linux/drivers/spi/spi-pxa2xx.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 * Copyright (C) 2013, Intel Corporation
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/bitops.h>
  17#include <linux/init.h>
  18#include <linux/module.h>
  19#include <linux/device.h>
  20#include <linux/ioport.h>
  21#include <linux/errno.h>
  22#include <linux/err.h>
  23#include <linux/interrupt.h>
  24#include <linux/kernel.h>
  25#include <linux/pci.h>
  26#include <linux/platform_device.h>
  27#include <linux/spi/pxa2xx_spi.h>
  28#include <linux/spi/spi.h>
  29#include <linux/delay.h>
  30#include <linux/gpio.h>
  31#include <linux/gpio/consumer.h>
  32#include <linux/slab.h>
  33#include <linux/clk.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/acpi.h>
  36
  37#include "spi-pxa2xx.h"
  38
  39MODULE_AUTHOR("Stephen Street");
  40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41MODULE_LICENSE("GPL");
  42MODULE_ALIAS("platform:pxa2xx-spi");
  43
  44#define TIMOUT_DFLT             1000
  45
  46/*
  47 * for testing SSCR1 changes that require SSP restart, basically
  48 * everything except the service and interrupt enables, the pxa270 developer
  49 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  50 * list, but the PXA255 dev man says all bits without really meaning the
  51 * service and interrupt enables
  52 */
  53#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  54                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  55                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  56                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  57                                | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  58                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF   \
  61                                | QUARK_X1000_SSCR1_EFWR        \
  62                                | QUARK_X1000_SSCR1_RFT         \
  63                                | QUARK_X1000_SSCR1_TFT         \
  64                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  65
  66#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  67                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  68                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  69                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  70                                | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  71                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  72
  73#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE   BIT(24)
  74#define LPSS_CS_CONTROL_SW_MODE                 BIT(0)
  75#define LPSS_CS_CONTROL_CS_HIGH                 BIT(1)
  76#define LPSS_CAPS_CS_EN_SHIFT                   9
  77#define LPSS_CAPS_CS_EN_MASK                    (0xf << LPSS_CAPS_CS_EN_SHIFT)
  78
  79struct lpss_config {
  80        /* LPSS offset from drv_data->ioaddr */
  81        unsigned offset;
  82        /* Register offsets from drv_data->lpss_base or -1 */
  83        int reg_general;
  84        int reg_ssp;
  85        int reg_cs_ctrl;
  86        int reg_capabilities;
  87        /* FIFO thresholds */
  88        u32 rx_threshold;
  89        u32 tx_threshold_lo;
  90        u32 tx_threshold_hi;
  91        /* Chip select control */
  92        unsigned cs_sel_shift;
  93        unsigned cs_sel_mask;
  94        unsigned cs_num;
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99        {       /* LPSS_LPT_SSP */
 100                .offset = 0x800,
 101                .reg_general = 0x08,
 102                .reg_ssp = 0x0c,
 103                .reg_cs_ctrl = 0x18,
 104                .reg_capabilities = -1,
 105                .rx_threshold = 64,
 106                .tx_threshold_lo = 160,
 107                .tx_threshold_hi = 224,
 108        },
 109        {       /* LPSS_BYT_SSP */
 110                .offset = 0x400,
 111                .reg_general = 0x08,
 112                .reg_ssp = 0x0c,
 113                .reg_cs_ctrl = 0x18,
 114                .reg_capabilities = -1,
 115                .rx_threshold = 64,
 116                .tx_threshold_lo = 160,
 117                .tx_threshold_hi = 224,
 118        },
 119        {       /* LPSS_BSW_SSP */
 120                .offset = 0x400,
 121                .reg_general = 0x08,
 122                .reg_ssp = 0x0c,
 123                .reg_cs_ctrl = 0x18,
 124                .reg_capabilities = -1,
 125                .rx_threshold = 64,
 126                .tx_threshold_lo = 160,
 127                .tx_threshold_hi = 224,
 128                .cs_sel_shift = 2,
 129                .cs_sel_mask = 1 << 2,
 130                .cs_num = 2,
 131        },
 132        {       /* LPSS_SPT_SSP */
 133                .offset = 0x200,
 134                .reg_general = -1,
 135                .reg_ssp = 0x20,
 136                .reg_cs_ctrl = 0x24,
 137                .reg_capabilities = -1,
 138                .rx_threshold = 1,
 139                .tx_threshold_lo = 32,
 140                .tx_threshold_hi = 56,
 141        },
 142        {       /* LPSS_BXT_SSP */
 143                .offset = 0x200,
 144                .reg_general = -1,
 145                .reg_ssp = 0x20,
 146                .reg_cs_ctrl = 0x24,
 147                .reg_capabilities = 0xfc,
 148                .rx_threshold = 1,
 149                .tx_threshold_lo = 16,
 150                .tx_threshold_hi = 48,
 151                .cs_sel_shift = 8,
 152                .cs_sel_mask = 3 << 8,
 153        },
 154        {       /* LPSS_CNL_SSP */
 155                .offset = 0x200,
 156                .reg_general = -1,
 157                .reg_ssp = 0x20,
 158                .reg_cs_ctrl = 0x24,
 159                .reg_capabilities = 0xfc,
 160                .rx_threshold = 1,
 161                .tx_threshold_lo = 32,
 162                .tx_threshold_hi = 56,
 163                .cs_sel_shift = 8,
 164                .cs_sel_mask = 3 << 8,
 165        },
 166};
 167
 168static inline const struct lpss_config
 169*lpss_get_config(const struct driver_data *drv_data)
 170{
 171        return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 172}
 173
 174static bool is_lpss_ssp(const struct driver_data *drv_data)
 175{
 176        switch (drv_data->ssp_type) {
 177        case LPSS_LPT_SSP:
 178        case LPSS_BYT_SSP:
 179        case LPSS_BSW_SSP:
 180        case LPSS_SPT_SSP:
 181        case LPSS_BXT_SSP:
 182        case LPSS_CNL_SSP:
 183                return true;
 184        default:
 185                return false;
 186        }
 187}
 188
 189static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 190{
 191        return drv_data->ssp_type == QUARK_X1000_SSP;
 192}
 193
 194static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 195{
 196        switch (drv_data->ssp_type) {
 197        case QUARK_X1000_SSP:
 198                return QUARK_X1000_SSCR1_CHANGE_MASK;
 199        case CE4100_SSP:
 200                return CE4100_SSCR1_CHANGE_MASK;
 201        default:
 202                return SSCR1_CHANGE_MASK;
 203        }
 204}
 205
 206static u32
 207pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 208{
 209        switch (drv_data->ssp_type) {
 210        case QUARK_X1000_SSP:
 211                return RX_THRESH_QUARK_X1000_DFLT;
 212        case CE4100_SSP:
 213                return RX_THRESH_CE4100_DFLT;
 214        default:
 215                return RX_THRESH_DFLT;
 216        }
 217}
 218
 219static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 220{
 221        u32 mask;
 222
 223        switch (drv_data->ssp_type) {
 224        case QUARK_X1000_SSP:
 225                mask = QUARK_X1000_SSSR_TFL_MASK;
 226                break;
 227        case CE4100_SSP:
 228                mask = CE4100_SSSR_TFL_MASK;
 229                break;
 230        default:
 231                mask = SSSR_TFL_MASK;
 232                break;
 233        }
 234
 235        return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 236}
 237
 238static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 239                                     u32 *sccr1_reg)
 240{
 241        u32 mask;
 242
 243        switch (drv_data->ssp_type) {
 244        case QUARK_X1000_SSP:
 245                mask = QUARK_X1000_SSCR1_RFT;
 246                break;
 247        case CE4100_SSP:
 248                mask = CE4100_SSCR1_RFT;
 249                break;
 250        default:
 251                mask = SSCR1_RFT;
 252                break;
 253        }
 254        *sccr1_reg &= ~mask;
 255}
 256
 257static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 258                                   u32 *sccr1_reg, u32 threshold)
 259{
 260        switch (drv_data->ssp_type) {
 261        case QUARK_X1000_SSP:
 262                *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 263                break;
 264        case CE4100_SSP:
 265                *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 266                break;
 267        default:
 268                *sccr1_reg |= SSCR1_RxTresh(threshold);
 269                break;
 270        }
 271}
 272
 273static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 274                                  u32 clk_div, u8 bits)
 275{
 276        switch (drv_data->ssp_type) {
 277        case QUARK_X1000_SSP:
 278                return clk_div
 279                        | QUARK_X1000_SSCR0_Motorola
 280                        | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 281                        | SSCR0_SSE;
 282        default:
 283                return clk_div
 284                        | SSCR0_Motorola
 285                        | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 286                        | SSCR0_SSE
 287                        | (bits > 16 ? SSCR0_EDSS : 0);
 288        }
 289}
 290
 291/*
 292 * Read and write LPSS SSP private registers. Caller must first check that
 293 * is_lpss_ssp() returns true before these can be called.
