828                nvme_rdma_free_tagset(&ctrl->ctrl, true);
 829out_free_queue:
 830        nvme_rdma_free_queue(&ctrl->queues[0]);
 831        return error;
 832}
 833
 834static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
 835                bool remove)
 836{
 837        nvme_rdma_stop_io_queues(ctrl);
 838        if (remove) {
 839                blk_cleanup_queue(ctrl->ctrl.connect_q);
 840                nvme_rdma_free_tagset(&ctrl->ctrl, false);
 841        }
 842        nvme_rdma_free_io_queues(ctrl);
 843}
 844
 845static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
 846{
 847        int ret;
 848
 849        ret = nvme_rdma_alloc_io_queues(ctrl);
 850        if (ret)
 851                return ret;
 852
 853        if (new) {
 854                ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
 855                if (IS_ERR(ctrl->ctrl.tagset)) {
 856                        ret = PTR_ERR(ctrl->ctrl.tagset);
 857                        goto out_free_io_queues;
 858                }
 859
 860                ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
 861                if (IS_ERR(ctrl->ctrl.connect_q)) {
 862                        ret = PTR_ERR(ctrl->ctrl.connect_q);
 863                        goto out_free_tag_set;
 864                }
 865        } else {
 866                ret = blk_mq_reinit_tagset(&ctrl->tag_set,
 867                                           nvme_rdma_reinit_request);
 868                if (ret)
 869                        goto out_free_io_queues;
 870
 871                blk_mq_update_nr_hw_queues(&ctrl->tag_set,
 872                        ctrl->ctrl.queue_count - 1);
 873        }
 874
 875        ret = nvme_rdma_start_io_queues(ctrl);
 876        if (ret)
 877                goto out_cleanup_connect_q;
 878
 879        return 0;
 880
 881out_cleanup_connect_q:
 882        if (new)
 883                blk_cleanup_queue(ctrl->ctrl.connect_q);
 884out_free_tag_set:
 885        if (new)
 886                nvme_rdma_free_tagset(&ctrl->ctrl, false);
 887out_free_io_queues:
 888        nvme_rdma_free_io_queues(ctrl);
 889        return ret;
 890}
 891
 892static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
 893{
 894        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 895
 896        if (list_empty(&ctrl->list))
 897                goto free_ctrl;
 898
 899        mutex_lock(&nvme_rdma_ctrl_mutex);
 900        list_del(&ctrl->list);
 901        mutex_unlock(&nvme_rdma_ctrl_mutex);
 902
 903        kfree(ctrl->queues);
 904        nvmf_free_options(nctrl->opts);
 905free_ctrl:
 906        kfree(ctrl);
 907}
 908
 909static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
 910{
 911        /* If we are resetting/deleting then do nothing */
 912        if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
 913                WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
 914                        ctrl->ctrl.state == NVME_CTRL_LIVE);
 915                return;
 916        }
 917
 918        if (nvmf_should_reconnect(&ctrl->ctrl)) {
 919                dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
 920                        ctrl->ctrl.opts->reconnect_delay);
 921                queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
 922                                ctrl->ctrl.opts->reconnect_delay * HZ);
 923        } else {
 924                dev_info(ctrl->ctrl.device, "Removing controller...\n");
 925                queue_work(nvme_wq, &ctrl->delete_work);
 926        }
 927}
 928
 929static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
 930{
 931        struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
 932                        struct nvme_rdma_ctrl, reconnect_work);
 933        bool changed;
 934        int ret;
 935
 936        ++ctrl->ctrl.nr_reconnects;
 937
 938        if (ctrl->ctrl.queue_count > 1)
 939                nvme_rdma_destroy_io_queues(ctrl, false);
 940
 941        nvme_rdma_destroy_admin_queue(ctrl, false);
 942        ret = nvme_rdma_configure_admin_queue(ctrl, false);
 943        if (ret)
 944                goto requeue;
 945
 946        if (ctrl->ctrl.queue_count > 1) {
 947                ret = nvme_rdma_configure_io_queues(ctrl, false);
 948                if (ret)
 949                        goto requeue;
 950        }
 951
 952        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
 953        if (!changed) {
 954                /* state change failure is ok if we're in DELETING state */
 955                WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
 956                return;
 957        }
 958
 959        ctrl->ctrl.nr_reconnects = 0;
 960
 961        nvme_start_ctrl(&ctrl->ctrl);
 962
 963        dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
 964
 965        return;
 966
 967requeue:
 968        dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
 969                        ctrl->ctrl.nr_reconnects);
 970        nvme_rdma_reconnect_or_remove(ctrl);
 971}
 972
 973static void nvme_rdma_error_recovery_work(struct work_struct *work)
 974{
 975        struct nvme_rdma_ctrl *ctrl = container_of(work,
 976                        struct nvme_rdma_ctrl, err_work);
 977
 978        nvme_stop_keep_alive(&ctrl->ctrl);
 979
 980        if (ctrl->ctrl.queue_count > 1) {
 981                nvme_stop_queues(&ctrl->ctrl);
 982                nvme_rdma_stop_io_queues(ctrl);
 983        }
 984        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
 985        nvme_rdma_stop_queue(&ctrl->queues[0]);
 986
 987        /* We must take care of fastfail/requeue all our inflight requests */
 988        if (ctrl->ctrl.queue_count > 1)
