linux/drivers/ras/cec.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/mm.h>
   3#include <linux/gfp.h>
   4#include <linux/kernel.h>
   5
   6#include <asm/mce.h>
   7
   8#include "debugfs.h"
   9
  10/*
  11 * RAS Correctable Errors Collector
  12 *
  13 * This is a simple gadget which collects correctable errors and counts their
  14 * occurrence per physical page address.
  15 *
  16 * We've opted for possibly the simplest data structure to collect those - an
  17 * array of the size of a memory page. It stores 512 u64's with the following
  18 * structure:
  19 *
  20 * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
  21 *
  22 * The generation in the two highest order bits is two bits which are set to 11b
  23 * on every insertion. During the course of each entry's existence, the
  24 * generation field gets decremented during spring cleaning to 10b, then 01b and
  25 * then 00b.
  26 *
  27 * This way we're employing the natural numeric ordering to make sure that newly
  28 * inserted/touched elements have higher 12-bit counts (which we've manufactured)
  29 * and thus iterating over the array initially won't kick out those elements
  30 * which were inserted last.
  31 *
  32 * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
  33 * elements entered into the array, during which, we're decaying all elements.
  34 * If, after decay, an element gets inserted again, its generation is set to 11b
  35 * to make sure it has higher numerical count than other, older elements and
  36 * thus emulate an an LRU-like behavior when deleting elements to free up space
  37 * in the page.
  38 *
  39 * When an element reaches it's max count of count_threshold, we try to poison
  40 * it by assuming that errors triggered count_threshold times in a single page
  41 * are excessive and that page shouldn't be used anymore. count_threshold is
  42 * initialized to COUNT_MASK which is the maximum.
  43 *
  44 * That error event entry causes cec_add_elem() to return !0 value and thus
  45 * signal to its callers to log the error.
  46 *
  47 * To the question why we've chosen a page and moving elements around with
  48 * memmove(), it is because it is a very simple structure to handle and max data
  49 * movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
  50 * We wanted to avoid the pointer traversal of more complex structures like a
  51 * linked list or some sort of a balancing search tree.
  52 *
  53 * Deleting an element takes O(n) but since it is only a single page, it should
  54 * be fast enough and it shouldn't happen all too often depending on error
  55 * patterns.
  56 */
  57
  58#undef pr_fmt
  59#define pr_fmt(fmt) "RAS: " fmt
  60
  61/*
  62 * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
  63 * elements have stayed in the array without having been accessed again.
  64 */
  65#define DECAY_BITS              2
  66#define DECAY_MASK              ((1ULL << DECAY_BITS) - 1)
  67#define MAX_ELEMS               (PAGE_SIZE / sizeof(u64))
  68
  69/*
  70 * Threshold amount of inserted elements after which we start spring
  71 * cleaning.
  72 */
  73#define CLEAN_ELEMS             (MAX_ELEMS >> DECAY_BITS)
  74
  75/* Bits which count the number of errors happened in this 4K page. */
  76#define COUNT_BITS              (PAGE_SHIFT - DECAY_BITS)
  77#define COUNT_MASK              ((1ULL << COUNT_BITS) - 1)
  78#define FULL_COUNT_MASK         (PAGE_SIZE - 1)
  79
  80/*
  81 * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
  82 */
  83
  84#define PFN(e)                  ((e) >> PAGE_SHIFT)
  85#define DECAY(e)                (((e) >> COUNT_BITS) & DECAY_MASK)
  86#define COUNT(e)                ((unsigned int)(e) & COUNT_MASK)
  87#define FULL_COUNT(e)           ((e) & (PAGE_SIZE - 1))
  88
  89static struct ce_array {
  90        u64 *array;                     /* container page */
  91        unsigned int n;                 /* number of elements in the array */
  92
  93        unsigned int decay_count;       /*
  94                                         * number of element insertions/increments
  95                                         * since the last spring cleaning.
  96                                         */
  97
  98        u64 pfns_poisoned;              /*
  99                                         * number of PFNs which got poisoned.
 100                                         */
 101
 102        u64 ces_entered;                /*
 103                                         * The number of correctable errors
 104                                         * entered into the collector.