 294 */
 295static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 296{
 297        WARN_ON(!drv_data->lpss_base);
 298        return readl(drv_data->lpss_base + offset);
 299}
 300
 301static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 302                                  unsigned offset, u32 value)
 303{
 304        WARN_ON(!drv_data->lpss_base);
 305        writel(value, drv_data->lpss_base + offset);
 306}
 307
 308/*
 309 * lpss_ssp_setup - perform LPSS SSP specific setup
 310 * @drv_data: pointer to the driver private data
 311 *
 312 * Perform LPSS SSP specific setup. This function must be called first if
 313 * one is going to use LPSS SSP private registers.
 314 */
 315static void lpss_ssp_setup(struct driver_data *drv_data)
 316{
 317        const struct lpss_config *config;
 318        u32 value;
 319
 320        config = lpss_get_config(drv_data);
 321        drv_data->lpss_base = drv_data->ioaddr + config->offset;
 322
 323        /* Enable software chip select control */
 324        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 325        value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 326        value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 327        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 328
 329        /* Enable multiblock DMA transfers */
 330        if (drv_data->master_info->enable_dma) {
 331                __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 332
 333                if (config->reg_general >= 0) {
 334                        value = __lpss_ssp_read_priv(drv_data,
 335                                                     config->reg_general);
 336                        value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 337                        __lpss_ssp_write_priv(drv_data,
 338                                              config->reg_general, value);
 339                }
 340        }
 341}
 342
 343static void lpss_ssp_select_cs(struct driver_data *drv_data,
 344                               const struct lpss_config *config)
 345{
 346        u32 value, cs;
 347
 348        if (!config->cs_sel_mask)
 349                return;
 350
 351        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 352
 353        cs = drv_data->master->cur_msg->spi->chip_select;
 354        cs <<= config->cs_sel_shift;
 355        if (cs != (value & config->cs_sel_mask)) {
 356                /*
 357                 * When switching another chip select output active the
 358                 * output must be selected first and wait 2 ssp_clk cycles
 359                 * before changing state to active. Otherwise a short
 360                 * glitch will occur on the previous chip select since
 361                 * output select is latched but state control is not.
 362                 */
 363                value &= ~config->cs_sel_mask;
 364                value |= cs;
 365                __lpss_ssp_write_priv(drv_data,
 366                                      config->reg_cs_ctrl, value);
 367                ndelay(1000000000 /
 368                       (drv_data->master->max_speed_hz / 2));
 369        }
 370}
 371
 372static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
 373{
 374        const struct lpss_config *config;
 375        u32 value;
 376
 377        config = lpss_get_config(drv_data);
 378
 379        if (enable)
 380                lpss_ssp_select_cs(drv_data, config);
 381
 382        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 383        if (enable)
 384                value &= ~LPSS_CS_CONTROL_CS_HIGH;
 385        else
 386                value |= LPSS_CS_CONTROL_CS_HIGH;
 387        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 388}
 389
 390static void cs_assert(struct driver_data *drv_data)
 391{
 392        struct chip_data *chip =
 393                spi_get_ctldata(drv_data->master->cur_msg->spi);
 394
 395        if (drv_data->ssp_type == CE4100_SSP) {
 396                pxa2xx_spi_write(drv_data, SSSR, chip->frm);
 397                return;
 398        }
 399
 400        if (chip->cs_control) {
 401                chip->cs_control(PXA2XX_CS_ASSERT);
 402                return;
 403        }
 404
 405        if (chip->gpiod_cs) {
 406                gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
 407                return;
 408        }
 409
 410        if (is_lpss_ssp(drv_data))
 411                lpss_ssp_cs_control(drv_data, true);
 412}
 413
 414static void cs_deassert(struct driver_data *drv_data)
 415{
 416        struct chip_data *chip =
 417                spi_get_ctldata(drv_data->master->cur_msg->spi);
 418
 419        if (drv_data->ssp_type == CE4100_SSP)
 420                return;
 421
 422        if (chip->cs_control) {
 423                chip->cs_control(PXA2XX_CS_DEASSERT);
 424                return;
 425        }
 426
 427        if (chip->gpiod_cs) {
 428                gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
 429                return;
 430        }
 431
 432        if (is_lpss_ssp(drv_data))
 433                lpss_ssp_cs_control(drv_data, false);
 434}
 435
 436int pxa2xx_spi_flush(struct driver_data *drv_data)
 437{
 438        unsigned long limit = loops_per_jiffy << 1;
 439
 440        do {
 441                while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 442                        pxa2xx_spi_read(drv_data, SSDR);
 443        } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 444        write_SSSR_CS(drv_data, SSSR_ROR);
 445
 446        return limit;
 447}
 448
 449static int null_writer(struct driver_data *drv_data)
 450{
 451        u8 n_bytes = drv_data->n_bytes;
 452
 453        if (pxa2xx_spi_txfifo_full(drv_data)
 454                || (drv_data->tx == drv_data->tx_end))
 455                return 0;
 456
 457        pxa2xx_spi_write(drv_data, SSDR, 0);
 458        drv_data->tx += n_bytes;
 459
 460        return 1;
 461}
 462
 463static int null_reader(struct driver_data *drv_data)
 464{
 465        u8 n_bytes = drv_data->n_bytes;
 466
 467        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 468               && (drv_data->rx < drv_data->rx_end)) {
 469                pxa2xx_spi_read(drv_data, SSDR);
 470                drv_data->rx += n_bytes;
 471        }
 472
 473        return drv_data->rx == drv_data->rx_end;
 474}
 475
 476static int u8_writer(struct driver_data *drv_data)
 477{
 478        if (pxa2xx_spi_txfifo_full(drv_data)
 479                || (drv_data->tx == drv_data->tx_end))
 480                return 0;
 481
 482        pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 483        ++drv_data->tx;
 484
 485        return 1;
 486}
 487
 488static int u8_reader(struct driver_data *drv_data)
 489{
 490        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 491               && (drv_data->rx < drv_data->rx_end)) {
 492                *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 493                ++drv_data->rx;
 494        }
 495
 496        return drv_data->rx == drv_data->rx_end;
 497}
 498
 499static int u16_writer(struct driver_data *drv_data)
 500{
 501        if (pxa2xx_spi_txfifo_full(drv_data)
 502                || (drv_data->tx == drv_data->tx_end))
 503                return 0;
 504
 505        pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 506        drv_data->tx += 2;
 507
 508        return 1;
 509}
 510
 511static int u16_reader(struct driver_data *drv_data)
 512{
 513        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 514               && (drv_data->rx < drv_data->rx_end)) {
 515                *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 516                drv_data->rx += 2;
 517        }
 518
 519        return drv_data->rx == drv_data->rx_end;