 989                blk_mq_tagset_busy_iter(&ctrl->tag_set,
 990                                        nvme_cancel_request, &ctrl->ctrl);
 991        blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
 992                                nvme_cancel_request, &ctrl->ctrl);
 993
 994        /*
 995         * queues are not a live anymore, so restart the queues to fail fast
 996         * new IO
 997         */
 998        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
 999        nvme_start_queues(&ctrl->ctrl);
1000
1001        nvme_rdma_reconnect_or_remove(ctrl);
1002}
1003
1004static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1005{
1006        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
1007                return;
1008
1009        queue_work(nvme_wq, &ctrl->err_work);
1010}
1011
1012static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1013                const char *op)
1014{
1015        struct nvme_rdma_queue *queue = cq->cq_context;
1016        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1017
1018        if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1019                dev_info(ctrl->ctrl.device,
1020                             "%s for CQE 0x%p failed with status %s (%d)\n",
1021                             op, wc->wr_cqe,
1022                             ib_wc_status_msg(wc->status), wc->status);
1023        nvme_rdma_error_recovery(ctrl);
1024}
1025
1026static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1027{
1028        if (unlikely(wc->status != IB_WC_SUCCESS))
1029                nvme_rdma_wr_error(cq, wc, "MEMREG");
1030}
1031
1032static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1033{
1034        if (unlikely(wc->status != IB_WC_SUCCESS))
1035                nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1036}
1037
1038static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1039                struct nvme_rdma_request *req)
1040{
1041        struct ib_send_wr *bad_wr;
1042        struct ib_send_wr wr = {
1043                .opcode             = IB_WR_LOCAL_INV,
1044                .next               = NULL,
1045                .num_sge            = 0,
1046                .send_flags         = 0,
1047                .ex.invalidate_rkey = req->mr->rkey,
1048        };
1049
1050        req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1051        wr.wr_cqe = &req->reg_cqe;
1052
1053        return ib_post_send(queue->qp, &wr, &bad_wr);
1054}
1055
1056static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1057                struct request *rq)
1058{
1059        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1060        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1061        struct nvme_rdma_device *dev = queue->device;
1062        struct ib_device *ibdev = dev->dev;
1063        int res;
1064
1065        if (!blk_rq_bytes(rq))
1066                return;
1067
1068        if (req->mr->need_inval) {
1069                res = nvme_rdma_inv_rkey(queue, req);
1070                if (unlikely(res < 0)) {
1071                        dev_err(ctrl->ctrl.device,
1072                                "Queueing INV WR for rkey %#x failed (%d)\n",
1073                                req->mr->rkey, res);
1074                        nvme_rdma_error_recovery(queue->ctrl);
1075                }
1076        }
1077
1078        ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1079                        req->nents, rq_data_dir(rq) ==
1080                                    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1081
1082        nvme_cleanup_cmd(rq);
1083        sg_free_table_chained(&req->sg_table, true);
1084}
1085
1086static int nvme_rdma_set_sg_null(struct nvme_command *c)
1087{
1088        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1089
1090        sg->addr = 0;
1091        put_unaligned_le24(0, sg->length);
1092        put_unaligned_le32(0, sg->key);
1093        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1094        return 0;
1095}
1096
1097static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1098                struct nvme_rdma_request *req, struct nvme_command *c)
1099{
1100        struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1101
1102        req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1103        req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1104        req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1105
1106        sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1107        sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1108        sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1109
1110        req->inline_data = true;
1111        req->num_sge++;
1112        return 0;
1113}
1114
1115static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1116                struct nvme_rdma_request *req, struct nvme_command *c)
1117{
1118        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1119
1120        sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1121        put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1122        put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1123        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1124        return 0;
1125}
1126
1127static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1128                struct nvme_rdma_request *req, struct nvme_command *c,
1129                int count)
1130{
1131        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1132        int nr;
1133
1134        /*
1135         * Align the MR to a 4K page size to match the ctrl page size and
1136         * the block virtual boundary.