 105                                         */
 106
 107        u64 decays_done;                /*
 108                                         * Times we did spring cleaning.
 109                                         */
 110
 111        union {
 112                struct {
 113                        __u32   disabled : 1,   /* cmdline disabled */
 114                        __resv   : 31;
 115                };
 116                __u32 flags;
 117        };
 118} ce_arr;
 119
 120static DEFINE_MUTEX(ce_mutex);
 121static u64 dfs_pfn;
 122
 123/* Amount of errors after which we offline */
 124static unsigned int count_threshold = COUNT_MASK;
 125
 126/*
 127 * The timer "decays" element count each timer_interval which is 24hrs by
 128 * default.
 129 */
 130
 131#define CEC_TIMER_DEFAULT_INTERVAL      24 * 60 * 60    /* 24 hrs */
 132#define CEC_TIMER_MIN_INTERVAL           1 * 60 * 60    /* 1h */
 133#define CEC_TIMER_MAX_INTERVAL     30 * 24 * 60 * 60    /* one month */
 134static struct timer_list cec_timer;
 135static u64 timer_interval = CEC_TIMER_DEFAULT_INTERVAL;
 136
 137/*
 138 * Decrement decay value. We're using DECAY_BITS bits to denote decay of an
 139 * element in the array. On insertion and any access, it gets reset to max.
 140 */
 141static void do_spring_cleaning(struct ce_array *ca)
 142{
 143        int i;
 144
 145        for (i = 0; i < ca->n; i++) {
 146                u8 decay = DECAY(ca->array[i]);
 147
 148                if (!decay)
 149                        continue;
 150
 151                decay--;
 152
 153                ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
 154                ca->array[i] |= (decay << COUNT_BITS);
 155        }
 156        ca->decay_count = 0;
 157        ca->decays_done++;
 158}
 159
 160/*
 161 * @interval in seconds
 162 */
 163static void cec_mod_timer(struct timer_list *t, unsigned long interval)
 164{
 165        unsigned long iv;
 166
 167        iv = interval * HZ + jiffies;
 168
 169        mod_timer(t, round_jiffies(iv));
 170}
 171
 172static void cec_timer_fn(unsigned long data)
 173{
 174        struct ce_array *ca = (struct ce_array *)data;
 175
 176        do_spring_cleaning(ca);
 177
 178        cec_mod_timer(&cec_timer, timer_interval);
 179}
 180
 181/*
 182 * @to: index of the smallest element which is >= then @pfn.
 183 *
 184 * Return the index of the pfn if found, otherwise negative value.
 185 */
 186static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
 187{
 188        u64 this_pfn;
 189        int min = 0, max = ca->n;
 190
 191        while (min < max) {
 192                int tmp = (max + min) >> 1;
 193
 194                this_pfn = PFN(ca->array[tmp]);
 195
 196                if (this_pfn < pfn)
 197                        min = tmp + 1;
 198                else if (this_pfn > pfn)
 199                        max = tmp;
 200                else {
 201                        min = tmp;
 202                        break;
 203                }
 204        }
 205
 206        if (to)
 207                *to = min;
 208
 209        this_pfn = PFN(ca->array[min]);
 210
 211        if (this_pfn == pfn)
 212                return min;
 213
 214        return -ENOKEY;
 215}
 216
 217static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
 218{
 219        WARN_ON(!to);
 220
 221        if (!ca->n) {
 222                *to = 0;
 223                return -ENOKEY;
 224        }
 225        return __find_elem(ca, pfn, to);
 226}
 227
 228static void del_elem(struct ce_array *ca, int idx)
 229{
 230        /* Save us a function call when deleting the last element. */
 231        if (ca->n - (idx + 1))
 232                memmove((void *)&ca->array[idx],
 233                        (void *)&ca->array[idx + 1],
 234                        (ca->n - (idx + 1)) * sizeof(u64));
 235
 236        ca->n--;
 237}
 238
 239static u64 del_lru_elem_unlocked(struct ce_array *ca)
 240{
 241        unsigned int min = FULL_COUNT_MASK;
 242        int i, min_idx = 0;
 243
 244        for (i = 0; i < ca->n; i++) {
 245                unsigned int this = FULL_COUNT(ca->array[i]);
 246
 247                if (min > this) {
 248                        min = this;
 249                        min_idx = i;
 250                }
 251        }
 252
 253        del_elem(ca, min_idx);
 254
 255        return PFN(ca->array[min_idx]);
 256}
 257
 258/*
 259 * We return the 0th pfn in the error case under the assumption that it cannot
 260 * be poisoned and excessive CEs in there are a serious deal anyway.