 520}
 521
 522static int u32_writer(struct driver_data *drv_data)
 523{
 524        if (pxa2xx_spi_txfifo_full(drv_data)
 525                || (drv_data->tx == drv_data->tx_end))
 526                return 0;
 527
 528        pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 529        drv_data->tx += 4;
 530
 531        return 1;
 532}
 533
 534static int u32_reader(struct driver_data *drv_data)
 535{
 536        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 537               && (drv_data->rx < drv_data->rx_end)) {
 538                *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 539                drv_data->rx += 4;
 540        }
 541
 542        return drv_data->rx == drv_data->rx_end;
 543}
 544
 545void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
 546{
 547        struct spi_message *msg = drv_data->master->cur_msg;
 548        struct spi_transfer *trans = drv_data->cur_transfer;
 549
 550        /* Move to next transfer */
 551        if (trans->transfer_list.next != &msg->transfers) {
 552                drv_data->cur_transfer =
 553                        list_entry(trans->transfer_list.next,
 554                                        struct spi_transfer,
 555                                        transfer_list);
 556                return RUNNING_STATE;
 557        } else
 558                return DONE_STATE;
 559}
 560
 561/* caller already set message->status; dma and pio irqs are blocked */
 562static void giveback(struct driver_data *drv_data)
 563{
 564        struct spi_transfer* last_transfer;
 565        struct spi_message *msg;
 566        unsigned long timeout;
 567
 568        msg = drv_data->master->cur_msg;
 569        drv_data->cur_transfer = NULL;
 570
 571        last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
 572                                        transfer_list);
 573
 574        /* Delay if requested before any change in chip select */
 575        if (last_transfer->delay_usecs)
 576                udelay(last_transfer->delay_usecs);
 577
 578        /* Wait until SSP becomes idle before deasserting the CS */
 579        timeout = jiffies + msecs_to_jiffies(10);
 580        while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 581               !time_after(jiffies, timeout))
 582                cpu_relax();
 583
 584        /* Drop chip select UNLESS cs_change is true or we are returning
 585         * a message with an error, or next message is for another chip
 586         */
 587        if (!last_transfer->cs_change)
 588                cs_deassert(drv_data);
 589        else {
 590                struct spi_message *next_msg;
 591
 592                /* Holding of cs was hinted, but we need to make sure
 593                 * the next message is for the same chip.  Don't waste
 594                 * time with the following tests unless this was hinted.
 595                 *
 596                 * We cannot postpone this until pump_messages, because
 597                 * after calling msg->complete (below) the driver that
 598                 * sent the current message could be unloaded, which
 599                 * could invalidate the cs_control() callback...
 600                 */
 601
 602                /* get a pointer to the next message, if any */
 603                next_msg = spi_get_next_queued_message(drv_data->master);
 604
 605                /* see if the next and current messages point
 606                 * to the same chip
 607                 */
 608                if ((next_msg && next_msg->spi != msg->spi) ||
 609                    msg->state == ERROR_STATE)
 610                        cs_deassert(drv_data);
 611        }
 612
 613        spi_finalize_current_message(drv_data->master);
 614}
 615
 616static void reset_sccr1(struct driver_data *drv_data)
 617{
 618        struct chip_data *chip =
 619                spi_get_ctldata(drv_data->master->cur_msg->spi);
 620        u32 sccr1_reg;
 621
 622        sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 623        switch (drv_data->ssp_type) {
 624        case QUARK_X1000_SSP:
 625                sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
 626                break;
 627        case CE4100_SSP:
 628                sccr1_reg &= ~CE4100_SSCR1_RFT;
 629                break;
 630        default:
 631                sccr1_reg &= ~SSCR1_RFT;
 632                break;
 633        }
 634        sccr1_reg |= chip->threshold;
 635        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 636}
 637
 638static void int_error_stop(struct driver_data *drv_data, const char* msg)
 639{
 640        /* Stop and reset SSP */
 641        write_SSSR_CS(drv_data, drv_data->clear_sr);
 642        reset_sccr1(drv_data);
 643        if (!pxa25x_ssp_comp(drv_data))
 644                pxa2xx_spi_write(drv_data, SSTO, 0);
 645        pxa2xx_spi_flush(drv_data);
 646        pxa2xx_spi_write(drv_data, SSCR0,
 647                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 648
 649        dev_err(&drv_data->pdev->dev, "%s\n", msg);
 650
 651        drv_data->master->cur_msg->state = ERROR_STATE;
 652        tasklet_schedule(&drv_data->pump_transfers);
 653}
 654
 655static void int_transfer_complete(struct driver_data *drv_data)
 656{
 657        /* Clear and disable interrupts */
 658        write_SSSR_CS(drv_data, drv_data->clear_sr);
 659        reset_sccr1(drv_data);
 660        if (!pxa25x_ssp_comp(drv_data))
 661                pxa2xx_spi_write(drv_data, SSTO, 0);
 662
 663        /* Update total byte transferred return count actual bytes read */
 664        drv_data->master->cur_msg->actual_length += drv_data->len -
 665                                (drv_data->rx_end - drv_data->rx);
 666
 667        /* Transfer delays and chip select release are
 668         * handled in pump_transfers or giveback
 669         */
 670
 671        /* Move to next transfer */
 672        drv_data->master->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
 673
 674        /* Schedule transfer tasklet */
 675        tasklet_schedule(&drv_data->pump_transfers);
 676}
 677
 678static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 679{
 680        u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 681                       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 682
 683        u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 684
 685        if (irq_status & SSSR_ROR) {
 686                int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 687                return IRQ_HANDLED;
 688        }
 689
 690        if (irq_status & SSSR_TINT) {
 691                pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 692                if (drv_data->read(drv_data)) {
 693                        int_transfer_complete(drv_data);
 694                        return IRQ_HANDLED;
 695                }
 696        }
 697
 698        /* Drain rx fifo, Fill tx fifo and prevent overruns */
 699        do {
 700                if (drv_data->read(drv_data)) {
 701                        int_transfer_complete(drv_data);
 702                        return IRQ_HANDLED;
 703                }
 704        } while (drv_data->write(drv_data));
 705
 706        if (drv_data->read(drv_data)) {
 707                int_transfer_complete(drv_data);
 708                return IRQ_HANDLED;
 709        }
 710
 711        if (drv_data->tx == drv_data->tx_end) {
 712                u32 bytes_left;
 713                u32 sccr1_reg;
 714
 715                sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 716                sccr1_reg &= ~SSCR1_TIE;
 717
 718                /*
 719                 * PXA25x_SSP has no timeout, set up rx threshould for the
 720                 * remaining RX bytes.