1137         */
1138        nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1139        if (unlikely(nr < count)) {
1140                if (nr < 0)
1141                        return nr;
1142                return -EINVAL;
1143        }
1144
1145        ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1146
1147        req->reg_cqe.done = nvme_rdma_memreg_done;
1148        memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1149        req->reg_wr.wr.opcode = IB_WR_REG_MR;
1150        req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1151        req->reg_wr.wr.num_sge = 0;
1152        req->reg_wr.mr = req->mr;
1153        req->reg_wr.key = req->mr->rkey;
1154        req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1155                             IB_ACCESS_REMOTE_READ |
1156                             IB_ACCESS_REMOTE_WRITE;
1157
1158        req->mr->need_inval = true;
1159
1160        sg->addr = cpu_to_le64(req->mr->iova);
1161        put_unaligned_le24(req->mr->length, sg->length);
1162        put_unaligned_le32(req->mr->rkey, sg->key);
1163        sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1164                        NVME_SGL_FMT_INVALIDATE;
1165
1166        return 0;
1167}
1168
1169static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1170                struct request *rq, struct nvme_command *c)
1171{
1172        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1173        struct nvme_rdma_device *dev = queue->device;
1174        struct ib_device *ibdev = dev->dev;
1175        int count, ret;
1176
1177        req->num_sge = 1;
1178        req->inline_data = false;
1179        req->mr->need_inval = false;
1180
1181        c->common.flags |= NVME_CMD_SGL_METABUF;
1182
1183        if (!blk_rq_bytes(rq))
1184                return nvme_rdma_set_sg_null(c);
1185
1186        req->sg_table.sgl = req->first_sgl;
1187        ret = sg_alloc_table_chained(&req->sg_table,
1188                        blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1189        if (ret)
1190                return -ENOMEM;
1191
1192        req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1193
1194        count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1195                    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1196        if (unlikely(count <= 0)) {
1197                sg_free_table_chained(&req->sg_table, true);
1198                return -EIO;
1199        }
1200
1201        if (count == 1) {
1202                if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1203                    blk_rq_payload_bytes(rq) <=
1204                                nvme_rdma_inline_data_size(queue))
1205                        return nvme_rdma_map_sg_inline(queue, req, c);
1206
1207                if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1208                        return nvme_rdma_map_sg_single(queue, req, c);
1209        }
1210
1211        return nvme_rdma_map_sg_fr(queue, req, c, count);
1212}
1213
1214static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1215{
1216        if (unlikely(wc->status != IB_WC_SUCCESS))
1217                nvme_rdma_wr_error(cq, wc, "SEND");
1218}
1219
1220/*
1221 * We want to signal completion at least every queue depth/2.  This returns the
1222 * largest power of two that is not above half of (queue size + 1) to optimize
1223 * (avoid divisions).
1224 */
1225static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1226{
1227        int limit = 1 << ilog2((queue->queue_size + 1) / 2);
1228
1229        return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
1230}
1231
1232static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1233                struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1234                struct ib_send_wr *first, bool flush)
1235{
1236        struct ib_send_wr wr, *bad_wr;
1237        int ret;
1238
1239        sge->addr   = qe->dma;
1240        sge->length = sizeof(struct nvme_command),
1241        sge->lkey   = queue->device->pd->local_dma_lkey;
1242
1243        qe->cqe.done = nvme_rdma_send_done;
1244
1245        wr.next       = NULL;
1246        wr.wr_cqe     = &qe->cqe;
1247        wr.sg_list    = sge;
1248        wr.num_sge    = num_sge;
1249        wr.opcode     = IB_WR_SEND;
1250        wr.send_flags = 0;
1251
1252        /*
1253         * Unsignalled send completions are another giant desaster in the
1254         * IB Verbs spec:  If we don't regularly post signalled sends
1255         * the send queue will fill up and only a QP reset will rescue us.
1256         * Would have been way to obvious to handle this in hardware or
1257         * at least the RDMA stack..
1258         *
1259         * Always signal the flushes. The magic request used for the flush
1260         * sequencer is not allocated in our driver's tagset and it's
1261         * triggered to be freed by blk_cleanup_queue(). So we need to
1262         * always mark it as signaled to ensure that the "wr_cqe", which is
1263         * embedded in request's payload, is not freed when __ib_process_cq()
1264         * calls wr_cqe->done().