 261 */
 262static u64 __maybe_unused del_lru_elem(void)
 263{
 264        struct ce_array *ca = &ce_arr;
 265        u64 pfn;
 266
 267        if (!ca->n)
 268                return 0;
 269
 270        mutex_lock(&ce_mutex);
 271        pfn = del_lru_elem_unlocked(ca);
 272        mutex_unlock(&ce_mutex);
 273
 274        return pfn;
 275}
 276
 277
 278int cec_add_elem(u64 pfn)
 279{
 280        struct ce_array *ca = &ce_arr;
 281        unsigned int to;
 282        int count, ret = 0;
 283
 284        /*
 285         * We can be called very early on the identify_cpu() path where we are
 286         * not initialized yet. We ignore the error for simplicity.
 287         */
 288        if (!ce_arr.array || ce_arr.disabled)
 289                return -ENODEV;
 290
 291        ca->ces_entered++;
 292
 293        mutex_lock(&ce_mutex);
 294
 295        if (ca->n == MAX_ELEMS)
 296                WARN_ON(!del_lru_elem_unlocked(ca));
 297
 298        ret = find_elem(ca, pfn, &to);
 299        if (ret < 0) {
 300                /*
 301                 * Shift range [to-end] to make room for one more element.
 302                 */
 303                memmove((void *)&ca->array[to + 1],
 304                        (void *)&ca->array[to],
 305                        (ca->n - to) * sizeof(u64));
 306
 307                ca->array[to] = (pfn << PAGE_SHIFT) |
 308                                (DECAY_MASK << COUNT_BITS) | 1;
 309
 310                ca->n++;
 311
 312                ret = 0;
 313
 314                goto decay;
 315        }
 316
 317        count = COUNT(ca->array[to]);
 318
 319        if (count < count_threshold) {
 320                ca->array[to] |= (DECAY_MASK << COUNT_BITS);
 321                ca->array[to]++;
 322
 323                ret = 0;
 324        } else {
 325                u64 pfn = ca->array[to] >> PAGE_SHIFT;
 326
 327                if (!pfn_valid(pfn)) {
 328                        pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
 329                } else {
 330                        /* We have reached max count for this page, soft-offline it. */
 331                        pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
 332                        memory_failure_queue(pfn, 0, MF_SOFT_OFFLINE);
 333                        ca->pfns_poisoned++;
 334                }
 335
 336                del_elem(ca, to);
 337
 338                /*
 339                 * Return a >0 value to denote that we've reached the offlining
 340                 * threshold.