 721                 */
 722                if (pxa25x_ssp_comp(drv_data)) {
 723                        u32 rx_thre;
 724
 725                        pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 726
 727                        bytes_left = drv_data->rx_end - drv_data->rx;
 728                        switch (drv_data->n_bytes) {
 729                        case 4:
 730                                bytes_left >>= 1;
 731                        case 2:
 732                                bytes_left >>= 1;
 733                        }
 734
 735                        rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 736                        if (rx_thre > bytes_left)
 737                                rx_thre = bytes_left;
 738
 739                        pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 740                }
 741                pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 742        }
 743
 744        /* We did something */
 745        return IRQ_HANDLED;
 746}
 747
 748static void handle_bad_msg(struct driver_data *drv_data)
 749{
 750        pxa2xx_spi_write(drv_data, SSCR0,
 751                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 752        pxa2xx_spi_write(drv_data, SSCR1,
 753                         pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
 754        if (!pxa25x_ssp_comp(drv_data))
 755                pxa2xx_spi_write(drv_data, SSTO, 0);
 756        write_SSSR_CS(drv_data, drv_data->clear_sr);
 757
 758        dev_err(&drv_data->pdev->dev,
 759                "bad message state in interrupt handler\n");
 760}
 761
 762static irqreturn_t ssp_int(int irq, void *dev_id)
 763{
 764        struct driver_data *drv_data = dev_id;
 765        u32 sccr1_reg;
 766        u32 mask = drv_data->mask_sr;
 767        u32 status;
 768
 769        /*
 770         * The IRQ might be shared with other peripherals so we must first
 771         * check that are we RPM suspended or not. If we are we assume that
 772         * the IRQ was not for us (we shouldn't be RPM suspended when the
 773         * interrupt is enabled).
 774         */
 775        if (pm_runtime_suspended(&drv_data->pdev->dev))
 776                return IRQ_NONE;
 777
 778        /*
 779         * If the device is not yet in RPM suspended state and we get an
 780         * interrupt that is meant for another device, check if status bits
 781         * are all set to one. That means that the device is already
 782         * powered off.
 783         */
 784        status = pxa2xx_spi_read(drv_data, SSSR);
 785        if (status == ~0)
 786                return IRQ_NONE;
 787
 788        sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 789
 790        /* Ignore possible writes if we don't need to write */
 791        if (!(sccr1_reg & SSCR1_TIE))
 792                mask &= ~SSSR_TFS;
 793
 794        /* Ignore RX timeout interrupt if it is disabled */
 795        if (!(sccr1_reg & SSCR1_TINTE))
 796                mask &= ~SSSR_TINT;
 797
 798        if (!(status & mask))
 799                return IRQ_NONE;
 800
 801        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 802        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 803
 804        if (!drv_data->master->cur_msg) {
 805                handle_bad_msg(drv_data);
 806                /* Never fail */
 807                return IRQ_HANDLED;
 808        }
 809
 810        return drv_data->transfer_handler(drv_data);
 811}
 812
 813/*
 814 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 815 * input frequency by fractions of 2^24. It also has a divider by 5.
 816 *
 817 * There are formulas to get baud rate value for given input frequency and
 818 * divider parameters, such as DDS_CLK_RATE and SCR:
 819 *
 820 * Fsys = 200MHz
 821 *
 822 * Fssp = Fsys * DDS_CLK_RATE / 2^24                    (1)
 823 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))           (2)
 824 *
 825 * DDS_CLK_RATE either 2^n or 2^n / 5.
 826 * SCR is in range 0 .. 255
 827 *
 828 * Divisor = 5^i * 2^j * 2 * k
 829 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 830 *       j = [0, 23]     j = 0 iff i = 1
 831 *       k = [1, 256]
 832 * Special case: j = 0, i = 1: Divisor = 2 / 5
 833 *
 834 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 835 * are:
 836 *      Case 1:         2^n, n = [0, 23]
 837 *      Case 2:         2^24 * 2 / 5 (0x666666)
 838 *      Case 3:         less than or equal to 2^24 / 5 / 16 (0x33333)
 839 *
 840 * In all cases the lowest possible value is better.
 841 *
 842 * The function calculates parameters for all cases and chooses the one closest
 843 * to the asked baud rate.
 844 */
 845static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 846{
 847        unsigned long xtal = 200000000;
 848        unsigned long fref = xtal / 2;          /* mandatory division by 2,
 849                                                   see (2) */
 850                                                /* case 3 */
 851        unsigned long fref1 = fref / 2;         /* case 1 */
 852        unsigned long fref2 = fref * 2 / 5;     /* case 2 */
 853        unsigned long scale;
 854        unsigned long q, q1, q2;
 855        long r, r1, r2;
 856        u32 mul;
 857
 858        /* Case 1 */
 859
 860        /* Set initial value for DDS_CLK_RATE */
 861        mul = (1 << 24) >> 1;
 862
 863        /* Calculate initial quot */
 864        q1 = DIV_ROUND_UP(fref1, rate);
 865
 866        /* Scale q1 if it's too big */
 867        if (q1 > 256) {
 868                /* Scale q1 to range [1, 512] */
 869                scale = fls_long(q1 - 1);
 870                if (scale > 9) {
 871                        q1 >>= scale - 9;
 872                        mul >>= scale - 9;
 873                }
 874
 875                /* Round the result if we have a remainder */
 876                q1 += q1 & 1;
 877        }
 878
 879        /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 880        scale = __ffs(q1);
 881        q1 >>= scale;
 882        mul >>= scale;
 883
 884        /* Get the remainder */
 885        r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 886
 887        /* Case 2 */
 888
 889        q2 = DIV_ROUND_UP(fref2, rate);
 890        r2 = abs(fref2 / q2 - rate);
 891
 892        /*
 893         * Choose the best between two: less remainder we have the better. We
 894         * can't go case 2 if q2 is greater than 256 since SCR register can
 895         * hold only values 0 .. 255.
 896         */
 897        if (r2 >= r1 || q2 > 256) {
 898                /* case 1 is better */
 899                r = r1;
 900                q = q1;
 901        } else {
 902                /* case 2 is better */
 903                r = r2;
 904                q = q2;
 905                mul = (1 << 24) * 2 / 5;
 906        }
 907
 908        /* Check case 3 only if the divisor is big enough */
 909        if (fref / rate >= 80) {
 910                u64 fssp;
 911                u32 m;
 912
 913                /* Calculate initial quot */
 914                q1 = DIV_ROUND_UP(fref, rate);
 915                m = (1 << 24) / q1;
 916
 917                /* Get the remainder */
 918                fssp = (u64)fref * m;
 919                do_div(fssp, 1 << 24);
 920                r1 = abs(fssp - rate);
 921
 922                /* Choose this one if it suits better */
 923                if (r1 < r) {
 924                        /* case 3 is better */
 925                        q = 1;
 926                        mul = m;
 927                }
 928        }
 929
 930        *dds = mul;
 931        return q - 1;
 932}
 933
 934static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 935{
 936        unsigned long ssp_clk = drv_data->master->max_speed_hz;
 937        const struct ssp_device *ssp = drv_data->ssp;
 938
 939        rate = min_t(int, ssp_clk, rate);
 940
 941        if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 942                return (ssp_clk / (2 * rate) - 1) & 0xff;
 943        else
 944                return (ssp_clk / rate - 1) & 0xfff;
 945}
 946
 947static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 948                                           int rate)
 949{
 950        struct chip_data *chip =
 951                spi_get_ctldata(drv_data->master->cur_msg->spi);
 952        unsigned int clk_div;
 953
 954        switch (drv_data->ssp_type) {
 955        case QUARK_X1000_SSP:
 956                clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 957                break;
 958        default:
 959                clk_div = ssp_get_clk_div(drv_data, rate);
 960                break;
 961        }
 962        return clk_div << 8;
 963}
 964
 965static bool pxa2xx_spi_can_dma(struct spi_master *master,
 966                               struct spi_device *spi,
 967                               struct spi_transfer *xfer)
 968{
 969        struct chip_data *chip = spi_get_ctldata(spi);
 970
 971        return chip->enable_dma &&
 972               xfer->len <= MAX_DMA_LEN &&
 973               xfer->len >= chip->dma_burst_size;
 974}
 975
 976static void pump_transfers(unsigned long data)
 977{
 978        struct driver_data *drv_data = (struct driver_data *)data;
 979        struct spi_master *master = drv_data->master;
 980        struct spi_message *message = master->cur_msg;
 981        struct chip_data *chip = spi_get_ctldata(message->spi);
 982        u32 dma_thresh = chip->dma_threshold;
 983        u32 dma_burst = chip->dma_burst_size;
 984        u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 985        struct spi_transfer *transfer;
 986        struct spi_transfer *previous;
 987        u32 clk_div;
 988        u8 bits;
 989        u32 speed;
 990        u32 cr0;
 991        u32 cr1;
 992        int err;
 993        int dma_mapped;
 994