1265         */
1266        if (nvme_rdma_queue_sig_limit(queue) || flush)
1267                wr.send_flags |= IB_SEND_SIGNALED;
1268
1269        if (first)
1270                first->next = &wr;
1271        else
1272                first = &wr;
1273
1274        ret = ib_post_send(queue->qp, first, &bad_wr);
1275        if (unlikely(ret)) {
1276                dev_err(queue->ctrl->ctrl.device,
1277                             "%s failed with error code %d\n", __func__, ret);
1278        }
1279        return ret;
1280}
1281
1282static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1283                struct nvme_rdma_qe *qe)
1284{
1285        struct ib_recv_wr wr, *bad_wr;
1286        struct ib_sge list;
1287        int ret;
1288
1289        list.addr   = qe->dma;
1290        list.length = sizeof(struct nvme_completion);
1291        list.lkey   = queue->device->pd->local_dma_lkey;
1292
1293        qe->cqe.done = nvme_rdma_recv_done;
1294
1295        wr.next     = NULL;
1296        wr.wr_cqe   = &qe->cqe;
1297        wr.sg_list  = &list;
1298        wr.num_sge  = 1;
1299
1300        ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1301        if (unlikely(ret)) {
1302                dev_err(queue->ctrl->ctrl.device,
1303                        "%s failed with error code %d\n", __func__, ret);
1304        }
1305        return ret;
1306}
1307
1308static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1309{
1310        u32 queue_idx = nvme_rdma_queue_idx(queue);
1311
1312        if (queue_idx == 0)
1313                return queue->ctrl->admin_tag_set.tags[queue_idx];
1314        return queue->ctrl->tag_set.tags[queue_idx - 1];
1315}
1316
1317static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1318{
1319        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1320        struct nvme_rdma_queue *queue = &ctrl->queues[0];
1321        struct ib_device *dev = queue->device->dev;
1322        struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1323        struct nvme_command *cmd = sqe->data;
1324        struct ib_sge sge;
1325        int ret;
1326
1327        if (WARN_ON_ONCE(aer_idx != 0))
1328                return;
1329
1330        ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1331
1332        memset(cmd, 0, sizeof(*cmd));
1333        cmd->common.opcode = nvme_admin_async_event;
1334        cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1335        cmd->common.flags |= NVME_CMD_SGL_METABUF;
1336        nvme_rdma_set_sg_null(cmd);
1337
1338        ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1339                        DMA_TO_DEVICE);
1340
1341        ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1342        WARN_ON_ONCE(ret);
1343}
1344
1345static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1346                struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1347{
1348        struct request *rq;
1349        struct nvme_rdma_request *req;
1350        int ret = 0;
1351
1352        rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1353        if (!rq) {
1354                dev_err(queue->ctrl->ctrl.device,
1355                        "tag 0x%x on QP %#x not found\n",
1356                        cqe->command_id, queue->qp->qp_num);
1357                nvme_rdma_error_recovery(queue->ctrl);
1358                return ret;
1359        }
1360        req = blk_mq_rq_to_pdu(rq);
1361
1362        if (rq->tag == tag)
1363                ret = 1;
1364
1365        if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1366            wc->ex.invalidate_rkey == req->mr->rkey)
1367                req->mr->need_inval = false;
1368
1369        nvme_end_request(rq, cqe->status, cqe->result);
1370        return ret;
1371}
1372
1373static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1374{
1375        struct nvme_rdma_qe *qe =
1376                container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1377        struct nvme_rdma_queue *queue = cq->cq_context;
1378        struct ib_device *ibdev = queue->device->dev;
1379        struct nvme_completion *cqe = qe->data;
1380        const size_t len = sizeof(struct nvme_completion);
1381        int ret = 0;
1382
1383        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1384                nvme_rdma_wr_error(cq, wc, "RECV");
1385                return 0;
1386        }
1387
1388        ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1389        /*
1390         * AEN requests are special as they don't time out and can
1391         * survive any kind of queue freeze and often don't respond to
1392         * aborts.  We don't even bother to allocate a struct request
1393         * for them but rather special case them here.
1394         */
1395        if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1396                        cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1397                nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1398                                &cqe->result);
1399        else
1400                ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1401        ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1402
1403        nvme_rdma_post_recv(queue, qe);
1404        return ret;
1405}
1406
1407static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1408{
1409        __nvme_rdma_recv_done(cq, wc, -1);
1410}
1411
1412static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1413{
1414        int ret, i;
1415
1416        for (i = 0; i < queue->queue_size; i++) {
1417                ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1418                if (ret)
1419                        goto out_destroy_queue_ib;
1420        }
1421
1422        return 0;
1423
1424out_destroy_queue_ib:
1425        nvme_rdma_destroy_queue_ib(queue);
1426        return ret;
1427}
1428
1429static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1430                struct rdma_cm_event *ev)
1431{
1432        struct rdma_cm_id *cm_id = queue->cm_id;
1433        int status = ev->status;
1434        const char *rej_msg;
1435        const struct nvme_rdma_cm_rej *rej_data;
1436        u8 rej_data_len;
1437
1438        rej_msg = rdma_reject_msg(cm_id, status);
1439        rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1440
1441        if (rej_data && rej_data_len >= sizeof(u16)) {
1442                u16 sts = le16_to_cpu(rej_data->sts);
1443
1444                dev_err(queue->ctrl->ctrl.device,
1445                      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1446                      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1447        } else {
1448                dev_err(queue->ctrl->ctrl.device,
1449                        "Connect rejected: status %d (%s).\n", status, rej_msg);
1450        }
1451
1452        return -ECONNRESET;
1453}
1454
1455static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1456{
1457        int ret;
1458
1459        ret = nvme_rdma_create_queue_ib(queue);
1460        if (ret)
1461                return ret;
1462
1463        ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1464        if (ret) {
1465                dev_err(queue->ctrl->ctrl.device,
1466                        "rdma_resolve_route failed (%d).\n",
1467                        queue->cm_error);
1468                goto out_destroy_queue;
1469        }
1470
1471        return 0;
1472
1473out_destroy_queue:
1474        nvme_rdma_destroy_queue_ib(queue);
1475        return ret;
1476}
1477
1478static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1479{
1480        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1481        struct rdma_conn_param param = { };
1482        struct nvme_rdma_cm_req priv = { };
1483        int ret;
1484
1485        param.qp_num = queue->qp->qp_num;
1486        param.flow_control = 1;
1487
1488        param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1489        /* maximum retry count */
1490        param.retry_count = 7;
1491        param.rnr_retry_count = 7;
1492        param.private_data = &priv;
1493        param.private_data_len = sizeof(priv);
1494
1495        priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1496        priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1497        /*
1498         * set the admin queue depth to the minimum size
1499         * specified by the Fabrics standard.