 341                 */
 342                ret = 1;
 343
 344                goto unlock;
 345        }
 346
 347decay:
 348        ca->decay_count++;
 349
 350        if (ca->decay_count >= CLEAN_ELEMS)
 351                do_spring_cleaning(ca);
 352
 353unlock:
 354        mutex_unlock(&ce_mutex);
 355
 356        return ret;
 357}
 358
 359static int u64_get(void *data, u64 *val)
 360{
 361        *val = *(u64 *)data;
 362
 363        return 0;
 364}
 365
 366static int pfn_set(void *data, u64 val)
 367{
 368        *(u64 *)data = val;
 369
 370        return cec_add_elem(val);
 371}
 372
 373DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
 374
 375static int decay_interval_set(void *data, u64 val)
 376{
 377        *(u64 *)data = val;
 378
 379        if (val < CEC_TIMER_MIN_INTERVAL)
 380                return -EINVAL;
 381
 382        if (val > CEC_TIMER_MAX_INTERVAL)
 383                return -EINVAL;
 384
 385        timer_interval = val;
 386
 387        cec_mod_timer(&cec_timer, timer_interval);
 388        return 0;
 389}
 390DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
 391
 392static int count_threshold_set(void *data, u64 val)
 393{
 394        *(u64 *)data = val;
 395
 396        if (val > COUNT_MASK)
 397                val = COUNT_MASK;
 398
 399        count_threshold = val;
 400
 401        return 0;
 402}
 403DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n");
 404
 405static int array_dump(struct seq_file *m, void *v)
 406{
 407        struct ce_array *ca = &ce_arr;
 408        u64 prev = 0;
 409        int i;
 410
 411        mutex_lock(&ce_mutex);
 412
 413        seq_printf(m, "{ n: %d\n", ca->n);
 414        for (i = 0; i < ca->n; i++) {
 415                u64 this = PFN(ca->array[i]);
 416
 417                seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
 418
 419                WARN_ON(prev > this);
 420
 421                prev = this;
 422        }
 423
 424        seq_printf(m, "}\n");
 425
 426        seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
 427                   ca->ces_entered, ca->pfns_poisoned);
 428
 429        seq_printf(m, "Flags: 0x%x\n", ca->flags);
 430
 431        seq_printf(m, "Timer interval: %lld seconds\n", timer_interval);
 432        seq_printf(m, "Decays: %lld\n", ca->decays_done);
 433
 434        seq_printf(m, "Action threshold: %d\n", count_threshold);
 435
 436        mutex_unlock(&ce_mutex);
 437
 438        return 0;
 439}
 440
 441static int array_open(struct inode *inode, struct file *filp)
 442{
 443        return single_open(filp, array_dump, NULL);
 444}
 445
 446static const struct file_operations array_ops = {
 447        .owner   = THIS_MODULE,
 448        .open    = array_open,
 449        .read    = seq_read,
 450        .llseek  = seq_lseek,
 451        .release = single_release,
 452};
 453
 454static int __init create_debugfs_nodes(void)
 455{
 456        struct dentry *d, *pfn, *decay, *count, *array;
 457
 458        d = debugfs_create_dir("cec", ras_debugfs_dir);
 459        if (!d) {
 460                pr_warn("Error creating cec debugfs node!\n");
 461                return -1;
 462        }
 463
 464        pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
 465        if (!pfn) {
 466                pr_warn("Error creating pfn debugfs node!\n");
 467                goto err;
 468        }
 469
 470        array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops);
 471        if (!array) {
 472                pr_warn("Error creating array debugfs node!\n");
 473                goto err;
 474        }
 475
 476        decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
 477                                    &timer_interval, &decay_interval_ops);
 478        if (!decay) {
 479                pr_warn("Error creating decay_interval debugfs node!\n");
 480                goto err;
 481        }
 482
 483        count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d,
 484                                    &count_threshold, &count_threshold_ops);
 485        if (!count) {
 486                pr_warn("Error creating count_threshold debugfs node!\n");
 487                goto err;
 488        }
 489
 490
 491        return 0;
 492
 493err:
 494        debugfs_remove_recursive(d);
 495
 496        return 1;
 497}
 498
 499void __init cec_init(void)
 500{
 501        if (ce_arr.disabled)
 502                return;
 503
 504        ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
 505        if (!ce_arr.array) {
 506                pr_err("Error allocating CE array page!\n");
 507                return;
 508        }
 509
 510        if (create_debugfs_nodes())
 511                return;
 512
 513        setup_timer(&cec_timer, cec_timer_fn, (unsigned long)&ce_arr);
 514        cec_mod_timer(&cec_timer, CEC_TIMER_DEFAULT_INTERVAL);
 515
 516        pr_info("Correctable Errors collector initialized.\n");
 517}
 518
 519int __init parse_cec_param(char *str)
 520{
 521        if (!str)
 522                return 0;
 523
 524        if (*str == '=')
 525                str++;
 526
 527        if (!strcmp(str, "cec_disable"))
 528                ce_arr.disabled = 1;
 529        else
 530                return 0;
 531
 532        return 1;
 533}
 534