 995        /* Get current state information */
 996        transfer = drv_data->cur_transfer;
 997
 998        /* Handle for abort */
 999        if (message->state == ERROR_STATE) {
1000                message->status = -EIO;
1001                giveback(drv_data);
1002                return;
1003        }
1004
1005        /* Handle end of message */
1006        if (message->state == DONE_STATE) {
1007                message->status = 0;
1008                giveback(drv_data);
1009                return;
1010        }
1011
1012        /* Delay if requested at end of transfer before CS change */
1013        if (message->state == RUNNING_STATE) {
1014                previous = list_entry(transfer->transfer_list.prev,
1015                                        struct spi_transfer,
1016                                        transfer_list);
1017                if (previous->delay_usecs)
1018                        udelay(previous->delay_usecs);
1019
1020                /* Drop chip select only if cs_change is requested */
1021                if (previous->cs_change)
1022                        cs_deassert(drv_data);
1023        }
1024
1025        /* Check if we can DMA this transfer */
1026        if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
1027
1028                /* reject already-mapped transfers; PIO won't always work */
1029                if (message->is_dma_mapped
1030                                || transfer->rx_dma || transfer->tx_dma) {
1031                        dev_err(&drv_data->pdev->dev,
1032                                "pump_transfers: mapped transfer length of "
1033                                "%u is greater than %d\n",
1034                                transfer->len, MAX_DMA_LEN);
1035                        message->status = -EINVAL;
1036                        giveback(drv_data);
1037                        return;
1038                }
1039
1040                /* warn ... we force this to PIO mode */
1041                dev_warn_ratelimited(&message->spi->dev,
1042                                     "pump_transfers: DMA disabled for transfer length %ld "
1043                                     "greater than %d\n",
1044                                     (long)drv_data->len, MAX_DMA_LEN);
1045        }
1046
1047        /* Setup the transfer state based on the type of transfer */
1048        if (pxa2xx_spi_flush(drv_data) == 0) {
1049                dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1050                message->status = -EIO;
1051                giveback(drv_data);
1052                return;
1053        }
1054        drv_data->n_bytes = chip->n_bytes;
1055        drv_data->tx = (void *)transfer->tx_buf;
1056        drv_data->tx_end = drv_data->tx + transfer->len;
1057        drv_data->rx = transfer->rx_buf;
1058        drv_data->rx_end = drv_data->rx + transfer->len;
1059        drv_data->len = transfer->len;
1060        drv_data->write = drv_data->tx ? chip->write : null_writer;
1061        drv_data->read = drv_data->rx ? chip->read : null_reader;
1062
1063        /* Change speed and bit per word on a per transfer */
1064        bits = transfer->bits_per_word;
1065        speed = transfer->speed_hz;
1066
1067        clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1068
1069        if (bits <= 8) {
1070                drv_data->n_bytes = 1;
1071                drv_data->read = drv_data->read != null_reader ?
1072                                        u8_reader : null_reader;
1073                drv_data->write = drv_data->write != null_writer ?
1074                                        u8_writer : null_writer;
1075        } else if (bits <= 16) {
1076                drv_data->n_bytes = 2;
1077                drv_data->read = drv_data->read != null_reader ?
1078                                        u16_reader : null_reader;
1079                drv_data->write = drv_data->write != null_writer ?
1080                                        u16_writer : null_writer;
1081        } else if (bits <= 32) {
1082                drv_data->n_bytes = 4;
1083                drv_data->read = drv_data->read != null_reader ?
1084                                        u32_reader : null_reader;
1085                drv_data->write = drv_data->write != null_writer ?
1086                                        u32_writer : null_writer;
1087        }
1088        /*
1089         * if bits/word is changed in dma mode, then must check the
1090         * thresholds and burst also
1091         */
1092        if (chip->enable_dma) {
1093                if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1094                                                message->spi,
1095                                                bits, &dma_burst,
1096                                                &dma_thresh))
1097                        dev_warn_ratelimited(&message->spi->dev,
1098                                             "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1099        }
1100
1101        message->state = RUNNING_STATE;
1102
1103        dma_mapped = master->can_dma &&
1104                     master->can_dma(master, message->spi, transfer) &&
1105                     master->cur_msg_mapped;
1106        if (dma_mapped) {
1107
1108                /* Ensure we have the correct interrupt handler */
1109                drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1110
1111                err = pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1112                if (err) {
1113                        message->status = err;
1114                        giveback(drv_data);
1115                        return;
1116                }
1117
1118                /* Clear status and start DMA engine */
1119                cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1120                pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1121
1122                pxa2xx_spi_dma_start(drv_data);
1123        } else {
1124                /* Ensure we have the correct interrupt handler */
1125                drv_data->transfer_handler = interrupt_transfer;
1126
1127                /* Clear status  */
1128                cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1129                write_SSSR_CS(drv_data, drv_data->clear_sr);
1130        }
1131
1132        /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1133        cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1134        if (!pxa25x_ssp_comp(drv_data))
1135                dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1136                        master->max_speed_hz
1137                                / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1138                        dma_mapped ? "DMA" : "PIO");
1139        else
1140                dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1141                        master->max_speed_hz / 2
1142                                / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1143                        dma_mapped ? "DMA" : "PIO");
1144
1145        if (is_lpss_ssp(drv_data)) {
1146                if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1147                    != chip->lpss_rx_threshold)
1148                        pxa2xx_spi_write(drv_data, SSIRF,
1149                                         chip->lpss_rx_threshold);
1150                if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1151                    != chip->lpss_tx_threshold)
1152                        pxa2xx_spi_write(drv_data, SSITF,
1153                                         chip->lpss_tx_threshold);
1154        }
1155
1156        if (is_quark_x1000_ssp(drv_data) &&
1157            (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1158                pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1159
1160        /* see if we need to reload the config registers */
1161        if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1162            || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1163            != (cr1 & change_mask)) {
1164                /* stop the SSP, and update the other bits */
1165                pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1166                if (!pxa25x_ssp_comp(drv_data))
1167                        pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1168                /* first set CR1 without interrupt and service enables */
1169                pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1170                /* restart the SSP */
1171                pxa2xx_spi_write(drv_data, SSCR0, cr0);
1172
1173        } else {
1174                if (!pxa25x_ssp_comp(drv_data))
1175                        pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1176        }
1177
1178        cs_assert(drv_data);
1179
1180        /* after chip select, release the data by enabling service
1181         * requests and interrupts, without changing any mode bits */
1182        pxa2xx_spi_write(drv_data, SSCR1, cr1);
1183}
1184
1185static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1186                                           struct spi_message *msg)
1187{
1188        struct driver_data *drv_data = spi_master_get_devdata(master);
1189
1190        /* Initial message state*/
1191        msg->state = START_STATE;
1192        drv_data->cur_transfer = list_entry(msg->transfers.next,
1193                                                struct spi_transfer,
1194                                                transfer_list);
1195
1196        /* Mark as busy and launch transfers */
1197        tasklet_schedule(&drv_data->pump_transfers);
1198        return 0;
1199}
1200
1201static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1202{
1203        struct driver_data *drv_data = spi_master_get_devdata(master);
1204
1205        /* Disable the SSP now */