1500         */
1501        if (priv.qid == 0) {
1502                priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1503                priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1504        } else {
1505                /*
1506                 * current interpretation of the fabrics spec
1507                 * is at minimum you make hrqsize sqsize+1, or a
1508                 * 1's based representation of sqsize.
1509                 */
1510                priv.hrqsize = cpu_to_le16(queue->queue_size);
1511                priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1512        }
1513
1514        ret = rdma_connect(queue->cm_id, &param);
1515        if (ret) {
1516                dev_err(ctrl->ctrl.device,
1517                        "rdma_connect failed (%d).\n", ret);
1518                goto out_destroy_queue_ib;
1519        }
1520
1521        return 0;
1522
1523out_destroy_queue_ib:
1524        nvme_rdma_destroy_queue_ib(queue);
1525        return ret;
1526}
1527
1528static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1529                struct rdma_cm_event *ev)
1530{
1531        struct nvme_rdma_queue *queue = cm_id->context;
1532        int cm_error = 0;
1533
1534        dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1535                rdma_event_msg(ev->event), ev->event,
1536                ev->status, cm_id);
1537
1538        switch (ev->event) {
1539        case RDMA_CM_EVENT_ADDR_RESOLVED:
1540                cm_error = nvme_rdma_addr_resolved(queue);
1541                break;
1542        case RDMA_CM_EVENT_ROUTE_RESOLVED:
1543                cm_error = nvme_rdma_route_resolved(queue);
1544                break;
1545        case RDMA_CM_EVENT_ESTABLISHED:
1546                queue->cm_error = nvme_rdma_conn_established(queue);
1547                /* complete cm_done regardless of success/failure */
1548                complete(&queue->cm_done);
1549                return 0;
1550        case RDMA_CM_EVENT_REJECTED:
1551                nvme_rdma_destroy_queue_ib(queue);
1552                cm_error = nvme_rdma_conn_rejected(queue, ev);
1553                break;
1554        case RDMA_CM_EVENT_ROUTE_ERROR:
1555        case RDMA_CM_EVENT_CONNECT_ERROR:
1556        case RDMA_CM_EVENT_UNREACHABLE:
1557                nvme_rdma_destroy_queue_ib(queue);
1558        case RDMA_CM_EVENT_ADDR_ERROR:
1559                dev_dbg(queue->ctrl->ctrl.device,
1560                        "CM error event %d\n", ev->event);
1561                cm_error = -ECONNRESET;
1562                break;
1563        case RDMA_CM_EVENT_DISCONNECTED:
1564        case RDMA_CM_EVENT_ADDR_CHANGE:
1565        case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1566                dev_dbg(queue->ctrl->ctrl.device,
1567                        "disconnect received - connection closed\n");
1568                nvme_rdma_error_recovery(queue->ctrl);
1569                break;
1570        case RDMA_CM_EVENT_DEVICE_REMOVAL:
1571                /* device removal is handled via the ib_client API */
1572                break;
1573        default:
1574                dev_err(queue->ctrl->ctrl.device,
1575                        "Unexpected RDMA CM event (%d)\n", ev->event);
1576                nvme_rdma_error_recovery(queue->ctrl);
1577                break;
1578        }
1579
1580        if (cm_error) {
1581                queue->cm_error = cm_error;
1582                complete(&queue->cm_done);
1583        }
1584
1585        return 0;
1586}
1587
1588static enum blk_eh_timer_return
1589nvme_rdma_timeout(struct request *rq, bool reserved)
1590{
1591        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1592
1593        /* queue error recovery */
1594        nvme_rdma_error_recovery(req->queue->ctrl);
1595
1596        /* fail with DNR on cmd timeout */
1597        nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1598
1599        return BLK_EH_HANDLED;
1600}
1601
1602/*
1603 * We cannot accept any other command until the Connect command has completed.
1604 */
1605static inline blk_status_t
1606nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1607{
1608        if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1609                struct nvme_command *cmd = nvme_req(rq)->cmd;
1610
1611                if (!blk_rq_is_passthrough(rq) ||
1612                    cmd->common.opcode != nvme_fabrics_command ||
1613                    cmd->fabrics.fctype != nvme_fabrics_type_connect) {
1614                        /*
1615                         * reconnecting state means transport disruption, which
1616                         * can take a long time and even might fail permanently,
1617                         * fail fast to give upper layers a chance to failover.
1618                         * deleting state means that the ctrl will never accept
1619                         * commands again, fail it permanently.
1620                         */
1621                        if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING ||
1622                            queue->ctrl->ctrl.state == NVME_CTRL_DELETING) {
1623                                nvme_req(rq)->status = NVME_SC_ABORT_REQ;
1624                                return BLK_STS_IOERR;
1625                        }
1626                        return BLK_STS_RESOURCE; /* try again later */
1627                }
1628        }
1629
1630        return 0;
1631}
1632
1633static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1634                const struct blk_mq_queue_data *bd)
1635{
1636        struct nvme_ns *ns = hctx->queue->queuedata;
1637        struct nvme_rdma_queue *queue = hctx->driver_data;
1638        struct request *rq = bd->rq;
1639        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1640        struct nvme_rdma_qe *sqe = &req->sqe;
1641        struct nvme_command *c = sqe->data;
1642        bool flush = false;
1643        struct ib_device *dev;
1644        blk_status_t ret;
1645        int err;
1646
1647        WARN_ON_ONCE(rq->tag < 0);
1648
1649        ret = nvme_rdma_queue_is_ready(queue, rq);
1650        if (unlikely(ret))
1651                return ret;
1652
1653        dev = queue->device->dev;
1654        ib_dma_sync_single_for_cpu(dev, sqe->dma,
1655                        sizeof(struct nvme_command), DMA_TO_DEVICE);
1656
1657        ret = nvme_setup_cmd(ns, rq, c);
1658        if (ret)
1659                return ret;
1660
1661        blk_mq_start_request(rq);
1662
1663        err = nvme_rdma_map_data(queue, rq, c);
1664        if (unlikely(err < 0)) {
1665                dev_err(queue->ctrl->ctrl.device,
1666                             "Failed to map data (%d)\n", err);
1667                nvme_cleanup_cmd(rq);
1668                goto err;
1669        }
1670
1671        ib_dma_sync_single_for_device(dev, sqe->dma,
1672                        sizeof(struct nvme_command), DMA_TO_DEVICE);
1673
1674        if (req_op(rq) == REQ_OP_FLUSH)
1675                flush = true;
1676        err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1677                        req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1678        if (unlikely(err)) {
1679                nvme_rdma_unmap_data(queue, rq);
1680                goto err;
1681        }
1682
1683        return BLK_STS_OK;
1684err:
1685        if (err == -ENOMEM || err == -EAGAIN)
1686                return BLK_STS_RESOURCE;
1687        return BLK_STS_IOERR;
1688}
1689
1690static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1691{
1692        struct nvme_rdma_queue *queue = hctx->driver_data;
1693        struct ib_cq *cq = queue->ib_cq;
1694        struct ib_wc wc;
1695        int found = 0;
1696
1697        while (ib_poll_cq(cq, 1, &wc) > 0) {
1698                struct ib_cqe *cqe = wc.wr_cqe;
1699
1700                if (cqe) {
1701                        if (cqe->done == nvme_rdma_recv_done)
1702                                found |= __nvme_rdma_recv_done(cq, &wc, tag);
1703                        else
1704                                cqe->done(cq, &wc);
1705                }
1706        }
1707
1708        return found;
1709}
1710
1711static void nvme_rdma_complete_rq(struct request *rq)
1712{
1713        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1714
1715        nvme_rdma_unmap_data(req->queue, rq);
1716        nvme_complete_rq(rq);
1717}
1718
1719static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1720{
1721        struct nvme_rdma_ctrl *ctrl = set->driver_data;
1722
1723        return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1724}
1725
1726static const struct blk_mq_ops nvme_rdma_mq_ops = {
1727        .queue_rq       = nvme_rdma_queue_rq,
1728        .complete       = nvme_rdma_complete_rq,
1729        .init_request   = nvme_rdma_init_request,
1730        .exit_request   = nvme_rdma_exit_request,
1731        .init_hctx      = nvme_rdma_init_hctx,
1732        .poll           = nvme_rdma_poll,
1733        .timeout        = nvme_rdma_timeout,
1734        .map_queues     = nvme_rdma_map_queues,
1735};
1736
1737static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1738        .queue_rq       = nvme_rdma_queue_rq,
1739        .complete       = nvme_rdma_complete_rq,
1740        .init_request   = nvme_rdma_init_request,
1741        .exit_request   = nvme_rdma_exit_request,
1742        .init_hctx      = nvme_rdma_init_admin_hctx,
1743        .timeout        = nvme_rdma_timeout,
1744};
1745
1746static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1747{
1748        cancel_work_sync(&ctrl->err_work);
1749        cancel_delayed_work_sync(&ctrl->reconnect_work);
1750
1751        if (ctrl->ctrl.queue_count > 1) {
1752                nvme_stop_queues(&ctrl->ctrl);
1753                blk_mq_tagset_busy_iter(&ctrl->tag_set,
1754                                        nvme_cancel_request, &ctrl->ctrl);
1755                nvme_rdma_destroy_io_queues(ctrl, shutdown);
1756        }
1757
1758        if (shutdown)