1206        pxa2xx_spi_write(drv_data, SSCR0,
1207                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1208
1209        return 0;
1210}
1211
1212static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1213                    struct pxa2xx_spi_chip *chip_info)
1214{
1215        struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1216        struct gpio_desc *gpiod;
1217        int err = 0;
1218
1219        if (chip == NULL)
1220                return 0;
1221
1222        if (drv_data->cs_gpiods) {
1223                gpiod = drv_data->cs_gpiods[spi->chip_select];
1224                if (gpiod) {
1225                        chip->gpiod_cs = gpiod;
1226                        chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1227                        gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1228                }
1229
1230                return 0;
1231        }
1232
1233        if (chip_info == NULL)
1234                return 0;
1235
1236        /* NOTE: setup() can be called multiple times, possibly with
1237         * different chip_info, release previously requested GPIO
1238         */
1239        if (chip->gpiod_cs) {
1240                gpio_free(desc_to_gpio(chip->gpiod_cs));
1241                chip->gpiod_cs = NULL;
1242        }
1243
1244        /* If (*cs_control) is provided, ignore GPIO chip select */
1245        if (chip_info->cs_control) {
1246                chip->cs_control = chip_info->cs_control;
1247                return 0;
1248        }
1249
1250        if (gpio_is_valid(chip_info->gpio_cs)) {
1251                err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1252                if (err) {
1253                        dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1254                                chip_info->gpio_cs);
1255                        return err;
1256                }
1257
1258                gpiod = gpio_to_desc(chip_info->gpio_cs);
1259                chip->gpiod_cs = gpiod;
1260                chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1261
1262                err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1263        }
1264
1265        return err;
1266}
1267
1268static int setup(struct spi_device *spi)
1269{
1270        struct pxa2xx_spi_chip *chip_info;
1271        struct chip_data *chip;
1272        const struct lpss_config *config;
1273        struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1274        uint tx_thres, tx_hi_thres, rx_thres;
1275
1276        switch (drv_data->ssp_type) {
1277        case QUARK_X1000_SSP:
1278                tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1279                tx_hi_thres = 0;
1280                rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1281                break;
1282        case CE4100_SSP:
1283                tx_thres = TX_THRESH_CE4100_DFLT;
1284                tx_hi_thres = 0;
1285                rx_thres = RX_THRESH_CE4100_DFLT;
1286                break;
1287        case LPSS_LPT_SSP:
1288        case LPSS_BYT_SSP:
1289        case LPSS_BSW_SSP:
1290        case LPSS_SPT_SSP:
1291        case LPSS_BXT_SSP:
1292        case LPSS_CNL_SSP:
1293                config = lpss_get_config(drv_data);
1294                tx_thres = config->tx_threshold_lo;
1295                tx_hi_thres = config->tx_threshold_hi;
1296                rx_thres = config->rx_threshold;
1297                break;
1298        default:
1299                tx_thres = TX_THRESH_DFLT;
1300                tx_hi_thres = 0;
1301                rx_thres = RX_THRESH_DFLT;
1302                break;
1303        }
1304
1305        /* Only alloc on first setup */
1306        chip = spi_get_ctldata(spi);
1307        if (!chip) {
1308                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1309                if (!chip)
1310                        return -ENOMEM;
1311
1312                if (drv_data->ssp_type == CE4100_SSP) {
1313                        if (spi->chip_select > 4) {
1314                                dev_err(&spi->dev,
1315                                        "failed setup: cs number must not be > 4.\n");
1316                                kfree(chip);
1317                                return -EINVAL;
1318                        }
1319
1320                        chip->frm = spi->chip_select;
1321                }
1322                chip->enable_dma = drv_data->master_info->enable_dma;
1323                chip->timeout = TIMOUT_DFLT;
1324        }
1325
1326        /* protocol drivers may change the chip settings, so...
1327         * if chip_info exists, use it */
1328        chip_info = spi->controller_data;
1329
1330        /* chip_info isn't always needed */
1331        chip->cr1 = 0;
1332        if (chip_info) {
1333                if (chip_info->timeout)
1334                        chip->timeout = chip_info->timeout;
1335                if (chip_info->tx_threshold)
1336                        tx_thres = chip_info->tx_threshold;
1337                if (chip_info->tx_hi_threshold)
1338                        tx_hi_thres = chip_info->tx_hi_threshold;
1339                if (chip_info->rx_threshold)
1340                        rx_thres = chip_info->rx_threshold;
1341                chip->dma_threshold = 0;
1342                if (chip_info->enable_loopback)
1343                        chip->cr1 = SSCR1_LBM;
1344        }
1345
1346        chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1347        chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1348                                | SSITF_TxHiThresh(tx_hi_thres);
1349
1350        /* set dma burst and threshold outside of chip_info path so that if
1351         * chip_info goes away after setting chip->enable_dma, the
1352         * burst and threshold can still respond to changes in bits_per_word */
1353        if (chip->enable_dma) {
1354                /* set up legal burst and threshold for dma */
1355                if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1356                                                spi->bits_per_word,
1357                                                &chip->dma_burst_size,
1358                                                &chip->dma_threshold)) {
1359                        dev_warn(&spi->dev,
1360                                 "in setup: DMA burst size reduced to match bits_per_word\n");
1361                }
1362        }
1363
1364        switch (drv_data->ssp_type) {
1365        case QUARK_X1000_SSP:
1366                chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1367                                   & QUARK_X1000_SSCR1_RFT)
1368                                   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1369                                   & QUARK_X1000_SSCR1_TFT);
1370                break;
1371        case CE4100_SSP:
1372                chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1373                        (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1374                break;
1375        default:
1376                chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1377                        (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1378                break;
1379        }
1380
1381        chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1382        chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1383                        | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1384
1385        if (spi->mode & SPI_LOOP)
1386                chip->cr1 |= SSCR1_LBM;
1387
1388        if (spi->bits_per_word <= 8) {
1389                chip->n_bytes = 1;
1390                chip->read = u8_reader;
1391                chip->write = u8_writer;
1392        } else if (spi->bits_per_word <= 16) {
1393                chip->n_bytes = 2;
1394                chip->read = u16_reader;
1395                chip->write = u16_writer;
1396        } else if (spi->bits_per_word <= 32) {
1397                chip->n_bytes = 4;
1398                chip->read = u32_reader;
1399                chip->write = u32_writer;
1400        }
1401
1402        spi_set_ctldata(spi, chip);
1403
1404        if (drv_data->ssp_type == CE4100_SSP)
1405                return 0;
1406
1407        return setup_cs(spi, chip, chip_info);
1408}
1409
1410static void cleanup(struct spi_device *spi)
1411{
1412        struct chip_data *chip = spi_get_ctldata(spi);
1413        struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1414
1415        if (!chip)
1416                return;
1417
1418        if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1419            chip->gpiod_cs)
1420                gpio_free(desc_to_gpio(chip->gpiod_cs));
1421
1422        kfree(chip);
1423}
1424
1425#ifdef CONFIG_PCI
1426#ifdef CONFIG_ACPI
1427
1428static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1429        { "INT33C0", LPSS_LPT_SSP },
1430        { "INT33C1", LPSS_LPT_SSP },
1431        { "INT3430", LPSS_LPT_SSP },
1432        { "INT3431", LPSS_LPT_SSP },
1433        { "80860F0E", LPSS_BYT_SSP },
1434        { "8086228E", LPSS_BSW_SSP },
1435        { },
1436};
1437MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1438
1439static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1440{
1441        unsigned int devid;
1442        int port_id = -1;
1443
1444        if (adev && adev->pnp.unique_id &&
1445            !kstrtouint(adev->pnp.unique_id, 0, &devid))
1446                port_id = devid;
1447        return port_id;
1448}
1449#else /* !CONFIG_ACPI */
1450static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1451{
1452        return -1;
1453}
1454#endif
1455
1456/*
1457 * PCI IDs of compound devices that integrate both host controller and private
1458 * integrated DMA engine. Please note these are not used in module
1459 * autoloading and probing in this module but matching the LPSS SSP type.