1759                nvme_shutdown_ctrl(&ctrl->ctrl);
1760        else
1761                nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1762
1763        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1764        blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1765                                nvme_cancel_request, &ctrl->ctrl);
1766        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1767        nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1768}
1769
1770static void nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl)
1771{
1772        nvme_remove_namespaces(&ctrl->ctrl);
1773        nvme_rdma_shutdown_ctrl(ctrl, true);
1774        nvme_uninit_ctrl(&ctrl->ctrl);
1775        nvme_put_ctrl(&ctrl->ctrl);
1776}
1777
1778static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1779{
1780        struct nvme_rdma_ctrl *ctrl = container_of(work,
1781                                struct nvme_rdma_ctrl, delete_work);
1782
1783        nvme_stop_ctrl(&ctrl->ctrl);
1784        nvme_rdma_remove_ctrl(ctrl);
1785}
1786
1787static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1788{
1789        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1790                return -EBUSY;
1791
1792        if (!queue_work(nvme_wq, &ctrl->delete_work))
1793                return -EBUSY;
1794
1795        return 0;
1796}
1797
1798static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1799{
1800        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1801        int ret = 0;
1802
1803        /*
1804         * Keep a reference until all work is flushed since
1805         * __nvme_rdma_del_ctrl can free the ctrl mem
1806         */
1807        if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1808                return -EBUSY;
1809        ret = __nvme_rdma_del_ctrl(ctrl);
1810        if (!ret)
1811                flush_work(&ctrl->delete_work);
1812        nvme_put_ctrl(&ctrl->ctrl);
1813        return ret;
1814}
1815
1816static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1817{
1818        struct nvme_rdma_ctrl *ctrl =
1819                container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1820        int ret;
1821        bool changed;
1822
1823        nvme_stop_ctrl(&ctrl->ctrl);
1824        nvme_rdma_shutdown_ctrl(ctrl, false);
1825
1826        ret = nvme_rdma_configure_admin_queue(ctrl, false);
1827        if (ret)
1828                goto out_fail;
1829
1830        if (ctrl->ctrl.queue_count > 1) {
1831                ret = nvme_rdma_configure_io_queues(ctrl, false);
1832                if (ret)
1833                        goto out_fail;
1834        }
1835
1836        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1837        WARN_ON_ONCE(!changed);
1838
1839        nvme_start_ctrl(&ctrl->ctrl);
1840
1841        return;
1842
1843out_fail:
1844        dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1845        nvme_rdma_remove_ctrl(ctrl);
1846}
1847
1848static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1849        .name                   = "rdma",
1850        .module                 = THIS_MODULE,
1851        .flags                  = NVME_F_FABRICS,
1852        .reg_read32             = nvmf_reg_read32,
1853        .reg_read64             = nvmf_reg_read64,
1854        .reg_write32            = nvmf_reg_write32,
1855        .free_ctrl              = nvme_rdma_free_ctrl,
1856        .submit_async_event     = nvme_rdma_submit_async_event,
1857        .delete_ctrl            = nvme_rdma_del_ctrl,
1858        .get_address            = nvmf_get_address,
1859};
1860
1861static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1862                struct nvmf_ctrl_options *opts)
1863{
1864        struct nvme_rdma_ctrl *ctrl;
1865        int ret;
1866        bool changed;
1867        char *port;
1868
1869        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1870        if (!ctrl)
1871                return ERR_PTR(-ENOMEM);
1872        ctrl->ctrl.opts = opts;
1873        INIT_LIST_HEAD(&ctrl->list);
1874
1875        if (opts->mask & NVMF_OPT_TRSVCID)
1876                port = opts->trsvcid;
1877        else
1878                port = __stringify(NVME_RDMA_IP_PORT);
1879
1880        ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1881                        opts->traddr, port, &ctrl->addr);
1882        if (ret) {
1883                pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1884                goto out_free_ctrl;
1885        }
1886
1887        if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1888                ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1889                        opts->host_traddr, NULL, &ctrl->src_addr);
1890                if (ret) {
1891                        pr_err("malformed src address passed: %s\n",
1892                               opts->host_traddr);
1893                        goto out_free_ctrl;
1894                }
1895        }
1896
1897        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1898                                0 /* no quirks, we're perfect! */);
1899        if (ret)
1900                goto out_free_ctrl;
1901
1902        INIT_DELAYED_WORK(&ctrl->reconnect_work,
1903                        nvme_rdma_reconnect_ctrl_work);