1460 */
1461static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1462        /* SPT-LP */
1463        { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1464        { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1465        /* SPT-H */
1466        { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1467        { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1468        /* KBL-H */
1469        { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1470        { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1471        /* BXT A-Step */
1472        { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1473        { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1474        { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1475        /* BXT B-Step */
1476        { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1477        { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1478        { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1479        /* GLK */
1480        { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1481        { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1482        { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1483        /* APL */
1484        { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1485        { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1486        { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1487        /* CNL-LP */
1488        { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1489        { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1490        { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1491        /* CNL-H */
1492        { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1493        { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1494        { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1495        { },
1496};
1497
1498static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1499{
1500        struct device *dev = param;
1501
1502        if (dev != chan->device->dev->parent)
1503                return false;
1504
1505        return true;
1506}
1507
1508static struct pxa2xx_spi_master *
1509pxa2xx_spi_init_pdata(struct platform_device *pdev)
1510{
1511        struct pxa2xx_spi_master *pdata;
1512        struct acpi_device *adev;
1513        struct ssp_device *ssp;
1514        struct resource *res;
1515        const struct acpi_device_id *adev_id = NULL;
1516        const struct pci_device_id *pcidev_id = NULL;
1517        int type;
1518
1519        adev = ACPI_COMPANION(&pdev->dev);
1520
1521        if (dev_is_pci(pdev->dev.parent))
1522                pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1523                                         to_pci_dev(pdev->dev.parent));
1524        else if (adev)
1525                adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1526                                            &pdev->dev);
1527        else
1528                return NULL;
1529
1530        if (adev_id)
1531                type = (int)adev_id->driver_data;
1532        else if (pcidev_id)
1533                type = (int)pcidev_id->driver_data;
1534        else
1535                return NULL;
1536
1537        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1538        if (!pdata)
1539                return NULL;
1540
1541        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1542        if (!res)
1543                return NULL;
1544
1545        ssp = &pdata->ssp;
1546
1547        ssp->phys_base = res->start;
1548        ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1549        if (IS_ERR(ssp->mmio_base))
1550                return NULL;
1551
1552        if (pcidev_id) {
1553                pdata->tx_param = pdev->dev.parent;
1554                pdata->rx_param = pdev->dev.parent;
1555                pdata->dma_filter = pxa2xx_spi_idma_filter;
1556        }
1557
1558        ssp->clk = devm_clk_get(&pdev->dev, NULL);
1559        ssp->irq = platform_get_irq(pdev, 0);
1560        ssp->type = type;
1561        ssp->pdev = pdev;
1562        ssp->port_id = pxa2xx_spi_get_port_id(adev);
1563
1564        pdata->num_chipselect = 1;
1565        pdata->enable_dma = true;
1566
1567        return pdata;
1568}
1569
1570#else /* !CONFIG_PCI */
1571static inline struct pxa2xx_spi_master *
1572pxa2xx_spi_init_pdata(struct platform_device *pdev)
1573{
1574        return NULL;
1575}
1576#endif
1577
1578static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs)
1579{
1580        struct driver_data *drv_data = spi_master_get_devdata(master);
1581
1582        if (has_acpi_companion(&drv_data->pdev->dev)) {
1583                switch (drv_data->ssp_type) {
1584                /*
1585                 * For Atoms the ACPI DeviceSelection used by the Windows
1586                 * driver starts from 1 instead of 0 so translate it here
1587                 * to match what Linux expects.
1588                 */
1589                case LPSS_BYT_SSP:
1590                case LPSS_BSW_SSP:
1591                        return cs - 1;
1592
1593                default:
1594                        break;
1595                }
1596        }
1597
1598        return cs;
1599}
1600
1601static int pxa2xx_spi_probe(struct platform_device *pdev)
1602{
1603        struct device *dev = &pdev->dev;
1604        struct pxa2xx_spi_master *platform_info;
1605        struct spi_master *master;
1606        struct driver_data *drv_data;
1607        struct ssp_device *ssp;
1608        const struct lpss_config *config;
1609        int status, count;
1610        u32 tmp;
1611
1612        platform_info = dev_get_platdata(dev);
1613        if (!platform_info) {
1614                platform_info = pxa2xx_spi_init_pdata(pdev);
1615                if (!platform_info) {
1616                        dev_err(&pdev->dev, "missing platform data\n");
1617                        return -ENODEV;
1618                }
1619        }
1620
1621        ssp = pxa_ssp_request(pdev->id, pdev->name);
1622        if (!ssp)
1623                ssp = &platform_info->ssp;
1624
1625        if (!ssp->mmio_base) {
1626                dev_err(&pdev->dev, "failed to get ssp\n");
1627                return -ENODEV;
1628        }
1629
1630        master = spi_alloc_master(dev, sizeof(struct driver_data));
1631        if (!master) {
1632                dev_err(&pdev->dev, "cannot alloc spi_master\n");
1633                pxa_ssp_free(ssp);
1634                return -ENOMEM;
1635        }
1636        drv_data = spi_master_get_devdata(master);
1637        drv_data->master = master;
1638        drv_data->master_info = platform_info;
1639        drv_data->pdev = pdev;
1640        drv_data->ssp = ssp;
1641
1642        master->dev.of_node = pdev->dev.of_node;
1643        /* the spi->mode bits understood by this driver: */
1644        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1645
1646        master->bus_num = ssp->port_id;
1647        master->dma_alignment = DMA_ALIGNMENT;
1648        master->cleanup = cleanup;
1649        master->setup = setup;
1650        master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1651        master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1652        master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1653        master->auto_runtime_pm = true;
1654        master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
1655
1656        drv_data->ssp_type = ssp->type;
1657
1658        drv_data->ioaddr = ssp->mmio_base;
1659        drv_data->ssdr_physical = ssp->phys_base + SSDR;
1660        if (pxa25x_ssp_comp(drv_data)) {
1661                switch (drv_data->ssp_type) {
1662                case QUARK_X1000_SSP:
1663                        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1664                        break;
1665                default:
1666                        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1667                        break;
1668                }
1669
1670                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1671                drv_data->dma_cr1 = 0;
1672                drv_data->clear_sr = SSSR_ROR;
1673                drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1674        } else {
1675                master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1676                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1677                drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1678                drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1679                drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1680        }
1681
1682        status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1683                        drv_data);
1684        if (status < 0) {
1685                dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1686                goto out_error_master_alloc;
1687        }
1688
1689        /* Setup DMA if requested */
1690        if (platform_info->enable_dma) {
1691                status = pxa2xx_spi_dma_setup(drv_data);
1692                if (status) {
1693                        dev_dbg(dev, "no DMA channels available, using PIO\n");