1904        INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1905        INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1906        INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1907
1908        ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1909        ctrl->ctrl.sqsize = opts->queue_size - 1;
1910        ctrl->ctrl.kato = opts->kato;
1911
1912        ret = -ENOMEM;
1913        ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1914                                GFP_KERNEL);
1915        if (!ctrl->queues)
1916                goto out_uninit_ctrl;
1917
1918        ret = nvme_rdma_configure_admin_queue(ctrl, true);
1919        if (ret)
1920                goto out_kfree_queues;
1921
1922        /* sanity check icdoff */
1923        if (ctrl->ctrl.icdoff) {
1924                dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1925                ret = -EINVAL;
1926                goto out_remove_admin_queue;
1927        }
1928
1929        /* sanity check keyed sgls */
1930        if (!(ctrl->ctrl.sgls & (1 << 20))) {
1931                dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1932                ret = -EINVAL;
1933                goto out_remove_admin_queue;
1934        }
1935
1936        if (opts->queue_size > ctrl->ctrl.maxcmd) {
1937                /* warn if maxcmd is lower than queue_size */
1938                dev_warn(ctrl->ctrl.device,
1939                        "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1940                        opts->queue_size, ctrl->ctrl.maxcmd);
1941                opts->queue_size = ctrl->ctrl.maxcmd;
1942        }
1943
1944        if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1945                /* warn if sqsize is lower than queue_size */
1946                dev_warn(ctrl->ctrl.device,
1947                        "queue_size %zu > ctrl sqsize %u, clamping down\n",
1948                        opts->queue_size, ctrl->ctrl.sqsize + 1);
1949                opts->queue_size = ctrl->ctrl.sqsize + 1;
1950        }
1951
1952        if (opts->nr_io_queues) {
1953                ret = nvme_rdma_configure_io_queues(ctrl, true);
1954                if (ret)
1955                        goto out_remove_admin_queue;
1956        }
1957
1958        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1959        WARN_ON_ONCE(!changed);
1960
1961        dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1962                ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1963
1964        kref_get(&ctrl->ctrl.kref);
1965
1966        mutex_lock(&nvme_rdma_ctrl_mutex);
1967        list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1968        mutex_unlock(&nvme_rdma_ctrl_mutex);
1969
1970        nvme_start_ctrl(&ctrl->ctrl);
1971
1972        return &ctrl->ctrl;
1973
1974out_remove_admin_queue:
1975        nvme_rdma_destroy_admin_queue(ctrl, true);
1976out_kfree_queues:
1977        kfree(ctrl->queues);
1978out_uninit_ctrl:
1979        nvme_uninit_ctrl(&ctrl->ctrl);
1980        nvme_put_ctrl(&ctrl->ctrl);
1981        if (ret > 0)
1982                ret = -EIO;
1983        return ERR_PTR(ret);
1984out_free_ctrl:
1985        kfree(ctrl);
1986        return ERR_PTR(ret);
1987}
1988
1989static struct nvmf_transport_ops nvme_rdma_transport = {
1990        .name           = "rdma",
1991        .required_opts  = NVMF_OPT_TRADDR,
1992        .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1993                          NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1994        .create_ctrl    = nvme_rdma_create_ctrl,
1995};
1996
1997static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1998{
1999        struct nvme_rdma_ctrl *ctrl;
2000
2001        /* Delete all controllers using this device */
2002        mutex_lock(&nvme_rdma_ctrl_mutex);
2003        list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2004                if (ctrl->device->dev != ib_device)
2005                        continue;
2006                dev_info(ctrl->ctrl.device,
2007                        "Removing ctrl: NQN \"%s\", addr %pISp\n",
2008                        ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2009                __nvme_rdma_del_ctrl(ctrl);
2010        }
2011        mutex_unlock(&nvme_rdma_ctrl_mutex);
2012
2013        flush_workqueue(nvme_wq);
2014}
2015
2016static struct ib_client nvme_rdma_ib_client = {
2017        .name   = "nvme_rdma",
2018        .remove = nvme_rdma_remove_one
2019};
2020
2021static int __init nvme_rdma_init_module(void)
2022{
2023        int ret;
2024
2025        ret = ib_register_client(&nvme_rdma_ib_client);
2026        if (ret)
2027                return ret;
2028
2029        ret = nvmf_register_transport(&nvme_rdma_transport);
2030        if (ret)
2031                goto err_unreg_client;
2032
2033        return 0;
2034
2035err_unreg_client:
2036        ib_unregister_client(&nvme_rdma_ib_client);
2037        return ret;
2038}
2039
2040static void __exit nvme_rdma_cleanup_module(void)
2041{
2042        nvmf_unregister_transport(&nvme_rdma_transport);
2043        ib_unregister_client(&nvme_rdma_ib_client);
2044}
2045
2046module_init(nvme_rdma_init_module);
2047module_exit(nvme_rdma_cleanup_module);
2048
2049MODULE_LICENSE("GPL v2");
2050