1694                        platform_info->enable_dma = false;
1695                } else {
1696                        master->can_dma = pxa2xx_spi_can_dma;
1697                }
1698        }
1699
1700        /* Enable SOC clock */
1701        clk_prepare_enable(ssp->clk);
1702
1703        master->max_speed_hz = clk_get_rate(ssp->clk);
1704
1705        /* Load default SSP configuration */
1706        pxa2xx_spi_write(drv_data, SSCR0, 0);
1707        switch (drv_data->ssp_type) {
1708        case QUARK_X1000_SSP:
1709                tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1710                      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1711                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1712
1713                /* using the Motorola SPI protocol and use 8 bit frame */
1714                tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1715                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1716                break;
1717        case CE4100_SSP:
1718                tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1719                      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1720                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1721                tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1722                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1723                break;
1724        default:
1725                tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1726                      SSCR1_TxTresh(TX_THRESH_DFLT);
1727                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1728                tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1729                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1730                break;
1731        }
1732
1733        if (!pxa25x_ssp_comp(drv_data))
1734                pxa2xx_spi_write(drv_data, SSTO, 0);
1735
1736        if (!is_quark_x1000_ssp(drv_data))
1737                pxa2xx_spi_write(drv_data, SSPSP, 0);
1738
1739        if (is_lpss_ssp(drv_data)) {
1740                lpss_ssp_setup(drv_data);
1741                config = lpss_get_config(drv_data);
1742                if (config->reg_capabilities >= 0) {
1743                        tmp = __lpss_ssp_read_priv(drv_data,
1744                                                   config->reg_capabilities);
1745                        tmp &= LPSS_CAPS_CS_EN_MASK;
1746                        tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1747                        platform_info->num_chipselect = ffz(tmp);
1748                } else if (config->cs_num) {
1749                        platform_info->num_chipselect = config->cs_num;
1750                }
1751        }
1752        master->num_chipselect = platform_info->num_chipselect;
1753
1754        count = gpiod_count(&pdev->dev, "cs");
1755        if (count > 0) {
1756                int i;
1757
1758                master->num_chipselect = max_t(int, count,
1759                        master->num_chipselect);
1760
1761                drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1762                        master->num_chipselect, sizeof(struct gpio_desc *),
1763                        GFP_KERNEL);
1764                if (!drv_data->cs_gpiods) {
1765                        status = -ENOMEM;
1766                        goto out_error_clock_enabled;
1767                }
1768
1769                for (i = 0; i < master->num_chipselect; i++) {
1770                        struct gpio_desc *gpiod;
1771
1772                        gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1773                        if (IS_ERR(gpiod)) {
1774                                /* Means use native chip select */
1775                                if (PTR_ERR(gpiod) == -ENOENT)
1776                                        continue;
1777
1778                                status = (int)PTR_ERR(gpiod);
1779                                goto out_error_clock_enabled;
1780                        } else {
1781                                drv_data->cs_gpiods[i] = gpiod;
1782                        }
1783                }
1784        }
1785
1786        tasklet_init(&drv_data->pump_transfers, pump_transfers,
1787                     (unsigned long)drv_data);
1788
1789        pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1790        pm_runtime_use_autosuspend(&pdev->dev);
1791        pm_runtime_set_active(&pdev->dev);
1792        pm_runtime_enable(&pdev->dev);
1793
1794        /* Register with the SPI framework */
1795        platform_set_drvdata(pdev, drv_data);
1796        status = devm_spi_register_master(&pdev->dev, master);
1797        if (status != 0) {
1798                dev_err(&pdev->dev, "problem registering spi master\n");
1799                goto out_error_clock_enabled;
1800        }
1801
1802        return status;
1803
1804out_error_clock_enabled:
1805        clk_disable_unprepare(ssp->clk);
1806        pxa2xx_spi_dma_release(drv_data);
1807        free_irq(ssp->irq, drv_data);
1808
1809out_error_master_alloc:
1810        spi_master_put(master);
1811        pxa_ssp_free(ssp);
1812        return status;
1813}
1814
1815static int pxa2xx_spi_remove(struct platform_device *pdev)
1816{
1817        struct driver_data *drv_data = platform_get_drvdata(pdev);
1818        struct ssp_device *ssp;
1819
1820        if (!drv_data)
1821                return 0;
1822        ssp = drv_data->ssp;
1823
1824        pm_runtime_get_sync(&pdev->dev);
1825
1826        /* Disable the SSP at the peripheral and SOC level */
1827        pxa2xx_spi_write(drv_data, SSCR0, 0);
1828        clk_disable_unprepare(ssp->clk);
1829
1830        /* Release DMA */
1831        if (drv_data->master_info->enable_dma)
1832                pxa2xx_spi_dma_release(drv_data);
1833
1834        pm_runtime_put_noidle(&pdev->dev);
1835        pm_runtime_disable(&pdev->dev);
1836
1837        /* Release IRQ */
1838        free_irq(ssp->irq, drv_data);
1839
1840        /* Release SSP */
1841        pxa_ssp_free(ssp);
1842
1843        return 0;
1844}
1845
1846static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1847{
1848        int status = 0;
1849
1850        if ((status = pxa2xx_spi_remove(pdev)) != 0)
1851                dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1852}
1853
1854#ifdef CONFIG_PM_SLEEP
1855static int pxa2xx_spi_suspend(struct device *dev)
1856{
1857        struct driver_data *drv_data = dev_get_drvdata(dev);
1858        struct ssp_device *ssp = drv_data->ssp;
1859        int status;
1860
1861        status = spi_master_suspend(drv_data->master);
1862        if (status != 0)
1863                return status;
1864        pxa2xx_spi_write(drv_data, SSCR0, 0);
1865
1866        if (!pm_runtime_suspended(dev))
1867                clk_disable_unprepare(ssp->clk);
1868
1869        return 0;
1870}
1871
1872static int pxa2xx_spi_resume(struct device *dev)
1873{
1874        struct driver_data *drv_data = dev_get_drvdata(dev);
1875        struct ssp_device *ssp = drv_data->ssp;
1876        int status;
1877
1878        /* Enable the SSP clock */
1879        if (!pm_runtime_suspended(dev))
1880                clk_prepare_enable(ssp->clk);
1881
1882        /* Restore LPSS private register bits */
1883        if (is_lpss_ssp(drv_data))
1884                lpss_ssp_setup(drv_data);
1885
1886        /* Start the queue running */
1887        status = spi_master_resume(drv_data->master);
1888        if (status != 0) {
1889                dev_err(dev, "problem starting queue (%d)\n", status);
1890                return status;
1891        }
1892
1893        return 0;
1894}
1895#endif
1896
1897#ifdef CONFIG_PM
1898static int pxa2xx_spi_runtime_suspend(struct device *dev)
1899{
1900        struct driver_data *drv_data = dev_get_drvdata(dev);
1901
1902        clk_disable_unprepare(drv_data->ssp->clk);
1903        return 0;
1904}
1905
1906static int pxa2xx_spi_runtime_resume(struct device *dev)
1907{
1908        struct driver_data *drv_data = dev_get_drvdata(dev);
1909
1910        clk_prepare_enable(drv_data->ssp->clk);
1911        return 0;
1912}
1913#endif
1914
1915static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1916        SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1917        SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1918                           pxa2xx_spi_runtime_resume, NULL)
1919};
1920
1921static struct platform_driver driver = {
1922        .driver = {
1923                .name   = "pxa2xx-spi",
1924                .pm     = &pxa2xx_spi_pm_ops,
1925                .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1926        },
1927        .probe = pxa2xx_spi_probe,
1928        .remove = pxa2xx_spi_remove,
1929        .shutdown = pxa2xx_spi_shutdown,
1930};
1931
1932static int __init pxa2xx_spi_init(void)
1933{
1934        return platform_driver_register(&driver);
1935}
1936subsys_initcall(pxa2xx_spi_init);
1937
1938static void __exit pxa2xx_spi_exit(void)
1939{
1940        platform_driver_unregister(&driver);
1941}
1942module_exit(pxa2xx_spi_exit);
1943